Package: adimpro (via r-universe)

September 12, 2024

September 12, 2024
Version 0.9.7
Date 2024-07-05
Title Adaptive Smoothing of Digital Images
Author Karsten Tabelow <tabelow@wias-berlin.de>, Joerg Polzehl</tabelow@wias-berlin.de>
<polzehl@wias-berlin.de></polzehl@wias-berlin.de>
Maintainer Karsten Tabelow <tabelow@wias-berlin.de></tabelow@wias-berlin.de>
Depends R (>= $3.2.0$)
Imports awsMethods (>= 1.1-1), grDevices, methods
SystemRequirements Image Magick (for reading non PPM format), dcraw (for reading RAW images).
Description Implements tools for manipulation of digital images and the Propagation Separation approach by Polzehl and Spokoiny (2006) <doi:10.1007 s00440-005-0464-1=""> for smoothing digital images, see Polzehl and Tabelow (2007) <doi:10.18637 jss.v019.i01="">.</doi:10.18637></doi:10.1007>
License GPL (>= 2)
Copyright This package is Copyright (C) 2006-2024 Weierstrass Institute for Applied Analysis and Stochastics.
<pre>URL https://www.wias-berlin.de/software/imaging/</pre>
NeedsCompilation yes
Repository CRAN
Date/Publication 2024-07-05 13:10:02 UTC
Contents
adimpro

2 adimpro

	clip.image	12
	colorspace	13
	combine	14
	develop.raw	16
	edges	17
	extract.image	
	extract.info	
	extract.ni	20
	imganiso2D	20
	mask.create	
	plot.adimpro	
	rimage	
	rotate.image	
	segment	
	show.image	
	shrink.image	
	summary.adimpro	
	write.image	
	write.raw	
Index		35

Description

adimpro

Create image objects of class "adimpro" from arrays, RAW-format files and other image formats.

Usage

I/O Functions

Arguments

filename	file name
x	Array or matrix containing RGB or greyscale values in the range $(0,1)$ or $(0,65535)$.
type	option settings for dcraw. default "PPM". type="png" allows to read greyvalue png images as RAW-data (used as internal solution to store RAW information)
wb	white balance. default "CAMERA"

adimpro 3

cspace defines the output color space, default "sRGB" (sRGB D65), alternatives are

"RAW" (Camera specific), "Adobe" (Adobe 1998 D65), "wGamut" (Wide Gamut D65), "kodak" (Kodak ProPhoto D65) and "XYZ", see manpages of dcraw.

interp defines the interpolation method, default "Bilinear", Alternatives are "VNG",

"AHD", "FourC" (Four color interpolation) and "Halfsize", see manpages of

dcraw. "VNG" seems to provide the smallest spatial correlations.

maxrange If TRUE increase range of values to maximum.

rm.ppm remove intermediate tmp file? default TRUE

gammatype character, determines the type of gamma correction within the image. "ITU"

stands for ITU-R BT.709-3 as e.g. used by dcraw. Alternatives recognized within the package are "None", "sRGB" and "CIE" (CIE L*). Please specify if

you know that your image is not gamma corrected using ITU-R BT.709-3.

whitep White point in xyY space. Can be given as one of (character) c("A", "B", "C", "E", "D50", "D55", "D65",

or as a two element numeric vector of chromatic xy coordinates. "D65" corre-

sponds to the default white point of "sRGB" and "Adobe" RGB-spaces.

compress logical, determines if image data are stored in raw-format.

scale "Original" scales to (0, max(img\$img)) if min(img\$img)<0, otherwise keeps

the original scale. "Maxcontrast" scales each channel to maximum contrast

xmode xmode determines how to interpret the values in x if length(dim(x))=3. Im-

plemented are xmode="RGB" (default) and xmode="HSI"

Details

If ImageMagick is available on the system, read.image reads any of the following image file formats: c("tif", "tiff", "pgm", "ppm", "png", "pnm", "gif", "jpg", "jpeg") converts it into a temporary "pgm" or "ppm" file. This file is removed after reading the image. If ImageMagick is not available only "pgm", "ppm" and "pnm" formats can be processed.

If dcraw is available on the system, read.raw reads many RAW formats. type sets options to dcraw: "PPM" sets "-4", "RAW" sets "-4 -d", "HALFSIZE" sets "-h", "INFO" sets "-i -v". wb indicates, which white balance should be used: "NONE", "AUTO", "CAMERA".

Functions read.raw(file, type="RAW") and read.image(file) provide identical results on pngmages. If the result is a color, greyvalued or RAW image depends on the contend of the comment associated with the png-image.

make. image converts an appropriate 2 or 3 dimensional array to an image object of class "adimpro".

Value

object of class "adimpro" containing the image. The object has the following components:

img array containing the color values in the color space specified by value\$type.

type the color space.

depth color depth, here "16bit".

dim vector of length 2 containing the number of pixel in horizontal and vertival di-

rection.

file the argument file identifying the image.

4 adimpro.options

cspace the type of rgb space used, as specified by cspace.

interp interpolation applied by dcraw, as specified by interp.

gamma has a gamma correction been applied, here FALSE for read.raw and TRUE for

read.image

gammatype type of gamma correction read.image.
wb type of white balance, as specified by wb.

compressed image data are stored as raw-vector (TRUE) or array of integers (FALSE).

Note

The function read. raw requires dcraw to be installed.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de> and Joerg Polzehl <polzehl@wias-berlin.de>

See Also

```
read.image
```

Examples

```
## Not run: demo(io)
```

adimpro.options

Set parameters for graphical display

Description

On systems capabale of X11 the function sets the X11-type (preferably "Xlib"). It also sets a default size for graphical displays opended by functions from the package.

Usage

```
adimpro.options(xsize = NULL, ysize = NULL)
```

Arguments

xsize display width in pt ysize display height in pt adjust.image 5

Details

The function assignes the specified values to as a list to the variable name ".adimpro". This variable is, if it exists, evaluated by several other functions.

On some systems the default X11.options()\$type "cairo" leads to significant slower image display. You may try to use X11.options(type=''Xlib'') instead. To automatically choose this option set the system environment variable R_X11type (setenv R_X11type Xlib or export R_X11type=Xlib) before loading the package.

Value

```
returns invisible(NULL)
```

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de> and Joerg Polzehl <polzehl@wias-berlin.de>

adjust.image

Image Processing

Description

Color space transformations, change of white balance and exposure, gamma correction and histogram equalization.

Usage

Arguments

img image object, class "adimpro".

gammatype character, determines the type of gamma correction within the image. "ITU"

stands for ITU-R BT.709-3 as e.g. used by dcraw. Alternatives recognized within the package are "None", "sRGB" and "CIE" (CIE L^*). NULL keeps the actual setting. gammatype="histogram" forces histogram equalization based

on the corresponding greyvalue image.

cspace defines the output color space, default "sRGB" (sRGB D65), alternatives are

"Adobe" (Adobe 1998 D65), "wGamut" (Wide Gamut D65), "kodak" (Kodak ProPhoto D65) "xyz", "yuv", "yiq" and "hsi". NULL keeps the actual setting.

whitep White point in xyY space. Can be given as one of (character) c("A", "B", "C", "E", "D50", "D55", "D65",

or as a two element numeric vector of chromatic xy coordinates. "D65" corresponds to the default white point of "sRGB" and "Adobe" RGB-spaces. NULL

keeps the actual setting.

6 adjust.image

temp	Color temperature. Can be used to specify chromatic xy coordinates of the whitepoint. Only used if is.null(whitep).
black	Adjustment for black color. Color values with luminance <= black will be assigned to black in RGB. Adjustment ist done in xyY space.
exposure	Multiplicative factor for all color channels (in xyz or rgb spaces). Applied in linear color space, i.e. if the image is gamma corrected the gamma correction is reversed first.
kind	Algorithm for chromatic adaptation. Alternatives are "Bradford", "VonKries" and "XYZscaling"
alg	determines the approximation for the gamma correction. Select 1 for fastest computation and 3 for maximum accuracy, or 2 for a compromise.
compress	logical, determines if image data are stored in raw-format.

Details

This function adjusts color channels and applies gamma correction (if applicable).

If color.par\$red or color.par\$blue or color.par\$brightness differ from 1.0 the corresponding channels are multiplied with the provided values. Saturated values are set to 1.

If img\$gamma==FALSE, perform gamma correction with color.par\$ga and color.par\$bp. alg chooses between three different computing algorithms (approximations) with increasing computation time and precision (alg is 1,2, or 3).

Value

Adjusted image object of class "adimpro".

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de> and Joerg Polzehl <polzehl@wias-berlin.de>

See Also

```
show.image, write.image
```

Examples

```
## Not run: demo(color)
```

awsimage 7

ımage	

Propagation-Separation approach for smoothing of 2D images

Description

This functions implement the Propagation-Separation approach (local constant and local polynomial model) for smoothing images. Function awsaniso uses anisotropic location weights. This is done by evaluating local gradient estimates obtained from the actual estimated color values.

Usage

```
awsimage(object, hmax=4, aws=TRUE, varmodel=NULL, ladjust=1.25,
         mask=NULL, xind = NULL, yind = NULL,
         wghts=c(1,1,1,1), scorr=TRUE,
         lkern="Plateau", plateau=NULL, homogen=TRUE, earlystop=TRUE,
         demo=FALSE, graph=FALSE,
         max.pixel=4.e2, clip = FALSE, compress=TRUE)
awspimage(object, hmax=12, aws=TRUE, degree=1, varmodel = NULL,
         ladjust=1.0, xind = NULL, yind = NULL,
          wghts=c(1,1,1,1), scorr=TRUE,
          lkern="Plateau", plateau=NULL, homogen=TRUE, earlystop=TRUE,
          demo=FALSE, graph=FALSE,
          max.pixel= 4.e2, clip = FALSE, compress=TRUE)
awsaniso(object, hmax = 4, g = 3, rho = 0, aws = TRUE, varmodel = NULL,
          ladjust = 1, xind = NULL, yind = NULL, wghts = c(1, 1, 1, 1),
          scorr = TRUE, lkern = "Triangle", demo = FALSE, graph = FALSE,
          satexp = 0.25, max.pixel = 400, clip = FALSE, compress = TRUE)
```

Arguments

object	Image object, class "adimpro", as from read.image, read.raw, or make.image.
hmax	Maximum bandwidth to use in the iteration procedure.
g	Bandwidth for anisotropic smoothing gradient estimates, preferably $g \geq 3$ for images with line type texture and small $g \approx 1$ for improving edges between homogeneous regions (function awsaniso only).
rho	Regularization parameter for anisotropic smoothing gradient estimates, preferably $\rho=0$ for images with line type texture and large $\rho\approx 3$ for improving edges between homogeneous regions. (function awsaniso only)
aws	(logical). If TRUE the propagation - separation (PS) approach from Polzehl and Spokoiny (2006) is used. aws=FALSE turns off the statistical penalty resulting in a nonadaptive kernel estimate using a kernel with bandwidth hmax.
degree	Degree of the local polynomial model for awspimage. 0, 1, or 2 only.
varmodel	varmodel specifies how variances are to be estimated. This can be a homogeneous variance estimate (varmodel="None") assuming uncorrelated errors (both spatial and between channels). Alternatives are an adaptive homogeneous or

8 awsimage

> linear (function of the mean) variance estimate that depends on estimated correlations and on residuals from the last iteration step. The default varmodel=NULL corresponds to varmodel == "Linear" if img\$gamma==FALSE and varmodel == "Constant" otherwise.

ladjust

adjustment factor for lambda (>=1). Default values for lambda are selected for Gaussian distributions and default settings of parameters 1kern and plateau. Skewed or heavy tailed distributions may require slightly larger values for lambda to meet the propagation condition. ladjust allows to increase lambda in such situations.

logical array of the same size as the image or NULL (default). Smoothing is restricted to the smallest rectangle including all pixel where mask==TRUE and restricts computations to these pixel. This need not be a connected area (Typical usage: smooth all bright regions)! Only used if is.null(xind) && is.null(yind).

Inactive if mask==NULL. Can only be used if varmodel="None".

Restrict smoothing to rectangular area defined by pixel indices xind, yind in xand y-direction. Full range if NULL (default).

allows to weight the information from different (up to 4) color channels. The weights are used in the statistical penalty of the PS-procedure. Note that lambdavalues are selected for wghts==c(1,1,1,1), please use parameter ladjust to set an appropriate value.

(logical). Specifies whether spatial correlation is to be estimated. Defaults to TRUE. Is set to FALSE if mask is not NULL.

Specifies the location kernel. Defaults to "Triangle", other choices are "Quadratic", "Cubic" and "Uniform". The use of "Triangle" corresponds to the Epanechnicov kernel nonparametric kernel regression.

Extension of the plateau in the statistical kernel. Can take values from (0,1), defaults to 0.25.

If TRUE the algorithm determines, in each design point i, a circle of maximum radius, such that the statistical penalty s_{ij} for all points j within the circle is less than the value specified in plateau. In subsequent iteration steps the statistical penalty for such points is set to zero. This is only used if plateau>0. This results in more stable intermediate estimates and in a smoother reconstruction. homogen=TRUE leads to increased memory requirements.

If TRUE the algorithm determines, in each design point i, a circle of minimal radius, such that the circle includes all point j with positive weights w_{ij}. if this radius is considerably smaller than the actual bandwidth then the estimate in point i is fixed. This should considerably reduce computing time in case of large hmax.earlystop=TRUE slightly increases memory requirements.

(logical). If demo=TRUE the function pauses after each iteration. Defaults to FALSE.

(logical). If graph=TRUE intermediate results are illustrated after each iteration step. Defaults to FALSE.

Maximum dimension of images for display if graph=TRUE. If the true dimension is larger, the images are downscaled for display. See also show.image.

mask

xind, yind

wghts

scorr

lkern

plateau

homogen

earlystop

demo graph

max.pixel

awsimage 9

satexp	exponent used for scaling saturation in anisotropy visualization (function awsaniso only)
clip	(logical). If TRUE a clipping region is selected, see clip.image , using the information contained in xind or yind. If both are NULL a clipping region can be defined by left mouse clicks. The image object is reduced to the clipping region before smoothing.
compress	logical, determines if image data are stored in raw-format.

Details

The function implements the Propagation-Separation (PS) approach to nonparametric smoothing (formerly introduced as Adaptive Weights Smoothing) for varying coefficient likelihood (awsimage) and local polynomial (awspimage) models for greyscale and color images.

The distribution of grey (color) values is considered to be Gaussian. Noise can be colored.

The numerical complexity of the procedure is mainly determined by hmax. The number of iterations is 2*log(hmax)/log(1.25). Comlexity in each iteration step is Const*hakt*n with hakt being the actual bandwith in the iteration step and n the number of pixels. hmax determines the maximal possible variance reduction.

All other parameters of the approach only depend on the specified values for skern/lkern and are therefore set internally to meaningful default values.

For a detailed description of the procedure see references below.

The script used to control the values of parameter lambda is stored in directory inst/adjust.

Value

Object of class "adimpro"

img	Contains the reconstructed image.
ni	Contains the sum of weights, i.e. trace(W_i), in all grid points i.
ni0	Contains the maximum sum of weights for an nonadaptive kernel estimate with the same bandwidth.
hmax	Bandwidth used in the last iteration.
call	The arguments of the function call.
varcoef	Estimated coefficients in the variance model for the color channels, if varmodel is "Constant" or "Linear".
wghts	The weights used for the color channels.
scorr	Estimated spatial correlations for each channel, if scorr=TRUE
chcorr	Estimated correlations between color channels, if scorr=TRUE

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de> and Joerg Polzehl <polzehl@wias-berlin.de>

10 awsraw

References

Polzehl and Spokoiny (2006). Propagation-Separation Approach for Local Likelihood Estimation. Probability Theory and Related Fields. 3 (135) 335 - 362.

Polzehl and Spokoiny (2005). Structural adaptive smoothing adaptive smoothing by Propagation-Separation-methods. WIAS-Preprint No. 1068.

Polzehl, J. and Tabelow, K. (2007). Adaptive smoothing of digital images, Journal of Statistical Software 19 (1).

See Also

```
read.image, read.raw, make.image, show.image, clip.image
```

Examples

```
## Not run: demo(awsimage)
```

awsraw

Smoothing and demosaicing of RAW images

Description

The function integrates smoothing and demosaicing of RAW image data.

Usage

Arguments

object an object of class adimpro containing the RAW image data. See read.raw for

creating such objects.

hmax maximal bandwidth to use in the smoothing algorithm.

aws use adaptive weights if aws==TRUE.

wb Vector containing factors for the three color chanels, allows to change the white

balance.

cspace Color space of the result,

ladjust Factor for the critical value λ . Defaults to 1, smaller values increase sensitivity

but may result in isolated noisy pixel. Values larger than 1 give smoother up to

cartoon like results.

maxrange If TRUE increase range of values to maximum.

1kern Specifies the location kernel. Defaults to "Triangle", other choices are "Quadratic",

"Cubic" and "Uniform". The use of "Triangle" corresponds to the Epanechnicov

kernel nonparametric kernel regression.

awsraw 11

graph (logical). If graph=TRUE intermediate results are illustrated after each iteration

step. Defaults to FALSE.

max.pixel Maximum dimension of images for display if graph=TRUE. If the true dimension

is larger, the images are downscaled for display. See also show.image.

compress logical, determines if image data are stored in raw-format.

Details

Adaptive smoothing is performed on the original RAW data, restricting positive weights to pixel corresponding to the same color channel. Noise is assumed to have a variance depending linearly on the mean. Weights are determined by weighted distances between color vectors. These color vectors are obtained by demosaicing that is applied to the smoothed RAW data after each iteration of the smoothing algorithm. The demosaicing algorithm is a 3D generalized median, see method="Median4" in function develop.raw.

Value

Object of class "adimpro"

img Contains the reconstructed image.

ni Contains the sum of weights, i.e. trace(W_i), in all grid points i.

ni0 Contains the maximum sum of weights for an nonadaptive kernel estimate with

the same bandwidth.

hmax Bandwidth used in the last iteration.

call The arguments of the function call.

varcoef Estimated coefficients in the linear variance model for the color channels.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de> and Joerg Polzehl <polzehl@wias-berlin.de>

References

Polzehl, J. and Tabelow, K. (2007). Adaptive smoothing of digital images, Journal of Statistical Software 19 (1).

See Also

```
read.raw,awsimage, make.image, show.image, clip.image
```

Examples

```
## Not run: demo(raw)
```

12 clip.image

Description

The function allows to define a clipping region by arguments xind and yind or interactively by mouseclicks. A new image is created by cutting out the clipping region.

Usage

```
clip.image(img, xind = NULL, yind = NULL, compress=NULL, ...)
```

Arguments

	additional arguments to show.image can be passed here.
compress	image data are stored as raw-vector (TRUE) or array of integers (FALSE). compress= $NULL$ keeps the format used in img.
yind	yind defines the vertical extension of the clipping region.
xind	xind defines the horizontal extension of the clipping region.
img	Object of class "adimpro" as created by read.image, read.raw or make.image.

Details

If both xind==NULL and yind==NULL, show.image is called and the clipping region can be set by two left mouse clicks to opposite corners.

Value

An object of class "adimpro".

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de> and Joerg Polzehl <polzehl@wias-berlin.de>

See Also

```
read.image, read.raw, make.image, awsimage, awspimage
```

Examples

```
## Not run: demo(manipulate)
```

colorspace 13

colorspace	Color Space Conversion	

Description

Color space conversion functions for RGB, YUV, YIQ, XYZ, and HSI.

Usage

```
rgb2grey(obj, compress=TRUE)
rgb2hsi(obj)
hsi2rgb(obj, cspace = "Adobe", compress=TRUE)
rgb2yuv(obj)
yuv2rgb(obj, cspace = "Adobe", compress=TRUE)
rgb2yiq(obj)
yiq2rgb(obj, cspace = "Adobe", compress=TRUE)
rgb2xyz(obj)
xyz2rgb(obj, cspace = "Adobe", black= 0, exposure=1, compress=TRUE)
```

Arguments

obj	an object of class "adimpro", obj\$type should coincide with the first three letters of the function name, that is obj\$img containes color values in the corresponding color space.
cspace	Target color space, one of c("sRGB","Adobe","wGamut","kodak","xyz"). For function xyz2rgb also c("yuv","yiq") are implemented.
exposure	Multiplicative factor for all color channels (in xyz or rgb spaces). Applied in linear color space, i.e. if the image is gamma corrected the gamma correction is reversed first.
black	Adjustment for black color. Color values with luminance <= black will be assigned to black in RGB.
compress	logical, determines if image data are returned in raw-format.

Details

The functions convert an image obj from one color space into another.

rgb2grey converts from RGB to GREYSCALE.

rgb2hsi and hsi2rgb convert from RGB to HSI and vice versa.

rgb2yuv and yuv2rgb convert from RGB to YUV and vice versa.

rgb2yiq and yiq2rgb convert from RGB to YIQ and vice versa.

rgb2xyz and xyz2rgb convert from RGB to CIE XYZ and vice versa.

Conversion to XYZ, YIQ, YUV and HSI involves an inverse gamma correction if required.

14 combine

Value

an object of class "adimpro", with value\$type specifying the color space (last three letters of the function name or 'greyscale' for rgb2grey) and value\$img containing the color values.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de> and Joerg Polzehl <polzehl@wias-berlin.de>

References

Gonzalez, R.C., and Woods, R.E. (2002). Digital Image Processing. Prentice Hall.

Polzehl, J., and Tabelow, K. (2007). Adaptive smoothing of digital images, Journal of Statistical Software 19 (1).

Examples

```
## Not run: demo(color)
```

combine

Pixelwise operations on a pair of images

Description

The function allows to perform pixelwise operations, specified by a supplied function, on a pair of images.

Usage

Arguments

img1	image, object of class adimpro
img2	image, object of class adimpro, need to have the same dimension as img1
fun	A function or primitive of two (or more) arguments specifying the operation. The first argument corresponds to grey/color-values in img1, the second to img2. Auxiliary parameters can passed throug ""
rescale	logical: if TRUE the resulting image is rescaled to fit into the range of possible grey/color-values, if FALSE values outside the range are truncated.
compress	logical, determines if image data are stored in raw-format.
gammatype	character, determines the type of gamma correction within the image. "ITU" stands for ITU-R BT.709-3 as e.g. used by dcraw. Alternatives recognized within the package are "None", "sRGB" and "CIE" (CIE L*). Please specify if you know that your image is not gamma corrected using ITU-R BT.709-3.

combine 15

whitep White point in xyY space. Can be given as one of (character) c("A", "B", "C", "E", "D50", "D55", "D65",

or as a two element numeric vector of chromatic xy coordinates. "D65" corre-

sponds to the default white point of "sRGB" and "Adobe" RGB-spaces.

cspace defines the output color space, default "sRGB" (sRGB D65), alternatives are

"RAW" (Camera specific), "Adobe" (Adobe 1998 D65), "wGamut" (Wide Gamut D65), "kodak" (Kodak ProPhoto D65) and "XYZ", see manpages of dcraw.

xmode xmode determines how to interpret the values in x if length(dim(x))=3. Im-

plemented are xmode="RGB" (default) and xmode="HSI"

... additional parameters for function fun

Details

There are two mayor applications for this function. First it allows to add noise to an image by first creating an image that contains the noise and then adding this image using fun="+". Second it offers a way to replace parts of an image, see examples.

Value

object of class "adimpro" containing the image. The object has the following components:

img array containing the color values in the color space specified by value\$type.

type the color space.

depth color depth, here "16bit".

dim vector of length 2 containing the number of pixel in horizontal and vertival di-

rection.

file the argument file identifying the image.

cspace the type of rgb space used, as specified by cspace.

interp interpolation applied by dcraw, as specified by interp.

gamma has a gamma correction been applied, here FALSE for read.raw and TRUE for

read.image

gammatype type of gamma correction read.image.
wb type of white balance, as specified by wb.

compressed image data are stored as raw-vector (TRUE) or array of integers (FALSE).

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de> and Joerg Polzehl <polzehl@wias-berlin.de>

See Also

make.image

Examples

```
## Not run: demo(combine)
```

16 develop.raw

develop.raw	Create a color image from RAW image data.	

Description

The function generates a color image from RAW image data.

Usage

```
develop.raw(object, method = "BILINEAR", wb = c(1, 1, 1), maxrange= TRUE, compress = TRUE)
```

Arguments

object	An object of class "adimpro" containing RAW image data, e.g. created by function read.raw. Such an object is characterized by object\$type=="RAW".
method	Method to fill missing color values. Currently implemented are method="HALF" (reduce image size by factor of 2), method="FULL" (use color from neighbor within (2x2) Bayer mask)), method="BILINEAR" (bilinear interpolation), method="Median4" and method="Median16", the latter two being based on L1-MM over shifted Bayer masks. method="Median16" delivers much smoother results, but is considerably slower then the other methods.
wb	numerical vector of length 3 containing multiplicative factors for the three color channels.
maxrange	If TRUE increase range of values to maximum.
compress	logical, determines if image data are stored as raw.

Details

RAW image data usually contain only one color value at each pixel, with colors arranged in a so called Bayer mask. Converting RAW images into color images requires to fill the missing entries in the color channels.

Value

object of class "adimpro" containing the image.

Note

The function requires dcraw to be installed.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de> and Joerg Polzehl@wias-berlin.de>

See Also

read.image

edges 17

Examples

```
## Not run: demo(io)
## Not run: demo(raw)
```

edges

Image Processing

Description

Edge detection using Laplacian, Sobel, or Robert Cross filter.

Usage

```
edges(img, type = "Laplacian", ltype=1, abs=FALSE)
```

Arguments

img an object of class "adimpro".

type type of edges detection filter. "Laplacian" (default), "Sobel", or "Robertcross".

1type type of laplacian filter. 1,2,3, or 4

abs take absolute values of results. This has only an effect for tyoe="Laplacian"

Details

This function applies the Laplacian, Sobel, or Robert Cross filter to the input image img. The filter is applied to each color channel separately. 1type determines the different matrices for Laplacian filter used in the literature. 1type == 1 will use:

14..... - 4 (d-f--14) --:11 ----

ltype == 4 (default) will use:

 $conv \leftarrow matrix(c(1,-2,1,-2,4,-2,1,-2,1), 3, 3)$

Value

Array containing the values for the edge detector in each pixel and color channel.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de> and Joerg Polzehl <polzehl@wias-berlin.de>

18 extract.image

References

Gonzalez, R.C., and Woods, R.E. (2002). Digital Image Processing. Prentice Hall.

Examples

```
## Not run: demo(manipulate)
## Not run: demo(awspimage)
```

extract.image

Extract image data from adimpro object

Description

Extract image data from adimpro object

Usage

```
extract.image(object)
```

Arguments

object

adimpro object

Value

array or matrix of image data

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de> and Joerg Polzehl <polzehl@wias-berlin.de>

See Also

```
make.image
```

Examples

```
## Not run: demo(io)
## Not run: demo(manipulate)
```

extract.info 19

extract.info	Extract EXIF information and additional characteristics from an ob-
	ject of class "adimpro".

Description

Extract EXIF information and additional characteristics from an object of class "adimpro".

Usage

```
extract.info(object, what = "Bayer")
```

Arguments

object an object of class "adimpro" or a character string that was written as a comment

by functions write.image or write.raw.

what A character string specifying which information is to be extracted. Currently

implemented are "Bayer" (Bayer mask), "Daymulti" (Daylight multiplyers), "Cammulti" (camera multipliers), "Camera" (camera model), "Isize" (Image

size), "Osize" (image output size), "File" (source filename), "Interpolation" (Interpolation used to convert RAW to RGB), "Gammatype" (type of gamma correction), "WhiteBalance"

(white balance), "WhitePoint" (white point), "Type" (image type), "xind" (horizontal subindex used by function clip.image) and "yind" (vertical subindex

used by function clip.image).

Details

This function is mainly used to access and manipulate information when reading or developing images. A more comprehensive overview is provided by function summary.

Value

A character string or integer vector depending on the argument "what".

Note

ImageMagick has to be installed on the system to write "tif", "tiff", "png", "gif", "jpg" or "jpeg" files.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de> and Joerg Polzehl@wias-berlin.de>

See Also

```
read.raw, read.image, develop.raw, summary
```

20 imganiso2D

extract.ni	extract information about effective size of neighborhoods
CACIGCUIII	extract information about effective size of neighborhoods

Description

The function allows to extract information about the effective size of neighborhoods used in each pixel from objects generated by awsimage or awspimage. The result is converted into a greyscale image.

Usage

```
extract.ni(object, gammatype = "ITU", compress = TRUE)
```

Arguments

object object returned from awsimage or awspimage.

gammatype character, determines the type of gamma correction within the image. "ITU"

stands for ITU-R BT.709-3 as e.g. used by dcraw. Alternatives recognized

within the package are "None", "sRGB" and "CIE" (CIE L*).

compress logical, if TRUE the returned image will be compressed.

Value

an object of class "adimpro".

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de> and Joerg Polzehl <polzehl@wias-berlin.de>

See Also

```
awsimage, awspimage, show.image, write.image
```

imganiso2D create an image that visualizes anisotropy

Description

The function creates an object of class adimpro that visualizes anisotropy information using the HSI color space for main direction of anisotropy (H), maximum eigenvalue^satexp(S) and log(excentricity) (I).

```
imganiso2D(x, satexp = 0.25, g=3, rho=0)
```

mask.create 21

Arguments

X	a field of 2D tensors (Dimension c(3,n1,n2)) or an object of class "adimpro".
satexp	exponent for maximum eigenvalue in saturation channel. Determines the contrast in this channel.
g	Bandwidth for anisotropic smoothing gradient estimates, preferably $g \geq 3$ for images with line type texture and small $g \approx 1$ for improving edges between homogeneous regions.
rho	Regularization parameter for anisotropic smoothing gradient estimates, preferably $\rho=0$ for images with line type texture and large $\rho\approx 3*variance$ for improving edges between homogeneous regions.

Value

an object (image) of class adimpro.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de> and Joerg Polzehl <polzehl@wias-berlin.de>

References

Polzehl, J. and Tabelow, K. (2007). Adaptive smoothing of digital images, Journal of Statistical Software 19 (1).

See Also

```
awsaniso,read.image, read.raw, make.image, show.image, clip.image
```

Examples

```
## Not run: demo(awsimage)
## Not run: demo(manipulate)
```

mask.create

Create a mask for use within function awsimage

Description

Select part of image according to greyscale (or color) value.

```
mask.create(img, range1 = c(0, 1), range2 = c(0, 1), range3 = c(0, 1), locate = TRUE)
```

22 plot.adimpro

Arguments

img	Image object of class "adimpro", usually the result returned from read.image, read.raw, or make.image.
range1	Range of gray values or values in the first color channel. mask is set to FALSE for all pixel with values outside this range. Defaults to $c(0,1)$.
range2	Range of values in the second color channel. mask is set to FALSE for all pixel with values outside this range. Defaults to $c(0,1)$.
range3	Range of values in the third color channel. mask is set to FALSE for all pixel with values outside this range. Defaults to $c(0,1)$.
locate	(logical). If TRUE (default), the image is displayed and two opposite corners of a rectangular region can be selected using the mouse (call of locator(2)).

Details

Function to create a mask. The returned object mask can be used to restrict computations in function awsimage to a region characterized by mask==TRUE.

Value

logical matrix of image dimension.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de> and Joerg Polzehl <polzehl@wias-berlin.de>

References

Polzehl, J., and Tabelow, K. (2007). Adaptive smoothing of digital images, Journal of Statistical Software 19 (1).

See Also

awsimage

plot.adimpro *I/O functions*

Description

Visualize image data.

plot.adimpro 23

Arguments

x image object of class "adimpro"

new should new X11() be opened? default FALSE

gammatype character, determines the type of gamma correction within the image. "ITU"

stands for ITU-R BT.709-3 as e.g. used by dcraw. Alternatives recognized within the package are "None", "sRGB" and "CIE" (CIE L*). NULL keeps the actual setting. gammatype="histogram" forces histogram equalization based

on the corresponding greyvalue image.

cspace defines the output color space, default "sRGB" (sRGB D65), alternatives are

"Adobe" (Adobe 1998 D65), "wGamut" (Wide Gamut D65), "kodak" (Kodak ProPhoto D65) "xyz", "yuv", "yiq" and "hsi". NULL keeps the actual setting.

whitep White point in xyY space. Can be given as one of (character) c("A", "B", "C", "E", "D50", "D55", "D65",

or as a two element numeric vector of chromatic xy coordinates. "D65" corresponds to the default white point of "sRGB" and "Adobe" RGB-spaces. NULL

keeps the actual setting.

temp Color temperature. Can be used to specify chromatic xy coordinates of the

whitepoint. Only used if is.null(whitep).

black Adjustment for black color. Color values with luminance <= black will be as-

signed to black in RGB. Adjustment ist done in xyY space.

exposure Multiplicative factor for all color channels (in xyz or rgb spaces). Applied in

linear color space, i.e. if the image is gamma corrected the gamma correction is

reversed first.

... not used

Details

This functions shows information on the image. This includes histograms of color values in each channel of the specified (x\$type) color space, a thumbnail (in "sRGB" with gamma correction gammatype if specified and gammatype="ITU" elsewhere), some information on the image and, if x was produced by awsimage, an image illustrating the local adaptation.

Value

nothing is returned.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de> and Joerg Polzehl <polzehl@wias-berlin.de>

See Also

```
summary.adimpro,adjust.image
```

Examples

Not run: demo(color)

24 rimage

rimage

Slighty enhanced image function.

Description

The function builds upon function from package graphics, but allows to change some of it's defaults. These changes can be made through rimage.options for subsequent calls of rimage or by direct specification in

Usage

```
rimage(x = seq(0, 1, length.out = nrow(z)), y = seq(0, 1, length.out = ncol(z)), z, ...)
rimage.options(...)
```

Arguments

x, y

locations of grid lines at which the values in 'z' are measured. These must be finite, non-missing and in (strictly) ascending order. By default, equally spaced values from 0 to 1 are used. If 'x' is a 'list', its components 'x\$x' and 'x\$y' are used for 'x' and 'y', respectively. If the list has component 'z' this is used for 'z'. (Same as for function image)

Z

a numeric or logical matrix containing the values to be plotted ('NA's are allowed). Note that 'x' can be used instead of 'z' for convenience. (Same as for function image)

. . .

The following arguments can be supplied to both rimage and rimage.options:

- zquantiles numeric(2): quantiles of image intensity values to be usd to determine ,zlim as zlim <- quantile(z, zquantiles). not used if zlim is supplied directly. default c(0,1).
- up color for intensity values larger than zlim[2], default "white".
- low color for intensity values smaller than zlim[1], default "black".
- NAcolor color for intensity NA values, default 0 (transparent).
- col color scheme for values in the range of zlim, default grey (0:255/255).
- asp aspect ratio, default TRUE.
- xlab name for x-axis, default "x"
- ylab name for y-axis, default "y"
- xaxt axis type for x-axis, default "s", see par.
- yaxt axis type for y-axis, default "s", see par.
- bty type of box to draw, default "o", see par.
- swapx swap x axis, default FALSE
- swapy swap y axis, default FALSE

Additionally all parameters that can be passed to function image via . . . can be used with function rimage.

rotate.image 25

Details

This function exists just for convenience to be used if sequences of images are to be plotted using the same settings / style. Function rimage.options uses an hidden object .rimage within an evironment .adimproOpts in the space of package adimpro to store the options.

Value

Both functions return invisible(NULL).

Author(s)

Joerg Polzehl <polzehl@wias-berlin.de>

See Also

image, par

rotate.image

Image Processing

Description

Rotate an image by 0, 90, 180 or 270 degrees.

Usage

```
rotate.image(img, angle = 90, compress=NULL)
```

Arguments

img image data, that is an object of class "adimpro".

angle 0, 90, 180 or 270 degrees

compress store result as compressed image if compress=TRUE. compress=NULL uses the

same format as the original object.

Details

The function rotates the image img by 0, 90, 180 or 270 degrees. Any other value for degree will cause an exception. The returned object contains an additional component rotate determining the rotation.

Value

An object of class "adimpro" containing the rotated image.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de> and Joerg Polzehl <polzehl@wias-berlin.de>

26 segment

See Also

```
show.image
```

Examples

```
## Not run: demo(manipulate)
```

segment

Segmentation by AWS

Description

The function allows to segment an image into two or three level sets.

Usage

```
segment(object, level=0.5, delta = 0, thresh = 3, fov = NULL, channel = 0,
    hmax = 4, aws = TRUE, varmodel = NULL, ladjust = 1.25, xind = NULL,
    yind = NULL, wghts = c(0.299, 0.587, 0.114, 0), scorr = TRUE,
    lkern = "Triangle", plateau = NULL, homogen = TRUE,
    earlystop = TRUE, demo = FALSE, select = FALSE, sext = 1.4,
    connected = FALSE, graph = FALSE, max.pixel = 400, compress = TRUE)
```

Arguments

object	Image object, class "adimpro", as from read.image, read.raw, or make.image.
level	center of gray/color-values of the second segment, will not be used if select=TRUE. May be specified such that either level-delta and level+delta are within the interval (0,1) or such that they are within the interval (0,65535) (2 Byte integers).
delta	half width of gray/color-values of the second segment, nay be increased if select=TRUE. May be specified such that either level-delta and level+delta are within the interval (0,1) or such that they are within the interval (0,65535) (2 Byte integers).
thresh	Critical value for final assignment to segment $1\ \mathrm{or}\ 3$, should be specified as a quantile of the standard Gaussian distribution.
fov	size of field of view in pixel
channel	specifies which information to use for segmentation. 0: use grey valued image obtained from color images, 1-3: use the specified color channel.
hmax	Maximum bandwidth to use in the iteration procedure.
aws	(logical). If TRUE the propagation - separation (PS) approach from Polzehl and Spokoiny (2006) is used. aws=FALSE turns off the statistical penalty resulting in a nonadaptive kernel estimate using a kernel with bandwidth hmax.

segment 27

varmodel varmodel specifies how variances are to be estimated. This can be a homoge-

neous variance estimate (varmodel="None") assuming uncorrelated errors (both spatial and between channels). Alternatives are an adaptive homogeneous or linear (function of the mean) variance estimate that depends on estimated correlations and on residuals from the last iteration step. The default varmodel=NULL corresponds to varmodel == "Linear" if img\$gamma==FALSE and varmodel ==

"Constant" otherwise.

ladjust adjustment factor for lambda (>=1). Default values for lambda are selected

for Gaussian distributions. Skewed or heavy tailed distributions may require slightly larger values for lambda to meet the propagation condition. ladjust

allows to increase lambda in such situations.

xind, yind Restrict smoothing to rectangular area defined by pixel indices xind, yind in x-

and y-direction. Full range if NULL (default).

wghts allows to weight the information from different (up to 4) color channels. The

weights are used in the statistical penalty of the PS-procedure.

scorr (logical). Specifies whether spatial correlation is to be estimated. Defaults to

TRUE. Is set to FALSE if mask is not NULL.

1kern Specifies the location kernel. Defaults to "Triangle", other choices are "Quadratic",

"Cubic" and "Uniform". The use of "Triangle" corresponds to the Epanechnicov

kernel nonparametric kernel regression.

plateau Extension of the plateau in the statistical kernel. Can take values from (0,1),

defaults to 0.25.

homogen If TRUE the algorithm determines, in each design point i, a circle of maximum

radius, such that the statistical penalty s_{ij} for all points j within the circle is less than the value specified in plateau. In subsequent iteration steps the statistical penalty for such points is set to zero. This is only used if plateau>0. This results in more stable intermediate estimates and in a smoother reconstruction.

homogen=TRUE leads to increased memory requirements.

earlystop If TRUE the algorithm determines, in each design point i, a circle of minimal

radius, such that the circle includes all point j with positive weights w_{ij}. if this radius is considerably smaller than the actual bandwidth then the estimate in point i is fixed. This should considerably reduce computing time in case of

large hmax.earlystop=TRUE slightly increases memory requirements.

demo (logical). If demo=TRUE the function pauses after each iteration. Defaults to

FALSE.

select if TRUE a homogeneous rectangular region can be specified interactively. A

value of level is the generated as the median of values within the selected

region.

sext if select==TRUE the value of delta is increased by sext times the standard de-

viation (estimated by IQR) of the values in the selected region.

connected if TRUE the set of pixel within the same segment connected to the specified

pixel is extracted.

graph (logical). If graph=TRUE intermediate results are illustrated after each iteration

step. Defaults to FALSE.

28 segment

max.pixel Maximum dimension of images for display if graph=TRUE. If the true dimension

is larger, the images are downscaled for display. See also show.image.

compress logical, determines if image data are stored in raw-format.

Details

The image is segmented into three parts by performing multiscale tests of the hypotheses H1 value >= level - delta and H2 value <= level + delta. Pixel where the first hypotesis is rejected are classified as -1 (segment 1) while rejection of H2 results in classification 1 (segment 3). Pixel where neither H1 or H2 are rejected ar assigned to a value 0 (segment 2). Critical values for the tests are adjusted for smoothness at the different scales inspected in the iteration process using results from multiscale testing, see e.g. Duembgen and Spokoiny (2001). Critical values also depend on the size of the region of interest specified in parameter fov.

Within segment 2 structural adaptive smoothing is performed while if a pair of pixel belongs to segment 1 or segment 3 the corresponding weight will be nonadaptive.

If connected==TRUE pixel in segment 2 0 are reassigned to a value 2 if they belong to a maximal connected subset of segment2 that contains the center of the specified homogeneous set.

Value

Object of class "adimpro" with

img containing a greyvalued image with 3 or 4 levels corresponding to the identified

segments.

and additional list elements

hsegm containing the maximal bandwidth used
level the value of parameter level used
delta the value of parameter delta used
thresh the value of parameter thresh used

Note

This function is still experimental and may be changes considerably in future.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de> and Joerg Polzehl <polzehl@wias-berlin.de>

References

Duembgen, L. and Spokoiny, V. (2001). Multiscale testing of qualitative hypoteses. Ann. Stat. 29, 124–152.

Polzehl, J. and Spokoiny, V. (2006). Propagation-Separation Approach for Local Likelihood Estimation. Probability Theory and Related Fields. 3 (135) 335 - 362.

show.image 29

See Also

```
read.image, read.raw, make.image, show.image, clip.image
```

Examples

```
## Not run: demo(segment)
```

show.image

I/O functions

Description

Display an image on the screen.

Usage

Arguments

img	image data, an object of	of class "adımpro".
-----	--------------------------	---------------------

max.x maximum value of pixels in x dimension to be displayed.
max.y maximum value of pixels in y dimension to be displayed.

gammatype character, determines the type of gamma correction within the image. "ITU"

stands for ITU-R BT.709-3 as e.g. used by dcraw. Alternatives recognized within the package are "None", "sRGB" and "CIE" (CIE L*). gammatype="histogram"

forces histogram equalization based on the corresponding greyvalue image.

cspace defines the output color space, default "sRGB" (sRGB D65), alternatives are

"Adobe" (Adobe 1998 D65), "wGamut" (Wide Gamut D65), "kodak" (Kodak ProPhoto D65) "xyz", "yuv", "yiq" and "hsi". NULL keeps the actual setting. If color.space%in%c("hsi", "yuv", "yiq", "xyz") the individual channels are rescaled to provide maximum contrast. Information from the three channels is coded as "red", "green" and "blue" providing a miscolored image in these cases. Individual channels can be displayed as greyvalue images by specifying the channel argument. color.space="greyvalue" provides a greyvalue

image.

whitep White point in xyY space. Can be given as one of (character) c("A", "B", "C", "E", "D50", "D55", "D65",

or as a two element numeric vector of chromatic xy coordinates. "D65" corresponds to the default white point of "sRGB" and "Adobe" RGB-spaces. NULL

keeps the actual setting.

temp Color temperature. Can be used to specify chromatic xy coordinates of the

whitepoint. Only used if is.null(whitep).

30 shrink.image

black	Adjustment for black color. Color values with luminance <= black will be assigned to black in RGB. Adjustment ist done in xyY space.
exposure	Multiplicative factor for all color channels (in xyz or rgb spaces). Applied in linear color space, i.e. if the image is gamma corrected the gamma correction is reversed first.
channel	allows to select a color channel (1: red, 2: green, 3: blue in case of "rgb") for display.
new	should new X11() be opened? default FALSE
	additional arguments to image can be passed here.

Details

This function displayes greyscale and color images on the screen. If the actual dimension of the image exceeds max.x or max.y the image is shrinked by displaying only part of the pixels (every second/third/... such that the resulting dimension is smaller than max.x or max.y)

Value

Nothing is returned

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de> and Joerg Polzehl <polzehl@wias-berlin.de>

See Also

```
read.image, write.image, adjust.image
```

Examples

```
## Not run: demo(io)
```

shrink.image

Image Processing

Description

Shrink resolution of an image

summary.adimpro 31

Arguments

img image data, an object of class "adimpro".

method method to be used to shrink the image. "median" (default), "mean", or "nearest".

"median" is supposed to give best results. For a considerably faster result use

"nearest".

xt target x-dimension yt target y-dimension

ratio logical. preserve x-y ratio? default: TRUE

compress logical, determines if image data are stored in raw-format.

Details

This function shrinkes the resolution of the image such that the x-y dimension of the resulting image is smaller than the original one. xt and yt give the target dimension of the image. If ratio == TRUE (default) the ratio between x- and y-dimension is preserved.

method "nearest" selects a pixel nearest to the new coordinates. method "mean" defines the color of a pixel as the mean of all pixel identified with the new coordinate. method "median" set the color of a pixel as color of an L1-generalized median of all pixel identified with the new coordinate.

Value

shrinked image

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de> and Joerg Polzehl <polzehl@wias-berlin.de>

Examples

```
## Not run: demo(manipulate)
```

summary.adimpro

I/O functions

Description

```
'summary' method for class '"adimpro"'.
```

Usage

```
## S3 method for class 'adimpro'
summary(object, ...)
```

Arguments

object an object of class adimpro, usually, a result of a call to read.raw, or read.image.

... further arguments passed to or from other methods.

32 write.image

Details

The method tries to print information on the image, like image dimension, color space, value range, etc.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de> and Joerg Polzehl <polzehl@wias-berlin.de>

Examples

```
## Not run: demo(io)
## Not run: demo(manipulate)
```

write.image

I/O Functions

image data, an object of class "adimpro".

Description

Write an image file.

Usage

Arguments img

file	file name, the extension determines the image file format.
max.x	maximum value of pixels in x dimension.
max.y	maximum value of pixels in y dimension.
depth	color depth, either 8 or 16 (bit)! The value is reset to 8 if the specified image file format does not allow for 16 Bit encoding.
gammatype	character, determines the type of gamma correction within the image. "ITU" stands for ITU-R BT.709-3 as e.g. used by dcraw. Alternatives recognized within the package are "None", "sRGB" and "CIE" (CIE L*). NULL keeps the actual setting. gammatype="histogram" forces histogram equalization based on the corresponding greyvalue image.
cspace	defines the output color space, default is img\$cspace can be set to "sRGB", "Adobe" (Adobe 1998), "wGamut" (Wide Gamut), "kodak" (Kodak ProPhoto) "xyz", "yuv", "yiq" and "hsi"
whitep	White point in xyY space. Can be given as one of (character) c("A", "B", "C", "E", "D50", "D55", "D65", or as a two element numeric vector of chromatic xy coordinates. "D65" corresponds to the default white point of "sRGB" and "Adobe" RGB-spaces. NULL keeps the actual setting.

write.image 33

temp	Color temperature. Can be used to specify chromatic xy coordinates of the whitepoint. Only used if is.null(whitep).
black	Adjustment for black color. Color values with luminance <= black will be assigned to black in RGB. Adjustment ist done in xyY space.
exposure	Multiplicative factor for all color channels (in xyz or rgb spaces). Applied in linear color space, i.e. if the image is gamma corrected the gamma correction is reversed first.

Details

This function writes the image data in img to the file file. Color depth depth is used for writing, but if image has a component "depth", this argument will be ignored. Note: Not all target formats support 16bit coding. The target format is determined from the file extension, and should be one of the many that ImageMagick supports.

Note that write image by default applies a gamma correction with gammatype="ITU". This provides a good standard for display on a screen. For printing cspace="Adobe" should be prefered. Images that are intended for further editing should preferably be saved in an image format that allows for 16Bit depth (tiff, png) using either cspace="Adobe", cspace="wGamut" or cspace="kodak" and preferably no gamma correction to prevent from additional loss of information.

Value

Nothing is returned.

Note

ImageMagick has to be installed on the system to write "tif", "tiff", "png", "gif", "jpg" or "jpeg" files.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de> and Joerg Polzehl <polzehl@wias-berlin.de>

See Also

```
read.image, adjust.image
```

Examples

```
## Not run: demo(io)
```

34 write.raw

write.raw

Write image RAW data as greyvalue png image

Description

Image RAW data is saved as a 16-Bit greyvalue png image. EXIF information contained in the original RAW image is stored as a comment.

Usage

```
write.raw(img, filename = "tmp.png")
```

Arguments

img object of class "adimpro" containing image RAW data (img\$type=="RAW".)

filename Name of the resulting png-image. If filename does not include an extension

".png" the extension ".png" is added.

Details

EXIF information contained in the original RAW image as well as other available information in object img are added as a comment to the resulting png-image. This comment is evaluated when the image is read by functions read.raw or read.image

Value

Nothing is returned.

Note

ImageMagick has to be installed on the system to write "png" files.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de> and Joerg Polzehl <polzehl@wias-berlin.de>

See Also

```
read.raw, develop.raw
```

Examples

```
## Not run: demo(raw)
```

Index

* IO	extract.info, 19
adimpro, 2	write.image, 32
develop.raw, 16	write.raw,34
extract.info, 19	
write.image, 32	adimpro, 2
write.raw, 34	adimpro.options, 4
* color	adjust.image, 5, 23, 30, 33
colorspace, 13	awsaniso, 21
* environment	awsaniso(awsimage),7
rimage, 24	awsimage, 7, 11, 12, 20, 22
* hplot	awspimage, 12, 20
plot.adimpro, 22	awspimage (awsimage), 7
rimage, 24	awsraw, 10
show.image, 29	alin imaga 0 11 12 10 21 20
* iplot	clip.image, 9–11, 12, 19, 21, 29
plot.adimpro, 22	colorspace, 13 combine, 14
* manip	Combine, 14
adjust.image, 5	develop.raw, <i>11</i> , 16, <i>19</i> , <i>34</i>
awsimage, 7	develop:1 am, 11, 10, 15, 57
awsraw, 10	edges, 17
clip.image, 12	extract.image, 18
combine, 14	extract.info, 19
edges, 17	extract.ni, 20
extract.image, 18	
extract.ni, 20	hsi2rgb (colorspace), 13
imganiso2D, 20	
mask.create, 21	image, 25, 30
rotate.image, 25	imganiso2D, 20
shrink.image, 30	make image 10 12 15 19 21 20
* print	make.image, 10-12, 15, 18, 21, 29 make.image (adimpro), 2
summary.adimpro,31	
* smooth	mask.create, 21
awsimage, 7	par, <i>24</i> , <i>25</i>
awsraw, 10	plot.adimpro, 22
segment, 26	p101.441mp1 0, 22
* utilities	read.image, 3, 4, 10, 12, 16, 19, 21, 29, 30,
adimpro, 2	33, 34
adimpro.options, 4	read.image (adimpro), 2
develop.raw, 16	read.raw, 3, 10-12, 16, 19, 21, 29, 34

36 INDEX

```
read.raw(adimpro), 2
rgb2grey (colorspace), 13
rgb2hsi (colorspace), 13
rgb2xyz (colorspace), 13
rgb2yiq(colorspace), 13
rgb2yuv (colorspace), 13
rimage, 24
rotate.image, 25
segment, 26
show.image, 6, 8, 10–12, 20, 21, 26, 28, 29, 29
shrink.image, 30
summary, 19
summary.adimpro, 23, 31
write.image, 6, 19, 20, 30, 32
write.raw, 19, 34
xyz2rgb (colorspace), 13
yiq2rgb (colorspace), 13
yuv2rgb (colorspace), 13
```