
Package: XML (via r-universe)
August 24, 2024

Version 3.99-0.17

Title Tools for Parsing and Generating XML Within R and S-Plus

Depends R (>= 4.0.0), methods, utils

Suggests bitops, RCurl

SystemRequirements libxml2 (>= 2.6.3)

Description Many approaches for both reading and creating XML (and
HTML) documents (including DTDs), both local and accessible via
HTTP or FTP. Also offers access to an 'XPath' ``interpreter''.

URL https://www.omegahat.net/RSXML/

License BSD_3_clause + file LICENSE

Collate AAA.R DTD.R DTDClasses.R DTDRef.R SAXMethods.R XMLClasses.R
applyDOM.R assignChild.R catalog.R createNode.R dynSupports.R
error.R flatTree.R nodeAccessors.R parseDTD.R schema.R
summary.R tangle.R toString.R tree.R version.R xmlErrorEnums.R
xmlEventHandler.R xmlEventParse.R xmlHandler.R
xmlInternalSource.R xmlOutputDOM.R xmlNodes.R xmlOutputBuffer.R
xmlTree.R xmlTreeParse.R htmlParse.R hashTree.R zzz.R
supports.R parser.R libxmlFeatures.R xmlString.R saveXML.R
namespaces.R readHTMLTable.R reflection.R xmlToDataFrame.R
bitList.R compare.R encoding.R fixNS.R xmlRoot.R serialize.R
xmlMemoryMgmt.R keyValueDB.R solrDocs.R XMLRErrorInfo.R
xincludes.R namespaceHandlers.R tangle1.R htmlLinks.R
htmlLists.R getDependencies.R getRelativeURL.R xmlIncludes.R
simplifyPath.R

NeedsCompilation yes

Author CRAN Team [ctb, cre] (de facto maintainer since 2013), Duncan
Temple Lang [aut] (<https://orcid.org/0000-0003-0159-1546>),
Tomas Kalibera [ctb]

Maintainer CRAN Team <CRAN@r-project.org>

Repository CRAN

Date/Publication 2024-06-25 13:05:01 UTC

1

https://www.omegahat.net/RSXML/
https://orcid.org/0000-0003-0159-1546

2 Contents

Contents
addChildren . 4
addNode . 8
append.xmlNode . 9
asXMLNode . 11
asXMLTreeNode . 12
catalogLoad . 13
catalogResolve . 15
coerceNodes . 16
compareXMLDocs . 17
docName . 18
Doctype . 19
Doctype-class . 20
dtdElement . 21
dtdElementValidEntry . 22
dtdIsAttribute . 23
dtdValidElement . 24
ensureNamespace . 25
findXInclude . 27
free . 28
genericSAXHandlers . 29
getChildrenStrings . 30
getEncoding . 31
getHTMLLinks . 32
getLineNumber . 33
getNodeSet . 34
getRelativeURL . 42
getSibling . 44
getXIncludes . 45
getXMLErrors . 47
isXMLString . 48
length.XMLNode . 49
libxmlVersion . 50
makeClassTemplate . 51
names.XMLNode . 52
newXMLDoc . 53
newXMLNamespace . 59
parseDTD . 60
parseURI . 63
parseXMLAndAdd . 64
print.XMLAttributeDef . 65
processXInclude . 67
readHTMLList . 69
readHTMLTable . 70
readKeyValueDB . 73
readSolrDoc . 74
removeXMLNamespaces . 75

Contents 3

replaceNodeWithChildren . 76
saveXML . 77
SAXState-class . 79
schema-class . 81
setXMLNamespace . 82
startElement.SAX . 83
supportsExpat . 84
toHTML . 85
toString.XMLNode . 86
xmlApply . 87
XMLAttributes-class . 88
xmlAttributeType . 89
xmlAttrs . 90
xmlChildren . 91
xmlCleanNamespaces . 92
xmlClone . 93
XMLCodeFile-class . 94
xmlContainsEntity . 96
xmlDOMApply . 97
xmlElementsByTagName . 98
xmlElementSummary . 100
xmlEventHandler . 101
xmlEventParse . 102
xmlGetAttr . 110
xmlHandler . 111
xmlHashTree . 112
XMLInternalDocument-class . 115
xmlName . 116
xmlNamespace . 117
xmlNamespaceDefinitions . 118
xmlNode . 120
XMLNode-class . 122
xmlOutputBuffer . 123
xmlParent . 125
xmlParseDoc . 127
xmlParserContextFunction . 129
xmlRoot . 130
xmlSchemaValidate . 131
xmlSearchNs . 133
xmlSerializeHook . 134
xmlSize . 135
xmlSource . 136
xmlStopParser . 139
xmlStructuredStop . 141
xmlToDataFrame . 142
xmlToList . 144
xmlToS4 . 145
xmlTree . 146

4 addChildren

xmlTreeParse . 149
xmlValue . 159
[.XMLNode . 161
[<-.XMLNode . 162

Index 164

addChildren Add child nodes to an XML node

Description

This collection of functions allow us to add, remove and replace children from an XML node and
also to and and remove attributes on an XML node. These are generic functions that work on both
internal C-level XMLInternalElementNode objects and regular R-level XMLNode objects.

addChildren is similar to addNode and the two may be consolidated into a single generic function
and methods in the future.

Usage

addChildren(node, ..., kids = list(...), at = NA, cdata = FALSE, append = TRUE)
removeChildren(node, ..., kids = list(...), free = FALSE)
removeNodes(node, free = rep(FALSE, length(node)))
replaceNodes(oldNode, newNode, ...)
addAttributes(node, ..., .attrs = NULL,

suppressNamespaceWarning = getOption("suppressXMLNamespaceWarning", FALSE),
append = TRUE)

removeAttributes(node, ..., .attrs = NULL, .namespace = FALSE,
.all = (length(list(...)) + length(.attrs)) == 0)

Arguments

node the XML node whose state is to be modified, i.e. to which the child nodes are to
be added or whose attribute list is to be changed.

... This is for use in interactive settings when specifying a collection of values
individuall. In programming contexts when one obtains the collection as a vector
or list from another call, use the kids or .attrs parameter.

kids when adding children to a node, this is a list of children nodes which should
be of the same "type" (i.e. internal or R-level nodes) as the node argument.
However, they can also be regular strings in which case they are converted to
XML text nodes.
For removeChildren, this is again a list which identifies the child nodes to be re-
moved using the integer identifier of the child, or the name of the XML node (but
this will only remove the first such node and not necessarily do what you expect
when there are multiple nodes with the same name), or the XMLInternalNode
object itself.

addChildren 5

at if specified, an integer identifying the position in the original list of children at
which the new children should be added. The children are added after that child.
This can also be a vector of indices which is as long as the number of children
being added and specifies the position for each child being added. If the vector
is shorter than the number of children being added, it is padded with NAs and
so the corresponding children are added at the end of the list.
This parameter is only implemented for internal nodes at present.

cdata a logical value which controls whether children that are specified as strings/text
are enclosed within a CDATA node when converted to actual nodes. This value
is passed on to the relevant function that creates the text nodes, e.g. xmlTextNode
and newXMLTextNode.

.attrs a character vector identifying the names of the attributes. These strings can have
name space prefixes, e.g. r:length and the namespaces will be resolved relative
to the list supported by node to ensure those namespaces are defined.

.namespace This is currently ignored and may never be supported. The intent is to identify
on which set of attributes the operation is to perform - the name space decla-
rations or the regular node attributes. This is a logical value indicating if TRUE
that the attributes of interested are name space declarations, i.e. of the form
xmlns:prefix or xmlns. If a value of FALSE is supplied this indicates that we
are identifying regular attributes. Note that we can still identify attributes with a
name space prefix as, e.g., ns:attr without this value

free a logical value indicating whether to free the C-level memory associated with
the child nodes that were removed. TRUE means to free that memory. This is
only applicable for the internal nodes created with xmlTree and newXMLNode
and related functions. It is necessary as automated garbage collection is tricky
in this tree-based context spanning both R and C data structures and memory
managers.

.all a logical value indicating whether to remove all of the attributes within the XML
node without having to specify them by name.

oldNode the node which is to be replaced

newNode the node which is to take the place of oldNode in the list of children of the parent
of oldNode

suppressNamespaceWarning

a logical value or a character string. This is used to control the situation when
an XML node or attribute is created with a name space prefix that currently has
no definition for that node. This is not necessarily an error but can lead to one.
This argument controls whether a warning is issued or if a separate function is
called. A value of FALSE means not to suppress the warning and so it is issued.
A value of TRUE causes the potential problem to be ignored assuming that the
namespace will be added to this node or one of its ancestors at a later point.
And if this value is a character string, we search for a function of that name and
invoke it.

append a logical value that indicates whether (TRUE) the specified attributes or children
should be added to the existing attributes on the XML node (if any exist), or, if
FALSE these should replace any existing attributes.

6 addChildren

Value

Each of these functions returns the modified node. For an internal node, this is the same R object
and only the C-level data structures have changed. For an R XMLNode object, this is is an entirely
separate object from the original node. It must be inserted back into its parent "node" or context if
the changes are to be seen in that wider context.

Author(s)

Duncan Temple Lang

References

libxml2 http://www.xmlsoft.org

See Also

xmlTree newXMLNode

Examples

b = newXMLNode("bob",
namespace = c(r = "http://www.r-project.org",

omg = "https://www.omegahat.net"))

cat(saveXML(b), "\n")

addAttributes(b, a = 1, b = "xyz", "r:version" = "2.4.1", "omg:len" = 3)
cat(saveXML(b), "\n")

removeAttributes(b, "a", "r:version")
cat(saveXML(b), "\n")

removeAttributes(b, .attrs = names(xmlAttrs(b)))

addChildren(b, newXMLNode("el", "Red", "Blue", "Green",
attrs = c(lang ="en")))

k = lapply(letters, newXMLNode)
addChildren(b, kids = k)

cat(saveXML(b), "\n")

removeChildren(b, "a", "b", "c", "z")

can mix numbers and names
removeChildren(b, 2, "e") # d and e

cat(saveXML(b), "\n")

http://www.xmlsoft.org

addChildren 7

i = xmlChildren(b)[[5]]
xmlName(i)

have the identifiers
removeChildren(b, kids = c("m", "n", "q"))

x <- xmlNode("a",
xmlNode("b", "1"),
xmlNode("c", "1"),

"some basic text")

v = removeChildren(x, "b")

remove c and b
v = removeChildren(x, "c", "b")

remove the text and "c" leaving just b
v = removeChildren(x, 3, "c")

Not run:
this won't work as the 10 gets coerced to a
character vector element to be combined with 'w'
and there is no node name 10.

removeChildren(b, kids = c(10, "w"))

End(Not run)

for R-level nodes (not internal)

z = xmlNode("arg", attrs = c(default="TRUE"),
xmlNode("name", "foo"), xmlNode("defaultValue","1:10"))

o = addChildren(z,
"some text",
xmlNode("a", "a link",

attrs = c(href = "https://www.omegahat.net/RSXML")))
o

removing nodes

doc = xmlParse("<top><a/><c><d/><e>bob</e></c></top>")
top = xmlRoot(doc)
top

removeNodes(list(top[[1]], top[[3]]))

a and c have disappeared.
top

8 addNode

addNode Add a node to a tree

Description

This generic function allows us to add a node to a tree for different types of trees. Currently it just
works for XMLHashTree, but it could be readily extended to the more general XMLFlatTree class.
However, the concept in this function is to change the tree and return the node. This does not work
unless the tree is directly mutable without requiring reassignment, i.e. the changes do not induce a
new copy of the original tree object. DOM trees which are lists of lists of lists do not fall into this
category.

Usage

addNode(node, parent, to, ...)

Arguments

node the node to be added as a child of the parent.

parent the parent node or identifier

to the tree object

... additional arguments that are understood by the different methods for the differ-
ent types of trees/nodes. These can include attrs, namespace, namespaceDefinitions,
.children.

Value

The new node object. For flat trees, this will be the node after it has been coerced to be compatible
with a flat tree, i.e. has an id and the host tree added to it.

Author(s)

Duncan Temple Lang

References

https://www.w3.org

See Also

xmlHashTree asXMLTreeNode

https://www.w3.org

append.xmlNode 9

Examples

tt = xmlHashTree()

top = addNode(xmlNode("top"), character(), tt)
addNode(xmlNode("a"), top, tt)
b = addNode(xmlNode("b"), top, tt)
c = addNode(xmlNode("c"), b, tt)
addNode(xmlNode("c"), top, tt)
addNode(xmlNode("c"), b, tt)
addNode(xmlTextNode("Some text"), c, tt)

xmlElementsByTagName(tt$top, "c")

tt

append.xmlNode Add children to an XML node

Description

This appends one or more XML nodes as children of an existing node.

Usage

append.XMLNode(to, ...)
append.xmlNode(to, ...)

Arguments

to the XML node to which the sub-nodes are to be added.

... the sub-nodes which are to be added to the to node. If this is a list of XMLNode
objects (e.g. create by a call to lapply), then that list is used.

Details

append.xmlNode is a generic function with method append.XMLNode for class "XMLNode" and
default method base::append.

This seems historical and users may as well use append.XMLNode directly.

Value

The original to node containing its new children nodes.

Author(s)

Duncan Temple Lang

10 append.xmlNode

References

https://www.w3.org/XML/, http://www.jclark.com/xml/, https://www.omegahat.net

See Also

[<-.XMLNode [[<-.XMLNode [.XMLNode [[.XMLNode

Examples

Create a very simple representation of a simple dataset.
This is just an example. The result is
<data numVars="2" numRecords="3">
<varNames>
<string>
A
</string>
<string>
B
</string>
</varNames>
<record>
1.2 3.5
</record>
<record>
20.2 13.9
</record>
<record>
10.1 5.67
</record>
</data>

n = xmlNode("data", attrs = c("numVars" = 2, numRecords = 3))
n = append.xmlNode(n, xmlNode("varNames", xmlNode("string", "A"), xmlNode("string", "B")))
n = append.xmlNode(n, xmlNode("record", "1.2 3.5"))
n = append.xmlNode(n, xmlNode("record", "20.2 13.9"))
n = append.xmlNode(n, xmlNode("record", "10.1 5.67"))

print(n)

Not run:
tmp <- lapply(references, function(i) {

if(!inherits(i, "XMLNode"))
i <- xmlNode("reference", i)

i
})

r <- xmlNode("references")
r[["references"]] <- append.xmlNode(r[["references"]], tmp)

End(Not run)

https://www.w3.org/XML/
http://www.jclark.com/xml/
https://www.omegahat.net

asXMLNode 11

asXMLNode Converts non-XML node objects to XMLTextNode objects

Description

This function is used to convert S objects that are not already XMLNode objects into objects of that
class. Specifically, it treats the object as a string and creates an XMLTextNode object.

Also, there is a method for converting an XMLInternalNode - the C-level libxml representation of
a node - to an explicit R-only object which contains the R values of the data in the internal node.

Usage

asXMLNode(x)

Arguments

x the object to be converted to an XMLNode object. This is typically alread an
object that inherits from XMLNode or a string.

Value

An object of class XMLNode.

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/, http://www.jclark.com/xml/, https://www.omegahat.net

See Also

xmlNode xmlTextNode

Examples

creates an XMLTextNode.
asXMLNode("a text node")

unaltered.
asXMLNode(xmlNode("p"))

https://www.w3.org/XML/
http://www.jclark.com/xml/
https://www.omegahat.net

12 asXMLTreeNode

asXMLTreeNode Convert a regular XML node to one for use in a "flat" tree

Description

This coerces a regular R-based XML node (i.e. not an internal C-level node) to a form that can be
inserted into a flat tree, i.e. one that stores the nodes in a non-hierarchical manner. It is thus used
in conjunction with xmlHashTree It adds id and env fields to the node and specializes the class by
prefixing className to the class attribute.

This is not used very much anymore as we use the internal nodes for most purposes.

Usage

asXMLTreeNode(node, env, id = get(".nodeIdGenerator", env)(xmlName(node)),
className = "XMLTreeNode")

Arguments

node the original XML node

env the XMLFlatTree object into which this node will be inserted.

id the identifier for the node in the flat tree. If this is not specified, we consult the
tree itself and its built-in identifier generator. By default, the name of the node
is used as its identifier unless there is another node with that name.

className a vector of class names to be prefixed to the existing class vector of the node.

Value

An object of class className, i.e. by default "XMLTreeNode".

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/

See Also

xmlHashTree

https://www.w3.org/XML/

catalogLoad 13

Examples

txt = '<foo a="123" b="an attribute"><bar>some text</bar>other text</foo>'
doc = xmlTreeParse(txt)

class(xmlRoot(doc))

as(xmlRoot(doc), "XMLInternalNode")

catalogLoad Manipulate XML catalog contents

Description

These functions allow the R user to programmatically control the XML catalog table used in the
XML parsing tools in the C-level libxml2 library and hence in R packages that use these, e.g.
the XML and Sxslt packages. Catalogs are consulted whenever an external document needs to
be loaded. XML catalogs allow one to influence how such a document is loaded by mapping
document identifiers to alternative locations, for example to refer to locally available versions. They
support mapping URI prefixes to local file directories/files, resolving both SYSTEM and PUBLIC
identifiers used in DOCTYPE declarations at the top of an XML/HTML document, and delegating
resolution to other catalog files. Catalogs are written using an XML format.

Catalogs allow resources used in XInclude nodes and XSL templates to refer to generic network
URLs and have these be mapped to local files and so avoid potentially slow network retrieval. Cat-
alog files are written in XML We might have a catalog file that contains the XML In the XDynDocs
package, we refer to OmegahatXSL files and DocBook XSL files have a catalog file of the form

The functions provided here allow the R programmer to empty the current contents of the global
catalog table and so start from scratch (catalogClearTable), load the contents of a catalog
file into the global catalog table (catalogLoad), and to add individual entries programmatically
without the need for a catalog table.

In addition to controlling the catalogs via these functions, we can use catalogResolve to use the
catalog to resolve the name of a resource and map it to a local resource.

catalogDump allows us to retrieve an XML document representing the current contents of the in-
memory catalog .

More information can be found at http://xmlsoft.org/catalog.html and http://www.sagehill.
net/docbookxsl/Catalogs.html among many resources and the specification for the catalog for-
mat at https://www.oasis-open.org/committees/entity/spec-2001-08-06.html.

Usage

catalogLoad(fileNames)
catalogClearTable()
catalogAdd(orig, replace, type = "rewriteURI")
catalogDump(fileName = tempfile(), asText = TRUE)

http://xmlsoft.org/catalog.html
http://www.sagehill.net/docbookxsl/Catalogs.html
http://www.sagehill.net/docbookxsl/Catalogs.html
https://www.oasis-open.org/committees/entity/spec-2001-08-06.html

14 catalogLoad

Arguments

orig a character vector of identifiers, e.g. URIs, that are to be mapped to a different
name via the catalog. This can be a named character vector where the names are
the original URIs and the values are the corresponding rewritten values.

replace a character vector of the rewritten or resolved values for the identifiers given
in orig. Often this omitted and the original-rewrite pairs are given as a named
vector via orig.

type a character vector with the same length as orig (or recycled to have the same
length) which specifies the type of the resources in the elements of orig. Valid
values are rewriteURI, rewriteSystem, system, public.

fileNames a character vector giving the names of the catalog files to load.

fileName the name of the file in which to place the contents of the current catalog

asText a logical value which indicates whether to write the catalog as a character string
if filename is not specified.

Value

These functions are used for their side effects on the global catalog table maintained in C by libxml2.
Their return values are logical values/vectors indicating whether the particular operation were suc-
cessful or not.

References

This provides an R-like interface to a small subset of the catalog API made available in libxml2.

See Also

catalogResolve

XInclude, XSL and import/include directives.

In addition to these functions, there is an un-exported, undocumented function named catalogDump
that can be used to get the contents of the (first) catalog table.

Examples

Add a rewrite rule
#
#
catalogAdd(c("https://www.omegahat.net/XML" = system.file("XML", package
= "XML")))
catalogAdd("https://www.omegahat.net/XML", system.file("XML", package =
"XML"))
catalogAdd("http://www.r-project.org/doc/",

paste(R.home(), "doc", "", sep = .Platform$file.sep))

#
This shows how we can load a catalog and then resolve a
systemidentifier that it maps.
#

catalogResolve 15

catalogLoad(system.file("exampleData", "catalog.xml", package = "XML"))
catalogResolve("docbook4.4.dtd", "system")
catalogResolve("-//OASIS//DTD DocBook XML V4.4//EN", "public")

catalogResolve Look up an element via the XML catalog mechanism

Description

XML parsers use a catalog to map generic system and public addresses to actual local files or poten-
tially different remote files. We can use a catalog to map a reference such as https://www.omegahat.net/XSL/
to a particular directory on our local machine and then not have to modify any of the documents if
we move the local files to another directory, e.g. install a new version in an alternate directory.

This function provides a mechanism to query the catalog to resolve a URI, PUBLIC or SYSTEM
identifier.

This is now vectorized, so accepts a character vector of URIs and recycles type to have the same
length.

If an entry is not resolved via the catalog system, a NA is returned for that element. To leave the
value unaltered in this case, use asIs = TRUE .

Usage

catalogResolve(id, type = "uri", asIs = FALSE, debug = FALSE)

Arguments

id the name of the (generic) element to be resolved

type a string, specifying whether the lookup is for a uri, system or public element

asIs a logical. If TRUE any element of id which is not resolved by the catalog system
will be left as given in the call. If FALSE, such unresolved elements are identified
by NA.

debug logical value indicating whether to turn on debugging output written to the con-
sole (TRUE) or not (FALSE).

Value

A character vector. If the element was resolved, the single element is the resolved value. Otherwise,
the character vector will contain no elements.

Author(s)

Duncan Temple Lang

References

http://www.xmlsoft.org http://www.sagehill.net/docbookxsl/Catalogs.html provides a
short, succinct tutorial on catalogs.

http://www.xmlsoft.org
http://www.sagehill.net/docbookxsl/Catalogs.html

16 coerceNodes

See Also

xmlTreeParse

Examples

if(!exists("Sys.setenv")) Sys.setenv = Sys.putenv

Sys.setenv("XML_CATALOG_FILES" = system.file("exampleData", "catalog.xml", package = "XML"))

catalogResolve("-//OASIS//DTD DocBook XML V4.4//EN", "public")

catalogResolve("https://www.omegahat.net/XSL/foo.xsl")

catalogResolve("https://www.omegahat.net/XSL/article.xsl", "uri")
catalogResolve("https://www.omegahat.net/XSL/math.xsl", "uri")

This one does not resolve anything, returning an empty value.
catalogResolve("http://www.oasis-open.org/docbook/xml/4.1.2/foo.xsl", "uri")

Vectorized and returns NA for the first and /tmp/html.xsl
for the second.

catalogAdd("http://made.up.domain", "/tmp")
catalogResolve(c("ddas", "http://made.up.domain/html.xsl"), asIs = TRUE)

coerceNodes Transform between XML representations

Description

This collection of coercion methods (i.e. as(obj, "type")) allows users of the XML package to
switch between different representations of XML nodes and to map from an XML document to the
root node and from a node to the document. This helps to manage the nodes

Value

An object of the target type.

See Also

xmlTreeParse xmlParse

compareXMLDocs 17

compareXMLDocs Indicate differences between two XML documents

Description

This function is an attempt to provide some assistance in determining if two XML documents are the
same and if not, how they differ. Rather than comparing the tree structure, this function compares
the frequency distributions of the names of the node. It omits position, attributes, simple content
from the comparison. Those are left to the functions that have more contextual information to
compare two documents.

Usage

compareXMLDocs(a, b, ...)

Arguments

a, b two parsed XML documents that must be internal documents, i.e. created with
xmlParse or created with newXMLNode.

... additional parameters that are passed on to the summary method for an internal
document.

Value

A list with elements

inA the names and counts of the XML elements that only appear in the first document

inB the names and counts of the XML elements that only appear in the second doc-
ument

countDiffs a vector giving the difference in number of nodes with a particular name.

These give a description of what is missing from one document relative to the other.

Author(s)

Duncan Temple Lang

See Also

getNodeSet

18 docName

Examples

tt =
'<x>

<a>text
<b foo="1"/>
<c bar="me">

<d>a phrase</d>
</c>

</x>'

a = xmlParse(tt, asText = TRUE)
b = xmlParse(tt, asText = TRUE)
d = getNodeSet(b, "//d")[[1]]
xmlName(d) = "bob"
addSibling(xmlParent(d), newXMLNode("c"))

compareXMLDocs(a, b)

docName Accessors for name of XML document

Description

These functions and methods allow us to query and set the “name” of an XML document. This is
intended to be its URL or file name or a description of its origin if raw XML content provided as a
string.

Usage

docName(doc, ...)

Arguments

doc the XML document object, of class XMLInternalDocument or XMLDocument.

... additional methods for methods

Value

A character string giving the name. If the document was created from text, this is NA (of class
character).

The assignment function returns the updated object, but the R assignment operation will return the
value on the right of the assignment!

Author(s)

Duncan Temple Lang

Doctype 19

See Also

xmlTreeParse xmlInternalTreeParse newXMLDoc

Examples

f = system.file("exampleData", "catalog.xml", package = "XML")
doc = xmlInternalTreeParse(f)
docName(doc)

doc = xmlInternalTreeParse("<a>", asText = TRUE)
an NA

docName(doc)
docName(doc) = "Simple XML example"
docName(doc)

Doctype Constructor for DTD reference

Description

This is a constructor for the Doctype class that can be provided at the top of an XML document to
provide information about the class of document, i.e. its DTD or schema. Also, there is a method
for converting such a Doctype object to a character string.

Usage

Doctype(system = character(), public = character(), name = "")

Arguments

system the system URI that locates the DTD.

public the identifier for locating the DTD in a catalog, for example. This should be a
character vector of length 2, giving the public identifier and a URI. If just the
public identifier is given and a string is given for system argument, the system
value is used as the second element of public. The public identifer should be
of the form +//creator//name//language where the first element is either +
or -, and the language is described by a code in the ISO 639 document.

name the name of the root element in the document. This should be the first parameter,
but is left this way for backward compatability. And

Value

An object of class Doctype.

Author(s)

Duncan Temple Lang

20 Doctype-class

References

https://www.w3.org/XML/ XML Elements of Style, Simon St. Laurent.

See Also

saveXML

Examples

d = Doctype(name = "section",
public = c("-//OASIS//DTD DocBook XML V4.2//EN",

"http://oasis-open.org/docbook/xml/4.2/docbookx.dtd"))
as(d, "character")

this call switches the system to the URI associated with the PUBLIC element.
d = Doctype(name = "section",

public = c("-//OASIS//DTD DocBook XML V4.2//EN"),
system = "http://oasis-open.org/docbook/xml/4.2/docbookx.dtd")

Doctype-class Class to describe a reference to an XML DTD

Description

This class is intended to identify a DTD by SYSTEM file and/or PUBLIC catalog identifier. This is
used in the DOCTYPE element of an XML document.

Objects from the Class

Objects can be created by calls to the constructor function Doctype.

Slots

name: Object of class "character". This is the name of the top-level element in the XML docu-
ment.

system: Object of class "character". This is the name of the file on the system where the DTD
document can be found. Can this be a URI?

public: Object of class "character". This gives the PUBLIC identifier for the DTD that can be
searched for in a catalog, for example to map the DTD reference to a local system element.

Methods

There is a constructor function and also methods for coerce to convert an object of this class to a
character.

Author(s)

Duncan Temple Lang

https://www.w3.org/XML/

dtdElement 21

References

https://www.w3.org/XML/, http://www.xmlsoft.org

See Also

Doctype saveXML

Examples

d = Doctype(name = "section",
public = c("-//OASIS//DTD DocBook XML V4.2//EN",

"http://oasis-open.org/docbook/xml/4.2/docbookx.dtd"))

dtdElement Gets the definition of an element or entity from a DTD.

Description

A DTD in R consists of both element and entity definitions. These two functions provide simple
access to individual elements of these two lists, using the name of the element or entity. The DTD
is provided to determine where to look for the entry.

Usage

dtdElement(name,dtd)
dtdEntity(name,dtd)

Arguments

name The name of the element being retrieved/acessed.

dtd The DTD from which the element is to be retrieved.

Details

An element within a DTD contains both the list of sub-elements it can contain and a list of attributes
that can be used within this tag type. dtdElement retrieves the element by name from the specified
DTD definition. Entities within a DTD are like macros or text substitutes used within a DTD
and/or XML documents that use it. Each consists of a name/label and a definition, the text that
is substituted when the entity is referenced. dtdEntity retrieves the entity definition from the
DTD. \ One can read a DTD directly (using parseDTD) or implicitly when reading a document
(using xmlTreeParse) The names of all available elements can be obtained from the expression
names(dtd$elements). This function is simply a convenience for indexing this elements list.

Value

An object of class XMLElementDef.

https://www.w3.org/XML/
http://www.xmlsoft.org

22 dtdElementValidEntry

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/, http://www.jclark.com/xml/, https://www.omegahat.net

See Also

parseDTD, dtdValidElement

Examples

dtdFile <- system.file("exampleData","foo.dtd", package="XML")
foo.dtd <- parseDTD(dtdFile)

Get the definition of the `entry1' element
tmp <- dtdElement("variable", foo.dtd)
xmlAttrs(tmp)

tmp <- dtdElement("entry1", foo.dtd)

Get the definition of the `img' entity
dtdEntity("img", foo.dtd)

dtdElementValidEntry Determines whether an XML element allows a particular type of sub-
element.

Description

This tests whether name is a legitimate tag to use as a direct sub-element of the element tag ac-
cording to the definition of the element element in the specified DTD. This is a generic function
that dispatches on the element type, so that different version take effect for XMLSequenceContent,
XMLOrContent, XMLElementContent.

Usage

dtdElementValidEntry(element, name, pos=NULL)

Arguments

element The XMLElementDef defining the tag in which we are asking whether the sub-
element can be used.

name The name of the sub-element about which we are querying the list of sub-tags
within element.

pos An optional argument which, if supplied, queries whether the name sub-element
is valid as the pos-th child of element.

https://www.w3.org/XML/
http://www.jclark.com/xml/
https://www.omegahat.net

dtdIsAttribute 23

Details

This is not intended to be called directly, but indirectly by the dtdValidElement function.

Value

Logical value indicating whether the sub-element can appear in an element tag or not.

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/, http://www.jclark.com/xml/, https://www.omegahat.net

See Also

parseDTD, dtdValidElement, dtdElement

Examples

dtdFile <- system.file("exampleData", "foo.dtd",package="XML")
dtd <- parseDTD(dtdFile)

dtdElementValidEntry(dtdElement("variables",dtd), "variable")

dtdIsAttribute Query if a name is a valid attribute of a DTD element.

Description

Examines the definition of the DTD element definition identified by element to see if it supports
an attribute named name.

Usage

dtdIsAttribute(name, element, dtd)

Arguments

name The name of the attribute being queried

element The name of the element whose definition is to be used to obtain the list of valid
attributes.

dtd The DTD containing the definition of the elements, specifically element.

https://www.w3.org/XML/
http://www.jclark.com/xml/
https://www.omegahat.net

24 dtdValidElement

Value

A logical value indicating if the list of attributes suppported by the specified element has an entry
named name. This does indicate what type of value that attribute has, whether it is required, implied,
fixed, etc.

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/, http://www.jclark.com/xml/, https://www.omegahat.net

See Also

parseDTD, dtdElement, xmlAttrs

Examples

dtdFile <- system.file("exampleData", "foo.dtd", package="XML")
foo.dtd <- parseDTD(dtdFile)

true
dtdIsAttribute("numRecords", "dataset", foo.dtd)

false
dtdIsAttribute("date", "dataset", foo.dtd)

dtdValidElement Determines whether an XML tag is valid within another.

Description

This tests whether name is a legitimate tag to use as a direct sub-element of the within tag according
to the definition of the within element in the specified DTD.

Usage

dtdValidElement(name, within, dtd, pos=NULL)

Arguments

name The name of the tag which is to be inserted inside the within tag.

within The name of the parent tag the definition of which we are checking to determine
if it contains name.

dtd The DTD in which the elements name and within are defined.

https://www.w3.org/XML/
http://www.jclark.com/xml/
https://www.omegahat.net

ensureNamespace 25

pos An optional position at which we might add the name element inside within. If
this is specified, we have a stricter test that accounds for sequences in which el-
ements must appear in order. These are comma-separated entries in the element
definition.

Details

This applies to direct sub-elements or children of the within tag and not tags nested within children
of that tag, i.e. descendants.

Value

Returns a logical value. TRUE indicates that a name element can be used inside a within element.
FALSE indicates that it cannot.

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/, http://www.jclark.com/xml/, https://www.omegahat.net

See Also

parseDTD, dtdElement, dtdElementValidEntry,

Examples

dtdFile <- system.file("exampleData", "foo.dtd", package="XML")
foo.dtd <- parseDTD(dtdFile)

The following are true.
dtdValidElement("variable","variables", dtd = foo.dtd)
dtdValidElement("record","dataset", dtd = foo.dtd)

This is false.
dtdValidElement("variable","dataset", dtd = foo.dtd)

ensureNamespace Ensure that the node has a definition for particular XML namespaces

https://www.w3.org/XML/
http://www.jclark.com/xml/
https://www.omegahat.net

26 ensureNamespace

Description

This function is a helper function for use in creating XML content. We often want to create a node
that will be part of a larger XML tree and use a particular namespace for that node name. Rather
than defining the namespace in each new node, we want to ensure that it is define on an ancestor
node. This function aids in that task. We call the function with the ancestor node or top-level
document and have it check whether the namespace is already defined or have it add it to the node
and return.

This is intended for use with XMLInternalNode objects which are direclty mutable (rather than
changing a copy of the node and having to insert that back into the larger tree.)

Usage

ensureNamespace(doc, what)

Arguments

doc an XMLInternalDocument or XMLInternalNode on which the namespace is to
be defined. If this is a documentm, we use the root node.

what a named character vector giving the URIs for the namespace definitions and the
names giving the desired prefixes

Value

This is used for the potential side effects of modifying the XML node to add (some of) the names-
paces as needed.

Author(s)

Duncan Temple Lang

References

XML namespaces

See Also

newXMLNamespace newXMLNode

Examples

doc = newXMLDoc()
top = newXMLNode("article", doc = doc)
ensureNamespace(top, c(r = "http://www.r-project.org"))
b = newXMLNode("r:code", parent = top)
print(doc)

findXInclude 27

findXInclude Find the XInclude node associated with an XML node

Description

This function is used to traverse the ancestors of an internal XML node to find the associated XIn-
clude node that identifies it as being an XInclude’d node. Each top-level node that results from an
include href=... in the libxml2 parser is sandwiched between nodes of class XMLXIncludeStartN-
ode and XMLXIncludeStartNode. These are the sibling nodes.

Another approach to finding the origin of the XInclude for a given node is to search for an attribute
xml:base. This only works if the document being XInclude’d is in a different directory than the base
document. If this is the case, we can use an XPath query to find the node containing the attribute
via "./ancestor::*[@xml:base]".

Usage

findXInclude(x, asNode = FALSE, recursive = FALSE)

Arguments

x the node whose XInclude "ancestor" is to be found

asNode a logical value indicating whether to return the node itself or the attributes of the
node which are typically the immediately interesting aspect of the node.

recursive a logical value that controls whether the full path of the nested includes is re-
turned or just the path in the immediate XInclude element.

Value

Either NULL if there was no node of class XMLXIncludeStartNode found. Otherwise, if asNode is
TRUE, that XMLXIncludeStartNode node is returned, or alternatively its attribute character vector.

Author(s)

Duncan Temple Lang

References

www.libxml.org

See Also

xmlParse and the xinclude parameter.

28 free

Examples

f = system.file("exampleData", "functionTemplate.xml", package = "XML")

cat(readLines(f), "\n")

doc = xmlParse(f)

Get all the para nodes
We just want to look at the 2nd and 3rd which are repeats of the
first one.
a = getNodeSet(doc, "//author")
findXInclude(a[[1]])

i = findXInclude(a[[1]], TRUE)
top = getSibling(i)

Determine the top-level included nodes
tmp = getSibling(i)
nodes = list()
while(!inherits(tmp, "XMLXIncludeEndNode")) {

nodes = c(nodes, tmp)
tmp = getSibling(tmp)

}

free Release the specified object and clean up its memory usage

Description

This generic function is available for explicitly releasing the memory associated with the given
object. It is intended for use on external pointer objects which do not have an automatic finalizer
function/routine that cleans up the memory that is used by the native object. This is the case, for
example, for an XMLInternalDocument. We cannot free it with a finalizer in all cases as we may
have a reference to a node in the associated document tree. So the user must explicitly release the
XMLInternalDocument object to free the memory it occupies.

Usage

free(obj)

Arguments

obj the object whose memory is to be released, typically an external pointer object
or object that contains a slot that is an external pointer.

Details

The methods will generally call a C routine to free the native memory.

genericSAXHandlers 29

Value

An updated version of the object with the external address set to NIL. This is up to the individual
methods.

Author(s)

Duncan Temple Lang

See Also

xmlTreeParse with useInternalNodes = TRUE

Examples

f = system.file("exampleData", "boxplot.svg", package = "XML")
doc = xmlParse(f)
nodes = getNodeSet(doc, "//path")
rm(nodes)
free(doc)

genericSAXHandlers SAX generic callback handler list

Description

This is a convenience function to get the collection of generic functions that make up the callbacks
for the SAX parser. The return value can be used directly as the value of the handlers argument
in xmlEventParse. One can easily specify a subset of the handlers by giving the names of the
elements to include or exclude.

Usage

genericSAXHandlers(include, exclude, useDotNames = FALSE)

Arguments

include if supplied, this gives the names of the subset of elements to return.
exclude if supplied (and include is not), this gives the names of the elements to remove

from the list of functions.
useDotNames a logical value. If this is TRUE, the names of the elements in the list of handler

functions are prefixed with ’.’. This is the newer format used to differentiate
general element handlers and node-name-specific handlers.

Value

A list of functions. By default, the elements are named startElement, endElement, comment, text,
processingInstruction, entityDeclaration and contain the corresponding generic SAX callback func-
tion, i.e. given by the element name with the .SAX suffix.

If include or exclude is specified, a subset of this list is returned.

30 getChildrenStrings

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/, http://www.jclark.com/xml/, https://www.omegahat.net

See Also

xmlEventParse startElement.SAX endElement.SAX comment.SAX processingInstruction.SAX
entityDeclaration.SAX .InitSAXMethods

Examples

getChildrenStrings Get the individual

Description

This is different from xmlValue applied to the node. That concatenates all of the text in the child
nodes (and their descendants) This is a faster version of xmlSApply(node, xmlValue)

Usage

getChildrenStrings(node, encoding = getEncoding(node),
asVector = TRUE, len = xmlSize(node), addNames = TRUE)

Arguments

node the parent node whose child nodes we want to process

encoding the encoding to use for the text. This should come from the document itself.
However, it can be useful to specify it if the encoding has not been set for the
document (e.g. if we are constructing it node-by-node).

asVector a logical value that controls whether the result is returned as a character vector
or as a list (FALSE).

len an integer giving the number of elements we expect returned. This is best left
unspecified but can be provided if the caller already knows the number of child
nodes. This avoids recomputing this and so provides a marginal speedup.

addNames a logical value that controls whether we add the element names to each element
of the resulting vector. This makes it easier to identify from which element each
string came.

Value

A character vector.

https://www.w3.org/XML/
http://www.jclark.com/xml/
https://www.omegahat.net

getEncoding 31

Author(s)

Duncan Temple Lang

See Also

xmlValue

Examples

doc = xmlParse("<doc><a>a string some text another</doc>")
getChildrenStrings(xmlRoot(doc))

doc = xmlParse("<doc><a>a string some text another<c/><d>abc<e>xyz</e></d></doc>")
getChildrenStrings(xmlRoot(doc))

getEncoding Determines the encoding for an XML document or node

Description

This function and its methods are intended to return the encoding of n XML . It is similar to
Encoding but currently restricted to XML nodes and documents.

Usage

getEncoding(obj, ...)

Arguments

obj the object whose encoding is being queried.

... any additional parameters which can be customized by the methods.

Value

A character vector of length 1 giving the encoding of the XML document.

Author(s)

Duncan Temple Lang

32 getHTMLLinks

Examples

f = system.file("exampleData", "charts.svg", package = "XML")
doc = xmlParse(f)
getEncoding(doc)
n = getNodeSet(doc, "//g/text")[[1]]
getEncoding(n)

f = system.file("exampleData", "iTunes.plist", package = "XML")
doc = xmlParse(f)
getEncoding(doc)

getHTMLLinks Get links or names of external files in HTML document

Description

These functions allow us to retrieve either the links within an HTML document, or the collection
of names of external files referenced in an HTML document. The external files include images,
JavaScript and CSS documents.

Usage

getHTMLLinks(doc, externalOnly = TRUE, xpQuery = "//a/@href",
baseURL = docName(doc), relative = FALSE)

getHTMLExternalFiles(doc, xpQuery = c("//img/@src", "//link/@href",
"//script/@href", "//embed/@src"),

baseURL = docName(doc), relative = FALSE,
asNodes = FALSE, recursive = FALSE)

Arguments

doc the HTML document as a URL, local file name, parsed document or an XML/HTML
node

externalOnly a logical value that indicates whether we should only return links to external
documents and not references to internal anchors/nodes within this document,
i.e. those that of the form #foo.

xpQuery a vector of XPath elements which match the elements of interest

baseURL the URL of the container document. This is used to resolve relative refer-
ences/links.

relative a logical value indicating whether to leave the references as relative to the base
URL or to expand them to their full paths.

asNodes a logical value that indicates whether we want the actual HTML/XML nodes in
the document that reference external documents or just the names of the external
documents.

recursive a logical value that controls whether we recursively process the external docu-
ments we find in the top-level document examining them for their external files.

getLineNumber 33

Value

getHTMLLinks returns a character vector of the links.

getHTMLExternalFiles returns a character vector.

Author(s)

Duncan Temple Lang

See Also

getXIncludes

Examples

site is flaky
try(getHTMLLinks("https://www.omegahat.net"))

try(getHTMLLinks("https://www.omegahat.net/RSXML"))

try(unique(getHTMLExternalFiles("https://www.omegahat.net")))

getLineNumber Determine the location - file & line number of an (internal) XML node

Description

The getLineNumber function is used to query the location of an internal/C-level XML node within
its original "file". This gives us the line number. getNodeLocation gives both the line number and
the name of the file in which the node is located, handling XInclude files in a top-level document
and identifying the included file, as appropriate. getNodePosition returns a simplified version
of getNodeLocation, combining the file and line number into a string and ignoring the XPointer
component.

This is useful when we identify a node with a particular charactestic and want to view/edit the
original document, e.g. when authoring an Docbook article.

Usage

getLineNumber(node, ...)
getNodeLocation(node, recursive = TRUE, fileOnly = FALSE)

Arguments

node the node whose location or line number is of interest
... additional parameters for methods should they be defined.
recursive a logical value that controls whether the full path of the nested includes is re-

turned or just the path in the immediate XInclude element.
fileOnly a logical value which if TRUE means that only the name of the file is returned,

and not the xpointer attribute or line number .

34 getNodeSet

Value

getLineNumber returns an integer. getNodeLocation returns a list with two elements - file and
line which are a character string and the integer line number.

For text nodes, the line number is taken from the previous sibling nodes or the parent node.

Author(s)

Duncan Temple Lang

References

libxml2

See Also

findXInclude xmlParse getNodeSet xpathApply

Examples

f = system.file("exampleData", "xysize.svg", package = "XML")
doc = xmlParse(f)
e = getNodeSet(doc, "//ellipse")
sapply(e, getLineNumber)

getNodeSet Find matching nodes in an internal XML tree/DOM

Description

These functions provide a way to find XML nodes that match a particular criterion. It uses the XPath
syntax and allows very powerful expressions to identify nodes of interest within a document both
clearly and efficiently. The XPath language requires some knowledge, but tutorials are available
on the Web and in books. XPath queries can result in different types of values such as numbers,
strings, and node sets. It allows simple identification of nodes by name, by path (i.e. hierarchies or
sequences of node-child-child...), with a particular attribute or matching a particular attribute with
a given value. It also supports functionality for navigating nodes in the tree within a query (e.g.
ancestor(), child(), self()), and also for manipulating the content of one or more nodes (e.g.
text). And it allows for criteria identifying nodes by position, etc. using some counting operations.
Combining XPath with R allows for quite flexible node identification and manipulation. XPath
offers an alternative way to find nodes of interest than recursively or iteratively navigating the entire
tree in R and performing the navigation explicitly.

One can search an entire document or start the search from a particular node. Such node-based
searches can even search up the tree as well as within the sub-tree that the node parents. Node
specific XPath expressions are typically started with a "." to indicate the search is relative to that
node.

getNodeSet 35

You can use several XPath 2.0 functions in the XPath query. Furthermore, you can also regis-
ter additional XPath functions that are implemented either with R functions or C routines. (See
xpathFuns.)

The set of matching nodes corresponding to an XPath expression are returned in R as a list. One can
then iterate over these elements to process the nodes in whatever way one wants. Unfortunately, this
involves two loops - one in the XPath query over the entire tree, and another in R. Typically, this is
fine as the number of matching nodes is reasonably small. However, if repeating this on numerous
files, speed may become an issue. We can avoid the second loop (i.e. the one in R) by applying a
function to each node before it is returned to R as part of the node set. The result of the function
call is then returned, rather than the node itself.

One can provide an R expression rather than an R function for fun. This is expected to be a call and
the first argument of the call will be replaced with the node.

Dealing with expressions that relate to the default namespaces in the XML document can be con-
fusing.

xpathSApply is a version of xpathApply which attempts to simplify the result if it can be converted
to a vector or matrix rather than left as a list. In this way, it has the same relationship to xpathApply
as sapply has to lapply.

matchNamespaces is a separate function that is used to facilitate specifying the mappings from
namespace prefix used in the XPath expression and their definitions, i.e. URIs, and connecting
these with the namespace definitions in the target XML document in which the XPath expression
will be evaluated.

matchNamespaces uses rules that are very slightly awkard or specifically involve a special case.
This is because this mapping of namespaces from XPath to XML targets is difficult, involving
prefixes in the XPath expression, definitions in the XPath evaluation context and matches of URIs
with those in the XML document. The function aims to avoid having to specify all the prefix=uri
pairs by using "sensible" defaults and also matching the prefixes in the XPath expression to the
corresponding definitions in the XML document.

The rules are as follows. namespaces is a character vector. Any element that has a non-trivial name
(i.e. other than "") is left as is and the name and value define the prefix = uri mapping. Any elements
that have a trivial name (i.e. no name at all or "") are resolved by first matching the prefix to those
of the defined namespaces anywhere within the target document, i.e. in any node and not just the
root one. If there is no match for the first element of the namespaces vector, this is treated specially
and is mapped to the default namespace of the target document. If there is no default namespace
defined, an error occurs.

It is best to give explicit the argument in the form c(prefix = uri, prefix = uri). However, one
can use the same namespace prefixes as in the document if one wants. And one can use an arbitrary
namespace prefix for the default namespace URI of the target document provided it is the first
element of namespaces.

See the ’Details’ section below for some more information.

Usage

getNodeSet(doc, path, namespaces = xmlNamespaceDefinitions(doc, simplify = TRUE),
fun = NULL, sessionEncoding = CE_NATIVE, addFinalizer = NA, ...)

xpathApply(doc, path, fun, ... ,
namespaces = xmlNamespaceDefinitions(doc, simplify = TRUE),

36 getNodeSet

resolveNamespaces = TRUE, addFinalizer = NA, xpathFuns = list())
xpathSApply(doc, path, fun = NULL, ... ,

namespaces = xmlNamespaceDefinitions(doc, simplify = TRUE),
resolveNamespaces = TRUE, simplify = TRUE,
addFinalizer = NA)

matchNamespaces(doc, namespaces,
nsDefs = xmlNamespaceDefinitions(doc, recursive = TRUE, simplify = FALSE),

defaultNs = getDefaultNamespace(doc, simplify = TRUE))

Arguments

doc an object of class XMLInternalDocument
path a string (character vector of length 1) giving the XPath expression to evaluate.
namespaces a named character vector giving the namespace prefix and URI pairs that are

to be used in the XPath expression and matching of nodes. The prefix is just
a simple string that acts as a short-hand or alias for the URI that is the unique
identifier for the namespace. The URI is the element in this vector and the prefix
is the corresponding element name. One only needs to specify the namespaces
in the XPath expression and for the nodes of interest rather than requiring all the
namespaces for the entire document. Also note that the prefix used in this vector
is local only to the path. It does not have to be the same as the prefix used in the
document to identify the namespace. However, the URI in this argument must
be identical to the target namespace URI in the document. It is the namespace
URIs that are matched (exactly) to find correspondence. The prefixes are used
only to refer to that URI.

fun a function object, or an expression or call, which is used when the result is a
node set and evaluated for each node element in the node set. If this is a call, the
first argument is replaced with the current node.

... any additional arguments to be passed to fun for each node in the node set.
resolveNamespaces

a logical value indicating whether to process the collection of namespaces and
resolve those that have no name by looking in the default namespace and the
namespace definitions within the target document to match by prefix.

nsDefs a list giving the namespace definitions in which to match any prefixes. This is
typically computed directly from the target document and the default value is
most appropriate.

defaultNs the default namespace prefix-URI mapping given as a named character vector.
This is not a namespace definition object. This is used when matching a simple
prefix that has no corresponding entry in nsDefs and is the first element in the
namespaces vector.

simplify a logical value indicating whether the function should attempt to perform the
simplification of the result into a vector rather than leaving it as a list. This is
the same as sapply does in comparison to lapply.

sessionEncoding

experimental functionality and parameter related to encoding.
addFinalizer a logical value or identifier for a C routine that controls whether we register

finalizers on the intenal node.

getNodeSet 37

xpathFuns a list containing either character strings, functions or named elements containing
the address of a C routine. These identify functions that can be used in the XPath
expression. A character string identifies the name of the XPath function and the
R function of the same name (and located on the R search path). A C routine to
implement an XPath function is specified via a call to getNativeSymbolInfo
and passing just the address field. This is provided in the list() with a name
which is used as the name of the XPath function.

Details

When a namespace is defined on a node in the XML document, an XPath expressions must use a
namespace, even if it is the default namespace for the XML document/node. For example, suppose
we have an XML document <help xmlns="http://www.r-project.org/Rd"><topic>...</topic></help>
To find all the topic nodes, we might want to use the XPath expression "/help/topic". However,
we must use an explicit namespace prefix that is associated with the URI http://www.r-project.org/Rd
corresponding to the one in the XML document. So we would use getNodeSet(doc, "/r:help/r:topic",
c(r = "http://www.r-project.org/Rd")).

As described above, the functions attempt to allow the namespaces to be specified easily by the R
user and matched to the namespace definitions in the target document.

This calls the libxml routine xmlXPathEval.

Value

The results can currently be different based on the returned value from the XPath expression evalu-
ation:

list a node set

numeric a number

logical a boolean

character a string, i.e. a single character element.

If fun is supplied and the result of the XPath query is a node set, the result in R is a list.

Note

In order to match nodes in the default name space for documents with a non-trivial default names-
pace, e.g. given as xmlns="https://www.omegahat.net", you will need to use a prefix for the
default namespace in this call. When specifying the namespaces, give a name - any name - to the
default namespace URI and then use this as the prefix in the XPath expression, e.g. getNodeSet(d,
"//d:myNode", c(d = "https://www.omegahat.net")) to match myNode in the default name
space https://www.omegahat.net.

This default namespace of the document is now computed for us and is the default value for the
namespaces argument. It can be referenced using the prefix ’d’, standing for default but sufficiently
short to be easily used within the XPath expression.

More of the XPath functionality provided by libxml can and may be made available to the R pack-
age. Facilities such as compiled XPath expressions, functions, ordered node information are exam-
ples.

Please send requests to the package maintainer.

38 getNodeSet

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

http://xmlsoft.org, https://www.w3.org/XML// https://www.w3.org/TR/xpath/ https:
//www.omegahat.net/RSXML/

See Also

xmlTreeParse with useInternalNodes as TRUE.

Examples

doc = xmlParse(system.file("exampleData", "tagnames.xml", package = "XML"))

els = getNodeSet(doc, "/doc//a[@status]")
sapply(els, function(el) xmlGetAttr(el, "status"))

use of namespaces on an attribute.
getNodeSet(doc, "/doc//b[@x:status]", c(x = "https://www.omegahat.net"))
getNodeSet(doc, "/doc//b[@x:status='foo']", c(x = "https://www.omegahat.net"))

Because we know the namespace definitions are on /doc/a
we can compute them directly and use them.

nsDefs = xmlNamespaceDefinitions(getNodeSet(doc, "/doc/a")[[1]])
ns = structure(sapply(nsDefs, function(x) x$uri), names = names(nsDefs))
getNodeSet(doc, "/doc//b[@omegahat:status='foo']", ns)[[1]]

free(doc)

#####
f = system.file("exampleData", "eurofxref-hist.xml.gz", package = "XML")
e = xmlParse(f)
ans = getNodeSet(e, "//o:Cube[@currency='USD']", "o")
sapply(ans, xmlGetAttr, "rate")

or equivalently
ans = xpathApply(e, "//o:Cube[@currency='USD']", xmlGetAttr, "rate", namespaces = "o")
free(e)

Using a namespace
f = system.file("exampleData", "SOAPNamespaces.xml", package = "XML")
z = xmlParse(f)
getNodeSet(z, "/a:Envelope/a:Body", c("a" = "http://schemas.xmlsoap.org/soap/envelope/"))
getNodeSet(z, "//a:Body", c("a" = "http://schemas.xmlsoap.org/soap/envelope/"))
free(z)

Get two items back with namespaces

http://xmlsoft.org
https://www.w3.org/XML//
https://www.w3.org/TR/xpath/
https://www.omegahat.net/RSXML/
https://www.omegahat.net/RSXML/

getNodeSet 39

f = system.file("exampleData", "gnumeric.xml", package = "XML")
z = xmlParse(f)
getNodeSet(z, "//gmr:Item/gmr:name", c(gmr="http://www.gnome.org/gnumeric/v2"))

#free(z)

#####
European Central Bank (ECB) exchange rate data

Data is available from "http://www.ecb.int/stats/eurofxref/eurofxref-hist.xml"
or locally.

uri = system.file("exampleData", "eurofxref-hist.xml.gz", package = "XML")
doc = xmlParse(uri)

The default namespace for all elements is given by
namespaces <- c(ns="http://www.ecb.int/vocabulary/2002-08-01/eurofxref")

Get the data for Slovenian currency for all time periods.
Find all the nodes of the form <Cube currency="SIT"...>

slovenia = getNodeSet(doc, "//ns:Cube[@currency='SIT']", namespaces)

Now we have a list of such nodes, loop over them
and get the rate attribute

rates = as.numeric(sapply(slovenia, xmlGetAttr, "rate"))
Now put the date on each element
find nodes of the form <Cube time=".." ... >
and extract the time attribute

names(rates) = sapply(getNodeSet(doc, "//ns:Cube[@time]", namespaces),
xmlGetAttr, "time")

Or we could turn these into dates with strptime()
strptime(names(rates), "%Y-%m-%d")

Using xpathApply, we can do
rates = xpathApply(doc, "//ns:Cube[@currency='SIT']",

xmlGetAttr, "rate", namespaces = namespaces)
rates = as.numeric(unlist(rates))

Using an expression rather than a function and ...
rates = xpathApply(doc, "//ns:Cube[@currency='SIT']",

quote(xmlGetAttr(x, "rate")), namespaces = namespaces)

#free(doc)

#
uri = system.file("exampleData", "namespaces.xml", package = "XML")
d = xmlParse(uri)
getNodeSet(d, "//c:c", c(c="http://www.c.org"))

40 getNodeSet

getNodeSet(d, "/o:a//c:c", c("o" = "https://www.omegahat.net", "c" = "http://www.c.org"))

since https://www.omegahat.net is the default namespace, we can
just the prefix "o" to map to that.
getNodeSet(d, "/o:a//c:c", c("o", "c" = "http://www.c.org"))

the following, perhaps unexpectedly but correctly, returns an empty
with no matches

getNodeSet(d, "//defaultNs", "https://www.omegahat.net")

But if we create our own prefix for the evaluation of the XPath
expression and use this in the expression, things work as one
might hope.
getNodeSet(d, "//dummy:defaultNs", c(dummy = "https://www.omegahat.net"))

And since the default value for the namespaces argument is the
default namespace of the document, we can refer to it with our own
prefix given as
getNodeSet(d, "//d:defaultNs", "d")

And the syntactic sugar is
d["//d:defaultNs", namespace = "d"]

this illustrates how we can use the prefixes in the XML document
in our query and let getNodeSet() and friends map them to the
actual namespace definitions.
"o" is used to represent the default namespace for the document
i.e. https://www.omegahat.net, and "r" is mapped to the same
definition that has the prefix "r" in the XML document.

tmp = getNodeSet(d, "/o:a/r:b/o:defaultNs", c("o", "r"))
xmlName(tmp[[1]])

#free(d)

Work with the nodes and their content (not just attributes) from the node set.
From bondsTables.R in examples/

Not run: ## fails to download as from May 2017
doc =
htmlTreeParse("http://finance.yahoo.com/bonds/composite_bond_rates?bypass=true",

useInternalNodes = TRUE)
if(is.null(xmlRoot(doc)))

doc = htmlTreeParse("http://finance.yahoo.com/bonds?bypass=true",
useInternalNodes = TRUE)

Use XPath expression to find the nodes
<div><table class="yfirttbl">..

getNodeSet 41

as these are the ones we want.

if(!is.null(xmlRoot(doc))) {

o = getNodeSet(doc, "//div/table[@class='yfirttbl']")
}

Write a function that will extract the information out of a given table node.
readHTMLTable =
function(tb)
{

get the header information.
colNames = sapply(tb[["thead"]][["tr"]]["th"], xmlValue)
vals = sapply(tb[["tbody"]]["tr"], function(x) sapply(x["td"], xmlValue))
matrix(as.numeric(vals[-1,]),

nrow = ncol(vals),
dimnames = list(vals[1,], colNames[-1]),
byrow = TRUE

)
}

Now process each of the table nodes in the o list.
tables = lapply(o, readHTMLTable)
names(tables) = lapply(o, function(x) xmlValue(x[["caption"]]))

End(Not run)

this illustrates an approach to doing queries on a sub tree
within the document.
Note that there is a memory leak incurred here as we create a new
XMLInternalDocument in the getNodeSet().

f = system.file("exampleData", "book.xml", package = "XML")
doc = xmlParse(f)
ch = getNodeSet(doc, "//chapter")
xpathApply(ch[[2]], "//section/title", xmlValue)

To fix the memory leak, we explicitly create a new document for
the subtree, perform the query and then free it _when_ we are done
with the resulting nodes.

subDoc = xmlDoc(ch[[2]])
xpathApply(subDoc, "//section/title", xmlValue)
free(subDoc)

txt =
'<top xmlns="http://www.r-project.org" xmlns:r="http://www.r-project.org"><r:a></r:a></top>'

doc = xmlInternalTreeParse(txt, asText = TRUE)

Not run:
Will fail because it doesn't know what the namespace x is

42 getRelativeURL

and we have to have one eventhough it has no prefix in the document.
xpathApply(doc, "//x:b")

End(Not run)
So this is how we do it - just say x is to be mapped to the
default unprefixed namespace which we shall call x!

xpathApply(doc, "//x:b", namespaces = "x")

Here r is mapped to the the corresponding definition in the document.
xpathApply(doc, "//r:a", namespaces = "r")

Here, xpathApply figures this out for us, but will raise a warning.
xpathApply(doc, "//r:a")

And here we use our own binding.
xpathApply(doc, "//x:a", namespaces = c(x = "http://www.r-project.org"))

Get all the nodes in the entire tree.
table(unlist(sapply(doc["//*|//text()|//comment()|//processing-instruction()"],
class)))

Use of XPath 2.0 functions min() and max()
doc = xmlParse('<doc><p age="10"/><p age="12"/><p age="7"/></doc>')
getNodeSet(doc, "//p[@age = min(//p/@age)]")
getNodeSet(doc, "//p[@age = max(//p/@age)]")

avg = function(...) {
mean(as.numeric(unlist(...)))

}
getNodeSet(doc, "//p[@age > avg(//p/@age)]", xpathFuns = "avg")

doc = xmlParse('<doc><ev date="2010-12-10"/><ev date="2011-3-12"/><ev date="2015-10-4"/></doc>')
getNodeSet(doc, "//ev[month-from-date(@date) > 7]",

xpathFuns = list("month-from-date" =
function(node) {

match(months(as.Date(as.character(node[[1]]))), month.name)
}))

getRelativeURL Compute name of URL relative to a base URL

Description

This function is a convenience function for computing the fullly qualified URI of a document rela-
tive to a base URL. It handles the case where the document is already fully qualified and so ignores
the base URL or, alternatively, is a relative document name and so prepends the base URL. It does
not (yet) try to be clever by collapsing relative directories such as "..".

getRelativeURL 43

Usage

getRelativeURL(u, baseURL, sep = "/", addBase = TRUE,
simplify = TRUE, escapeQuery = FALSE)

Arguments

u the location of the target document whose fully qualified URI is to be deter-
mined.

baseURL the base URL relative to which the value of u should be interpreted.

sep the separator to use to separate elements of the path. For external URLs (e.g.
accessed via HTTP, HTTPS, FTP), / should be used. For local files on Windows
machines one might use .Platform$file.sep, but this is incorrect unless one
knows that the resulting file is to be accessed using Windows file system nota-
tion, i.e. C:\\my\\folder\\file.

addBase a logical controlling whether we prepend the base URL to the result.

simplify a logical value that controls whether we attempt to simplify/normalize the path
to remove .. and .

escapeQuery a logical value. Currently ignored.

Details

This uses the function parseURI to compute the components of the different URIs.

Value

A character string giving the fully qualified URI for u.

Author(s)

Duncan Temple Lang

See Also

parseURI which uses the libxml2 facilities for parsing URIs.

xmlParse, xmlTreeParse, xmlInternalTreeParse. XInclude and XML Schema import/include
elements for computing relative locations of included/imported files..

Examples

getRelativeURL("https://www.omegahat.net", "http://www.r-project.org")

getRelativeURL("bar.html", "http://www.r-project.org/")

getRelativeURL("../bar.html", "http://www.r-project.org/")

44 getSibling

getSibling Manipulate sibling XML nodes

Description

These functions allow us to both access the sibling node to the left or right of a given node and so
walk the chain of siblings, and also to insert a new sibling

Usage

getSibling(node, after = TRUE, ...)
addSibling(node, ..., kids = list(...), after = NA)

Arguments

node the internal XML node (XMLInternalNode) whose siblings are of interest

... the XML nodes to add as siblings or children to node.

kids a list containing the XML nodes to add as siblings. This is equivalent to ... but
used when we already have the nodes in a list rather than as individual objects.
This is used in programmatic calls to addSibling rather interactive use where
we more commonly have the individual node objects.

after a logical value indicating whether to retrieve or add the nodes to the right (TRUE)
or to the left (FALSE) of this sibling.

Value

getSibling returns an object of class XMLInternalNode (or some derived S3 class, e.g. XMLIn-
ternalTextNode)

addSibling returns a list whose elements are the newly added XML (internal) nodes.

See Also

xmlChildren, addChildren removeNodes replaceNodes

Examples

Reading Apple's iTunes files
#

Here we read a "censored" "database" of songs from Apple's iTune application
which is stored in a property list. The format is quite generic and
the fields for each song are given in the form
#
<key>Artist</key><string>Person's name</string>
#
So to find the names of the artists for all the songs, we want to
find all the <key>Artist<key> nodes and then get their next sibling
which has the actual value.

getXIncludes 45

#
More information can be found in .
#

fileName = system.file("exampleData", "iTunes.plist", package = "XML")

doc = xmlParse(fileName)
nodes = getNodeSet(doc, "//key[text() = 'Artist']")
sapply(nodes, function(x) xmlValue(getSibling(x)))

f = system.file("exampleData", "simple.xml", package = "XML")
tt = as(xmlParse(f), "XMLHashTree")

tt

e = getSibling(xmlRoot(tt)[[1]])
and back to the first one again by going backwards along the sibling list.

getSibling(e, after = FALSE)

This also works for multiple top-level "root" nodes
f = system.file("exampleData", "job.xml", package = "XML")
tt = as(xmlParse(f), "XMLHashTree")
x = xmlRoot(tt, skip = FALSE)
getSibling(x)
getSibling(getSibling(x), after = FALSE)

getXIncludes Find the documents that are XInclude’d in an XML document

Description

The getXMLIncludes function finds the names of the documents that are XIncluded in a given
XML document, optionally processing these documents recursively.

xmlXIncludes returns the hierarchy of included documents.

Usage

getXIncludes(filename, recursive = TRUE, skip = character(),
omitPattern = "\\.(js|html?|txt|R|c)$",
namespace = c(xi = "https://www.w3.org/2003/XInclude"),

duplicated = TRUE)
xmlXIncludes(filename, recursive = TRUE,

omitPattern = "\\.(js|html?|txt|R|c)$",
namespace = c(xi = "https://www.w3.org/2003/XInclude"),
addNames = TRUE,
clean = NULL, ignoreTextParse = FALSE)

46 getXIncludes

Arguments

filename the name of the XML document’s URL or file or the parsed document itself.

recursive a logical value controlling whether to recursively process the XInclude’d files
for their XInclude’d files

skip a character vector of file names to ignore or skip over

omitPattern a regular expression for indentifying files that are included that we do not want
to recursively process

namespace the namespace to use for the XInclude. There are two that are in use 2001 and
2003.

duplicated a logical value that controls whether only the unique names of the files are re-
turned, or if we get all references to all files.

addNames a logical that controls whether we add the name of the parent file as the names
vector for the collection of included file names. This is useful, but sometimes
we want to disable this, e.g. to create a JSON representation of the hierarchy for
use in, e.g., D3.

clean how to process the names of the files. This can be a function or a character
vector of two regular expressions passed to gsub. The function is called with a
vector of file names. The regular expressions are used in a call to gsub.

ignoreTextParse

if TRUE, ignore the XIncluded files that are identified as text and not XML with
parse="text".

Value

If recursive is FALSE, a character vector giving the names of the included files.

For recursive is TRUE, currently the same character vector form. However, this will be a hierar-
chical list.

Author(s)

Duncan Temple Lang

See Also

getHTMLExternalFiles

Examples

f = system.file("exampleData", "xinclude", "a.xml", package = "XML")

getXIncludes(f, recursive = FALSE)

getXMLErrors 47

getXMLErrors Get XML/HTML document parse errors

Description

This function is intended to be a convenience for finding all the errors in an XML or HTML doc-
ument due to being malformed, i.e. missing quotes on attributes, non-terminated elements/nodes,
incorrectly terminated nodes, missing entities, etc. The document is parsed and a list of the errors
is returned along with information about the file, line and column number.

Usage

getXMLErrors(filename, parse = xmlParse, ...)

Arguments

filename the identifier for the document to be parsed, one of a local file name, a URL or
the XML/HTML content itself

parse the function to use to parse the document, usually either xmlTreeParse or
htmlTreeParse.

... additional arguments passed to the function given by parse

Value

A list of S3-style XMLError objects.

Author(s)

Duncan Temple Lang

References

libxml2 (http://xmlsoft.org)

See Also

error argument for xmlTreeParse and related functions.

Examples

Get the "errors" in the HTML that was generated from this Rd file
getXMLErrors(system.file("html", "getXMLErrors.html", package = "XML"))

Not run:
getXMLErrors("https://www.omegahat.net/index.html")

End(Not run)

http://xmlsoft.org

48 isXMLString

isXMLString Facilities for working with XML strings

Description

These functions and classes are used to represent and parse a string whose content is known to be
XML. xml allows us to mark a character vector as containing XML, i.e. of class XMLString.

xmlParseString is a convenience routine for converting an XML string into an XML node/tree.

isXMLString is examines a strings content and heuristically determines whether it is XML.

Usage

isXMLString(str)
xmlParseString(content, doc = NULL, namespaces = RXMLNamespaces,

clean = TRUE, addFinalizer = NA)
xml(x)

Arguments

str, x, content the string containing the XML material.

doc if specified, an XMLInternalDocument object which is used to "house" the new
nodes. Specifically, when the nodes are created, they are made as part of this
document. This may not be as relevant now with the garbage collection being
done at a node and document level. But it still potentially of some value.

namespaces a character vector giving the URIs for the XML namespaces which are to be
removed if clean is TRUE.

clean a logical value that controls whether namespaces are removed after the docu-
ment is parsed..

addFinalizer a logical value or identifier for a C routine that controls whether we register
finalizers on the intenal node.

Value

isXMLString returns a logical value.

xmlParseString returns an object of class XMLInternalElementNode.

xml returns an object of class XMLString identifying the text as XML.

Author(s)

Dncan Temple Lang

See Also

xmlParse xmlTreeParse

length.XMLNode 49

Examples

isXMLString("a regular string < 20 characters long")
isXMLString("<a>c")

xmlParseString("<a>c")

We can lie!
isXMLString(xml("foo"))

length.XMLNode Determine the number of children in an XMLNode object.

Description

This function is a simple way to compute the number of sub-nodes (or children) an XMLNode object
possesses. It is provided as a convenient form of calling the xmlSize function.

Usage

S3 method for class 'XMLNode'
length(x)

Arguments

x the XMLNode object whose length is to be queried.

Value

An integer giving the number of sub-nodes of this node.

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/, http://www.jclark.com/xml/, https://www.omegahat.net

See Also

xmlSize xmlChildren

Examples

doc <- xmlTreeParse(system.file("exampleData", "mtcars.xml", package="XML"))
r <- xmlRoot(doc, skip=TRUE)
length(r)

get the last entry
r[[length(r)]]

https://www.w3.org/XML/
http://www.jclark.com/xml/
https://www.omegahat.net

50 libxmlVersion

libxmlVersion Query the version and available features of the libxml library.

Description

libxmlVersion retrieves the version of the libxml library used when installing this XML package.
libxmlFeatures returns a named logical vector indicating which features are enabled.

Usage

libxmlVersion(runTime = FALSE)
libxmlFeatures()

Arguments

runTime a logical value indicating whether to retrieve the version information describing
libxml when the R package was compiled or the run-time version. These may be
different if a) a new version of libxml2 is installed after the package is installed,
b) if the package was installed as a binary package built on a different machine.

Value

libxmlVersion returns a named list with fields

major the major version number, either 1 or 2 indicating the old or new-style library.

minor the within version release number.

patch the within minor release version number

libxmlFeatures returns a logical vector with names given by: [1] "THREAD" "TREE" "OUTPUT"
"PUSH" "READER" [6] "PATTERN" "WRITER" "SAX1" "FTP" "HTTP" [11] "VALID" "HTML" "LEGACY"
"C14N" "CATALOG" [16] "XPATH" "XPTR" "XINCLUDE" "ICONV" "ISO8859X" [21] "UNICODE" "REGEXP"
"AUTOMATA" "EXPR" "SCHEMAS" [26] "SCHEMATRON" "MODULES" "DEBUG" "DEBUG_MEM" "DEBUG_RUN"
[31] "ZLIB" Elements are either TRUE or FALSE indicating whether support was activatd for that
feature, or NA if that feature is not part of the particular version of libcurl.

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/, http://www.xmlsoft.org, https://www.omegahat.net

https://www.w3.org/XML/
http://www.xmlsoft.org
https://www.omegahat.net

makeClassTemplate 51

Examples

ver <- libxmlVersion()
if(is.null(ver)) {
cat("Relly old version of libxml\n")

} else {
if(ver$major > 1) {

cat("Using libxml2\n")
}

}

makeClassTemplate Create S4 class definition based on XML node(s)

Description

This function is used to create an S4 class definition by examining an XML node and mapping
the sub-elements to S4 classes. This works very simply with child nodes being mapped to other
S4 classes that are defined recursively in the same manner. Simple text elements are mapped to a
generic character string. Types can be mapped to more specific types (e.g. boolean, Date, integer)
by the caller (via the types) parameter. The function also generates a coercion method from an
XMLAbstractNode to an instance of this new class.

This function can either return the code that defines the class or it can define the new class in the R
session.

Usage

makeClassTemplate(xnode, types = character(), default = "ANY",
className = xmlName(xnode), where = globalenv())

Arguments

xnode the XML node to analyze

types a character vector mapping XML elements to R classes

default the default class to map an element to

className the name of the new top-level class to be defined. This is the name of the XML
node (without the name space)

where typically either an environment or NULL. This is used to control where the class
and coercion method are defined or if NULL inhibits the code being evaluated. In
this case, the code is returned as strings.

Value

A list with 4 elements:

name the name of the new class

slots a character vector giving the slot name and type name pairs

52 names.XMLNode

def code for defining the class

coerce code for defining the coercion method from an XMLAbstractNode to an instance
of the new class

If where is not NULL, the class and coercion code is actually evaluated and the class and method will
be defined in the R session as a side effect.

Author(s)

Duncan Temple Lang

See Also

xmlToS4

Examples

txt = paste0("<doc><part><name>ABC</name><type>XYZ</type>",
"<cost>3.54</cost><status>available</status></part></doc>")

doc = xmlParse(txt)

code = makeClassTemplate(xmlRoot(doc)[[1]], types = c(cost = "numeric"))

as(xmlRoot(doc)[["part"]], "part")

names.XMLNode Get the names of an XML nodes children.

Description

This is a convenient way to obtain the XML tag name of each of the sub-nodes of a given XMLNode
object.

Usage

S3 method for class 'XMLNode'
names(x)

Arguments

x the XMLNode whose sub-node tag names are being queried.

Value

A character vector returning the tag names of the sub-nodes of the given XMLNode argument.

newXMLDoc 53

Note

This overrides the regular names method which would display the names of the internal fields of
an XMLNode object. Since these are intended to be invisible and queried via the accessor methods
(xmlName, xmlAttrs, etc.), this should not be a problem. If you really need the names of the fields,
use names(unclass(x)).

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML//, http://www.jclark.com/xml/, https://www.omegahat.net

See Also

xmlApply xmlSApply

Examples

doc <- xmlTreeParse(system.file("exampleData", "mtcars.xml", package="XML"))
names(xmlRoot(doc))

r <- xmlRoot(doc)
r[names(r) == "variables"]

newXMLDoc Create internal XML node or document object

Description

These are used to create internal ‘libxml’ nodes and top-level document objects that are used to
write XML trees. While the functions are available, their direct use is not encouraged. Instead,
use xmlTree as the functions need to be used within a strict regime to avoid corrupting C level
structures.

xmlDoc creates a new XMLInternalDocument object by copying the given node and all of its descen-
dants and putting them into a new document. This is useful when we want to work with sub-trees
with general tools that work on documents, e.g. XPath queries.

newXMLDoc allows one to create a regular XML node with a name and attributes. One can pro-
vide new namespace definitions via namespaceDefinitions. While these might also be given
in the attributes in the slightly more verbose form of c('xmlns:prefix' = 'http://...'), the
result is that the XML node does not interpret that as a namespace definition but merely an at-
tribute with a name ’xmlns:prefix’. Instead, one should specify the namespace definitions via the
namespaceDefinitions parameter.

In addition to namespace definitions, a node name can also have a namespace definition. This can be
specified in the name argument as prefix:name and newXMLDoc will do the right thing in separating

https://www.w3.org/XML//
http://www.jclark.com/xml/
https://www.omegahat.net

54 newXMLDoc

this into the namespace and regular name. Alternatively, one can specify a namespace separately
via the namespace argument. This can be either a simple name or an internal namespace object
defined earlier.

How do we define a default namespace?

Usage

xmlDoc(node, addFinalizer = TRUE)
newXMLDoc(dtd = "", namespaces=NULL, addFinalizer = TRUE,

name = character(), node = NULL, isHTML = FALSE)
newHTMLDoc(dtd = "loose", addFinalizer = TRUE, name = character(),

node = newXMLNode("html",
newXMLNode("head", addFinalizer = FALSE),
newXMLNode("body", addFinalizer = FALSE),
addFinalizer = FALSE))

newXMLNode(name, ..., attrs = NULL, namespace = character(),
namespaceDefinitions = character(),
doc = NULL, .children = list(...), parent = NULL,

at = NA, cdata = FALSE,
suppressNamespaceWarning =

getOption("suppressXMLNamespaceWarning", FALSE),
sibling = NULL, addFinalizer = NA,
noNamespace = length(namespace) == 0 && !missing(namespace),
fixNamespaces = c(dummy = TRUE, default = TRUE))

newXMLTextNode(text, parent = NULL, doc = NULL, cdata = FALSE,
escapeEntities = is(text, "AsIs"), addFinalizer = NA)

newXMLCDataNode(text, parent = NULL, doc = NULL, at = NA, sep = "\n",
addFinalizer = NA)

newXMLCommentNode(text, parent = NULL, doc = NULL, at = NA, addFinalizer = NA)
newXMLPINode(name, text, parent = NULL, doc = NULL, at = NA, addFinalizer = NA)
newXMLDTDNode(nodeName, externalID = character(),

systemID = character(), doc = NULL, addFinalizer = NA)

Arguments

node a XMLInternalNode object that will be copied to create a subtree for a new
document.

dtd the name of the DTD to use for the XML document. Currently ignored!

namespaces a named character vector with each element specifying a name space identifier
and the corresponding URI for that namespace that are to be declared and used in
the XML document, \ e.g. c(shelp = "https://www.omegahat.net/XML/SHelp")

addFinalizer a logical value indicating whether the default finalizer routine should be reg-
istered to free the internal xmlDoc when R no longer has a reference to this
external pointer object. This can also be the name of a C routine or a reference
to a C routine retrieved using getNativeSymbolInfo.

name the tag/element name for the XML node and the for a Processing Instruction (PI)
node, this is the "target", e.g. the identifier for the system for whose attention
this PI node is intended.

newXMLDoc 55

... the children of this node. These can be other nodes created earlier or R strings
that are converted to text nodes and added as children to this newly created node.

attrs a named list of name-value pairs to be used as attributes for the XML node.
One should not use this argument to define namespaces, i.e. attributes of the
form xmlns:prefix='http:/...'. Instead, such definitions should be speci-
fied ideally via the namespaceDefinitions argument, or even the namespace
argument. The reason is that namespace definitions are special attributes that
are shared across nodes wherease regular attributes are particular to a node. So
a namespace needs to be explicitly defined so that the XML representation can
recognize it as such.

namespace a character vector specifying the namespace for this new node. Typically this is
used to specify i) the prefix of the namespace to use, or ii) one or more names-
pace definitions, or iii) a combination of both. If this is a character vector with a)
one element and b) with an empty names attribute and c) whose value does not
start with http:/ or ftp:/, then it is assumed that the value is a namespace pre-
fix for a namespace defined in an ancestor node. To be able to resolve this prefix
to a namespace definition, parent must be specified so that we can traverse the
chain of ancestor nodes. However, if c) does not hold, i.e. the string starts with
http:/ or ftp:/, then we take this single element to be a namespace definition
and the since it has no name b), this is the definition for the default namespace
for this new node, i.e. corresponding to xmlns='http:/...'. It is cumbersome
to specify "" as a name for an element in a character vector (as c('' = 'value')
gives an unnecessary error!. Elements with names are expanded to names-
pace definitions with the name as the prefix and the value as the namespace
URI.

doc the XMLInternalDocument object created with newXMLDoc that is used to root
the node.

.children a list containing XML node elements or content. This is an alternative form of
specifying the child nodes than . . . which is useful for programmatic interaction
when the "sub"-content is already in a list rather than a loose collection of values.

text the text content for the new XML node

nodeName the name of the node to put in the DOCTYPE element that will appear as the
top-most node in the XML document.

externalID the PUBLIC identifier for the document type. This is a string of the form
A//B//C//D. A is either + or -; B identifies the person or insitution that de-
fined the format (i.e. the "creator"); C is the name of the format; and language
is an encoding for the language that comes from the ISO 639 document.

systemID the SYSTEM identifier for the DTD for the document. This is a URI
namespaceDefinitions

a character vector or a list with each element being a string. These give the URIs
identifying the namespaces uniquely. The elements should have names which
are used as prefixes. A default namespace has "" as the name. This argument
can be used to remove any ambiguity that arises when specifying a single string
with no names attribute as the value for namespace. The values here are used
only for defining new namespaces and not for determining the namespace to use
for this particular node.

56 newXMLDoc

parent the node which will act as the parent of this newly created node. This need
not be specified and one can add the new node to another node in a separate
operation via addChildren.

sibling if this is specified (rather than parent) this should be an XMLInternalNode and
the new node is added as a sibling of this node, after this node, i.e. to the right.
This is just a convenient form of parent = xmlParent(node).

cdata a logical value indicating whether to enclose the text within a CDATA node
(TRUE) or not (FALSE). This is a convenience mechanism to avoid having to cre-
ate the text node and then the CDATA node. If one is not certain what characters
are in the text, it is useful to use TRUE to ensure that they are “escaped”.
It is an argument for newXMLNode as the child nodes can be given as simple
strings and are converted to text nodes. This cdata value is passed to the calls to
create these text nodes and so controls whether they are enclosed within CDATA
nodes.

suppressNamespaceWarning

see addChildren

at this allows one to control the position in the list of children at which the node
should be added. The default means at the end and this can be any position from
0 to the current number of children.

sep when adding text nodes, this is used as an additional separator text to insert
between the specified strings.

escapeEntities a logical value indicating whether to mark the internal text node in such a way
that protects characters in its contents from being escaped as entities when being
serialized via saveXML

noNamespace a logical value that allows the caller to specify that the new node has no names-
pace. This can avoid searching parent and ancestor nodes up the tree for the
default namespace.

isHTML a logical value that indicates whether the XML document being created is HTML
or generic XML. This helps to create an object that is identified as an HTML
document.

fixNamespaces a logical vector controlling how namespaces in child nodes are to be processed.
The two entries should be named dummy and default. The dummy element con-
trols whether we process child nodes that have a namespace which was not de-
fined when the node was created. These are created as “dummy” namespaces
and can be resolved now that the parent node is defined and the name space
may be defined. When we know it is not yet defined, but will be defined in an
ancestor node, we can turn off this processing with a value of FALSE.
The default element controls how we process the child nodes and give them
the default name space defined in the parent or ancestor nodes.

Details

These create internal C level objects/structure instances that can be added to a libxml DOM and
subsequently inserted into other document objects or “serialized” to textual form.

newXMLDoc 57

Value

Each function returns an R object that points to the C-level structure instance. These are of class
XMLInternalDocument and XMLInternalNode, respectively

Note

These functions are used to build up an internal XML tree. This can be used in the Sxslt pack-
age (https://www.omegahat.net/Sxslt/) when creating content in R that is to be dynamically
inserted into an XML document.

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/, http://www.xmlsoft.org, https://www.omegahat.net

See Also

xmlTree saveXML

Examples

doc = newXMLDoc()

Simple creation of an XML tree using these functions
top = newXMLNode("a")
newXMLNode("b", attrs = c(x = 1, y = 'abc'), parent = top)
newXMLNode("c", "With some text", parent = top)
d = newXMLNode("d", newXMLTextNode("With text as an explicit node"), parent = top)
newXMLCDataNode("x <- 1\n x > 2", parent = d)

newXMLPINode("R", "library(XML)", top)
newXMLCommentNode("This is a comment", parent = top)

o = newXMLNode("ol", parent = top)

kids = lapply(letters[1:3],
function(x)

newXMLNode("li", x))
addChildren(o, kids)

cat(saveXML(top))

x = newXMLNode("block", "xyz", attrs = c(id = "bob"),
namespace = "fo",
namespaceDefinitions = c("fo" = "http://www.fo.org"))

xmlName(x, TRUE) == "fo"

https://www.omegahat.net/Sxslt/
https://www.w3.org/XML/
http://www.xmlsoft.org
https://www.omegahat.net

58 newXMLDoc

a short cut to define a name space and make it the prefix for the
node, thus avoiding repeating the prefix via the namespace argument.

x = newXMLNode("block", "xyz", attrs = c(id = "bob"),
namespace = c("fo" = "http://www.fo.org"))

name space on the attribute
x = newXMLNode("block", attrs = c("fo:id" = "bob"),

namespaceDefinitions = c("fo" = "http://www.fo.org"))

x = summary(rnorm(1000))
d = xmlTree()
d$addNode("table", close = FALSE)

d$addNode("tr", .children = sapply(names(x), function(x) d$addNode("th", x)))
d$addNode("tr", .children = sapply(x, function(x) d$addNode("td", format(x))))

d$closeNode()

Just doctype
z = xmlTree("people", dtd = "people")
no public element
z = xmlTree("people", dtd = c("people", "", "https://www.omegahat.net/XML/types.dtd"))
public and system
z = xmlTree("people", dtd = c("people", "//a//b//c//d", "https://www.omegahat.net/XML/types.dtd"))

Using a DTD node directly.
dtd = newXMLDTDNode(c("people", "", "https://www.omegahat.net/XML/types.dtd"))
z = xmlTree("people", dtd = dtd)

x = rnorm(3)
z = xmlTree("r:data", namespaces = c(r = "http://www.r-project.org"))
z$addNode("numeric", attrs = c("r:length" = length(x)), close = FALSE)
lapply(x, function(v) z$addNode("el", x))
z$closeNode()
should give <r:data><numeric r:length="3"/></r:data>

shows namespace prefix on an attribute, and different from the one on the node.
z = xmlTree()
z$addNode("r:data",

namespace = c(r = "http://www.r-project.org",
omg = "https://www.omegahat.net"),

close = FALSE)
x = rnorm(3)
z$addNode("r:numeric", attrs = c("omg:length" = length(x)))

newXMLNamespace 59

z = xmlTree("people", namespaces = list(r = "http://www.r-project.org"))
z$setNamespace("r")

z$addNode("person", attrs = c(id = "123"), close = FALSE)
z$addNode("firstname", "Duncan")
z$addNode("surname", "Temple Lang")
z$addNode("title", "Associate Professor")
z$addNode("expertize", close = FALSE)
z$addNode("topic", "Data Technologies")
z$addNode("topic", "Programming Language Design")
z$addNode("topic", "Parallel Computing")
z$addNode("topic", "Data Visualization")
z$closeTag()
z$addNode("address", "4210 Mathematical Sciences Building, UC Davis")

#
txt = newXMLTextNode("x < 1")
txt # okay
saveXML(txt) # x &lt; 1

By escaping the text, we ensure the entities don't
get expanded, i.e. < doesn't become &lt;

txt = newXMLTextNode(I("x < 1"))
txt # okay
saveXML(txt) # x < 1

newXMLNode("r:expr", newXMLTextNode(I("x < 1")),
namespaceDefinitions = c(r = "http://www.r-project.org"))

newXMLNamespace Add a namespace definition to an XML node

Description

This function, and associated methods, define a name space prefix = URI combination for the given
XML node. It can also optionally make this name space the default namespace for the node.

Usage

newXMLNamespace(node, namespace, prefix = names(namespace), set = FALSE)

Arguments

node the XML node for which the name space is to be defined.

60 parseDTD

namespace the namespace(s). This can be a simple character vector giving the URI, a named
character vector giving the prefix = URI pairs, with the prefixes being the names
of the character vector, or one or more (a list) of XMLNamespace objects, e.g.
returned from a call to xmlNamespaceDefinitions

prefix the prefixes to be associated with the URIs given in namespace.

set a logical value indicating whether to set the namespace for this node to this
newly created name space definition.

Value

An name space definition object whose class corresponds to the type of XML node given in node.

Note

Currently, this only applies to XMLInternalNodes. This will be rectified shortly and apply to
RXMLNode and its non-abstract classes.

Author(s)

Duncan Temple Lang

References

~put references to the literature/web site here ~

See Also

Constructors for different XML node types - newXMLNode xmlNode. newXMLNamespace.

Examples

foo = newXMLNode("foo")
ns = newXMLNamespace(foo, "http://www.r-project.org", "r")
as(ns, "character")

parseDTD Read a Document Type Definition (DTD)

Description

Represents the contents of a DTD as a user-level object containing the element and entity defini-
tions.

Usage

parseDTD(extId, asText=FALSE, name="", isURL=FALSE, error = xmlErrorCumulator())

parseDTD 61

Arguments

extId The name of the file containing the DTD to be processed.

asText logical indicating whether the value of ‘extId’ is the name of a file or the DTD
content itself. Use this when the DTD is read as a character vector, before being
parsed and handed to the parser as content only.

name Optional name to provide to the parsing mechanism.

isURL A logical value indicating whether the input source is to be considred a URL or
a regular file or string containing the XML.

error an R function that is called when an error is encountered. This can report it
and continue or terminate by raising an error in R. See the error parameter for
link{xmlTreeParse}.

Details

Parses and converts the contents of the DTD in the specified file into a user-level object containing
all the information about the DTD.

Value

A list with two entries, one for the entities and the other for the elements defined within the DTD.

entities a named list of the entities defined in the DTD. Each entry is indexed by the
name of the corresponding entity. Each is an object of class XMLEntity or alter-
natively XMLExternalEntity if the entity refers to an external definition. The
fields of these types of objects are

name the name of the entity by which users refer to it.
content the expanded value or definition of the entity
original the value of the entity, but with references to other entities not ex-

panded, but maintained in symbolic form.

elements a named list of the elements defined in the DTD, with the name of each element
being the identifier of the element being defined. Each entry is an object of class
XMLElementDef which has 4 fields.

name the name of the element.
type a named integer indicating the type of entry in the DTD, usually either

element or mixed. The name of the value is a user-level type. The value is
used for programming, both internally and externally.

contents a description of the elements that can be nested within this element.
This is an object of class XMLElementContent or one of its specializations -
XMLSequenceContent, XMLOrContent. Each of these encodes the number
of such elements permitted (one, one or more, zero or one, or zero or more);
the type indicating whether the contents consist of a single element type, an
ordered sequence of elements, or one of a set of elements. Finally, the actual
contents description is described in the elements field. This is a list of one
or more XMLElementContent, XMLSequenceContent and XMLOrContent
objects.

62 parseDTD

attributes a named list of the attributes defined for this element in the DTD.
Each element is of class XMLAttributeDef which has 4 fields.
name name of the attribute, i.e. the left hand side
type the type of the value, e.g. an CDATA, Id, Idref(s), Entity(s), NMTo-

ken(s), Enumeration, Notation
defaultType the defined type, one of None, Implied, Fixed or Required.
defaultValue the default value if it is specified, or the enumerated values

as a character vector, if the type is Enumeration.

WARNING

Errors in the DTD are stored as warnings for programmatic access.

Note

Needs libxml (currently version 1.8.7)

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

https://www.w3.org

See Also

xmlTreeParse, WritingXML.html in the distribution.

Examples

dtdFile <- system.file("exampleData", "foo.dtd",package="XML")
parseDTD(dtdFile)

txt <- readLines(dtdFile)
txt <- paste(txt, collapse="\n")
d <- parseDTD(txt, asText=TRUE)

Not run:
url <- "https://www.omegahat.net/XML/DTDs/DatasetByRecord.dtd"
d <- parseDTD(url, asText=FALSE)

End(Not run)

https://www.w3.org

parseURI 63

parseURI Parse a URI string into its elements

Description

This breaks a URI given as a string into its different elements such as protocol/scheme, host, port,
file name, query. This information can be used, for example, when constructing URIs relative to a
base URI.

The return value is an S3-style object of class URI.

This function uses libxml routines to perform the parsing.

Usage

parseURI(uri)

Arguments

uri a single string

Value

A list with 8 elements

scheme the name of the protocol being used, http, ftp as a string.

authority a string represeting a rarely used aspect of URIs

server a string identifying the host, e.g. www.omegahat.net

user a string giving the name of the user, e.g. in FTP "ftp://duncan@www.omegahat.net",
this would yield "duncan"

path a string identifying the path of the target file

query the CGI query part of the string, e.g. the bit after ’?’ of the form name=value&name=value

fragment a string giving the coo

port an integer identifying the port number on which the connection is to be made

See Also

getRelativeURL

Examples

Not run: ## site is flaky
parseURI("https://www.omegahat.net:8080/RCurl/index.html")
parseURI("ftp://duncan@www.omegahat.net:8080/RCurl/index.html")

parseURI("ftp://duncan@www.omegahat.net:8080/RCurl/index.html#my_anchor")

as(parseURI("http://duncan@www.omegahat.net:8080/RCurl/index.html#my_anchor"), "character")

64 parseXMLAndAdd

as(parseURI("ftp://duncan@www.omegahat.net:8080/RCurl/index.html?foo=1&bar=axd"), "character")

End(Not run)

parseXMLAndAdd Parse XML content and add it to a node

Description

This function parses the given XML content as a string by putting it inside a top-level node and then
returns the document or adds the children to the specified parent. The motivation for this function
is when we can use string manipulation to efficiently create the XML content by using vectorized
operations in R, but then converting that content into parsed nodes.

Generating XML/HTML content by glueing strings together is a poor approach. It is often conve-
nient, but rarely good general software design. It makes for bad software that is not very extensible
and difficult to maintain and enhance. Structure that it is programmatically accessible is much bet-
ter. The tree approach provides this structure. Using strings is convenient and somewhat appropriate
when done atomically for large amounts of highly regular content. But then the results should be
converted to the structured tree so that they can be modified and extended. This function facilitates
using strings and returning structured content.

Usage

parseXMLAndAdd(txt, parent = NULL, top = "tmp", nsDefs = character())

Arguments

txt the XML content to parse

parent an XMLInternalNode to which the top-level nodes in txt will be added as chil-
dren

top the name for the top-level node. If parent is specified, this is used but irrelevant.

nsDefs a character vector of name = value pairs giving namespace definitions to be
added to the top node.

Value

If parent is NULL, the root node of the parsed document is returned. This will be an element whose
name is given by top unless the XML content in txt is AsIs or code is empty.

If parent is non-NULL, .

Author(s)

Duncan Temple Lang

print.XMLAttributeDef 65

See Also

newXMLNode xmlParse addChildren

Examples

long = runif(10000, -122, -80)
lat = runif(10000, 25, 48)

txt = sprintf("<Placemark><Point><coordinates>%.3f,%.3f,0</coordinates></Point></Placemark>",
long, lat)

f = newXMLNode("Folder")
parseXMLAndAdd(txt, f)
xmlSize(f)

Not run:
this version is much slower as i) we don't vectorize the
creation of the XML nodes, and ii) the parsing of the XML
as a string is very fast as it is done in C.

f = newXMLNode("Folder")
mapply(function(a, b) {

newXMLNode("Placemark",
newXMLNode("Point",

newXMLNode("coordinates",
paste(a, b, "0", collapse = ","))),

parent = f)
},

long, lat)
xmlSize(f)

o = c("<x>dog</x>", "<omg:x>cat</omg:x>")
node = parseXMLAndAdd(o, nsDefs = c("http://cran.r-project.org",

omg = "https://www.omegahat.net"))
xmlNamespace(node[[1]])
xmlNamespace(node[[2]])

tt = newXMLNode("myTop")
node = parseXMLAndAdd(o, tt, nsDefs = c("http://cran.r-project.org",

omg = "https://www.omegahat.net"))
tt

End(Not run)

print.XMLAttributeDef Methods for displaying XML objects

66 print.XMLAttributeDef

Description

These different methods attempt to provide a convenient way to display R objects representing XML
elements when they are printed in the usual manner on the console, files, etc. via the print function.
Each typically outputs its contents in the way that they would appear in an XML document.

Usage

S3 method for class 'XMLNode'
print(x, ..., indent= "", tagSeparator = "\n")
S3 method for class 'XMLComment'
print(x, ..., indent = "", tagSeparator = "\n")
S3 method for class 'XMLTextNode'
print(x, ..., indent = "", tagSeparator = "\n")
S3 method for class 'XMLCDataNode'
print(x, ..., indent="", tagSeparator = "\n")
S3 method for class 'XMLProcessingInstruction'
print(x, ..., indent="", tagSeparator = "\n")
S3 method for class 'XMLAttributeDef'
print(x, ...)
S3 method for class 'XMLElementContent'
print(x, ...)
S3 method for class 'XMLElementDef'
print(x, ...)
S3 method for class 'XMLEntity'
print(x, ...)
S3 method for class 'XMLEntityRef'
print(x, ..., indent= "", tagSeparator = "\n")
S3 method for class 'XMLOrContent'
print(x, ...)
S3 method for class 'XMLSequenceContent'
print(x, ...)

Arguments

x the XML object to be displayed

... additional arguments for controlling the output from print. Currently unused.

indent a prefix that is emitted before the node to indent it relative to its parent and child
nodes. This is appended with a space at each succesive level of the tree. If
no indentation is desired (e.g. when xmlTreeParse is called with trim and
ignoreBlanks being FALSE) and TRUE respectively, one can pass the value
FALSE for this indent argument.

tagSeparator when printing nodes, successive nodes and children are by default displayed
on new lines for easier reading. One can specify a string for this argument to
control how the elements are separated in the output. The primary purpose of
this argument is to allow no space between the elements, i.e. a value of "".

processXInclude 67

Value

Currently, NULL.

Note

We could make the node classes self describing with information about whether ignoreBlanks
was TRUE or FALSE and if trim was TRUE or FALSE. This could then be used to determine the
appropriate values for indent and tagSeparator. Adding an S3 class element would allow this to
be done without the addition of an excessive number of classes.

Author(s)

Duncan Temple Lang

References

https://www.w3.org, https://www.omegahat.net/RSXML/

See Also

xmlTreeParse

Examples

fileName <- system.file("exampleData", "event.xml", package ="XML")

Example of how to get faithful copy of the XML.
doc = xmlRoot(xmlTreeParse(fileName, trim = FALSE, ignoreBlanks = FALSE))
print(doc, indent = FALSE, tagSeparator = "")

And now the default mechanism
doc = xmlRoot(xmlTreeParse(fileName))
print(doc)

processXInclude Perform the XInclude substitutions

Description

This function and its methods process the XInclude directives within the document of the form
<xi:include href="..." xpointer=".." and perform the actual substitution.

These are only relevant for "internal nodes" as generated via xmlInternalTreeParse and newXMLNode
and their related functions. When dealing with XML documents via xmlTreeParse or xmlEventParse,
the XInclude nodes are controlled during the parsing.

Usage

processXInclude(node, flags = 0L)

https://www.w3.org
https://www.omegahat.net/RSXML/

68 processXInclude

Arguments

node an XMLInternalDocument object or an XMLInternalElement node or a list of
such internal nodes, e.g. returned from xpathApply.

flags an integer value that provides information to control how the XInclude substi-
tutions are done, i.e. how they are parsed. This is a bitwise OR’ing of some or
all of the xmlParserOption values. This will be turned into an enum in R in the
future.

Value

These functions are used for their side-effect to modify the document and its nodes.

Author(s)

Duncan Temple Lang

References

libxml2 http://www.xmlsoft.org XInclude

See Also

xmlInternalTreeParse newXMLNode

Examples

f = system.file("exampleData", "include.xml", package = "XML")
doc = xmlInternalTreeParse(f, xinclude = FALSE)

cat(saveXML(doc))
sects = getNodeSet(doc, "//section")
sapply(sects, function(x) xmlName(x[[2]]))
processXInclude(doc)

cat(saveXML(doc))

f = system.file("exampleData", "include.xml", package = "XML")
doc = xmlInternalTreeParse(f, xinclude = FALSE)
section1 = getNodeSet(doc, "//section")[[1]]

process
processXInclude(section1[[2]])

http://www.xmlsoft.org

readHTMLList 69

readHTMLList Read data in an HTML list or all lists in a document

Description

This function and its methods are somewhat similar to readHTMLTable but read the contents of lists
in an HTML document. We can specify the URL of the document or an already parsed document
or an individual node within the document.

Usage

readHTMLList(doc, trim = TRUE, elFun = xmlValue, which = integer(), ...)

Arguments

doc the URL of the document or the parsed HTML document or an individual node.

trim a logical value indicating whether we should remove leading and trailing white
space in each list item when returning it

elFun a function that is used to process each list item node (li). This provides an
opportunity to customize how each node is processed, for example accessing
attributes on the list item or on its contents such as links in the items.

which an index or name which or vector of same which identifies which list nodes to
process in the overall document. This is for subsetting particular lists rather than
processing them all.

... additional arguments passed to htmlParse and for the specific methods.

Value

A list of character vectors or lists, with one element for each list in the document. If only one list is
being read (by specifying which as a single identifier), that is returned as is.

Author(s)

Duncan Temple Lang

See Also

readHTMLTable

Examples

try(readHTMLList("https://www.omegahat.net"))

70 readHTMLTable

readHTMLTable Read data from one or more HTML tables

Description

This function and its methods provide somewhat robust methods for extracting data from HTML
tables in an HTML document. One can read all the tables in a document given by filename or
(http: or ftp:) URL, or having already parsed the document via htmlParse. Alternatively, one
can specify an individual <table> node in the document.

The methods attempt to do some heuristic computations to determine the header labels for the
columns, the name of the table, etc.

Usage

readHTMLTable(doc, header = NA,
colClasses = NULL, skip.rows = integer(), trim = TRUE,
elFun = xmlValue, as.data.frame = TRUE, which = integer(),
...)

Arguments

doc the HTML document which can be a file name or a URL or an already parsed
HTMLInternalDocument, or an HTML node of class XMLInternalElementNode,
or a character vector containing the HTML content to parse and process.

header either a logical value indicating whether the table has column labels, e.g. the
first row or a thead, or alternatively a character vector giving the names to use
for the resulting columns. This can be a logical vector and the individual values
will be used in turn for the different tables. This allows the caller to control
whether individual tables are processed as having column names. Alternatively,
one can read a specific table via the which parameter and control how that is
processed with a single scalar logical.

colClasses either a list or a vector that gives the names of the data types for the different
columns in the table, or alternatively a function used to convert the string values
to the appropriate type. A value of NULL means that we should drop that column
from the result. Note that currently the conversion occurs before the vectors are
converted to a data frame (if as.data.frame is TRUE). As a result, to ensure that
character vectors remain as characters and not factors, use stringsAsFactors
= FALSE. This typically applies only to an individual table and so for the method
applied to a XMLInternalElementNode object.
In addition to the usual "integer", "numeric", "logical", "character", etc. names
of R data types, one can use "FormattedInteger", "FormattedNumber" and "Per-
cent" to specify that format of the values are numbers possibly with commas (,)
separating groups of digits or a number followed by a percent sign (%). This
mechanism allows one to introduce new classes and specify these as targets in
colClasses.

skip.rows an integer vector indicating which rows to ignore.

readHTMLTable 71

trim a logical value indicating whether to remove leading and trailing white space
from the content cells.

elFun a function which, if specified, is called when converting each cell. Currently,
only the node is specified. In the future, we might additionally pass the index
of the column so that the function has some context, e.g. whether the value is a
row label or a regular value, or if the caller knows the type of columns.

as.data.frame a logical value indicating whether to turn the resluting table(s) into data frames
or leave them as matrices.

which an integer vector identifying which tables to return from within the document.
This applies to the method for the document, not individual tables.

... currently additional parameters that are passed on to as.data.frame if as.data.frame
is TRUE. We may change this to use these as additional arguments for calls to
elFun.

Value

If the document (either by name or parsed tree) is specified, the return vale is a list of data frames
or matrices. If a single HTML node is provided

Author(s)

Duncan Temple Lang

References

HTML4.0 specification

See Also

htmlParse getNodeSet xpathSApply

Examples

Not run:
This changed to using https: in June 2015, and that is unsupported.
u = "http://en.wikipedia.org/wiki/World_population"
u = "https://en.wikipedia.org/wiki/List_of_countries_and_dependencies_by_population"

tables = readHTMLTable(u)
names(tables)

tables[[2]]
Print the table. Note that the values are all characters
not numbers. Also the column names have a preceding X since
R doesn't allow the variable names to start with digits.
tmp = tables[[2]]

Let's just read the second table directly by itself.
doc = htmlParse(u)

72 readHTMLTable

tableNodes = getNodeSet(doc, "//table")
tb = readHTMLTable(tableNodes[[2]])

Let's try to adapt the values on the fly.
We'll create a function that turns a th/td node into a val
tryAsInteger = function(node) {

val = xmlValue(node)
ans = as.integer(gsub(",", "", val))
if(is.na(ans))

val
else

ans
}

tb = readHTMLTable(tableNodes[[2]], elFun = tryAsInteger)

tb = readHTMLTable(tableNodes[[2]], elFun = tryAsInteger,
colClasses = c("character", rep("integer", 9)))

End(Not run)

zz =
readHTMLTable("https://www.inflationdata.com/Inflation/Consumer_Price_Index/HistoricalCPI.aspx")

if(any(i <- sapply(zz, function(x) if(is.null(x)) 0 else ncol(x)) == 14)) {
guard against the structure of the page changing.

zz = zz[[which(i)[1]]] # 4th table
convert columns to numeric. Could use colClasses in the call to readHTMLTable()
zz[-1] = lapply(zz[-1], function(x) as.numeric(gsub(".* ", "", as.character(x))))
matplot(1:12, t(zz[-c(1, 14)]), type = "l")

}

From Marsh Feldman on R-help, possibly
https://stat.ethz.ch/pipermail/r-help/2010-March/232586.html
That site was non-responsive in June 2015,
and this does not do a good job on the current table.

Not run:
doc <- "http://www.nber.org/cycles/cyclesmain.html"
The main table is the second one because it's embedded in the page table.
tables <- getNodeSet(htmlParse(doc), "//table")
xt <- readHTMLTable(tables[[2]],

header = c("peak","trough","contraction",
"expansion","trough2trough","peak2peak"),

colClasses = c("character","character","character",
"character","character","character"),

trim = TRUE, stringsAsFactors = FALSE
)

End(Not run)
if(FALSE) {
Here is a totally different way of reading tables from HTML documents.
The data are formatted using PRE and so can be read via read.table

readKeyValueDB 73

u = "http://tidesonline.nos.noaa.gov/data_read.shtml?station_info=9414290+San+Francisco,+CA"
h = htmlParse(u)
p = getNodeSet(h, "//pre")
con = textConnection(xmlValue(p[[2]]))
tides = read.table(con)

}

Not run:
This is not accessible without authentication ...
u = "https://www.omegahat.net/RCurl/testPassword/table.html"
if(require(RCurl) && url.exists(u)) {

tt = getURL(u, userpwd = "bob:duncantl")
readHTMLTable(tt)

}
End(Not run)

readKeyValueDB Read an XML property-list style document

Description

This function and its methods reads an XML document that is in the format of name-value or key-
value pairs made up of a plist and dict nodes, each of which is made up key, and value node
pairs. These used to be used for property lists on OS X and can represetn arbitrary data relatively
conveniently.

Usage

readKeyValueDB(doc, ...)

Arguments

doc the object containing the data. This can be the name of a file, a parsed XML
document or an XML node.

... additional parameters for the methods. One can pass dropComments as a logical
value to control whether comment nodes are processed or ignored (TRUE).

Value

An R object representing the data read from the XML content. This is typically a named list or
vector where the names are the keys and the values are collected into an R "container".

Author(s)

Duncan Temple Lang

References

Property lists.

74 readSolrDoc

See Also

readSolrDoc, xmlToList, xmlToDataFrame, xmlParse

Examples

if(file.exists("/usr/share/hiutil/Stopwords.plist")) {
o = readKeyValueDB("/usr/share/hiutil/Stopwords.plist")
}

if(file.exists("/usr/share/java/Tools/Applet Launcher.app/Contents/Info.plist"))
javaInfo = readKeyValueDB('/usr/share/java/Tools/Applet Launcher.app/Contents/Info.plist')

readSolrDoc Read the data from a Solr document

Description

Solr documents are used to represent general data in a reasonably simple format made up of lists,
integers, logicals, longs, doubles, dates, etc. each with an optional name. These correspond very
naturally to R objects.

Usage

readSolrDoc(doc, ...)

Arguments

doc the object containing the data. This can be the name of a file, a parsed XML
document or an XML node.

... additional parameters for the methods.

Value

An R object representing the data in the Solr document, typically a named vector or named list.

Author(s)

Duncan Temple Lang

References

Lucene text search system.

See Also

readKeyValueDB, xmlToList, xmlToDataFrame, xmlParse

removeXMLNamespaces 75

Examples

f = system.file("exampleData", "solr.xml", package = "XML")
readSolrDoc(f)

removeXMLNamespaces Remove namespace definitions from a XML node or document

Description

This function and its methods allow one to remove one or more XML namespace definitions on
XML nodes within a document.

Usage

removeXMLNamespaces(node, ..., all = FALSE, .els = unlist(list(...)))

Arguments

node an XMLInternalNode or XMLInternalDocument object

... the names of the namespaces to remove or an XMLNamespaceRef object re-
turned via getNodeSet or xpathApply.

all a logical value indicating whether to remove all the namespace definitions on a
node.

.els a list which is sometimes a convenient way to specify the namespaces to remove.

Value

This function is used for its side-effects and changing the internal node.

Author(s)

Duncan Temple Lang

See Also

newXMLNamespace

76 replaceNodeWithChildren

replaceNodeWithChildren

Replace an XML node with it child nodes

Description

This function can be used to flatten parts of an XML tree. This takes a node and removes itself from
the tree, but places its kids in it place.

Usage

replaceNodeWithChildren(node)

Arguments

node an XMLInternalNode object

Value

NULL. The purpose of this function is to modify the internal document.

Author(s)

Duncan Temple Lang

References

libxml2 documentation.

Examples

doc = xmlParse('<doc>
<page>
<p>A</p>
<p>B</p>
<p>C</p>
</page>
<page>
<p>D</p>
<p>E</p>
<p>F</p>
</page>

</doc>')

pages = getNodeSet(doc, "//page")
invisible(lapply(pages, replaceNodeWithChildren))
doc

saveXML 77

saveXML Output internal XML Tree

Description

Methods for writing the representation of an XML tree to a string or file. Originally this was
intended to be used only for DOMs (Document Object Models) stored in internal memory created
via xmlTree, but methods for XMLNode, XMLInternalNode and XMLOutputStream objects (and
others) allow it to be generic for different representations of the XML tree.

Note that the indentation when writing an internal C-based node (XMLInternalNode) may not be
as expected if there are text nodes within the node.

Also, not all the parameters are meaningful for all methods. For example, compressing when writing
to a string is not supported.

Usage

saveXML(doc, file=NULL, compression=0, indent=TRUE, prefix = '<?xml version="1.0"?>\n',
doctype = NULL, encoding = getEncoding(doc), ...)

S3 method for class 'XMLInternalDocument'
saveXML(doc, file=NULL, compression=0, indent=TRUE, prefix = '<?xml version="1.0"?>\n',

doctype = NULL, encoding = getEncoding(doc), ...)
S3 method for class 'XMLInternalDOM'
saveXML(doc, file=NULL, compression=0, indent=TRUE, prefix = '<?xml version="1.0"?>\n',

doctype = NULL, encoding = getEncoding(doc), ...)
S3 method for class 'XMLNode'
saveXML(doc, file=NULL, compression=0, indent=TRUE, prefix = '<?xml version="1.0"?>\n',

doctype = NULL, encoding = getEncoding(doc), ...)
S3 method for class 'XMLOutputStream'
saveXML(doc, file=NULL, compression=0, indent=TRUE, prefix = '<?xml version="1.0"?>\n',

doctype = NULL, encoding = getEncoding(doc), ...)

Arguments

doc the document object representing the XML document.

file the name of the file to which the contents of the XML nodes will be serialized.

compression an integer value between 0 and 9 indicating the level of compression to use
when saving the file. Higher values indicate increased compression and hence
smaller files at the expense of computational time to do the compression and
decompression.

indent a logical value indicating whether to indent the nested nodes when serializing to
the stream.

prefix a string that is written to the stream/connection before the XML is output. If this
is NULL, it is ignored. This allows us to put the XML introduction/preamble
at the beginning of the document while allowing it to be omitted when we are
outputting multiple "documents" within a single stream.

78 saveXML

doctype an object identifying the elements for the DOCTYPE in the output. This can be
a string or an object of class Doctype.

encoding a string indicating which encoding style to use. This is currently ignored except
in the method in Sxslt for saving a document generated by applying an XSL
style sheet to an XML document.

... extra parameters for specific methods

Details

One can create an internal XML tree (or DOM) using newXMLDoc and newXMLNode. saveXML allows
one to generate a textual representation of that DOM in human-readable and reusable XML format.
saveXML is a generic function that allows one to call the rendering operation with either the top-
level node of the DOM or of the document object (of class XMLInternalDocument that is used to
accumulate the nodes and with which the developer adds nodes.

Value

If file is not specified, the result is a character string containing the resulting XML content. If
file is passed in the call,

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/, https://www.omegahat.net/RSXML/

See Also

newXMLDoc newXMLNode xmlOutputBuffer xmlOutputDOM

Examples

b = newXMLNode("bob")
saveXML(b)

f = tempfile()
saveXML(b, f)
doc = xmlInternalTreeParse(f)
saveXML(doc)

con <- xmlOutputDOM()
con$addTag("author", "Duncan Temple Lang")
con$addTag("address", close=FALSE)
con$addTag("office", "2C-259")
con$addTag("street", "Mountain Avenue.")
con$addTag("phone", close=FALSE)
con$addTag("area", "908", attrs=c(state="NJ"))
con$addTag("number", "582-3217")

https://www.w3.org/XML/
https://www.omegahat.net/RSXML/

SAXState-class 79

con$closeTag() # phone
con$closeTag() # address

saveXML(con$value(), file=file.path(tempdir(), "out.xml"))

Work with entities

f = system.file("exampleData", "test1.xml", package = "XML")
doc = xmlRoot(xmlTreeParse(f))
outFile = tempfile()
saveXML(doc, outFile)
alt = xmlRoot(xmlTreeParse(outFile))
if(! identical(doc, alt))
stop("Problems handling entities!")

con = textConnection("test1.xml", "w")
saveXML(doc, con)
close(con)
alt = get("test1.xml")
identical(doc, alt)

x = newXMLNode("a", "some text", newXMLNode("c", "sub text"), "more text")

cat(saveXML(x), "\n")

cat(as(x, "character"), "\n")

Showing the prefix parameter
doc = newXMLDoc()
n = newXMLNode("top", doc = doc)
b = newXMLNode("bar", parent = n)

suppress the <?xml ...?>
saveXML(doc, prefix = character())

put our own comment in
saveXML(doc, prefix = "<!-- This is an alternative prefix -->")

or use a comment node.
saveXML(doc, prefix = newXMLCommentNode("This is an alternative prefix"))

SAXState-class A virtual base class defining methods for SAX parsing

Description

This is a degenerate virtual class which others are expected to sub-class when they want to use S4
methods as handler functions for SAX-based XML parsing. The idea is that one can pass both i)

80 SAXState-class

a collection of handlers to xmlEventParse which are simply the generic functions for the different
SAX actions, and ii) a suitable object to maintain state across the different SAX calls. This is used
to perform the method dispatching to get the appropriate behavior for the action. Each of these
methods is expected to return the updated state object and the SAX parser will pass this in the next
callback.

We define this class here so that we can provide default methods for each of the different handler
actions. This allows other programmers to define new classes to maintain state that are sub-class of
SAXState and then they do not have to implement methods for each of the different handlers.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

comment.SAX signature(content = "ANY", .state = "SAXState"): ...

endElement.SAX signature(name = "ANY", .state = "SAXState"): ...

entityDeclaration.SAX signature(name = "ANY", base = "ANY", sysId = "ANY", publicId = "ANY",
notationName = "ANY", .state = "SAXState"): ...

processingInstruction.SAX signature(target = "ANY", content = "ANY", .state = "SAXState"):
...

startElement.SAX signature(name = "ANY", atts = "ANY", .state = "SAXState"): ...

text.SAX signature(content = "ANY", .state = "SAXState"): ...

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/, http://www.xmlsoft.org

See Also

xmlEventParse

Examples

For each element in the document, grab the node name
and increment the count in an vector for this name.

We define an S4 class named ElementNameCounter which
holds the vector of frequency counts for the node names.

setClass("ElementNameCounter",
representation(elements = "integer"), contains = "SAXState")

Define a method for handling the opening/start of any XML node
in the SAX streams.

https://www.w3.org/XML/
http://www.xmlsoft.org

schema-class 81

setMethod("startElement.SAX", c(.state = "ElementNameCounter"),
function(name, atts, .state = NULL) {

if(name %in% names(.state@elements))
.state@elements[name] = as.integer(.state@elements[name] + 1)

else
.state@elements[name] = as.integer(1)

.state
})

filename = system.file("exampleData", "eurofxref-hist.xml.gz", package = "XML")

Parse the file, arranging to have our startElement.SAX method invoked.
z = xmlEventParse(filename, genericSAXHandlers(),

state = new("ElementNameCounter"), addContext = FALSE)

z@elements

Get the contents of all the comments in a character vector.

setClass("MySAXState",
representation(comments = "character"), contains = "SAXState")

setMethod("comment.SAX", c(.state = "MySAXState"),
function(content, .state = NULL) {

cat("comment.SAX called for MySAXState\n")
.state@comments <- c(.state@comments, content)
.state

})

filename = system.file("exampleData", "charts.svg", package = "XML")
st = new("MySAXState")
z = xmlEventParse(filename, genericSAXHandlers(useDotNames = TRUE), state = st)
z@comments

schema-class Classes for working with XML Schema

Description

These are classes used when working with XML schema and using them to validate a document or
querying the schema for its elements. The basic representation is an external/native object stored in
the ref slot.

See Also

xmlSchemaValidate

82 setXMLNamespace

setXMLNamespace Set the name space on a node

Description

This function sets the name space for an XML node, typically an internal node. We can use it to
either define a new namespace and use that, or refer to a name space definition in an ancestor of the
current node.

Usage

setXMLNamespace(node, namespace, append = FALSE)

Arguments

node the node on which the name space is to be set
namespace the name space to use for the node. This can be a name space prefix (string)

defined in an ancestor node, or a named character vector of the form c(prefix
= URI) that defines a new namespace on this node, or we can use a name space
object created with newXMLNamespace.

append currently ignored.

Value

An object of class XMLNamespaceRef which is a reference to the native/internal/C-level name space
object.

Author(s)

Duncan Temple Lang

See Also

newXMLNamespace

removeXMLNamespaces

Examples

define a new namespace
e = newXMLNode("foo")
setXMLNamespace(e, c("r" = "http://www.r-project.org"))

use an existing namespace on an ancestor node
e = newXMLNode("top", namespaceDefinitions = c("r" = "http://www.r-project.org"))
setXMLNamespace(e, "r")
e

startElement.SAX 83

startElement.SAX Generic Methods for SAX callbacks

Description

This is a collection of generic functions for which one can write methods so that they are called
in repsonse to different SAX events. The idea is that one defines methods for different classes of
the .state argument and dispatch to different methods based on that argument. The functions
represent the different SAX events.

Usage

startElement.SAX(name, atts, .state = NULL)
endElement.SAX(name, .state = NULL)
comment.SAX(content, .state = NULL)
processingInstruction.SAX(target, content, .state = NULL)
text.SAX(content, .state = NULL)
entityDeclaration.SAX(name, base, sysId, publicId, notationName, .state = NULL)
.InitSAXMethods(where = "package:XML")

Arguments

name the name of the XML element or entity being declared

atts named character vector of XML attributes

content the value/string in the processing instruction or comment

target the target of the processing instruction, e.g. the R in <?R....>

base x

sysId the system identifier for this entity

publicId the public identifier for the entity

notationName name of the notation specification

.state the state object on which the user-defined methods should dispatch.

where the package in which the class and method definitions should be defined. This
is almost always unspecified.

Value

Each method should return the (potentially modified) state value.

Note

This no longer requires the Expat XML parser to be installed. Instead, we use libxml’s SAX parser.

Author(s)

Duncan Temple Lang

84 supportsExpat

References

https://www.w3.org/XML/, http://www.xmlsoft.org

See Also

xmlEventParse

supportsExpat Determines which native XML parsers are being used.

Description

Use of the Gnome libxml and Expat parsers is supported in this R/S XML package, but both need
not be used when compiling the package. These functions determine whether each is available in
the underlying native code.

Usage

supportsExpat()
supportsLibxml()

Details

One might to use different parsers to test validity of a document in different ways and to get different
error messages. Additionally, one parser may be more efficient than the other. These methods allow
one to write code in such a way that one parser is preferred and is used if it is available, but the
other is used if the first is not available.

Value

Returns TRUE if the corresponding library has been linked into the package.

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/, http://www.jclark.com/xml/, https://www.omegahat.net

See Also

xmlEventParse

Examples

use Expat if possible, otherwise libxml
fileName <- system.file("exampleData", "mtcars.xml", package="XML")
xmlEventParse(fileName, useExpat = supportsExpat())

https://www.w3.org/XML/
http://www.xmlsoft.org
https://www.w3.org/XML/
http://www.jclark.com/xml/
https://www.omegahat.net

toHTML 85

toHTML Create an HTML representation of the given R object, using internal
C-level nodes

Description

This generic function and the associated methods are intended to create an HTML tree that repre-
sents the R object in some intelligent manner. For example, we represent a vector as a table and we
represent a matrix also as a table.

Usage

toHTML(x, context = NULL)

Arguments

x the R object which is to be represented via an HTML tree

context an object which provides context in which the node will be used. This is cur-
rently arbitrary. It may be used, for example, when creating HTML for R docu-
mentation and providing information about variabes and functions that are avail-
able on that page and so have internal links.

Details

It would be nicer if we could pass additional arguments to control whether the outer/parent layer is
created, e.g. when reusing code for a vector for a row of a matrix.

Value

an object of class XMLInternalNode

Author(s)

Duncan Temple Lang

See Also

The R2HTML package.

Examples

cat(as(toHTML(rnorm(10)), "character"))

86 toString.XMLNode

toString.XMLNode Creates string representation of XML node

Description

This creates a string from a hierarchical XML node and its children just as it prints on the console
or one might see it in a document.

Usage

S3 method for class 'XMLNode'
toString(x, ...)

Arguments

x an object of class XMLNode.

... currently ignored

Details

This uses a textConnection object using the name .tempXMLOutput. Since this is global, it will
overwrite any existing object of that name! As a result, this function cannot be used recursively in
its present form.

Value

A character vector with one element, that being the string corresponding to the XML node’s con-
tents.

Note

This requires the Expat XML parser to be installed.

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML//, http://www.jclark.com/xml/

See Also

xmlNode xmlTreeParse

https://www.w3.org/XML//
http://www.jclark.com/xml/

xmlApply 87

Examples

x <- xmlRoot(xmlTreeParse(system.file("exampleData", "gnumeric.xml", package = "XML")))

toString(x)

xmlApply Applies a function to each of the children of an XMLNode

Description

These methods are simple wrappers for the lapply and sapply functions. They operate on the
sub-nodes of the XML node, and not on the fields of the node object itself.

Usage

xmlApply(X, FUN, ...)
S3 method for class 'XMLNode'
xmlApply(X, FUN, ...)
S3 method for class 'XMLDocument'
xmlApply(X, FUN, ...)
S3 method for class 'XMLDocumentContent'
xmlApply(X, FUN, ...)
xmlSApply(X, FUN, ...)
S3 method for class 'XMLNode'
xmlSApply(X, FUN, ...)
S3 method for class 'XMLDocument'
xmlSApply(X, FUN, ...)

Arguments

X the XMLNode on whose children the regular apply or sapply is to be performed

FUN the function to apply to each child node. This is passed directly to the relevant
apply function.

... additional arguments to be given to each invocation of FUN. This is passed di-
rectly to the relevant apply function.

Value

The result is that obtained from calling the apply or sapply on xmlChildren(x).

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML//, http://www.jclark.com/xml/, https://www.omegahat.net

https://www.w3.org/XML//
http://www.jclark.com/xml/
https://www.omegahat.net

88 XMLAttributes-class

See Also

xmlChildren xmlRoot [.XMLNode sapply lapply

Examples

doc <- xmlTreeParse(system.file("exampleData", "mtcars.xml", package="XML"))
r <- xmlRoot(doc)
xmlSApply(r[[2]], xmlName)

xmlApply(r[[2]], xmlAttrs)

xmlSApply(r[[2]], xmlSize)

XMLAttributes-class Class "XMLAttributes"

Description

A simple class to represent a named character vector of XML attributes some of which may have a
namespace. This maintains the name space

Objects from the Class

Objects can be created by calls of the form new("XMLAttributes", ...). These are typically
generated via a call to xmlAttrs.

Slots

.Data: Object of class "character"

Extends

Class "character", from data part. Class "vector", by class "character", distance 2. Class
"data.frameRowLabels", by class "character", distance 2. Class "SuperClassMethod", by class
"character", distance 2.

Methods

[signature(x = "XMLAttributes"): ...

show signature(object = "XMLAttributes"): ...

Author(s)

Duncan Temple Lang

See Also

xmlAttrs newXMLNode xmlParse

xmlAttributeType 89

Examples

nn = newXMLNode("foo", attrs = c(a = "123", 'r:show' = "true"),
namespaceDefinitions = c(r = "http://www.r-project.org"))

a = xmlAttrs(nn)
a["show"]

xmlAttributeType The type of an XML attribute for element from the DTD

Description

This examines the definition of the attribute, usually returned by parsing the DTD with parseDTD
and determines its type from the possible values: Fixed, string data, implied, required, an identifier,
an identifier reference, a list of identifier references, an entity, a list of entities, a name, a list of
names, an element of enumerated set, a notation entity.

Usage

xmlAttributeType(def, defaultType=FALSE)

Arguments

def the attribute definition object, usually retrieved from the DTD via parseDTD.

defaultType whether to return the default value if this attribute is defined as being a value
from an enumerated set.

Value

A string identifying the type for the sspecified attributed.

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/, https://www.omegahat.net/RSXML/

See Also

parseDTD

https://www.w3.org/XML/
https://www.omegahat.net/RSXML/

90 xmlAttrs

xmlAttrs Get the list of attributes of an XML node.

Description

This returns a named character vector giving the name-value pairs of attributes of an XMLNode
object which is part of an XML document.

Usage

xmlAttrs(node, ...)
'xmlAttrs<-'(node, append = TRUE, suppressNamespaceWarning =

getOption("suppressXMLNamespaceWarning", FALSE), value)

Arguments

node The XMLNode object whose attributes are to be extracted.

append a logical value indicating whether to add the attributes in value to the existing
attributes within the XML node, or to replace the set of any existing attributes
with this new set, i.e. remove the existing ones and then set the attributes with
the contents of value.

... additional arguments for the specific methods. For XML internal nodes, these
are addNamespacePrefix and addNamespaceURLs. These are both logical val-
ues and indicate whether to prepend the name of the attribute with the namespace
prefix and also whether to return the namespace prefix and URL as a vector in
the namespaces attribute.

value a named character vector giving the new attributes to be added to the node.
suppressNamespaceWarning

see addChildren

Value

A named character vector, where the names are the attribute names and the elements are the
corresponding values. This corresponds to the (attr<i>, "value<i>") pairs in the XML tag <tag
attr1="value1" attr2="value2"

Author(s)

Duncan Temple Lang

References

https://www.w3.org

See Also

xmlChildren, xmlSize, xmlName

https://www.w3.org

xmlChildren 91

Examples

fileName <- system.file("exampleData", "mtcars.xml", package="XML")
doc <- xmlTreeParse(fileName)

xmlAttrs(xmlRoot(doc))

xmlAttrs(xmlRoot(doc)[["variables"]])

doc <- xmlParse(fileName)
d = xmlRoot(doc)

xmlAttrs(d)
xmlAttrs(d) <- c(name = "Motor Trend fuel consumption data",

author = "Motor Trends")
xmlAttrs(d)

clear all the attributes and then set new ones.
removeAttributes(d)
xmlAttrs(d) <- c(name = "Motor Trend fuel consumption data",

author = "Motor Trends")

Show how to get the attributes with and without the prefix and
with and without the URLs for the namespaces.

doc = xmlParse('<doc xmlns:r="http://www.r-project.org">
<el r:width="10" width="72"/>
<el width="46"/>
</doc>')

xmlAttrs(xmlRoot(doc)[[1]], TRUE, TRUE)
xmlAttrs(xmlRoot(doc)[[1]], FALSE, TRUE)
xmlAttrs(xmlRoot(doc)[[1]], TRUE, FALSE)
xmlAttrs(xmlRoot(doc)[[1]], FALSE, FALSE)

xmlChildren Gets the sub-nodes within an XMLNode object.

Description

These functions provide access to the children of the given XML node. The simple accessor returns
a list of child XMLNode objects within an XMLNode object.

The assignment operator (xmlChildren<-) sets the children of the node to the given value and
returns the updated/modified node. No checking is currently done on the type and values of the
right hand side. This allows the children of the node to be arbitrary R objects. This can be useful
but means that one cannot rely on any structure in a node being present..

Usage

xmlChildren(x, addNames= TRUE, ...)

92 xmlCleanNamespaces

Arguments

x an object of class XMLNode.

addNames a logical value indicating whether to add the XML names of the nodes as names
of the R list. This is only relevant for XMLInternalNode objects as XMLNode
objects in R already have R-level names.

... additional arguments for the particular methods, e.g. omitTypes for an XMLIn-
ternalNode.

Value

A list whose elements are sub-nodes of the user-specified XMLNode. These are also of class
XMLNode.

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/

See Also

xmlChildren,xmlSize, xmlTreeParse

Examples

fileName <- system.file("exampleData", "mtcars.xml", package="XML")
doc <- xmlTreeParse(fileName)
names(xmlChildren(docdocchildren[["dataset"]]))

xmlCleanNamespaces Remove redundant namespaces on an XML document

Description

This is a convenience function that removes redundant repeated namespace definitions in an XML
node. It removes namespace definitions in nodes where an ancestor node also has that definition. It
does not remove unused namespace definitions.

This uses the NSCLEAN option for xmlParse

Usage

xmlCleanNamespaces(doc, options = integer(), out = docName(doc), ...)

https://www.w3.org/XML/

xmlClone 93

Arguments

doc either the name of an XML documentor the XML content itself, or an already
parsed document

options options for the XML parser. NSCLEAN is added to this.

... additional arguments passed to xmlParse

out the name of a file to which to write the resulting XML document, or an empty
character vector or logical value FALSE to avoid writing the new document.

Value

If the new document is written to a file, the name of the file is returned. Otherwise, the new parsed
XML document is returned.

Author(s)

Duncan Temple Lang

References

libxml2 documentation http://xmlsoft.org/html/libxml-parser.html

See Also

xmlParse

Examples

f = system.file("exampleData", "redundantNS.xml", package = "XML")
doc = xmlParse(f)
print(doc)
newDoc = xmlCleanNamespaces(f, out = FALSE)

xmlClone Create a copy of an internal XML document or node

Description

These methods allow the caller to create a copy of an XML internal node. This is useful, for
example, if we want to use the node or document in an additional context, e.g. put the node into
another document while leaving it in the existing document. Similarly, if we want to remove nodes
to simplify processing, we probably want to copy it so that the changes are not reflected in the
original document.

At present, the newly created object is not garbage collected.

Usage

xmlClone(node, recursive = TRUE, addFinalizer = FALSE, ...)

http://xmlsoft.org/html/libxml-parser.html

94 XMLCodeFile-class

Arguments

node the object to be cloned

recursive a logical value indicating whether the entire object and all its descendants should
be duplicated/cloned (TRUE) or just the top-level object (FALSE)

addFinalizer typically a logical value indicating whether to bring this new object under R’s
regular garbage collection. This can also be a reference to a C routine which is
to be used as the finalizer. See getNativeSymbolInfo.

... additional parameters for methods

Value

A new R object representing the object.

Author(s)

Duncan Temple Lang

References

libxml2

See Also

xmlParse newXMLNode newXMLDoc

Examples

doc =
xmlParse(paste0('<doc><author id="dtl"><firstname>Duncan</firstname>',

'<surname>Temple Lang</surname></author></doc>'))

au = xmlRoot(doc)[[1]]
make a copy

other = xmlClone(au)
change it slightly

xmlAttrs(other) = c(id = "dtl2")
add it to the children

addChildren(xmlRoot(doc), other)

XMLCodeFile-class Simple classes for identifying an XML document containing R code

XMLCodeFile-class 95

Description

These two classes allow the user to identify an XML document or file as containing R code (amongst
other content). Objects of either of these classes can then be passed to source to read the code into
R and also used in link{xmlSource} to read just parts of it. XMLCodeFile represents the file by
its name; XMLCodeDoc parses the contents of the file when the R object is created. Therefore, an
XMLCodeDoc is a snapshot of the contents at a moment in time while an XMLCodeFile object re-reads
the file each time and so reflects any "asynchronous" changes.

Objects from the Class

One can create these objects using coercion methods, e.g as("file/name", "XMLCodeFile") or
as("file/name", "XMLCodeDoc"). One can also use xmlCodeFile.

Slots

.Data: Object of class "character"

Extends

Class "character", from data part. Class "vector", by class "character", distance 2.

Methods

[[signature(x = "XMLCodeFile", i = "ANY", j = "ANY"): this method allows one to retrieve/access
an individual R code element in the XML document. This is typically done by specifying the
value of the XML element’s "id" attribute.

coerce signature(from = "XMLCodeFile", to = "XMLCodeDoc"): parse the XML document from
the "file" and treat the result as a XMLCodeDoc object.

source signature(file = "XMLCodeFile"): read and evaluate all the R code in the XML docu-
ment. For more control, use xmlSource.

Author(s)

Duncan Temple Lang

See Also

xmlSource

Examples

src = system.file("exampleData", "Rsource.xml", package = "XML")
mark the string as an XML file containing R code

k = xmlCodeFile(src)

read and parse the code, but don't evaluate it.
code = xmlSource(k, eval = FALSE)

read and evaluate the code in a special environment.
e = new.env()

96 xmlContainsEntity

ans = xmlSource(k, envir = e)
ls(e)

xmlContainsEntity Checks if an entity is defined within a DTD.

Description

A DTD contains entity and element definitions. These functions test whether a DTD contains a
definition for a particular named element or entity.

Usage

xmlContainsEntity(name, dtd)
xmlContainsElement(name, dtd)

Arguments

name The name of the element or entity being queried.

dtd The DTD in which to search for the entry.

Details

See parseDTD for more information about DTDs, entities and elements.

Value

A logical value indicating whether the entry was found in the appropriate list of entitiy or element
definitions.

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML//, http://www.jclark.com/xml/, https://www.omegahat.net

See Also

parseDTD, dtdEntity, dtdElement,

https://www.w3.org/XML//
http://www.jclark.com/xml/
https://www.omegahat.net

xmlDOMApply 97

Examples

dtdFile <- system.file("exampleData", "foo.dtd", package="XML")
foo.dtd <- parseDTD(dtdFile)

Look for entities.
xmlContainsEntity("foo", foo.dtd)
xmlContainsEntity("bar", foo.dtd)

Now look for an element
xmlContainsElement("record", foo.dtd)

xmlDOMApply Apply function to nodes in an XML tree/DOM.

Description

This recursively applies the specified function to each node in an XML tree, creating a new tree,
parallel to the original input tree. Each element in the new tree is the return value obtained from
invoking the specified function on the corresponding element of the original tree. The order in
which the function is recursively applied is "bottom-up". In other words, function is first applied to
each of the children nodes first and then to the parent node containing the newly computed results
for the children.

Usage

xmlDOMApply(dom, func)

Arguments

dom a node in the XML tree or DOM on which to recursively apply the given func-
tion. This should not be the XMLDocument itself returned from xmlTreeParse
but an object of class XMLNode. This is typically obtained by calling xmlRoot on
the return value from xmlTreeParse.

func the function to be applied to each node in the XML tree. This is passed the
node object for the and the return value is inserted into the new tree that is to be
returned in the corresponding position as the node being processed. If the return
value is NULL, this node is dropped from the tree.

Details

This is a native (C code) implementation that understands the structure of an XML DOM returned
from xmlTreeParse and iterates over the nodes in that tree.

Value

A tree that parallels the structure in the dom object passed to it.

98 xmlElementsByTagName

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML//, http://www.jclark.com/xml/, https://www.omegahat.net

See Also

xmlTreeParse

Examples

dom <- xmlTreeParse(system.file("exampleData","mtcars.xml", package="XML"))
tagNames <- function() {

tags <- character(0)
add <- function(x) {

if(inherits(x, "XMLNode")) {
if(is.na(match(xmlName(x), tags)))

tags <<- c(tags, xmlName(x))
}

NULL
}

return(list(add=add, tagNames = function() {return(tags)}))
}

h <- tagNames()
xmlDOMApply(xmlRoot(dom), h$add)
h$tagNames()

xmlElementsByTagName Retrieve the children of an XML node with a specific tag name

Description

This returns a list of the children or sub-elements of an XML node whose tag name matches the one
specified by the user.

Usage

xmlElementsByTagName(el, name, recursive = FALSE)

https://www.w3.org/XML//
http://www.jclark.com/xml/
https://www.omegahat.net

xmlElementsByTagName 99

Arguments

el the node whose matching children are to be retrieved.

name a string giving the name of the tag to match in each of el’s children.

recursive a logical value. If this is FALSE, the default, only the direct child nodes are
searched. Alternatively, if this is TRUE, all sub-nodes at all levels are searched.
In other words, we find all descendants of the node el and return a list with
the nodes having the given name. The relationship between the nodes in the
resulting list cannot be determined. This is a set of nodes. See the note.

Details

This does a simple matching of names and subsets the XML node’s children list. If recursive is
TRUE, then the function is applied recursively to the children of the given node and so on.

Value

A list containing those child nodes of el whose tag name matches that specified by the user.

Note

The addition of the recursive argument makes this function behave like the getElementsByTagName
in other language APIs such as Java, C#. However, one should be careful to understand that in those
languages, one would get back a set of node objects. These nodes have references to their parents
and children. Therefore one can navigate the tree from each node, find its relations, etc. In the
current version of this package (and for the forseeable future), the node set is a “copy” of the nodes
in the original tree. And these have no facilities for finding their siblings or parent. Additionally,
one can consume a large amount of memory by taking a copy of numerous large nodes using this
facility. If one does not modify the nodes, the extra memory may be small. But modifying them
means that the contents will be copied.

Alternative implementations of the tree, e.g. using unique identifiers for nodes or via internal data
structures from libxml can allow us to implement this function with different semantics, more sim-
ilar to the other APIs.

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/, https://www.omegahat.net/RSXML/,

See Also

xmlChildren xmlTreeParse

https://www.w3.org/XML/
https://www.omegahat.net/RSXML/

100 xmlElementSummary

Examples

Not run:
doc <- xmlTreeParse("https://www.omegahat.net/Scripts/Data/mtcars.xml")
xmlElementsByTagName(doc$children[[1]], "variable")

End(Not run)

doc <- xmlTreeParse(system.file("exampleData", "mtcars.xml", package="XML"))
xmlElementsByTagName(xmlRoot(doc)[[1]], "variable")

xmlElementSummary Frequency table of names of elements and attributes in XML content

Description

This function is used to get an understanding of the use of element and attribute names in an XML
document. It uses a collection of handler functions to gather the information via a SAX-style parser.
The distribution of attribute names is done within each "type" of element (i.e. element name)

Usage

xmlElementSummary(url, handlers = xmlElementSummaryHandlers(url))

Arguments

url the source of the XML content, e.g. a file, a URL, a compressed file, or a
character string

handlers the list of handler functions used to collect the information. These are passed to
the function xmlEventParse as the value for the handlers parameter.

Value

A list with two elements

nodeCounts a named vector of counts where the names are the (XML namespace qualified)
element names in the XML content

attributes a list with as many elements as there are elements in the nodeCounts element
of the result. Each element of this sub-list gives the frequency counts for the
different attributes seen within the XML elements with that name.

Author(s)

Duncan Temple Lang

See Also

xmlEventParse

xmlEventHandler 101

Examples

xmlElementSummary(system.file("exampleData", "eurofxref-hist.xml.gz", package = "XML"))

xmlEventHandler Default handlers for the SAX-style event XML parser

Description

This is a function that returns a closure instance containing the default handlers for use with
xmlEventParse for parsing XML documents via the SAX-style parsing.

Usage

xmlEventHandler()

Details

These handlers simply build up the DOM tree and thus perform the same job as xmlTreeParse. It
is here more as an example, reference and a base that users can extend.

Value

The return value is a list of functions which are used as callbacks by the internal XML parser when
it encounters certain XML elements/structures. These include items such as the start of an element,
end of an element, processing instruction, text node, comment, entity references and definitions,
etc.

startElement

endElement
processingInstruction

text

comment

externalEntity

entityDeclaration

cdata

dom

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML//, http://www.jclark.com/xml/, https://www.omegahat.net

https://www.w3.org/XML//
http://www.jclark.com/xml/
https://www.omegahat.net

102 xmlEventParse

See Also

xmlEventParse xmlTreeParse

Examples

xmlEventParse(system.file("exampleData", "mtcars.xml", package="XML"),
handlers=xmlEventHandler())

xmlEventParse XML Event/Callback element-wise Parser

Description

This is the event-driven or SAX (Simple API for XML) style parser which process XML without
building the tree but rather identifies tokens in the stream of characters and passes them to han-
dlers which can make sense of them in context. This reads and processes the contents of an XML
file or string by invoking user-level functions associated with different components of the XML
tree. These components include the beginning and end of XML elements, e.g <myTag x="1"> and
</myTag> respectively, comments, CDATA (escaped character data), entities, processing instruc-
tions, etc. This allows the caller to create the appropriate data structure from the XML document
contents rather than the default tree (see xmlTreeParse) and so avoids having the entire document
in memory. This is important for large documents and where we would end up with essentially 2
copies of the data in memory at once, i.e the tree and the R data structure containing the informa-
tion taken from the tree. When dealing with classes of XML documents whose instances could be
large, this approach is desirable but a little more cumbersome to program than the standard DOM
(Document Object Model) approach provided by XMLTreeParse.

Note that xmlTreeParse does allow a hybrid style of processing that allows us to apply handlers
to nodes in the tree as they are being converted to R objects. This is a style of event-driven or
asynchronous calling

In addition to the generic token event handlers such as "begin an XML element" (the startElement
handler), one can also provide handler functions for specific tags/elements such as <myTag> with
handler elements with the same name as the XML element of interest, i.e. "myTag" = function(x,
attrs).

When the event parser is reading text nodes, it may call the text handler function with different
sub-strings of the text within the node. Essentially, the parser collects up n characters into a buffer
and passes this as a single string the text handler and then continues collecting more text until the
buffer is full or there is no more text. It passes each sub-string to the text handler. If trim is TRUE,
it removes leading and trailing white space from the substring before calling the text handler. If
the resulting text is empty and ignoreBlanks is TRUE, then we don’t bother calling the text handler
function.

So the key thing to remember about dealing with text is that the entire text of a node may come in
multiple separate calls to the text handler. A common idiom is to have the text handler concatenate
the values it is passed in separate calls and to have the end element handler process the entire text
and reset the text variable to be empty.

xmlEventParse 103

Usage

xmlEventParse(file, handlers = xmlEventHandler(),
ignoreBlanks = FALSE, addContext=TRUE,
useTagName = TRUE, asText = FALSE, trim=TRUE,
useExpat=FALSE, isURL = FALSE,
state = NULL, replaceEntities = TRUE, validate = FALSE,
saxVersion = 1, branches = NULL,
useDotNames = length(grep("^\\.", names(handlers))) > 0,
error = xmlErrorCumulator(), addFinalizer = NA,
encoding = character())

Arguments

file the source of the XML content. This can be a string giving the name of a file
or remote URL, the XML itself, a connection object, or a function. If this is a
string, and asText is TRUE, the value is the XML content. This allows one to
read the content separately from parsing without having to write it to a file. If
asText is FALSE and a string is passed for file, this is taken as the name of a
file or remote URI. If one is using the libxml parser (i.e. not expat), this can be
a URI accessed via HTTP or FTP or a compressed local file. If it is the name of
a local file, it can include ~, environment variables, etc. which will be expanded
by R. (Note this is not the case in S-Plus, as far as I know.)
If a connection is given, the parser incrementally reads one line at a time by
calling the function readLines with the connection as the first argument (and 1
as the number of lines to read). The parser calls this function each time it needs
more input.
If invoking the readLines function to get each line is excessively slow or is
inappropriate, one can provide a function as the value of fileName. Again, when
the XML parser needs more content to process, it invokes this function to get a
string. This function is called with a single argument, the maximum size of the
string that can be returned. The function is responsible for accessing the correct
connection(s), etc. which is typically done via lexical scoping/environments.
This mechanism allows the user to control how the XML content is retrieved in
very general ways. For example, one might read from a set of files, starting one
when the contents of the previous file have been consumed. This allows for the
use of hybrid connection objects.
Support for connections and functions in this form is only provided if one is
using libxml2 and not libxml version 1.

handlers a closure object that contains functions which will be invoked as the XML com-
ponents in the document are encountered by the parser. The standard function
or handler names are startElement(), endElement() comment(), getEntity,
entityDeclaration(), processingInstruction(), text(), cdata(), startDocument(),
and endDocument(), or alternatively and preferrably, these names prefixed with
a ’.’, i.e. .startElement, .comment, ...
The call signature for the entityDeclaration function was changed in version
1.7-0. Note that in earlier versions, the C routine did not invoke any R function
and so no code will actually break. Also, we have renamed externalEntity to
getEntity. These were based on the expat parser.

104 xmlEventParse

The new signature is c(name = "character", type = "integer",content = "",
system = "character", public = "character") name gives the name of the
entity being defined. The type identifies the type of the entity using the value
of a C-level enumerated constant used in libxml2, but also gives the human-
readable form as the name of the single element in the integer vector. The possi-
ble values are "Internal_General", "External_General_Parsed", "External_General_Unparsed",
"Internal_Parameter", "External_Parameter", "Internal_Predefined".
If we are dealing with an internal entity, the content will be the string containing
the value of the entity. If we are dealing with an external entity, then content
will be a character vector of length 0, i.e. empty. Instead, either or both of the
system and public arguments will be non-empty and identify the location of the
external content. system will be a string containing a URI, if non-empty, and
public corresponds to the PUBLIC identifier used to identify content using an
SGML-like approach. The use of PUBLIC identifiers is less common.

ignoreBlanks a logical value indicating whether text elements made up entirely of white space
should be included in the resulting ‘tree’.

addContext logical value indicating whether the callback functions in ‘handlers’ should be
invoked with contextual information about the parser and the position in the tree,
such as node depth, path indices for the node relative the root, etc. If this is True,
each callback function should support

useTagName a logical value. If this is TRUE, when the SAX parser signals an event for the
start of an XML element, it will first look for an element in the list of han-
dler functions whose name matches (exactly) the name of the XML element.
If such an element is found, that function is invoked. Otherwise, the generic
startElement handler function is invoked. The benefit of this is that the au-
thor of the handler functions can write node-specific handlers for the different
element names in a document and not have to establish a mechanism to invoke
these functions within the startElement function. This is done by the XML
package directly.
If the value is FALSE, then the startElement handler function will be called
without any effort to find a node-specific handler. If there are no node-specific
handlers, specifying FALSE for this parameter will make the computations very
slightly faster.

asText logical value indicating that the first argument, ‘file’, should be treated as the
XML text to parse, not the name of a file. This allows the contents of documents
to be retrieved from different sources (e.g. HTTP servers, XML-RPC, etc.) and
still use this parser.

trim whether to strip white space from the beginning and end of text strings.

useExpat a logical value indicating whether to use the expat SAX parser, or to default to
the libxml. If this is TRUE, the library must have been compiled with support
for expat. See supportsExpat.

isURL indicates whether the file argument refers to a URL (accessible via ftp or http)
or a regular file on the system. If asText is TRUE, this should not be specified.

state an optional S object that is passed to the callbacks and can be modified to com-
municate state between the callbacks. If this is given, the callbacks should accept
an argument named .state and it should return an object that will be used as the

xmlEventParse 105

updated value of this state object. The new value can be any S object and will
be passed to the next callback where again it will be updated by that functions
return value, and so on. If this not specified in the call to xmlEventParse, no
.state argument is passed to the callbacks. This makes the interface compatible
with previous releases.

replaceEntities

logical value indicating whether to substitute entity references with their text
directly. This should be left as False. The text still appears as the value of the
node, but there is more information about its source, allowing the parse to be
reversed with full reference information.

saxVersion an integer value which should be either 1 or 2. This specifies which SAX inter-
face to use in the C code. The essential difference is the number of arguments
passed to the startElement handler function(s). Under SAX 2, in addition to
the name of the element and the named-attributes vector, two additional argu-
ments are provided. The first identifies the namespace of the element. This
is a named character vector of length 1, with the value being the URI of the
namespace and the name being the prefix that identifies that namespace within
the document. For example, xmlns:r="http://www.r-project.org" would
be passed as c(r = "http://www.r-project.org"). If there is no prefix be-
cause the namespace is being used as the default, the result of calling names on
the string is "". The second additional argument (the fourth in total) gives the
collection of all the namespaces defined within this element. Again, this is a
named character vector.

validate Currently, this has no effect as the libxml2 parser uses a document structure to
do validation. a logical indicating whether to use a validating parser or not, or
in other words check the contents against the DTD specification. If this is true,
warning messages will be displayed about errors in the DTD and/or document,
but the parsing will proceed except for the presence of terminal errors.

branches a named list of functions. Each element identifies an XML element name. If
an XML element of that name is encountered in the SAX stream, the stream is
processed until the end of that element and an internal node (see xmlTreeParse
and its useInternalNodes parameter) is created. The function in our branches
list corresponding to this XML element is then invoked with the (internal) node
as the only argument. This allows one to use the DOM model on a sub-tree
of the entire document and thus use both SAX and DOM together to get the
efficiency of SAX and the simpler programming model of DOM.
Note that the branches mechanism works top-down and does not work for nested
tags. If one specifies an element name in the branches argument, e.g. myNode,
and there is a nested myNode instance within a branch, the branches handler
will not be called for that nested instance. If there is an instance where this is
problematic, please contact the maintainer of this package.
One can cause the parser to collect a branch without identifying the node within
the branches list. Specifically, within a regular start-element handler, one can
return a function whose class is SAXBranchFunction. The SAX parser recog-
nizes this and collects up the branch starting at the current node being processed
and when it is complete, invokes this function. This allows us to dynamically
determine which nodes to treat as branches rather than just matching names.

106 xmlEventParse

This is necessary when a node name has different meanings in different parts of
the XML hierarchy, e.g. dict in an iTunes song list.
See the file itunesSax2.R inthe examples for an example of this.
This is a two step process. In the future, we might make it so that the R function
handling the start-element event could directly collect the branch and continue
its operations without having to call another function asynchronously.

useDotNames a logical value indicating whether to use the newer format for identifying general
element function handlers with the ’.’ prefix, e.g. .text, .comment, .startElement.
If this is FALSE, then the older format text, comment, startElement, ... are used.
This causes problems when there are indeed nodes named text or comment or
startElement as a node-specific handler are confused with the corresponding
general handler of the same name. Using TRUE means that your list of handlers
should have names that use the ’.’ prefix for these general element handlers.
This is the preferred way to write new code.

error a function that is called when an XML error is encountered. This is called with
6 arguments and is described in xmlTreeParse.

addFinalizer a logical value or identifier for a C routine that controls whether we register
finalizers on the intenal node.

encoding a character string (scalar) giving the encoding for the document. This is optional
as the document should contain its own encoding information. However, if it
doesn’t, the caller can specify this for the parser.

Details

This is now implemented using the libxml parser. Originally, this was implemented via the Expat
XML parser by Jim Clark (http://www.jclark.com/).

Value

The return value is the ‘handlers’ argument. It is assumed that this is a closure and that the callback
functions have manipulated variables local to it and that the caller knows how to extract this.

Note

The libxml parser can read URLs via http or ftp. It does not require the support of wget as used in
other parts of R, but uses its own facilities to connect to remote servers.

The idea for the hybrid SAX/DOM mode where we consume tokens in the stream to create an entire
node for a sub-tree of the document was first suggested to me by Seth Falcon at the Fred Hutchinson
Cancer Research Center. It is similar to the XML::Twig module in Perl by Michel Rodriguez.

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/, http://www.jclark.com/xml/

http://www.jclark.com/
https://www.w3.org/XML/
http://www.jclark.com/xml/

xmlEventParse 107

See Also

xmlTreeParse xmlStopParser XMLParserContextFunction

Examples

fileName <- system.file("exampleData", "mtcars.xml", package="XML")

Print the name of each XML tag encountered at the beginning of each
tag.
Uses the libxml SAX parser.

xmlEventParse(fileName,
list(startElement=function(name, attrs){

cat(name,"\n")
}),

useTagName=FALSE, addContext = FALSE)

Not run:
Parse the text rather than a file or URL by reading the URL's contents
and making it a single string. Then call xmlEventParse

xmlURL <- "https://www.omegahat.net/Scripts/Data/mtcars.xml"
xmlText <- paste(scan(xmlURL, what="",sep="\n"),"\n",collapse="\n")
xmlEventParse(xmlText, asText=TRUE)

End(Not run)

Using a state object to share mutable data across callbacks
f <- system.file("exampleData", "gnumeric.xml", package = "XML")
zz <- xmlEventParse(f,

handlers = list(startElement=function(name, atts, .state) {
.state = .state + 1
print(.state)
.state

}), state = 0)
print(zz)

Illustrate the startDocument and endDocument handlers.
xmlEventParse(fileName,

handlers = list(startDocument = function() {
cat("Starting document\n")

},
endDocument = function() {

cat("ending document\n")
}),

saxVersion = 2)

108 xmlEventParse

if(libxmlVersion()$major >= 2) {

startElement = function(x, ...) cat(x, "\n")

xmlEventParse(ff <- file(f), handlers = list(startElement = startElement))
close(ff)

Parse with a function providing the input as needed.
xmlConnection =
function(con) {

if(is.character(con))
con = file(con, "r")

if(isOpen(con, "r"))
open(con, "r")

function(len) {

if(len < 0) {
close(con)
return(character(0))

}

x = character(0)
tmp = ""

while(length(tmp) > 0 && nchar(tmp) == 0) {
tmp = readLines(con, 1)
if(length(tmp) == 0)

break
if(nchar(tmp) == 0)

x = append(x, "\n")
else

x = tmp
}
if(length(tmp) == 0)

return(tmp)

x = paste(x, collapse="")

x
}
}

this leaves a connection open
xmlConnection would need amending to return the connection.
ff = xmlConnection(f)
xmlEventParse(ff, handlers = list(startElement = startElement))

Parse from a connection. Each time the parser needs more input, it
calls readLines(<con>, 1)

xmlEventParse 109

xmlEventParse(ff <-file(f), handlers = list(startElement = startElement))
close(ff)

using SAX 2
h = list(startElement = function(name, attrs, namespace, allNamespaces){

cat("Starting", name,"\n")
if(length(attrs))

print(attrs)
print(namespace)
print(allNamespaces)

},
endElement = function(name, uri) {

cat("Finishing", name, "\n")
})

xmlEventParse(system.file("exampleData", "namespaces.xml", package="XML"),
handlers = h, saxVersion = 2)

This example is not very realistic but illustrates how to use the
branches argument. It forces the creation of complete nodes for
elements named and extracts the id attribute.
This could be done directly on the startElement, but this just
illustrates the mechanism.
filename = system.file("exampleData", "branch.xml", package="XML")
b.counter = function() {

nodes <- character()
f = function(node) { nodes <<- c(nodes, xmlGetAttr(node, "id"))}
list(b = f, nodes = function() nodes)

}

b = b.counter()
invisible(xmlEventParse(filename, branches = b["b"]))
b$nodes()

filename = system.file("exampleData", "branch.xml", package="XML")

invisible(xmlEventParse(filename, branches = list(b = function(node) {
print(names(node))})))

invisible(xmlEventParse(filename, branches = list(b = function(node) {
print(xmlName(xmlChildren(node)[[1]]))})))

}

##
Stopping the parser mid-way and an example of using XMLParserContextFunction.

startElement =
function(ctxt, name, attrs, ...) {
print(ctxt)

print(name)
if(name == "rewriteURI") {

cat("Terminating parser\n")

110 xmlGetAttr

xmlStopParser(ctxt)
}

}
class(startElement) = "XMLParserContextFunction"
endElement =
function(name, ...)

cat("ending", name, "\n")

fileName = system.file("exampleData", "catalog.xml", package = "XML")
xmlEventParse(fileName, handlers = list(startElement = startElement,

endElement = endElement))

xmlGetAttr Get the value of an attribute in an XML node

Description

This is a convenience function that retrieves the value of a named attribute in an XML node, taking
care of checking for its existence. It also allows the caller to provide a default value to use as the
return value if the attribute is not present.

Usage

xmlGetAttr(node, name, default = NULL, converter = NULL,
namespaceDefinition = character(),
addNamespace = length(grep(":", name)) > 0)

Arguments

node the XML node

name the name of the attribute

default a value to use as the default return if the attribute is not present in the XML
node.

converter an optional function which if supplied is invoked with the attribute value and the
value returned. This can be used to convert the string to an arbitrary value which
is useful if it is, for example, a number. This is only called if the attribute exists
within the node. In other words, it is not applied to the default value.

namespaceDefinition

a named character vector giving name space prefixes and URIs to use when
resolving for the the attribute with a namespace. The values are used to compare
the name space prefix used in the name given by the user to the name space
definition in the node to ensure they match. This is important as we might ask
for an attribute named r:width assuming that the prefix r corresponded to the
URI http://www.r-project.org. However, there may be a name space prefix
r defined on the node that points to a different URI and so this would be an
erroneous match.

xmlHandler 111

addNamespace a logical value that indicates whether we should put the namespace prefix on
the resulting name. This is passed on to xmlAttrs and so controls whether the
resulting attribute names have the prefix attached. So one specifies TRUE for this
argument if the attribute identifier has a namespace prefix.

Details

This just checks that the attribute list is non-NULL and that there is an element with the specified
name.

Value

If the attribute is present, the return value is a string which is the value of the attribute. Otherwise,
the value of default is returned.

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML//, http://www.jclark.com/xml/, https://www.omegahat.net

See Also

xmlAttrs

Examples

node <- xmlNode("foo", attrs=c(a="1", b="my name"))

xmlGetAttr(node, "a")
xmlGetAttr(node, "doesn't exist", "My own default value")

xmlGetAttr(node, "b", "Just in case")

xmlHandler Example XML Event Parser Handler Functions

Description

A closure containing simple functions for the different types of events potentially called by the
xmlEventParse, and some tag-specific functions to illustrate how one can add functions for specific
DTDs and XML element types. Contains a local list which can be mutated by invocations of the
closure’s function.

Usage

xmlHandler()

https://www.w3.org/XML//
http://www.jclark.com/xml/
https://www.omegahat.net

112 xmlHashTree

Value

List containing the functions enumerated in the closure definition along with the list.

Note

This is just an example.

Author(s)

Duncan Temple Lang

See Also

xmlEventParse, xmlTreeParse

Examples

Not run:
xmlURL <- "https://www.omegahat.net/Scripts/Data/mtcars.xml"
xmlText <- paste(scan(xmlURL, what="", sep="\n"),"\n",collapse="\n")

End(Not run)

xmlURL <- system.file("exampleData", "mtcars.xml", package="XML")
xmlText <- paste(readLines(xmlURL), "\n", collapse="")
xmlEventParse(xmlText, handlers = NULL, asText=TRUE)
xmlEventParse(xmlText, xmlHandler(), useTagName=TRUE, asText=TRUE)

xmlHashTree Constructors for trees stored as flat list of nodes with information
about parents and children.

Description

These (and related internal) functions allow us to represent trees as a simple, non-hierarchical col-
lection of nodes along with corresponding tables that identify the parent and child relationships.
This is different from representing a tree as a list of lists of lists ... in which each node has a list of
its own children. In a functional language like R, it is not possible then for the children to be able
to identify their parents.

We use an environment to represent these flat trees. Since these are mutable without requiring the
change to be reassigned, we can modify a part of the tree locally without having to reassign the
top-level object.

We can use either a list (with names) to store the nodes or a hash table/associative array that uses
names. There is a non-trivial performance difference.

xmlHashTree 113

Usage

xmlHashTree(nodes = list(), parents = character(), children = list(),
env = new.env(TRUE, parent = emptyenv()))

Arguments

nodes a collection of existing nodes that are to be added to the tree. These are used
to initialize the tree. If this is specified, you must also specify children and
parents.

parents the parent relationships for the nodes given by nodes.

children the children relationships for the nodes given by nodes.

env an environment in which the information for the tree will be stored. This is
essentially the tree object as it allows us to modify parts of the tree without
having to reassign the top-level object. Unlike most R data types, environments
are mutable.

Value

An xmlHashTree object has an accessor method via $ for accessing individual nodes within the tree.
One can use the node name/identifier in an expression such as tt$myNode to obtain the element.
The name of a node is either its XML node name or if that is already present in the tree, a machine
generated name.

One can find the names of all the nodes using the objects function since these trees are regular
environments in R. Using the all = TRUE argument, one can also find the “hidden” elements that
make define the tree’s structure. These are .children and .parents. The former is an (hashed) en-
vironment. Each element is identified by the node in the tree by the node’s identifier (corresponding
to the name of the node in the tree’s environment). The value of that element is simply a character
vector giving the identifiers of all of the children of that node.

The .parents element is also an environemnt. Each element in this gives the pair of node and
parent identifiers with the parent identifier being the value of the variable in the environment. In
other words, we look up the parent of a node named ’kid’ by retrieving the value of the variable
’kid’ in the .parents environment of this hash tree.

The function .addNode is used to insert a new node into the tree.

The structure of this tree allows one to easily travers all nodes, navigate up the tree from a node via
its parent. Certain tasks are more complex as the hierarchy is not implicit within a node.

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/

See Also

xmlTreeParse xmlTree xmlOutputBuffer xmlOutputDOM

https://www.w3.org/XML/

114 xmlHashTree

Examples

f = system.file("exampleData", "dataframe.xml", package = "XML")
tr = xmlHashTree()
xmlTreeParse(f, handlers = list(.startElement = tr[[".addNode"]]))

tr # print the tree on the screen

Get the two child nodes of the dataframe node.
xmlChildren(tr$dataframe)

Find the names of all the nodes.
objects(tr)
Which nodes have children
objects(tr$.children)

Which nodes are leaves, i.e. do not have children
setdiff(objects(tr), objects(tr$.children))

find the class of each of these leaf nodes.
sapply(setdiff(objects(tr), objects(tr$.children)),

function(id) class(tr[[id]]))

distribution of number of children
sapply(tr$.children, length)

Get the first A node
tr$A

Get is parent node.
xmlParent(tr$A)

f = system.file("exampleData", "allNodeTypes.xml", package = "XML")

Convert the document
r = xmlInternalTreeParse(f, xinclude = TRUE)
ht = as(r, "XMLHashTree")
ht

work on the root node, or any node actually
as(xmlRoot(r), "XMLHashTree")

Example of making copies of an XMLHashTreeNode object to create a separate tree.
f = system.file("exampleData", "simple.xml", package = "XML")
tt = as(xmlParse(f), "XMLHashTree")

xmlRoot(tt)[[1]]
xmlRoot(tt)[[1, copy = TRUE]]

table(unlist(eapply(tt, xmlName)))
if any of the nodes had any attributes

XMLInternalDocument-class 115

table(unlist(eapply(tt, xmlAttrs)))

XMLInternalDocument-class

Class to represent reference to C-level data structure for an XML doc-
ument

Description

This class is used to provide a handle/reference to a C-level data structure that contains the infor-
mation from parsing parsing XML content. This leaves the nodes in the DOM or tree as C-level
nodes rather than converting them to explicit R XMLNode objects. One can then operate on this tree
in much the same way as one can the XMLNode representations, but we a) avoid copying the nodes to
R, and b) can navigate the tree both down and up using xmlParent giving greater flexibility. Most
importantly, one can use an XMLInternalDocument class object with an XPath expression to easily
and relatively efficiently find nodes within a document that satisfy some criterion. See getNodeSet.

Objects from the Class

Objects of this type are created via xmlTreeParse and htmlTreeParse with the argument useInternalNodes
given as TRUE.

Extends

Class oldClass, directly.

Methods

There are methods to serialize (dump) a document to a file or as a string, and to coerce it to a node
by finding the top-level node of the document. There are functions to search the document for nodes
specified by an XPath expression.

References

XPath https://www.w3.org/TR/xpath/

See Also

xmlTreeParse htmlTreeParse getNodeSet

Examples

f = system.file("exampleData", "mtcars.xml", package="XML")
doc = xmlParse(f)
getNodeSet(doc, "//variables[@count]")
getNodeSet(doc, "//record")

getNodeSet(doc, "//record[@id='Mazda RX4']")

free(doc)

https://www.w3.org/TR/xpath/

116 xmlName

xmlName Extraces the tag name of an XMLNode object.

Description

Each XMLNode object has an element or tag name introduced in the <name ...> entry in an XML
document. This function returns that name.

We can also set that name using xmlName(node) <- "name" and the value can have an XML name
space prefix, e.g. "r:name".

Usage

xmlName(node, full = FALSE)

Arguments

node The XMLNode object whose tag name is being requested.

full a logical value indicating whether to prepend the namespace prefix, if there is
one, or return just the name of the XML element/node. TRUE means prepend the
prefix.

Value

A character vector of length 1 which is the node$name entry.

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML//, http://www.jclark.com/xml/, https://www.omegahat.net

See Also

xmlChildren, xmlAttrs, xmlTreeParse

Examples

fileName <- system.file("exampleData", "test.xml", package="XML")
doc <- xmlTreeParse(fileName)
xmlName(xmlRoot(doc)[[1]])

tt = xmlRoot(doc)[[1]]
xmlName(tt)
xmlName(tt) <- "bob"

https://www.w3.org/XML//
http://www.jclark.com/xml/
https://www.omegahat.net

xmlNamespace 117

We can set the node on an internal object also.
n = newXMLNode("x")

xmlName(n)
xmlName(n) <- "y"

xmlName(n) <- "r:y"

xmlNamespace Retrieve the namespace value of an XML node.

Description

Each XML node has a namespace identifier which is a string indicating in which DTD (Document
Type Definition) the definition of that element can be found. This avoids the problem of having
different document definitions using the same names for XML elements that have different meaning.
To resolve the name space, i.e. i.e. find out to where the identifier points, one can use the expression
xmlNamespace(xmlRoot(doc)).

The class of the result is is an S3-style object of class XMLNamespace.

Usage

xmlNamespace(x)
xmlNamespace(x, ...) <- value

Arguments

x the object whose namespace is to be computed

value the prefix for a namespace that is defined in the node or any of the ancestors.

... additional arguments for setting the name space

Value

For non-root nodes, this returns a string giving the identifier of the name space for this node. For
the root node, this returns a list with 2 elements:

id the identifier by which other nodes refer to this namespace.

uri the URI or location that defines this namespace.

local ? (can’t remember off-hand).

Author(s)

Duncan Temple Lang

118 xmlNamespaceDefinitions

References

https://www.w3.org/XML//, http://www.jclark.com/xml/, https://www.omegahat.net

See Also

xmlName xmlChildren xmlAttrs xmlValue xmlNamespaceDefinitions

Examples

doc <- xmlTreeParse(system.file("exampleData", "job.xml", package="XML"))
xmlNamespace(xmlRoot(doc))
xmlNamespace(xmlRoot(doc)[[1]][[1]])

doc <- xmlInternalTreeParse(system.file("exampleData", "job.xml", package="XML"))
Since the first node, xmlRoot() will skip that, by default.

xmlNamespace(xmlRoot(doc))
xmlNamespace(xmlRoot(doc)[[1]][[1]])

node <- xmlNode("arg", xmlNode("name", "foo"), namespace="R")
xmlNamespace(node)

doc = xmlParse('<top xmlns:r="http://www.r-project.org"><bob><code>a = 1:10</code></bob></top>')
node = xmlRoot(doc)[[1]][[1]]
xmlNamespace(node) = "r"
node

doc = xmlParse('<top xmlns:r="http://www.r-project.org"><bob><code>a = 1:10</code></bob></top>')
node = xmlRoot(doc)[[1]][[1]]
xmlNamespaces(node, set = TRUE) = c(omg = "https://www.omegahat.net")
node

xmlNamespaceDefinitions

Get definitions of any namespaces defined in this XML node

Description

If the given node has any namespace definitions declared within it, i.e. of the form xmlns:myNamespace="http://www.myNS.org",
xmlNamespaceDefinitions provides access to these definitions. While they appear in the XML
node in the document as attributes, they are treated differently by the parser and so do not show up
in the nodes attributes via xmlAttrs.

getDefaultNamespace is used to get the default namespace for the top-level node in a document.

The recursive parameter allows one to conveniently find all the namespace definitions in a docu-
ment or sub-tree without having to examine the file. This can be useful when working with XPath
queries via getNodeSet.

https://www.w3.org/XML//
http://www.jclark.com/xml/
https://www.omegahat.net

xmlNamespaceDefinitions 119

Usage

xmlNamespaceDefinitions(x, addNames = TRUE, recursive = FALSE, simplify = FALSE, ...)
xmlNamespaces(x, addNames = TRUE, recursive = FALSE, simplify = FALSE, ...)
getDefaultNamespace(doc, ns = xmlNamespaceDefinitions(doc, simplify = simplify),

simplify = FALSE)

Arguments

x the XMLNode object in which to find any namespace definitions

addNames a logical indicating whether to compute the names for the elements in the result-
ing list. The names are convenient, but one can avoid the (very small) overhead
of computing these with this parameter.

doc the XMLInternalDocument object obtained from a call to xmlParse

recursive a logical value indicating whether to extract the namespace definitions for just
this node (FALSE) or all of the descendant nodes as well (TRUE). If this is TRUE,
all the namespace definitions are collected into a single "flat" list and so there
may be duplicate names.

simplify a logical value. If this is TRUE, a character vector of prefix-URI pairs is re-
turned. This can be used directly in calls to functions such as xpathApply and
getNodeSet. The default value of FALSE returns a list of name space defini-
tions which also identify whether the definition is local to the particular node or
inherited from an ancestor.

ns the collection of namespaces. This is typically omitted but can be specified if it
has been computed in an earlier step.

... additional parameters for methods

Value

A list with as many elements as there are namespace definitions. Each element is an object of class
XMLNameSpace, containing fields giving the local identifier, the associated defining URI and a
logical value indicating whether the definition is local to this node. The name of each element is
the prefix or alias used for that namespace definition, i.e. the value of the id field in the namespace
definition. For default namespaces, i.e. those that have no prefix/alias, the name is "".

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/

See Also

xmlTreeParse xmlAttrs xmlGetAttr

https://www.w3.org/XML/

120 xmlNode

Examples

f = system.file("exampleData", "longitudinalData.xml", package = "XML")
n = xmlRoot(xmlTreeParse(f))
xmlNamespaceDefinitions(n)
xmlNamespaceDefinitions(n, recursive = TRUE)

Now using internal nodes.
f = system.file("exampleData", "namespaces.xml", package = "XML")
doc = xmlInternalTreeParse(f)
n = xmlRoot(doc)
xmlNamespaceDefinitions(n)

xmlNamespaceDefinitions(n, recursive = TRUE)

xmlNode Create an XML node

Description

These functions allow one to create XML nodes as are created in C code when reading XML
documents. Trees of XML nodes can be constructed and integrated with other trees generated
manually or with via the parser.

Usage

xmlNode(name, ..., attrs=NULL, namespace="", namespaceDefinitions = NULL,
.children = list(...))

xmlTextNode(value, namespace="", entities = XMLEntities, cdata = FALSE)
xmlPINode(sys, value, namespace="")
xmlCDataNode(...)
xmlCommentNode(text)

Arguments

name The tag or element name of the XML node. This is what appears in the elements
as <name> .. </name>

... The children nodes of this XML node. These can be objects of class XMLNode
or arbitrary values that will be converted to a string to form an XMLTextNode
object.

.children an alternative mechanism to specifying the children which is useful for program-
matic use when one has the children in an existing list. The . . . mechanism is for
use when the children are specified directly and individually.

attrs A named character vector giving the name, value pairs of attributes for this XML
node.

value This is the text that is to be used when forming an XMLTextNode.

xmlNode 121

cdata a logical value which controls whether the text being used for the child node is
to be first enclosed within a CDATA node to escape special characters such as >
and &.

namespace The XML namespace identifier for this node.
namespaceDefinitions

a collection of name space definitions, containing the prefixes and the corre-
sponding URIs. This is most conveniently specified as a character vector whose
names attribute is the vector of prefixes and whose values are the URIs. Alter-
natively, one can provide a list of name space definition objects such as those
returned

sys the name of the system for which the processing instruction is targeted. This is
the value that appears in the <?sys value?>

text character string giving the contents of the comment.

entities a character vector giving the mapping from special characters to their entity
equivalent. This provides the character-expanded entity pairings of ’character =
entity’ , e.g. ’<’ = "lt" which are used to make the content valid XML so that it
can be used within a text node. The text searched sequentially for instances of
each character in the names and each instance is replaced with the corresponding
’&entity;’

Value

An object of class XMLNode. In the case of xmlTextNode, this also inherits from XMLTextNode.
The fields or slots that objects of these classes have include name, attributes, children and
namespace. However, one should the accessor functions xmlName, xmlAttrs, xmlChildren and
xmlNamespace

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/, http://www.jclark.com/xml/, https://www.omegahat.net

See Also

addChildren xmlTreeParse asXMLNode newXMLNode newXMLPINode newXMLCDataNode newXMLCommentNode

Examples

node named arg with two children: name and defaultValue
Both of these have a text node as their child.
n <- xmlNode("arg", attrs = c(default="TRUE"),

xmlNode("name", "foo"), xmlNode("defaultValue","1:10"))

internal C-level node.
a = newXMLNode("arg", attrs = c(default = "TRUE"),

https://www.w3.org/XML/
http://www.jclark.com/xml/
https://www.omegahat.net

122 XMLNode-class

newXMLNode("name", "foo"),
newXMLNode("defaultValue", "1:10"))

xmlAttrs(a) = c(a = 1, b = "a string")

xmlAttrs(a) = c(a = 1, b = "a string", append = FALSE)

newXMLNamespace(a, c("r" = "http://www.r-project.org"))
xmlAttrs(a) = c("r:class" = "character")

xmlAttrs(a[[1]]) = c("r:class" = "character")

Using a character vector as a namespace definitions
x = xmlNode("bob",

namespaceDefinitions = c(r = "http://www.r-project.org",
omg = "https://www.omegahat.net"))

XMLNode-class Classes to describe an XML node object.

Description

These classes are intended to represent an XML node, either directly in S or a reference to an
internal libxml node. Such nodes respond to queries about their name, attributes, namespaces and
children. These are old-style, S3 class definitions at present.

Slots

These are old-style S3 class definitions and do not have formal slots

Methods

No methods defined with class "XMLNode" in the signature.

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/, http://www.xmlsoft.org

See Also

xmlTreeParse xmlTree newXMLNode xmlNode

https://www.w3.org/XML/
http://www.xmlsoft.org

xmlOutputBuffer 123

Examples

An R-level XMLNode object
a <- xmlNode("arg", attrs = c(default="T"),

xmlNode("name", "foo"), xmlNode("defaultValue","1:10"))

xmlAttrs(a) = c(a = 1, b = "a string")

xmlOutputBuffer XML output streams

Description

These two functions provide different ways to construct XML documents incrementally. They
provide a single, common interface for adding and closing tags, and inserting nodes. The buffer
version stores the XML representation as a string. The DOM version builds the tree of XML node
objects entirely within R.

Usage

xmlOutputBuffer(dtd=NULL, nameSpace="", buf=NULL,
nsURI=NULL, header="<?xml version=\"1.0\"?>")

xmlOutputDOM(tag="doc", attrs = NULL, dtd=NULL,
nameSpace=NULL, nsURI=character(0),
xmlDeclaration = NULL)

Arguments

dtd a DTD object (see parseDTD and xmlTreeParse) which contains specifications
about what elements are valid within other elements and what attributes are
supported by different elements. This can be used to validate the document
as it is being constructed incrementally.

attrs attributes for the top-level node, in the form of a named vector or list.

nameSpace the default namespace identifier to be used when an element is created without
an explicit namespace. This provides a convenient way to specify the default
name space that appers in tags throughout the resulting document.

buf a connection object or a string into which the XML content is written. This is
currently a simplistic implementation since we will use the OOP-style classes
from the Omegahat projects in the future.

nsURI the URI or value for the name space which is used when declaring the names-
pace. For xmlOuputDOM, this is a named character vector with each element
giving the name space identifier and the corresponding URI, \ e.g c(shelp =
"https://www.omegahat.net/XML/SHelp")

header if non-NULL, this is immediately written to the output stream allowing one to
control the initial section of the XML document.

124 xmlOutputBuffer

tag the name of the top-level node/element in the DOM being created.

xmlDeclaration a logical value or a string. If this is a logical value and TRUE, the default <?xml
version=’1.0’?> processing instruction is emitted at the top of the document. If
it is FALSE, no xml declaration is emitted at the top of the document. If this is
provided as a string, the contents of this is added as the content of the processing
instruction. A version=’1.0’ is added if there is no ’version=’ content within the
given string.

Details

These functions create a closure instance which provides methods or functions that operate on
shared data used to represent the contents of the XML document being created and the current state
of that creation.

Value

Both of these functions return a list of functions which operate on the XML data in a shared envi-
ronment.

value get the contents of the XML document as they are currently defined.

addTag add a new element to the document, specifying its name and attributes. This
allows the tag to be left open so that new elements will be added as children of
it.

closeTag close the currently open tag, indicating that new elements will be added, by
default, as siblings of this one.

reset discard the current contents of the document so that we can start over and free
the resources (memory) associated with this document.

The following are specific to xmlOutputDOM:

addNode insert an complete XMLNode object into the currently active (i.e. open) node.

current obtain the path or collection of indices to to the currently active/open node from
the root node.

Author(s)

Duncan Temple Lang

References

https://www.omegahat.net/RSXML/, https://www.w3.org/XML//

See Also

xmlTree for a native/internal (C-level) representation of the tree, xmlNode, xmlTextNode, append.xmlNode

And a different representation of a tree is available via xmlHashTree.

https://www.omegahat.net/RSXML/
https://www.w3.org/XML//

xmlParent 125

Examples

con <- xmlOutputDOM()
con$addTag("author", "Duncan Temple Lang")
con$addTag("address", close=FALSE)
con$addTag("office", "2C-259")
con$addTag("street", "Mountain Avenue.")
con$addTag("phone", close = FALSE)
con$addTag("area", "908", attrs=c(state="NJ"))
con$addTag("number", "582-3217")

con$closeTag() # phone
con$closeTag() # address

con$addTag("section", close = FALSE)
con$addNode(xmlTextNode("This is some text "))
con$addTag("a","and a link", attrs=c(href="https://www.omegahat.net"))
con$addNode(xmlTextNode("and some follow up text"))

con$addTag("subsection", close = FALSE)
con$addNode(xmlTextNode("some addtional text "))
con$addTag("a", attrs=c(href="https://www.omegahat.net"), close=FALSE)

con$addNode(xmlTextNode("the content of the link"))
con$closeTag() # a

con$closeTag() # "subsection"
con$closeTag() # section

d <- xmlOutputDOM()
d$addPI("S", "plot(1:10)")
d$addCData('x <- list(1, a="&");\nx[[2]]')
d$addComment("A comment")
print(d$value())
print(d$value(), indent = FALSE, tagSeparator = "")

d = xmlOutputDOM("bob", xmlDeclaration = TRUE)
print(d$value())

d = xmlOutputDOM("bob", xmlDeclaration = "encoding='UTF-8'")
print(d$value())

d = xmlOutputBuffer("bob", header = "<?xml version='1.0' encoding='UTF-8'?>",
dtd = "foo.dtd")

d$addTag("bob")
cat(d$value())

xmlParent Get parent node of XMLInternalNode or ancestor nodes

126 xmlParent

Description

xmlParent operates on an XML node and returns a reference to its parent node within the document
tree. This works for an internal, C-level XMLInternalNode object created, for examply, using
newXMLNode and related functions or xmlTree or from xmlTreeParse with the useInternalNodes
parameter.

It is possible to find the parent of an R-level XML node when using a tree created with, for example,
xmlHashTree as the parent information is stored separately.

xmlAncestors walks the chain of parens to the top of the document and either returns a list of those
nodes, or alternatively a list of the values obtained by applying a function to each of the nodes.

Usage

xmlParent(x, ...)
xmlAncestors(x, fun = NULL, ..., addFinalizer = NA, count = -1L)

Arguments

x an object of class XMLInternalNode whose parent is being requested.

fun an R function which is invoked for each node as we walk up the tree.

... any additional arguments that are passed in calls to fun after the node object and
for xmlParent this allows methods to define their own additional parameters.

addFinalizer a logical value indicating whether the default finalizer routine should be reg-
istered to free the internal xmlDoc when R no longer has a reference to this
external pointer object. This can also be the name of a C routine or a reference
to a C routine retrieved using getNativeSymbolInfo.

count an integer that indicates how many levels of the hierarchy to traverse. This
allows us to get the count most recent ancestors of the node.

Details

This uses the internal libxml structures to access the parent in the DOM tree. This function is
generic so that we can add methods for other types of nodes if we so want in the future.

Value

xmlParent returns object of class XMLInternalNode.

If fun is NULL, xmlAncestors returns a list of the nodes in order of top-most node or root of the
tree, then its child, then the child of that child, etc. This is the reverse order in which the nodes are
visited/found.

If fun is a function, xmlAncestors returns a list whose elements are the results of calling that
function for each node. Again, the order is top down.

Author(s)

Duncan Temple Lang

xmlParseDoc 127

References

https://www.w3.org/XML/

See Also

xmlChildren xmlTreeParse xmlNode

Examples

top = newXMLNode("doc")
s = newXMLNode("section", attr = c(title = "Introduction"))
a = newXMLNode("article", s)
addChildren(top, a)

xmlName(xmlParent(s))
xmlName(xmlParent(xmlParent(s)))

Find the root node.
root = a
while(!is.null(xmlParent(root)))

root = xmlParent(root)

find the names of the parent nodes of each 'h' node.
use a global variable to "simplify" things and not use a closure.

filename = system.file("exampleData", "branch.xml", package = "XML")
parentNames <- character()
xmlParse(filename,

handlers =
list(h = function(x) {
parentNames <<- c(parentNames, xmlName(xmlParent(x)))
}))

table(parentNames)

xmlParseDoc Parse an XML document with options controlling the parser.

Description

This function is a generalization of xmlParse that parses an XML document. With this function, we
can specify a combination of different options that control the operation of the parser. The options
control many different aspects the parsing process

Usage

xmlParseDoc(file, options = 1L, encoding = character(),
asText = !file.exists(file), baseURL = file)

https://www.w3.org/XML/

128 xmlParseDoc

Arguments

file the name of the file or URL or the XML content itself

options options controlling the behavior of the parser. One specifies the different options
as elements of an integer vector. These are then bitwised OR’ed together. The
possible options are RECOVER, NOENT, DTDLOAD, DTDATTR, DTDVALID, NOERROR,
NOWARNING, PEDANTIC, NOBLANKS, SAX1, XINCLUDE, NONET, NODICT, NSCLEAN,
NOCDATA, NOXINNODE, COMPACT, OLD10, NOBASEFIX, HUGE, OLDSAX. (These op-
tions are also listed in the (non-exported) variable parserOptions.)

encoding character string that provides the encoding of the document if it is not explicitly
contained within the document itself.

asText a logical value indicating whether file is the XML content (TRUE) or the name
of a file or URL (FALSE)

baseURL the base URL used for resolving relative documents, e.g. XIncludes. This is
important if file is the actual XML content rather than a URL

Value

An object of class XMLInternalDocument.

Author(s)

Duncan Temple Lang

References

libxml2

See Also

xmlParse

Examples

f = system.file("exampleData", "mtcars.xml", package="XML")
Same as xmlParse()

xmlParseDoc(f)

txt =
'<top xmlns:r="http://www.r-project.org">

<b xmlns:r="http://www.r-project.org">
<c xmlns:omg="http:/www.omegahat.net"/>

</top>'

xmlParseDoc(txt, NSCLEAN, asText = TRUE)

txt =
'<top xmlns:r="http://www.r-project.org" xmlns:r="http://www.r-project.org">

<b xmlns:r="http://www.r-project.org">

xmlParserContextFunction 129

<c xmlns:omg="http:/www.omegahat.net"/>

</top>'

xmlParseDoc(txt, c(NSCLEAN, NOERROR), asText = TRUE)

xmlParserContextFunction

Identifies function as expecting an xmlParserContext argument

Description

This is a convenience function for setting the class of the specified function to include "XMLParserContextFunction".
This identifies it as expecting an xmlParserCtxt object as its first argument. The resulting function
can be passed to the internal/native XML parser as a handler/callback function. When the parser
calls it, it recognizes this class information and includes a reference to the C-level xmlParserCtxt
object as the first argument in the call.

This xmlParserCtxt object can be used to gracefully terminate the parsing (without an error), and
in the future will also provide access to details about the current state of the parser, e.g. the encoding
of the file, the XML version, whether entities are being replaced, line and column number for each
node processed.

Usage

xmlParserContextFunction(f, class = "XMLParserContextFunction")

Arguments

f the function whose class information is to be augmented.

class the name of the class which is to be added to the class attribute of the function.

Value

The function object f whose class attribute has been prepended with the value of class.

Author(s)

Duncan Temple Lang

See Also

xmlInternalTreeParse/xmlParse and the branches parameter of xmlEventParse.

130 xmlRoot

Examples

fun = function(context, ...) {
do things to parse the node
using the context if necessary.

cat("In XMLParserContextFunction\n")
xmlStopParser(context)

}
fun = xmlParserContextFunction(fun)

txt = "<doc><a/></doc>"
doesn't work for xmlTreeParse()
xmlTreeParse(txt, handlers = list(a = fun))

but does in xmlEventParse().
xmlEventParse(txt, handlers = list(startElement = fun), asText = TRUE)

xmlRoot Get the top-level XML node.

Description

These are a collection of methods for providing easy access to the top-level XMLNode object resulting
from parsing an XML document. They simplify accessing this node in the presence of auxillary
information such as DTDs, file name and version information that is returned as part of the parsing.

Usage

xmlRoot(x, skip = TRUE, ...)
S3 method for class 'XMLDocumentContent'
xmlRoot(x, skip = TRUE, ...)
S3 method for class 'XMLInternalDocument'
xmlRoot(x, skip = TRUE, addFinalizer = NA, ...)
S3 method for class 'HTMLDocument'
xmlRoot(x, skip = TRUE, ...)

Arguments

x the object whose root/top-level XML node is to be returned.

skip a logical value that controls whether DTD nodes and/or XMLComment objects
that appear before the “real” top-level node of the document should be ignored
(TRUE) or not (FALSE) when returning the root node.

... arguments that are passed by the generic to the different specialized methods of
this generic.

addFinalizer a logical value or identifier for a C routine that controls whether we register
finalizers on the intenal node.

xmlSchemaValidate 131

Value

An object of class XMLNode.

Note

One cannot obtain the parent or top-level node of an XMLNode object in S. This is different from
languages like C, Java, Perl, etc. and is primarily because S does not provide support for references.

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/, http://www.jclark.com/xml/, https://www.omegahat.net

See Also

xmlTreeParse [[.XMLNode

Examples

doc <- xmlTreeParse(system.file("exampleData", "mtcars.xml", package="XML"))
xmlRoot(doc)
Note that we cannot use getSibling () on a regular R-level XMLNode object
since we cannot go back up or across the tree from that node, but
only down to the children.

Using an internal node via xmlParse (== xmlInternalTreeParse())
doc <- xmlParse(system.file("exampleData", "mtcars.xml", package="XML"))
n = xmlRoot(doc, skip = FALSE)

skip over the DTD and the comment
d = getSibling(getSibling(n))

xmlSchemaValidate Validate an XML document relative to an XML schema

Description

This function validates an XML document relative to an XML schema to ensure that it has the
correct structure, i.e. valid sub-nodes, attributes, etc.

The xmlSchemaValidationErrorHandler is a function that returns a list of functions which can
be used to cumulate or collect the errors and warnings from the schema validation operation.

https://www.w3.org/XML/
http://www.jclark.com/xml/
https://www.omegahat.net

132 xmlSchemaValidate

Usage

xmlSchemaValidate(schema, doc,
errorHandler = xmlErrorFun(),
options = 0L)

schemaValidationErrorHandler()

Arguments

schema an object of class xmlSchemaRef which is usually the result of a call to xmlInternalTreeParse
with isSchema = TRUE, or xmlSchemaParse.

doc an XML document which has already been parsed into a XMLInternalDocument
or which is a file name or string which is coerced to an XMLInternalDocument-class
object

options an integer giving the options controlling the validation. At present, this is either
0 or 1 and is essentially irrelevant to us. It may be of value in the future.

errorHandler a function or a list whose first element is a function which is then used as the
collector for the warning and error messages reported during the validation. For
each warning or error, this function is invoked and the class of the message is
either XMLSchemaWarning or XMLSchemaError respectively.

Value

Typically, a list with 3 elements:

status 0 for validated, and non-zero for invalid

errors a character vector

warnings a character vector

If an empty error handler is provided (i.e. NULL) just an integer indicating the status of the validation
is returned. 0 indicates everything was okay; a non-zero value indicates a validation error. (-1
indicates an internal error in libxml2)

References

libxml2 www.xmlsoft.org

See Also

xmlSchemaParse

Examples

if(FALSE) {
xsd = xmlParse(system.file("exampleData", "author.xsd", package = "XML"), isSchema =TRUE)
doc = xmlInternalTreeParse(system.file("exampleData", "author.xml", package = "XML"))
xmlSchemaValidate(xsd, doc)

}

xmlSearchNs 133

xmlSearchNs Find a namespace definition object by searching ancestor nodes

Description

This function allows one to search an XML tree from a particular node and find the namespace
definition for a given namespace prefix or URL. This namespace definition can then be used to set
it on a node to make it the effective namespace for that node.

Usage

xmlSearchNs(node, ns, asPrefix = TRUE, doc = as(node, "XMLInternalDocument"))

Arguments

node an XMLInternaElementNode

ns a character string (vector of length 1). If asPrefix is TRUE, this is the namespace
alias/prefix. If asPrefix is FALSE, this is the URL of the namespace definition

asPrefix a logical value. See ns.

doc the XML document in which the node(s) are located

Value

An object of class XMLNamespaceRef.

Author(s)

Duncan Temple Lang

References

libxml2

See Also

newXMLNode

Examples

txt = '<top xmlns:r="http://www.r-project.org"><section><bottom/></section></top>'

doc = xmlParse(txt)
bottom = xmlRoot(doc)[[1]][[1]]
xmlSearchNs(bottom, "r")

134 xmlSerializeHook

xmlSerializeHook Functions that help serialize and deserialize XML internal objects

Description

These functions can be used to control how the C-level data structures associated with XML doc-
uments, nodes, XPath queries, etc. are serialized to a a file or connection and deserialized back
into an R session. Since these C-level data structures are represented in R as external pointers, they
would normally be serialized and deserialized in a way that loses all the information about the con-
tents of the memory being referenced. xmlSerializeHook arranges to serialize these pointers by
saving the corresponding XML content as a string and also the class of the object. The deserialize
function converts such objects back to their original form.

These functions are used in calls to saveRDS and readRDS via the refhook argument. saveRDS(obj,
filename, refhook = xmlSerializeHook) readRDS(filename, refhook = xmlDeserializeHook)

Usage

xmlSerializeHook(x)
xmlDeserializeHook(x)

Arguments

x the object to be deserialized, and the character vector to be deserialized.

Value

xmlSerializeHook returns a character version of the XML document or node, along with the basic
class. If it is called with an object that is not an native/internal XML object, it returns NULL

xmlDeserializeHook returns the parsed XML object, either a document or a node.

Author(s)

Duncan Temple Lang

References

The R Internals Manual.

See Also

saveRDS and readRDS

xmlSize 135

Examples

z = newXMLNode("foo")
f = system.file("exampleData", "tides.xml", package = "XML")
doc = xmlParse(f)
hdoc = as(doc, "XMLHashTree")

nodes = getNodeSet(doc, "//pred")

ff <- file.path(tempdir(), "tmp.rda")
saveRDS(list(a = 1:10, z = z, doc = doc, hdoc = hdoc, nodes = nodes), ff,

refhook = xmlSerializeHook)

v = readRDS(ff, refhook = xmlDeserializeHook)
unlink(ff)

xmlSize The number of sub-elements within an XML node.

Description

XML elements can contain other, nested sub-elements. This generic function determines the num-
ber of such elements within a specified node. It applies to an object of class XMLNode or XML-
Document.

Usage

xmlSize(obj)

Arguments

obj An an object of class XMLNode or XMLDocument.

Value

an integer which is the length of the value from xmlChildren.

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/, http://www.jclark.com/xml/, https://www.omegahat.net

See Also

xmlChildren, xmlAttrs, xmlName, xmlTreeParse

https://www.w3.org/XML/
http://www.jclark.com/xml/
https://www.omegahat.net

136 xmlSource

Examples

fileName <- system.file("exampleData", "mtcars.xml", package="XML")
doc <- xmlTreeParse(fileName)
xmlSize(doc)
xmlSize(docdocchildren[["dataset"]][["variables"]])

xmlSource Source the R code, examples, etc. from an XML document

Description

This is the equivalent of a smart source for extracting the R code elements from an XML document
and evaluating them. This allows for a “simple” way to collect R functions definitions or a sequence
of (annotated) R code segments in an XML document along with other material such as notes,
documentation, data, FAQ entries, etc., and still be able to access the R code directly from within an
R session. The approach enables one to use the XML document as a container for a heterogeneous
collection of related material, some of which is R code. In the literate programming parlance, this
function essentially dynamically "tangles" the document within R, but can work on small subsets
of it that are easily specified in the xmlSource function call. This is a convenient way to annotate
code in a rich way and work with source files in a new and potentially more effective manner.

xmlSourceFunctions provides a convenient way to read only the function definitions, i.e. the
<r:function> nodes. We can restrict to a subset by specifying the node ids of interest.

xmlSourceSection allows us to evaluate the code in one or more specific sections.

This style of authoring code supports mixed language support in which we put, for example, C and
R code together in the same document. Indeed, one can use the document to store arbitrary content
and still retrieve the R code. The more structure there is, the easier it is to create tools to extract that
information using XPath expressions.

We can identify individual r:code nodes in the document to process, i.e. evaluate. We do this
using their id attribute and specifying which to process via the ids argument. Alternatively, if a
document has a node r:codeIds as a child of the top-level node (or within an invisible node), we
read its contents as a sequence of line separated id values as if they had been specified via the
argument ids to this function.

We can also use XSL to extract the code. See getCode.xsl in the Omegahat XSL collection.

This particular version (as opposed to other implementations) uses XPath to conveniently find the
nodes of interest.

Usage

xmlSource(url, ...,
envir = globalenv(),
xpath = character(),
ids = character(),
omit = character(),
ask = FALSE,
example = NA,

xmlSource 137

fatal = TRUE, verbose = TRUE, echo = verbose, print = echo,
xnodes = DefaultXMLSourceXPath,
namespaces = DefaultXPathNamespaces, section = character(),
eval = TRUE, init = TRUE, setNodeNames = FALSE, parse = TRUE,
force = FALSE)

xmlSourceFunctions(doc, ids = character(), parse = TRUE, ...)
xmlSourceSection(doc, ids = character(),

xnodes = c(".//r:function", ".//r:init[not(@eval='false')]",
".//r:code[not(@eval='false')]",
".//r:plot[not(@eval='false')]"),

namespaces = DefaultXPathNamespaces, ...)

Arguments

url the name of the file, URL containing the XML document, or an XML string.
This is passed to xmlTreeParse which is called with useInternalNodes =
TRUE.

... additional arguments passed to xmlTreeParse

envir the environment in which the code elements of the XML document are to be
evaluated. By default, they are evaluated in the global environment so that as-
signments take place there.

xpath a string giving an XPath expression which is used after parsing the document to
filter the document to a particular subset of nodes. This allows one to restrict
the evaluation to a subset of the original document. One can do this directly
by parsing the XML document, applying the XPath query and then passing the
resulting node set to this xmlSource function’s appropriate method. This argu-
ment merely allows for a more convenient form of those steps, collapsing it into
one action.

ids a character vector. XML nodes containing R code (e.g. r:code, r:init, r:function,
r:plot) can have an id attribute. This vector allows the caller to specify the sub-
set of these nodes to process, i.e. whose code will be evaluated. The order is
currently not important. It may be used in the future to specify the order in
which the nodes are evaluated.
If this is not specified and the document has a node r:codeIds as an immedi-
ate child of the top-most node, the contents of this node or contained within an
invisible node (so that it doesn’t have to be filtered when rendering the doc-
ument), the names of the r:code id values to process are taken as the individual
lines from the body of this node.

omit a character vector. The values of the id attributes of the nodes that we want to
skip or omit from the evaluation. This allows us to specify the set that we don’t
want evaluated, in contrast to the ids argument. The order is not important.

ask logical

example a character or numeric vector specifying the values of the id attributes of any
r:example nodes in the document. A single document may contain numerous,
separate examples and these can be marked uniquely using an id attribute, e.g.
<r:example id=''. This argument allows the caller to specify which example
(or examples) to run. If this is not specified by the caller and there are r:example

138 xmlSource

nodes in the document, the user is prompted to select an example via a (text-
based) menu. If a character vector is given by the caller, we use partial matching
against the collection of id attributes of the r:example nodes to identify the
examples of interest. Alternatively, one can specify the example(s) to run by
number.

fatal (currently unused) a logical value. The idea is to control how we handle errors
when evaluating individual code segments. We could recover from errors and
continue processing subsequent nodes.

verbose a logical value. If TRUE, information about what code segments are being eval-
uated is displayed on the console. echo controls whether code is displayed, but
this controls whether additional informatin is also displayed. See source.

xnodes a character vector. This is a collection of xpath expressions given as individual
strings which find the nodes whose contents we evaluate.

echo a logical value indicating whether to display the code before it is evaluated.

namespaces a named character vector (i.e. name = value pairs of strings) giving the prefix -
URI pairings for the namespaces used in the XPath expressions. The URIs must
match those in the document, but the prefixes are local to the XPath expression.
The default provides mappings for the prefixes "r", "omg", "perl", "py", and so
on. See XML:::DefaultXPathNamespaces.

section a vector of numbers or strings. This allows the caller to specify that the function
should only look for R-related nodes within the specified section(s). This is
useful for being able to easily process only the code in a particular subset of
the document identified by a DocBook section node. A string value is used
to match the id attribute of the section node. A number (assumed to be an
integer) is used to index the set of section nodes. These amount to XPath
expressions of the form //section[number] and //section[@id = string].

print a logical value indicating whether to print the results

eval a logical value indicating whether to evaluate the code in the specified nodes or
to just return the result of parsing the text in each node.

init a logical controlling whether to run the R code in any r:init nodes.

doc the XML document, either a file name, the content of the document or the parsed
document.

parse a logical value that controls whether we parse the code or just return the text
representation from the XML without parsing it. This allows us to get just the
code.

setNodeNames a logical value that controls whether we compute the name for each node (or
result) by finding is id or name attribute or enclosing task node.

force a logical value. If this is TRUE, the function will evaluate the code in a node even
if it is explicitly marked as not to be evaluated with eval = "false", either on
the node itself or an ancestor.

Details

This evaluates the code, function and example elements in the XML content that have the appro-
priate namespace (i.e. r, s, or no namespace) and discards all others. It also discards r:output nodes

xmlStopParser 139

from the text, along with processing instructions and comments. And it resolves r:frag or r:code
nodes with a ref attribute by identifying the corresponding r:code node with the same value for
its id attribute and then evaluating that node in place of the r:frag reference.

Value

An R object (typically a list) that contains the results of evaluating the content of the different
selected code segments in the XML document. We use sapply to iterate over the nodes and so If
the results of all the nodes A list giving the pairs of expressions and evaluated objects for each of
the different XML elements processed.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

xmlTreeParse

Examples

xmlSource(system.file("exampleData", "Rsource.xml", package="XML"))

This illustrates using r:frag nodes.
The r:frag nodes are not processed directly, but only
if referenced in the contents/body of a r:code node
f = system.file("exampleData", "Rref.xml", package="XML")
xmlSource(f)

xmlStopParser Terminate an XML parser

Description

This function allows an R-level function to terminate an XML parser before it completes the pro-
cessing of the XML content. This might be useful, for example, in event-driven parsing with
xmlEventParse when we want to read through an XML file until we find a record of interest.
Then, having retrieved the necessary information, we want to terminate the parsing rather than let it
pointlessly continue. Instead of raising an error in our handler function, we can call xmlStopParser
and return. The parser will then take control again and terminate and return back to the original R
function from which it was invoked.

The only argument to this function is a reference to internal C-level which identifies the parser.
This is passed by the R-XML parser mechanism to a function invoked by the parser if that function
inherits (in the S3 sense) from the class XMLParserContextFunction.

Usage

xmlStopParser(parser)

140 xmlStopParser

Arguments

parser an object of class XMLParserContext which must have been obtained by via
an XMLParserContextFunction function called by the parser. This is just a
handler function whose class includes XMLParserContextFunction

Value

TRUE if it succeeded and an error is raised if the parser object is not valid.

Author(s)

Duncan Temple Lang

References

libxml2 http://xmlsoft.org

See Also

xmlEventParse

Examples

##
Stopping the parser mid-way and an example of using XMLParserContextFunction.

startElement =
function(ctxt, name, attrs, ...) {

print(ctxt)
print(name)
if(name == "rewriteURI") {

cat("Terminating parser\n")
xmlStopParser(ctxt)

}
}
class(startElement) = "XMLParserContextFunction"
endElement =
function(name, ...)
cat("ending", name, "\n")

fileName = system.file("exampleData", "catalog.xml", package = "XML")
xmlEventParse(fileName, handlers = list(startElement = startElement, endElement = endElement))

http://xmlsoft.org

xmlStructuredStop 141

xmlStructuredStop Condition/error handler functions for XML parsing

Description

These functions provide basic error handling for the XML parser in R. They also illustrate the basics
which will allow others to provide customized error handlers that make more use of the information
provided in each error reported.

The xmlStructuredStop function provides a simple R-level handler for errors raised by the XML
parser. It collects the information provided by the XML parser and raises an R error. This is only
used if NULL is specified for the error argument of xmlTreeParse, xmlTreeParse and htmlTreeParse.

The default is to use the function returned by a call to xmlErrorCumulator as the error handler.
This, as the name suggests, cumulates errors. The idea is to catch each error and let the parser
continue and then report them all. As each error is encountered, it is collected by the function. If
immediate is TRUE, the error is also reported on the console. When the parsing is complete and
has failed, this function is invoked again with a zero-length character vector as the message (first
argument) and then it raises an error. This function will then raise an R condition of class class.

Usage

xmlStructuredStop(msg, code, domain, line, col, level, filename,
class = "XMLError")

xmlErrorCumulator(class = "XMLParserErrorList", immediate = TRUE)

Arguments

msg character string, the text of the message being reported

code an integer code giving an identifier for the error (see xmlerror.h) for the moment,

domain an integer domain indicating in which "module" or part of the parsing the error
occurred, e.g. name space, parser, tree, xinclude, etc.

line an integer giving the line number in the XML content being processed corre-
sponding to the error,

col an integer giving the column position of the error,

level an integer giving the severity of the error ranging from 1 to 3 in increasing
severity (warning, error, fatal),

filename character string, the name of the document being processed, i.e. its file name or
URL.

class character vector, any classes to prepend to the class attribute to make the er-
ror/condition. These are prepended to those returned via simpleError.

immediate logical value, if TRUE errors are displayed on the R console as they are encoun-
tered. Otherwise, the errors are collected and displayed at the end of the XML
parsing.

142 xmlToDataFrame

Value

This calls stop and so does not return a value.

Author(s)

Duncan Temple Lang

References

libxml2 and its error handling facilities (http://xmlsoft.org

See Also

xmlTreeParse xmlInternalTreeParse htmlTreeParse

Examples

tryCatch(xmlTreeParse("<a>", asText = TRUE, error = NULL),
XMLError = function(e) {

cat("There was an error in the XML at line",
e$line, "column", e$col, "\n",
e$message, "\n")

})

xmlToDataFrame Extract data from a simple XML document

Description

This function can be used to extract data from an XML document (or sub-document) that has a sim-
ple, shallow structure that does appear reasonably commonly. The idea is that there is a collection
of nodes which have the same fields (or a subset of common fields) which contain primitive values,
i.e. numbers, strings, etc. Each node corresponds to an "observation" and each of its sub-elements
correspond to a variable. This function then builds the corresponding data frame, using the union
of the variables in the different observation nodes. This can handle the case where the nodes do not
all have all of the variables.

Usage

xmlToDataFrame(doc, colClasses = NULL, homogeneous = NA,
collectNames = TRUE, nodes = list(),
stringsAsFactors = FALSE)

http://xmlsoft.org

xmlToDataFrame 143

Arguments

doc the XML content. This can be the name of a file containing the XML, the parsed
XML document. If one wants to work on a subset of nodes, specify these via
the nodes parameter.

colClasses a list/vector giving the names of the R types for the corresponding variables and
this is used to coerce the resulting column in the data frame to this type. These
can be named. This is similar to the colClasses parameter for read.table. If
this is given as a list, columns in the data frame corresponding to elements that
are NULL are omitted from the answer. This can be slightly complex to specify
if the different nodes have the "variables" in quite different order as there is not
a well defined order for the variables corresponding to colClasses.

homogeneous a logical value that indicates whether each of the nodes contains all of the vari-
ables (TRUE) or if there may be some nodes which have only a subset of them.
The function determines this if the caller does not specify homogeneous or uses
NA as the value. It is a parameter to allow the caller to specify this information
and avoid these "extra" computations. If the caller knows this information it is
more efficient to specify it.

collectNames a logical value indicating whether we compute the names by explicitly comput-
ing the union of all variable names or, if FALSE, we use the names from the node
with the most children. This latter case is useful when the caller knows that the
there is at least one node with all the variables.

nodes a list of XML nodes which are to be processed
stringsAsFactors

a logical value that controls whether character vectors are converted to factor
objects in the resulting data frame.

Value

A data frame.

Author(s)

Duncan Temple Lang

See Also

xmlParse getNodeSet

Examples

f = system.file("exampleData", "size.xml", package = "XML")
xmlToDataFrame(f, c("integer", "integer", "numeric"))

Drop the middle variable.
z = xmlToDataFrame(f, colClasses = list("integer", NULL, "numeric"))

This illustrates how we can get a subset of nodes and process

144 xmlToList

those as the "data nodes", ignoring the others.
f = system.file("exampleData", "tides.xml", package = "XML")
doc = xmlParse(f)
xmlToDataFrame(nodes = xmlChildren(xmlRoot(doc)[["data"]]))

or, alternatively
xmlToDataFrame(nodes = getNodeSet(doc, "//data/item"))

f = system.file("exampleData", "kiva_lender.xml", package = "XML")
doc = xmlParse(f)
dd = xmlToDataFrame(getNodeSet(doc, "//lender"))

xmlToList Convert an XML node/document to a more R-like list

Description

This function is an early and simple approach to converting an XML node or document into a more
typical R list containing the data values directly (rather than as XML nodes). It is useful for dealing
with data that is returned from REST requests or other Web queries or generally when parsing
XML and wanting to be able to access the content as elements in a list indexed by the name of the
node. For example, if given a node of the form <x> <a>text <b foo="1"/> <c bar="me">
<d>a phrase</d> </c> </x> We would end up with a list with elements named "a", "b" and "c".
"a" would be the string "text", b would contain the named character vector c(foo = "1") (i.e. the
attributes) and "c" would contain the list with two elements named "d" and ".attrs". The element
corresponding to "d" is a character vector with the single element "a phrase". The ".attrs" element
of the list is the character vector of attributes from the node <c>...</c>.

Usage

xmlToList(node, addAttributes = TRUE, simplify = FALSE)

Arguments

node the XML node or document to be converted to an R list. This can be an "internal"
or C-level node (i.e. XMLInternalNode-class) or a regular R-level node (either
XMLNode-class or XMLHashNode).

addAttributes a logical value which controls whether the attributes of an empty node are added
to the

simplify a logical value that controls whether we collapse the list to a vector if the ele-
ments all have a common compatible type. Basically, this controls whether we
use sapply or lapply.

Value

A list whose elements correspond to the children of the top-level nodes.

xmlToS4 145

Author(s)

Duncan Temple Lang

See Also

xmlTreeParse getNodeSet and xpathApply xmlRoot, xmlChildren, xmlApply, [[, etc. for ac-
cessing the content of XML nodes.

Examples

tt =
'<x>

<a>text
<b foo="1"/>
<c bar="me">

<d>a phrase</d>
</c>

</x>'

doc = xmlParse(tt)
xmlToList(doc)

use an R-level node representation
doc = xmlTreeParse(tt)
xmlToList(doc)

xmlToS4 General mechanism for mapping an XML node to an S4 object

Description

This generic function and its methods recursively process an XML node and its child nodes (and
theirs and so on) to map the nodes to S4 objects.

This is the run-time function that corresponds to the makeClassTemplate function.

Usage

xmlToS4(node, obj = new(xmlName(node)), ...)

Arguments

node the top-level XML node to convert to an S4 object

obj the object whose slots are to be filled from the information in the XML node

... additional parameters for methods

Value

The object obj whose slots have been modified.

146 xmlTree

Author(s)

Duncan Temple Lang

See Also

makeClassTemplate

Examples

txt = paste0("<doc><part><name>ABC</name><type>XYZ</type>',
<cost>3.54</cost><status>available</status></part></doc>")

doc = xmlParse(txt)

setClass("part", representation(name = "character",
type = "character",
cost = "numeric",
status= "character"))

xmlToS4(xmlRoot(doc)[["part"]])

xmlTree An internal, updatable DOM object for building XML trees

Description

This is a mutable object (implemented via a closure) for representing an XML tree, in the same
spirit as xmlOutputBuffer and xmlOutputDOM but that uses the internal structures of libxml. This
can be used to create a DOM that can be constructed in R and exported to another system such as
XSLT (https://www.omegahat.net/Sxslt/)

Usage

xmlTree(tag, attrs = NULL, dtd=NULL, namespaces=list(),
doc = newXMLDoc(dtd, namespaces))

Arguments

tag the node or element name to use to create the new top-level node in the tree or
alternatively, an XMLInternalNode that was already created. This is optional. If
it is not specified, no top-most node is created but can be added using addNode.
If a top-level tag is added in the call to xmlTree, that becomes the currently
active or open node (e.g. same as addNode(..., close = FALSE)) and nodes
subsequently added to this

attrs attributes for the top-level node, in the form of a named character vector.

dtd the name of the external DTD for this document. If specified, this adds the
DOCTYPE node to the resulting document. This can be a node created earlier
with a call to newXMLDTDNode, or alternatively it can be a character vector with
1, 2 or 3 elements giving the name of the top-level node, and the public identifier
and the system identifier for the DTD in that order.

https://www.omegahat.net/Sxslt/

xmlTree 147

namespaces a named character vector with each element giving the name space identifier and
the corresponding URI, \ e.g c(shelp = "https://www.omegahat.net/XML/SHelp")
If tag is specified as a character vector, these name spaces are defined within
that new node.

doc an internal XML document object, typically created with newXMLDoc. This is
used as the host document for all the new nodes that will be created as part
of this document. If one wants to create nodes without an internal document
ancestor, one can alternatively specify this is as NULL.

Details

This creates a collection of functions that manipulate a shared state to build and maintain an XML
tree in C-level code.

Value

An object of class XMLInternalDOM that extends XMLOutputStream and has the same interface (i.e.
“methods”) as xmlOutputBuffer and xmlOutputDOM. Each object has methods for adding a new
XML tag, closing a tag, adding an XML comment, and retrieving the contents of the tree.

addTag create a new tag at the current position, optionally leaving it as the active open
tag to which new nodes will be added as children

closeTag close the currently active tag making its parent the active element into which
new nodes will be added.

addComment add an XML comment node as a child of the active node in the document.

value retrieve an object representing the XML tree. See saveXML to serialize the con-
tents of the tree.

add degenerate method in this context.

Note

This is an early version of this function and I need to iron out some of the minor details.

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/, http://www.xmlsoft.org, https://www.omegahat.net

See Also

saveXML newXMLDoc newXMLNode xmlOutputBuffer xmlOutputDOM

https://www.w3.org/XML/
http://www.xmlsoft.org
https://www.omegahat.net

148 xmlTree

Examples

z = xmlTree("people", namespaces = list(r = "http://www.r-project.org"))
z$setNamespace("r")

z$addNode("person", attrs = c(id = "123"), close = FALSE)
z$addNode("firstname", "Duncan")
z$addNode("surname", "Temple Lang")
z$addNode("title", "Associate Professor")
z$addNode("expertize", close = FALSE)

z$addNode("topic", "Data Technologies")
z$addNode("topic", "Programming Language Design")
z$addNode("topic", "Parallel Computing")
z$addNode("topic", "Data Visualization")
z$addNode("topic", "Meta-Computing")
z$addNode("topic", "Inter-system interfaces")

z$closeTag()
z$addNode("address", "4210 Mathematical Sciences Building, UC Davis")

z$closeTag()

tr <- xmlTree("CDataTest")
tr$addTag("top", close=FALSE)
tr$addCData("x <- list(1, a='&');\nx[[2]]")
tr$addPI("S", "plot(1:10)")
tr$closeTag()
cat(saveXML(tr$value()))

f = tempfile()
saveXML(tr, f, encoding = "UTF-8")

Creating a node
x = rnorm(3)
z = xmlTree("r:data", namespaces = c(r = "http://www.r-project.org"))
z$addNode("numeric", attrs = c("r:length" = length(x)))

shows namespace prefix on an attribute, and different from the one on the node.
z = xmlTree()

z$addNode("r:data", namespace = c(r = "http://www.r-project.org",
omg = "https://www.omegahat.net"),

close = FALSE)
x = rnorm(3)
z$addNode("r:numeric", attrs = c("omg:length" = length(x)))

z = xmlTree("examples")
z$addNode("example", namespace = list(r = "http://www.r-project.org"), close = FALSE)
z$addNode("code", "mean(rnorm(100))", namespace = "r")

x = summary(rnorm(1000))

xmlTreeParse 149

d = xmlTree()
d$addNode("table", close = FALSE)

d$addNode("tr", .children = sapply(names(x), function(x) d$addNode("th", x)))
d$addNode("tr", .children = sapply(x, function(x) d$addNode("td", format(x))))

d$closeNode()
cat(saveXML(d))

Dealing with DTDs and system and public identifiers for DTDs.
Just doctype
za = xmlTree("people", dtd = "people")
www.omegahat.net is flaky
no public element
zb = xmlTree("people",

dtd = c("people", "", "https://www.omegahat.net/XML/types.dtd"))
public and system
zc = xmlTree("people",

dtd = c("people", "//a//b//c//d",
"https://www.omegahat.net/XML/types.dtd"))

xmlTreeParse XML Parser

Description

Parses an XML or HTML file or string containing XML/HTML content, and generates an R struc-
ture representing the XML/HTML tree. Use htmlTreeParse when the content is known to be
(potentially malformed) HTML. This function has numerous parameters/options and operates quite
differently based on their values. It can create trees in R or using internal C-level nodes, both
of which are useful in different contexts. It can perform conversion of the nodes into R objects
using caller-specified handler functions and this can be used to map the XML document directly
into R data structures, by-passing the conversion to an R-level tree which would then be processed
recursively or with multiple descents to extract the information of interest.

xmlParse and htmlParse are equivalent to the xmlTreeParse and htmlTreeParse respectively,
except they both use a default value for the useInternalNodes parameter of TRUE, i.e. they working
with and return internal nodes/C-level nodes. These can then be searched using XPath expressions
via xpathApply and getNodeSet.

xmlSchemaParse is a convenience function for parsing an XML schema.

Usage

xmlTreeParse(file, ignoreBlanks=TRUE, handlers=NULL, replaceEntities=FALSE,
asText=FALSE, trim=TRUE, validate=FALSE, getDTD=TRUE,
isURL=FALSE, asTree = FALSE, addAttributeNamespaces = FALSE,
useInternalNodes = FALSE, isSchema = FALSE,
fullNamespaceInfo = FALSE, encoding = character(),
useDotNames = length(grep("^\\.", names(handlers))) > 0,

150 xmlTreeParse

xinclude = TRUE, addFinalizer = TRUE, error = xmlErrorCumulator(),
isHTML = FALSE, options = integer(), parentFirst = FALSE)

xmlInternalTreeParse(file, ignoreBlanks=TRUE, handlers=NULL, replaceEntities=FALSE,
asText=FALSE, trim=TRUE, validate=FALSE, getDTD=TRUE,
isURL=FALSE, asTree = FALSE, addAttributeNamespaces = FALSE,
useInternalNodes = TRUE, isSchema = FALSE,
fullNamespaceInfo = FALSE, encoding = character(),
useDotNames = length(grep("^\\.", names(handlers))) > 0,
xinclude = TRUE, addFinalizer = TRUE, error = xmlErrorCumulator(),
isHTML = FALSE, options = integer(), parentFirst = FALSE)

xmlNativeTreeParse(file, ignoreBlanks=TRUE, handlers=NULL, replaceEntities=FALSE,
asText=FALSE, trim=TRUE, validate=FALSE, getDTD=TRUE,
isURL=FALSE, asTree = FALSE, addAttributeNamespaces = FALSE,
useInternalNodes = TRUE, isSchema = FALSE,
fullNamespaceInfo = FALSE, encoding = character(),
useDotNames = length(grep("^\\.", names(handlers))) > 0,
xinclude = TRUE, addFinalizer = TRUE, error = xmlErrorCumulator(),
isHTML = FALSE, options = integer(), parentFirst = FALSE)

htmlTreeParse(file, ignoreBlanks=TRUE, handlers=NULL, replaceEntities=FALSE,
asText=FALSE, trim=TRUE, validate=FALSE, getDTD=TRUE,
isURL=FALSE, asTree = FALSE, addAttributeNamespaces = FALSE,
useInternalNodes = FALSE, isSchema = FALSE,
fullNamespaceInfo = FALSE, encoding = character(),
useDotNames = length(grep("^\\.", names(handlers))) > 0,
xinclude = TRUE, addFinalizer = TRUE, error = htmlErrorHandler,
isHTML = TRUE, options = integer(), parentFirst = FALSE)

htmlParse(file, ignoreBlanks = TRUE, handlers = NULL, replaceEntities = FALSE,
asText = FALSE, trim = TRUE, validate = FALSE, getDTD = TRUE,
isURL = FALSE, asTree = FALSE, addAttributeNamespaces = FALSE,
useInternalNodes = TRUE, isSchema = FALSE, fullNamespaceInfo = FALSE,

encoding = character(),
useDotNames = length(grep("^\\.", names(handlers))) > 0,
xinclude = TRUE, addFinalizer = TRUE,
error = htmlErrorHandler, isHTML = TRUE,
options = integer(), parentFirst = FALSE)

xmlSchemaParse(file, asText = FALSE, xinclude = TRUE, error = xmlErrorCumulator())

Arguments

file The name of the file containing the XML contents. This can contain ~ which
is expanded to the user’s home directory. It can also be a URL. See isURL.
Additionally, the file can be compressed (gzip) and is read directly without the
user having to de-compress (gunzip) it.

xmlTreeParse 151

ignoreBlanks logical value indicating whether text elements made up entirely of white space
should be included in the resulting ‘tree’.

handlers Optional collection of functions used to map the different XML nodes to R ob-
jects. Typically, this is a named list of functions, and a closure can be used to
provide local data. This provides a way of filtering the tree as it is being cre-
ated in R, adding or removing nodes, and generally processing them as they are
constructed in the C code.
In a recent addition to the package (version 0.99-8), if this is specified as a
single function object, we call that function for each node (of any type) in the
underlying DOM tree. It is invoked with the new node and its parent node. This
applies to regular nodes and also comments, processing instructions, CDATA
nodes, etc. So this function must be sufficiently general to handle them all.

replaceEntities

logical value indicating whether to substitute entity references with their text
directly. This should be left as False. The text still appears as the value of the
node, but there is more information about its source, allowing the parse to be
reversed with full reference information.

asText logical value indicating that the first argument, file, should be treated as the
XML text to parse, not the name of a file. This allows the contents of documents
to be retrieved from different sources (e.g. HTTP servers, XML-RPC, etc.) and
still use this parser.

trim whether to strip white space from the beginning and end of text strings.

validate logical indicating whether to use a validating parser or not, or in other words
check the contents against the DTD specification. If this is true, warning mes-
sages will be displayed about errors in the DTD and/or document, but the pars-
ing will proceed except for the presence of terminal errors. This is ignored when
parsing an HTML document.

getDTD logical flag indicating whether the DTD (both internal and external) should be
returned along with the document nodes. This changes the return type. This is
ignored when parsing an HTML document.

isURL indicates whether the file argument refers to a URL (accessible via ftp or http)
or a regular file on the system. If asText is TRUE, this should not be specified.
The function attempts to determine whether the data source is a URL by using
grep to look for http or ftp at the start of the string. The libxml parser handles
the connection to servers, not the R facilities (e.g. scan).

asTree this only applies when on passes a value for the handlers argument and is used
then to determine whether the DOM tree should be returned or the handlers
object.

addAttributeNamespaces

a logical value indicating whether to return the namespace in the names of the
attributes within a node or to omit them. If this is TRUE, an attribute such as
xsi:type="xsd:string" is reported with the name xsi:type. If it is FALSE,
the name of the attribute is type.

useInternalNodes

a logical value indicating whether to call the converter functions with objects of
class XMLInternalNode rather than XMLNode. This should make things faster

152 xmlTreeParse

as we do not convert the contents of the internal nodes to R explicit objects.
Also, it allows one to access the parent and ancestor nodes. However, since the
objects refer to volatile C-level objects, one cannot store these nodes for use in
further computations within R. They “disappear” after the processing the XML
document is completed.
If this argument is TRUE and no handlers are provided, the return value is a
reference to the internal C-level document pointer. This can be used to do post-
processing via XPath expressions using getNodeSet.
This is ignored when parsing an HTML document.

isSchema a logical value indicating whether the document is an XML schema (TRUE) and
should be parsed as such using the built-in schema parser in libxml.

fullNamespaceInfo

a logical value indicating whether to provide the namespace URI and prefix on
each node or just the prefix. The latter (FALSE) is currently the default as that was
the original way the package behaved. However, using TRUE is more informative
and we will make this the default in the future.
This is ignored when parsing an HTML document.

encoding a character string (scalar) giving the encoding for the document. This is optional
as the document should contain its own encoding information. However, if it
doesn’t, the caller can specify this for the parser. If the XML/HTML document
does specify its own encoding that value is used regardless of any value specified
by the caller. (That’s just the way it goes!) So this is to be used as a safety net
in case the document does not have an encoding and the caller happens to know
theactual encoding.

useDotNames a logical value indicating whether to use the newer format for identifying general
element function handlers with the ’.’ prefix, e.g. .text, .comment, .startElement.
If this is FALSE, then the older format text, comment, startElement, ... are used.
This causes problems when there are indeed nodes named text or comment or
startElement as a node-specific handler are confused with the corresponding
general handler of the same name. Using TRUE means that your list of handlers
should have names that use the ’.’ prefix for these general element handlers.
This is the preferred way to write new code.

xinclude a logical value indicating whether to process nodes of the form <xi:include
xmlns:xi="https://www.w3.org/2001/XInclude"> to insert content from other
parts of (potentially different) documents. TRUE means resolve the external ref-
erences; FALSE means leave the node as is. Of course, one can process these
nodes oneself after document has been parse using handler functions or working
on the DOM. Please note that the syntax for inclusion using XPointer is not the
same as XPath and the results can be a little unexpected and confusing. See the
libxml2 documentation for more details.

addFinalizer a logical value indicating whether the default finalizer routine should be reg-
istered to free the internal xmlDoc when R no longer has a reference to this
external pointer object. This is only relevant when useInternalNodes is TRUE.

error a function that is invoked when the XML parser reports an error. When an error
is encountered, this is called with 7 arguments. See xmlStructuredStop for
information about these

xmlTreeParse 153

If parsing completes and no document is generated, this function is called again
with only argument which is a character vector of length 0. This gives the func-
tion an opportunity to report all the errors and raise an exception rather than
doing this when it sees th first one.
This function can do what it likes with the information. It can raise an R error
or let parser continue and potentially find further errors.
The default value of this argument supplies a function that cumulates the errors
If this is NULL, the default error handler function in the package xmlStructuredStop
is invoked and this will raise an error in R at that time in R.

isHTML a logical value that allows this function to be used for parsing HTML docu-
ments. This causes validation and processing of a DTD to be turned off. This
is currently experimental so that we can implement htmlParse with this same
function.

options an integer value or vector of values that are combined (OR’ed) together to spec-
ify options for the XML parser. This is the same as the options parameter for
xmlParseDoc.

parentFirst a logical value for use when we have handler functions and are traversing the
tree. This controls whether we process the node before processing its children,
or process the children before their parent node.

Details

The handlers argument is used similarly to those specified in xmlEventParse. When an XML tag
(element) is processed, we look for a function in this collection with the same name as the tag’s
name. If this is not found, we look for one named startElement. If this is not found, we use
the default built in converter. The same works for comments, entity references, cdata, processing
instructions, etc. The default entries should be named comment, startElement, externalEntity,
processingInstruction, text, cdata and namespace. All but the last should take the XMLnode
as their first argument. In the future, other information may be passed via . . . , for example, the
depth in the tree, etc. Specifically, the second argument will be the parent node into which they are
being added, but this is not currently implemented, so should have a default value (NULL).

The namespace function is called with a single argument which is an object of class XMLNameSpace.
This contains

id the namespace identifier as used to qualify tag names;

uri the value of the namespace identifier, i.e. the URI identifying the namespace.

local a logical value indicating whether the definition is local to the document being parsed.

One should note that the namespace handler is called before the node in which the namespace
definition occurs and its children are processed. This is different than the other handlers which are
called after the child nodes have been processed.

Each of these functions can return arbitrary values that are then entered into the tree in place of
the default node passed to the function as the first argument. This allows the caller to generate the
nodes of the resulting document tree exactly as they wish. If the function returns NULL, the node is
dropped from the resulting tree. This is a convenient way to discard nodes having processed their
contents.

154 xmlTreeParse

Value

By default (when useInternalNodes is FALSE, getDTD is TRUE, and no handler functions are
provided), the return value is, an object of (S3) class XMLDocument. This has two fields named doc
and dtd and are of class DTDList and XMLDocumentContent respectively.

If getDTD is FALSE, only the doc object is returned.

The doc object has three fields of its own: file, version and children.

file The (expanded) name of the file containing the XML.

version A string identifying the version of XML used by the document.

children A list of the XML nodes at the top of the document. Each of these is of class
XMLNode. These are made up of 4 fields.

name The name of the element.
attributes For regular elements, a named list of XML attributes converted

from the <tag x="1" y="abc">
children List of sub-nodes.
value Used only for text entries.

Some nodes specializations of XMLNode, such as XMLComment, XMLProcessingInstruction,
XMLEntityRef are used.
If the value of the argument getDTD is TRUE and the document refers to a
DTD via a top-level DOCTYPE element, the DTD and its information will be
available in the dtd field. The second element is a list containing the external
and internal DTDs. Each of these contains 2 lists - one for element definitions
and another for entities. See parseDTD.
If a list of functions is given via handlers, this list is returned. Typically, these
handler functions share state via a closure and the resulting updated data struc-
tures which contain the extracted and processed values from the XML document
can be retrieved via a function in this handler list.
If asTree is TRUE, then the converted tree is returned. What form this takes
depends on what the handler functions have done to process the XML tree.
If useInternalNodes is TRUE and no handlers are specified, an object of S3
class XMLInternalDocument is returned. This can be used in much the same
ways as an XMLDocument, e.g. with xmlRoot, docName and so on to traverse the
tree. It can also be used with XPath queries via getNodeSet, xpathApply and
doc["xpath-expression"].
If internal nodes are used and the internal tree returned directly, all the nodes are
returned as-is and no attempt to trim white space, remove “empty” nodes (i.e.
containing only white space), etc. is done. This is potentially quite expensive
and so is not done generally, but should be done during the processing of the
nodes. When using XPath queries, such nodes are easily identified and/or ig-
nored and so do not cause any difficulties. They do become an issue when deal-
ing with a node’s chidren directly and so one can use simple filtering techniques
such as xmlChildren(node)[!xmlSApply(node, inherits, "XMLInternalTextNode")]
and even check the xmlValue to determine if it contains only white space.
xmlChildren(node)[!xmlSApply(node, function(x) inherit(x, "XMLInternalTextNode")]
&& trim(xmlValue(x)) == "")

xmlTreeParse 155

Note

Make sure that the necessary 3rd party libraries are available.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

http://xmlsoft.org, https://www.w3.org/XML//

See Also

xmlEventParse, free for releasing the memory when an XMLInternalDocument object is returned.

Examples

fileName <- system.file("exampleData", "test.xml", package="XML")
parse the document and return it in its standard format.

xmlTreeParse(fileName)

parse the document, discarding comments.

xmlTreeParse(fileName, handlers=list("comment"=function(x,...){NULL}), asTree = TRUE)

print the entities
invisible(xmlTreeParse(fileName,

handlers=list(entity=function(x) {
cat("In entity",x$name, x$value,"\n")
x}

), asTree = TRUE
)

)

Parse some XML text.
Read the text from the file
xmlText <- paste(readLines(fileName), "\n", collapse="")

print(xmlText)
xmlTreeParse(xmlText, asText=TRUE)

with version 1.4.2 we can pass the contents of an XML
stream without pasting them.

xmlTreeParse(readLines(fileName), asText=TRUE)

Read a MathML document and convert each node
so that the primary class is
<name of tag>MathML
so that we can use method dispatching when processing

http://xmlsoft.org
https://www.w3.org/XML//

156 xmlTreeParse

it rather than conditional statements on the tag name.
See plotMathML() in examples/.
fileName <- system.file("exampleData", "mathml.xml",package="XML")

m <- xmlTreeParse(fileName,
handlers=list(
startElement = function(node){
cname <- paste(xmlName(node),"MathML", sep="",collapse="")
class(node) <- c(cname, class(node));
node

}))

In this example, we extract _just_ the names of the
variables in the mtcars.xml file.
The names are the contents of the <variable>
tags. We discard all other tags by returning NULL
from the startElement handler.
#
We cumulate the names of variables in a character
vector named 'vars'.
We define this within a closure and define the
variable function within that closure so that it
will be invoked when the parser encounters a <variable>
tag.
This is called with 2 arguments: the XMLNode object (containing
its children) and the list of attributes.
We get the variable name via call to xmlValue().

Note that we define the closure function in the call and then
create an instance of it by calling it directly as
(function() {...})()

Note that we can get the names by parsing
in the usual manner and the entire document and then executing
xmlSApply(xmlRoot(doc)[[1]], function(x) xmlValue(x[[1]]))
which is simpler but is more costly in terms of memory.
fileName <- system.file("exampleData", "mtcars.xml", package="XML")
doc <- xmlTreeParse(fileName, handlers = (function() {

vars <- character(0) ;
list(variable=function(x, attrs) {

vars <<- c(vars, xmlValue(x[[1]]));
NULL},

startElement=function(x,attr){
NULL
},

names = function() {
vars

}
)

})()
)

xmlTreeParse 157

Here we just print the variable names to the console
with a special handler.
doc <- xmlTreeParse(fileName, handlers = list(

variable=function(x, attrs) {
print(xmlValue(x[[1]])); TRUE

}), asTree=TRUE)

This should raise an error.
try(xmlTreeParse(

system.file("exampleData", "TestInvalid.xml", package="XML"),
validate=TRUE))

Not run:
Parse an XML document directly from a URL.
Requires Internet access.
xmlTreeParse("https://www.omegahat.net/Scripts/Data/mtcars.xml", asText=TRUE)

End(Not run)

counter = function() {
counts = integer(0)
list(startElement = function(node) {

name = xmlName(node)
if(name %in% names(counts))

counts[name] <<- counts[name] + 1
else

counts[name] <<- 1
},

counts = function() counts)
}

h = counter()
xmlParse(system.file("exampleData", "mtcars.xml", package="XML"), handlers = h)
h$counts()

f = system.file("examples", "index.html", package = "XML")
htmlTreeParse(readLines(f), asText = TRUE)
htmlTreeParse(readLines(f))

Same as
htmlTreeParse(paste(readLines(f), collapse = "\n"), asText = TRUE)

getLinks = function() {
links = character()
list(a = function(node, ...) {

links <<- c(links, xmlGetAttr(node, "href"))
node

},
links = function()links)

158 xmlTreeParse

}

h1 = getLinks()
htmlTreeParse(system.file("examples", "index.html", package = "XML"),

handlers = h1)
h1$links()

h2 = getLinks()
htmlTreeParse(system.file("examples", "index.html", package = "XML"),

handlers = h2, useInternalNodes = TRUE)
all(h1$links() == h2$links())

Using flat trees
tt = xmlHashTree()
f = system.file("exampleData", "mtcars.xml", package="XML")
xmlTreeParse(f, handlers = list(.startElement = tt[[".addNode"]]))
xmlRoot(tt)

doc = xmlTreeParse(f, useInternalNodes = TRUE)

sapply(getNodeSet(doc, "//variable"), xmlValue)

#free(doc)

character set encoding for HTML
f = system.file("exampleData", "9003.html", package = "XML")
we specify the encoding

d = htmlTreeParse(f, encoding = "UTF-8")
get a different result if we do not specify any encoding

d.no = htmlTreeParse(f)
document with its encoding in the HEAD of the document.

d.self = htmlTreeParse(system.file("exampleData", "9003-en.html",package = "XML"))
XXX want to do a test here to see the similarities between d and
d.self and differences between d.no

include
f = system.file("exampleData", "nodes1.xml", package = "XML")
xmlRoot(xmlTreeParse(f, xinclude = FALSE))
xmlRoot(xmlTreeParse(f, xinclude = TRUE))

f = system.file("exampleData", "nodes2.xml", package = "XML")
xmlRoot(xmlTreeParse(f, xinclude = TRUE))

Errors
try(xmlTreeParse("<doc><a> & < <?pi > </doc>"))

catch the error by type.
tryCatch(xmlTreeParse("<doc><a> & < <?pi > </doc>"),

"XMLParserErrorList" = function(e) {

xmlValue 159

cat("Errors in XML document\n", e$message, "\n")
})

terminate on first error
try(xmlTreeParse("<doc><a> & < <?pi > </doc>", error = NULL))

see xmlErrorCumulator in the XML package

f = system.file("exampleData", "book.xml", package = "XML")
doc.trim = xmlInternalTreeParse(f, trim = TRUE)
doc = xmlInternalTreeParse(f, trim = FALSE)
xmlSApply(xmlRoot(doc.trim), class)

note the additional XMLInternalTextNode objects
xmlSApply(xmlRoot(doc), class)

top = xmlRoot(doc)
textNodes = xmlSApply(top, inherits, "XMLInternalTextNode")
sapply(xmlChildren(top)[textNodes], xmlValue)

Storing nodes
f = system.file("exampleData", "book.xml", package = "XML")
titles = list()
xmlTreeParse(f, handlers = list(title = function(x)

titles[[length(titles) + 1]] <<- x))
sapply(titles, xmlValue)
rm(titles)

xmlValue Extract or set the contents of a leaf XML node

Description

Some types of XML nodes have no children nodes, but are leaf nodes and simply contain text.
Examples are XMLTextMode, XMLProcessingInstruction. This function provides access to their
raw contents. This has been extended to operate recursivel on arbitrary XML nodes that contain a
single text node.

Usage

xmlValue(x, ignoreComments = FALSE, recursive = TRUE,
encoding = getEncoding(x), trim = FALSE)

Arguments

x the XMLNode object whose contents are to be returned.

ignoreComments a logical value which, if TRUE does not include the text in XML comment nodes.
If this is FALSE, the text in the comments is part of the return value.

160 xmlValue

recursive a logical value indicating whether to process all sub-nodes (TRUE) or only the
text nodes within the node x.

encoding experimental functionality and parameter related to encoding.

trim a logical value controlling whether we remove leading or trailing white space
when returning the string value

Value

The object stored in the value slot of the XMLNode object. This is typically a string.

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/, http://www.jclark.com/xml/, https://www.omegahat.net

See Also

xmlChildren xmlName xmlAttrs xmlNamespace

Examples

node <- xmlNode("foo", "Some text")
xmlValue(node)

xmlValue(xmlTextNode("some more raw text"))

Setting the xmlValue().
a = newXMLNode("a")
xmlValue(a) = "the text"
xmlValue(a) = "different text"

a = newXMLNode("x", "bob")
xmlValue(a) = "joe"

b = xmlNode("bob")
xmlValue(b) = "Foo"
xmlValue(b) = "again"

b = newXMLNode("bob", "some text")
xmlValue(b[[1]]) = "change"
b

https://www.w3.org/XML/
http://www.jclark.com/xml/
https://www.omegahat.net

[.XMLNode 161

[.XMLNode Convenience accessors for the children of XMLNode objects.

Description

These provide a simplified syntax for extracting the children of an XML node.

Usage

S3 method for class 'XMLNode'
x[..., all = FALSE]
S3 method for class 'XMLNode'
x[[...]]
S3 method for class 'XMLDocumentContent'
x[[...]]

Arguments

x the XML node or the top-level document content in which the children are to
be accessed. The XMLDocumentContent is the container for the top-level node
that also contains information such as the URI/filename and XML version. This
accessor method is merely a convenience to get access to children of the top-
level node.

... the identifiers for the children to be retrieved, given as integer indices, names,
etc. in the usual format for the generic link{[} and link{[[} operators

all logical value. When . . . is a character vector, a value of TRUE for all means to
retrieve all of the nodes with those names rather than just the first one. FALSE
gives the usual result of subsetting a list by name which gives just the first ele-
ment. This allows us to avoid the idiom node[names(node) == "bob"] which
is complicated when node is the result of an inline computation and instead we
use node["bob", all = TRUE].

Value

A list or single element containing the children of the XML node given by obj and identified by
. . . .

Author(s)

Duncan Temple Lang

References

https://www.w3.org/XML/, https://www.omegahat.net/RSXML/

See Also

xmlAttrs [<-.XMLNode [[<-.XMLNode

https://www.w3.org/XML/
https://www.omegahat.net/RSXML/

162 [<-.XMLNode

Examples

f = system.file("exampleData", "gnumeric.xml", package = "XML")

top = xmlRoot(xmlTreeParse(f))

Get the first RowInfo element.
top[["Sheets"]][[1]][["Rows"]][["RowInfo"]]

Get a list containing only the first row element
top[["Sheets"]][[1]][["Rows"]]["RowInfo"]
top[["Sheets"]][[1]][["Rows"]][1]

Get all of the RowInfo elements by position
top[["Sheets"]][[1]][["Rows"]][1:xmlSize(top[["Sheets"]][[1]][["Rows"]])]

But more succinctly and accurately, get all of the RowInfo elements
top[["Sheets"]][[1]][["Rows"]]["RowInfo", all = TRUE]

[<-.XMLNode Assign sub-nodes to an XML node

Description

These functions allow one to assign a sub-node to an existing XML node by name or index. These
are the assignment equivalents of the subsetting accessor functions. They are typically called indi-
rectly via the assignment operator, such as x[["myTag"]] <- xmlNode("mySubTag").

Usage

S3 replacement method for class 'XMLNode'
x[i] <- value
S3 replacement method for class 'XMLNode'
x[i] <- value
S3 replacement method for class 'XMLNode'
x[[i]] <- value

Arguments

x the XMLNode object to which the sub-node is to be assigned.

i the identifier for the position in the list of children of x into which the right-
hand-side node(s) should be assigned. These can be either numbers or names.

value one or more XMLNode objects which are to be the sub-nodes of x.

Value

The XML node x containing the new or modified nodes.

[<-.XMLNode 163

Author(s)

Duncan Templle Lang

References

https://www.w3.org, https://www.omegahat.net/RSXML/

See Also

[.XMLNode [[.XMLNode append.xmlNode xmlSize

Examples

top <- xmlNode("top", xmlNode("next","Some text"))
top[["second"]] <- xmlCDataNode("x <- 1:10")
top[[3]] <- xmlNode("tag",attrs=c(id="name"))

https://www.w3.org
https://www.omegahat.net/RSXML/

Index

∗ Annotated code
xmlSource, 136

∗ Error handling
xmlStopParser, 139

∗ IO
[.XMLNode, 161
[<-.XMLNode, 162
addChildren, 4
addNode, 8
append.xmlNode, 9
asXMLTreeNode, 12
catalogLoad, 13
catalogResolve, 15
coerceNodes, 16
compareXMLDocs, 17
docName, 18
Doctype, 19
ensureNamespace, 25
findXInclude, 27
free, 28
getEncoding, 31
getHTMLLinks, 32
getLineNumber, 33
getNodeSet, 34
getRelativeURL, 42
getSibling, 44
getXIncludes, 45
getXMLErrors, 47
isXMLString, 48
libxmlVersion, 50
newXMLDoc, 53
newXMLNamespace, 59
parseDTD, 60
parseURI, 63
parseXMLAndAdd, 64
print.XMLAttributeDef, 65
processXInclude, 67
readHTMLList, 69
readHTMLTable, 70

readKeyValueDB, 73
readSolrDoc, 74
removeXMLNamespaces, 75
replaceNodeWithChildren, 76
saveXML, 77
toHTML, 85
xmlAttrs, 90
xmlCleanNamespaces, 92
xmlClone, 93
xmlElementsByTagName, 98
xmlElementSummary, 100
xmlEventHandler, 101
xmlEventParse, 102
xmlHandler, 111
xmlHashTree, 112
xmlNamespaceDefinitions, 118
xmlOutputBuffer, 123
xmlParent, 125
xmlParserContextFunction, 129
xmlSchemaValidate, 131
xmlSerializeHook, 134
xmlSource, 136
xmlStopParser, 139
xmlStructuredStop, 141
xmlToDataFrame, 142
xmlToList, 144
xmlToS4, 145
xmlTree, 146
xmlTreeParse, 149

∗ Literate Programming
xmlSource, 136

∗ Mixed language
xmlSource, 136

∗ Solr
readSolrDoc, 74

∗ URI
parseURI, 63

∗ Web
parseURI, 63

164

INDEX 165

∗ XML
addChildren, 4
asXMLTreeNode, 12
catalogResolve, 15
coerceNodes, 16
docName, 18
ensureNamespace, 25
getLineNumber, 33
getRelativeURL, 42
getXIncludes, 45
isXMLString, 48
newXMLNamespace, 59
processXInclude, 67
readKeyValueDB, 73
toHTML, 85
xmlClone, 93
xmlElementSummary, 100
xmlHashTree, 112
xmlNamespaceDefinitions, 118
xmlParseDoc, 127
xmlParserContextFunction, 129
xmlSchemaValidate, 131

∗ classes
Doctype-class, 20
SAXState-class, 79
schema-class, 81
XMLAttributes-class, 88
XMLCodeFile-class, 94
XMLInternalDocument-class, 115
XMLNode-class, 122

∗ data exchange
toHTML, 85

∗ data
readHTMLTable, 70
xmlParseDoc, 127
xmlSearchNs, 133
xmlToList, 144

∗ document tree
addChildren, 4

∗ error handling
xmlStructuredStop, 141

∗ external memory
free, 28

∗ file
[.XMLNode, 161
[<-.XMLNode, 162
append.xmlNode, 9
asXMLNode, 11

dtdElement, 21
dtdElementValidEntry, 22
dtdIsAttribute, 23
dtdValidElement, 24
genericSAXHandlers, 29
getNodeSet, 34
length.XMLNode, 49
names.XMLNode, 52
parseDTD, 60
print.XMLAttributeDef, 65
saveXML, 77
startElement.SAX, 83
supportsExpat, 84
toString.XMLNode, 86
xmlApply, 87
xmlAttributeType, 89
xmlAttrs, 90
xmlChildren, 91
xmlContainsEntity, 96
xmlDOMApply, 97
xmlElementsByTagName, 98
xmlEventHandler, 101
xmlEventParse, 102
xmlGetAttr, 110
xmlHandler, 111
xmlName, 116
xmlNamespace, 117
xmlNode, 120
xmlOutputBuffer, 123
xmlParent, 125
xmlRoot, 130
xmlSize, 135
xmlTreeParse, 149
xmlValue, 159

∗ meta-computing
xmlToS4, 145

∗ meta-programming
makeClassTemplate, 51

∗ programming
addChildren, 4
coerceNodes, 16
docName, 18
getChildrenStrings, 30
getHTMLLinks, 32
getRelativeURL, 42
getXMLErrors, 47
makeClassTemplate, 51
newXMLNamespace, 59

166 INDEX

processXInclude, 67
readHTMLList, 69
setXMLNamespace, 82
toHTML, 85
xmlCleanNamespaces, 92
xmlClone, 93
xmlParserContextFunction, 129
xmlSearchNs, 133
xmlSource, 136
xmlStopParser, 139
xmlStructuredStop, 141
xmlToS4, 145

∗ reflection
makeClassTemplate, 51

∗ schema
xmlSchemaValidate, 131

∗ serialization
toHTML, 85

∗ streaming data
xmlStopParser, 139

∗ tree
addNode, 8

∗ validation
xmlSchemaValidate, 131

.InitSAXMethods, 30

.InitSAXMethods (startElement.SAX), 83
[,XMLAttributes-method

(XMLAttributes-class), 88
[.XMLNode, 10, 88, 161, 163
[<-.XMLNode, 162
[[,XMLCodeFile,ANY-method

(XMLCodeFile-class), 94
[[,XMLCodeFile-method

(XMLCodeFile-class), 94
[[.XMLDocumentContent ([.XMLNode), 161
[[.XMLInternalElementNode ([.XMLNode),

161
[[.XMLNode, 10, 131, 163
[[.XMLNode ([.XMLNode), 161
[[<-.XMLNode ([<-.XMLNode), 162
$,libxmlTypeTable-method

(schema-class), 81
$,xmlSchemaRef-method (schema-class), 81
$<-,libxmlTypeTable-method

(schema-class), 81

addAttributes (addChildren), 4
addAttributes,XMLInternalElementNode-method

(addChildren), 4

addAttributes,XMLNode-method
(addChildren), 4

addChildren, 4, 44, 56, 65, 90, 121
addChildren,XMLInternalNode-method

(addChildren), 4
addChildren,XMLNode-method

(addChildren), 4
addNode, 4, 8
addSibling (getSibling), 44
append.XMLNode (append.xmlNode), 9
append.xmlNode, 9, 124, 163
apply, 87
as.data.frame, 71
asXMLNode, 11, 121
asXMLTreeNode, 8, 12

catalogAdd (catalogLoad), 13
catalogClearTable (catalogLoad), 13
catalogDump (catalogLoad), 13
catalogLoad, 13
catalogResolve, 13, 14, 15
character, 88, 95
coerce, 20
coerce,character,Currency-method

(readHTMLTable), 70
coerce,character,FormattedInteger-method

(readHTMLTable), 70
coerce,character,FormattedNumber-method

(readHTMLTable), 70
coerce,character,Percent-method

(readHTMLTable), 70
coerce,character,XMLCodeDoc-method

(XMLCodeFile-class), 94
coerce,character,XMLCodeFile-method

(XMLCodeFile-class), 94
coerce,character,XMLNamespaceDefinitions-method

(xmlNamespaceDefinitions), 118
coerce,Doctype,character-method

(Doctype), 19
coerce,libxmlTypeTable,list-method

(schema-class), 81
coerce,NULL,XMLNamespaceDefinitions-method

(xmlNamespaceDefinitions), 118
coerce,URI,character-method (parseURI),

63
coerce,vector,XMLInternalNode-method

(newXMLDoc), 53
coerce,XMLAbstractDocument,XMLAbstractNode-method

(coerceNodes), 16

INDEX 167

coerce,XMLAbstractNode,character-method
(XMLNode-class), 122

coerce,XMLAbstractNode,Date-method
(XMLNode-class), 122

coerce,XMLAbstractNode,integer-method
(XMLNode-class), 122

coerce,XMLAbstractNode,logical-method
(XMLNode-class), 122

coerce,XMLAbstractNode,numeric-method
(XMLNode-class), 122

coerce,XMLAbstractNode,POSIXct-method
(XMLNode-class), 122

coerce,XMLAbstractNode,URL-method
(XMLNode-class), 122

coerce,XMLCodeFile,XMLCodeDoc-method
(XMLCodeFile-class), 94

coerce,XMLDocument,XMLInternalDocument-method
(XMLInternalDocument-class),
115

coerce,XMLHashTreeNode,XMLHashTree-method
(coerceNodes), 16

coerce,XMLInternalDocument,character-method
(saveXML), 77

coerce,XMLInternalDocument,XMLHashTree-method
(coerceNodes), 16

coerce,XMLInternalDocument,XMLInternalNode-method
(XMLInternalDocument-class),
115

coerce,XMLInternalDOM,character-method
(saveXML), 77

coerce,XMLInternalNode,character-method
(saveXML), 77

coerce,XMLInternalNode,XMLHashTree-method
(coerceNodes), 16

coerce,XMLInternalNode,XMLInternalDocument-method
(XMLInternalDocument-class),
115

coerce,XMLInternalNode,XMLNode-method
(asXMLNode), 11

coerce,XMLInternalTextNode,character-method
(xmlValue), 159

coerce,XMLNamespace,character-method
(xmlNamespaceDefinitions), 118

coerce,XMLNamespaceDefinition,character-method
(xmlNamespaceDefinitions), 118

coerce,XMLNamespaceDefinitions,character-method
(xmlNamespaceDefinitions), 118

coerce,XMLNamespaceRef,character-method

(xmlSearchNs), 133
coerce,XMLNode,XMLInternalNode-method

(coerceNodes), 16
coerceNodes, 16
comment.SAX, 30
comment.SAX (startElement.SAX), 83
comment.SAX,ANY,SAXState-method

(startElement.SAX), 83
COMPACT (xmlParseDoc), 127
compareXMLDocs, 17

data.frameRowLabels, 88
docName, 18, 154
docName,NULL-method (docName), 18
docName,XMLDocument-method (docName), 18
docName,XMLDocumentContent-method

(docName), 18
docName,XMLHashTree-method (docName), 18
docName,XMLHashTreeNode-method

(docName), 18
docName,XMLInternalDocument-method

(docName), 18
docName,XMLInternalNode-method

(docName), 18
docName,XMLNode-method (docName), 18
docName<- (docName), 18
docName<-,XMLHashTree-method (docName),

18
docName<-,XMLInternalDocument-method

(docName), 18
Doctype, 19, 20, 21
Doctype-class, 20
DTDATTR (xmlParseDoc), 127
dtdElement, 21, 23–25, 96
dtdElementValidEntry, 22, 25
dtdEntity, 96
dtdEntity (dtdElement), 21
dtdIsAttribute, 23
DTDLOAD (xmlParseDoc), 127
DTDVALID (xmlParseDoc), 127
dtdValidElement, 22, 23, 24

Encoding, 31
endElement.SAX, 30
endElement.SAX (startElement.SAX), 83
endElement.SAX,ANY,SAXState-method

(startElement.SAX), 83
ensureNamespace, 25
entityDeclaration.SAX, 30

168 INDEX

entityDeclaration.SAX
(startElement.SAX), 83

entityDeclaration.SAX,ANY,ANY,ANY,ANY,ANY,SAXState-method
(startElement.SAX), 83

ExternalReference-class (schema-class),
81

findXInclude, 27, 34
FormattedInteger-class (readHTMLTable),

70
FormattedNumber-class (readHTMLTable),

70
free, 28, 155
free,XMLInternalDocument-method (free),

28

genericSAXHandlers, 29
getChildrenStrings, 30
getDefaultNamespace

(xmlNamespaceDefinitions), 118
getEncoding, 31
getEncoding,ANY-method (getEncoding), 31
getEncoding,XMLInternalDocument-method

(getEncoding), 31
getEncoding,XMLInternalNode-method

(getEncoding), 31
getHTMLExternalFiles, 46
getHTMLExternalFiles (getHTMLLinks), 32
getHTMLLinks, 32
getLineNumber, 33
getNativeSymbolInfo, 37, 54, 94, 126
getNodeLocation (getLineNumber), 33
getNodePosition (getLineNumber), 33
getNodeSet, 17, 34, 34, 71, 75, 115, 118, 119,

143, 145, 149, 152, 154
getRelativeURL, 42, 63
getSibling, 44
getXIncludes, 33, 45
getXMLErrors, 47
grep, 151

HTMLInternalDocument-class
(XMLInternalDocument-class),
115

htmlParse, 69–71
htmlParse (xmlTreeParse), 149
htmlTreeParse, 47, 115, 141, 142
htmlTreeParse (xmlTreeParse), 149
HUGE (xmlParseDoc), 127

isXMLString, 48

lapply, 9, 35, 36, 87, 88
length, 135
length.XMLNode, 49
libxmlFeatures (libxmlVersion), 50
libxmlTypeTable-class (schema-class), 81
libxmlVersion, 50
list, 111, 112

makeClassTemplate, 51, 145, 146
matchNamespaces (getNodeSet), 34

names, 105
names,libxmlTypeTable-method

(schema-class), 81
names,xmlSchemaRef-method

(schema-class), 81
names.XMLNode, 52
newHTMLDoc (newXMLDoc), 53
newXMLCDataNode, 121
newXMLCDataNode (newXMLDoc), 53
newXMLCommentNode, 121
newXMLCommentNode (newXMLDoc), 53
newXMLDoc, 19, 53, 78, 94, 147
newXMLDTDNode, 146
newXMLDTDNode (newXMLDoc), 53
newXMLNamespace, 26, 59, 60, 75, 82
newXMLNode, 6, 17, 26, 65, 67, 68, 78, 88, 94,

121, 122, 126, 133, 147
newXMLNode (newXMLDoc), 53
newXMLPINode, 121
newXMLPINode (newXMLDoc), 53
newXMLTextNode, 5
newXMLTextNode (newXMLDoc), 53
NOBASEFIX (xmlParseDoc), 127
NOBLANKS (xmlParseDoc), 127
NOCDATA (xmlParseDoc), 127
NODICT (xmlParseDoc), 127
NOENT (xmlParseDoc), 127
NOERROR (xmlParseDoc), 127
NONET (xmlParseDoc), 127
NOWARNING (xmlParseDoc), 127
NOXINCNODE (xmlParseDoc), 127
NSCLEAN (xmlParseDoc), 127

OLD10 (xmlParseDoc), 127
oldClass, 115
OLDSAX (xmlParseDoc), 127

INDEX 169

parseDTD, 21–25, 60, 89, 96, 123, 154
parseURI, 43, 63
parseXMLAndAdd, 64
PEDANTIC (xmlParseDoc), 127
Percent-class (readHTMLTable), 70
print, 66
print.XMLAttributeDef, 65
print.XMLCDataNode

(print.XMLAttributeDef), 65
print.XMLComment

(print.XMLAttributeDef), 65
print.XMLElementContent

(print.XMLAttributeDef), 65
print.XMLElementDef

(print.XMLAttributeDef), 65
print.XMLEntity

(print.XMLAttributeDef), 65
print.XMLEntityRef

(print.XMLAttributeDef), 65
print.XMLNode (print.XMLAttributeDef),

65
print.XMLOrContent

(print.XMLAttributeDef), 65
print.XMLProcessingInstruction

(print.XMLAttributeDef), 65
print.XMLSequenceContent

(print.XMLAttributeDef), 65
print.XMLTextNode

(print.XMLAttributeDef), 65
processingInstruction.SAX, 30
processingInstruction.SAX

(startElement.SAX), 83
processingInstruction.SAX,ANY,ANY,SAXState-method

(startElement.SAX), 83
processXInclude, 67

read.table, 143
readHTMLList, 69
readHTMLList,character-method

(readHTMLList), 69
readHTMLList,HTMLInternalDocument-method

(readHTMLList), 69
readHTMLList,XMLInternalNode-method

(readHTMLList), 69
readHTMLTable, 69, 70
readHTMLTable,character-method

(readHTMLTable), 70
readHTMLTable,HTMLInternalDocument-method

(readHTMLTable), 70

readHTMLTable,XMLInternalElementNode-method
(readHTMLTable), 70

readKeyValueDB, 73, 74
readKeyValueDB,AsIs-method

(readKeyValueDB), 73
readKeyValueDB,character-method

(readKeyValueDB), 73
readKeyValueDB,XMLInternalDocument-method

(readKeyValueDB), 73
readKeyValueDB,XMLInternalNode-method

(readKeyValueDB), 73
readLines, 103
readRDS, 134
readSolrDoc, 74, 74
readSolrDoc,AsIs-method (readSolrDoc),

74
readSolrDoc,character-method

(readSolrDoc), 74
readSolrDoc,XMLInternalDocument-method

(readSolrDoc), 74
readSolrDoc,XMLInternalNode-method

(readSolrDoc), 74
RECOVER (xmlParseDoc), 127
removeAttributes (addChildren), 4
removeAttributes,XMLInternalElementNode-method

(addChildren), 4
removeAttributes,XMLNode-method

(addChildren), 4
removeChildren (addChildren), 4
removeNodes, 44
removeNodes (addChildren), 4
removeXMLNamespaces, 75, 82
removeXMLNamespaces,XMLInternalDocument-method

(removeXMLNamespaces), 75
removeXMLNamespaces,XMLInternalElementNode-method

(removeXMLNamespaces), 75
removeXMLNamespaces,XMLInternalNode-method

(removeXMLNamespaces), 75
replaceNodes, 44
replaceNodes (addChildren), 4
replaceNodeWithChildren, 76
RXMLNode-class (XMLNode-class), 122

sapply, 35, 36, 87, 88, 139
saveRDS, 134
saveXML, 20, 21, 56, 77, 147
saveXML,HTMLInternalDocument-method

(saveXML), 77
saveXML,XMLFlatTree-method (saveXML), 77

170 INDEX

saveXML,XMLInternalDocument-method
(saveXML), 77

saveXML,XMLInternalDOM-method
(saveXML), 77

saveXML,XMLInternalNode-method
(saveXML), 77

saveXML,XMLNode-method (saveXML), 77
saveXML,XMLOutputStream-method

(saveXML), 77
saveXML.XMLInternalDocument (saveXML),

77
saveXML.XMLInternalDOM (saveXML), 77
saveXML.XMLInternalNode (saveXML), 77
saveXML.XMLNode (saveXML), 77
saveXML.XMLOutputStream (saveXML), 77
SAX1 (xmlParseDoc), 127
SAXState-class, 79
scan, 151
schema-class, 81
SchemaAttributeGroupTable-class

(schema-class), 81
SchemaAttributeTable-class

(schema-class), 81
SchemaElementTable-class

(schema-class), 81
SchemaNotationTable-class

(schema-class), 81
SchemaTypeTable-class (schema-class), 81
schemaValidationErrorHandler

(xmlSchemaValidate), 131
setXMLNamespace, 82
show,XMLAttributes-method

(XMLAttributes-class), 88
show,XMLSchemaValidationResults-method

(schema-class), 81
simpleError, 141
source, 95, 136, 138
source,XMLCodeFile-method

(XMLCodeFile-class), 94
startElement.SAX, 30, 83
startElement.SAX,ANY,ANY,SAXState-method

(startElement.SAX), 83
stop, 142
SuperClassMethod, 88
supportsExpat, 84, 104
supportsLibxml (supportsExpat), 84

text.SAX (startElement.SAX), 83

text.SAX,ANY,SAXState-method
(startElement.SAX), 83

toHTML, 85
toHTML,call-method (toHTML), 85
toHTML,matrix-method (toHTML), 85
toHTML,vector-method (toHTML), 85
toString.XMLNode, 86

URI-class (parseURI), 63

vector, 88, 95

XINCLUDE (xmlParseDoc), 127
xml (isXMLString), 48
XMLAbstractDocument-class

(XMLInternalDocument-class),
115

XMLAbstractNode-class (XMLNode-class),
122

xmlAncestors (xmlParent), 125
xmlApply, 53, 87, 145
XMLAttributeDeclNode-class

(XMLNode-class), 122
XMLAttributes-class, 88
xmlAttributeType, 89
xmlAttrs, 24, 53, 88, 90, 111, 116, 118, 119,

121, 135, 160, 161
xmlAttrs<- (xmlAttrs), 90
xmlAttrs<-,XMLInternalElementNode-method

(xmlAttrs), 90
xmlAttrs<-,XMLInternalNode (xmlAttrs),

90
xmlAttrs<-,XMLNode (xmlAttrs), 90
xmlAttrs<-,XMLNode-method (xmlAttrs), 90
xmlCDataNode (xmlNode), 120
xmlChildren, 44, 49, 88, 90, 91, 92, 99, 116,

118, 121, 127, 135, 145, 160
xmlChildren<- (xmlChildren), 91
xmlChildren<-,ANY-method (xmlChildren),

91
xmlChildren<-,XMLInternalNode-method

(xmlChildren), 91
xmlCleanNamespaces, 92
xmlClone, 93
xmlClone,XMLInternalDocument-method

(xmlClone), 93
xmlClone,XMLInternalNode-method

(xmlClone), 93
XMLCodeDoc-class (XMLCodeFile-class), 94

INDEX 171

xmlCodeFile (XMLCodeFile-class), 94
XMLCodeFile-class, 94
xmlCommentNode (xmlNode), 120
xmlContainsElement (xmlContainsEntity),

96
xmlContainsEntity, 96
xmlDeserializeHook (xmlSerializeHook),

134
xmlDoc (newXMLDoc), 53
XMLDocumentFragNode-class

(XMLNode-class), 122
XMLDocumentNode-class (XMLNode-class),

122
XMLDocumentTypeNode-class

(XMLNode-class), 122
xmlDOMApply, 97
XMLDTDNode-class (XMLNode-class), 122
xmlElementsByTagName, 98
xmlElementSummary, 100
XMLEntityDeclNode-class

(XMLNode-class), 122
xmlErrorCumulator (xmlStructuredStop),

141
xmlEventHandler, 101
xmlEventParse, 29, 30, 67, 80, 84, 100–102,

102, 111, 112, 129, 139, 140, 153,
155

xmlGetAttr, 110, 119
xmlHandler, 111
xmlHashTree, 8, 12, 112, 124, 126
XMLInternalCDataNode-class

(XMLNode-class), 122
XMLInternalCommentNode-class

(XMLNode-class), 122
XMLInternalDocument-class, 115
XMLInternalElementNode-class

(XMLNode-class), 122
XMLInternalNode-class (XMLNode-class),

122
XMLInternalPINode-class

(XMLNode-class), 122
XMLInternalTextNode-class

(XMLNode-class), 122
xmlInternalTreeParse, 19, 43, 67, 68, 129,

132, 142
xmlInternalTreeParse (xmlTreeParse), 149
xmlName, 53, 90, 116, 118, 121, 135, 160
xmlName<- (xmlName), 116

xmlNamespace, 117, 121, 160
XMLNamespace-class (xmlNamespace), 117
xmlNamespace.character (xmlNamespace),

117
xmlNamespace.XMLInternalNode

(xmlNamespace), 117
xmlNamespace.XMLNode (xmlNamespace), 117
xmlNamespace<- (xmlNamespace), 117
xmlNamespace<-,XMLInternalNode-method

(xmlNamespace), 117
XMLNamespaceDeclNode-class

(XMLNode-class), 122
xmlNamespaceDefinitions, 60, 118, 118
XMLNamespaceDefinitions-class

(XMLNode-class), 122
xmlNamespaces

(xmlNamespaceDefinitions), 118
xmlNamespaces<-

(xmlNamespaceDefinitions), 118
xmlNamespaces<-,XMLInternalNode-method

(xmlNamespaceDefinitions), 118
xmlNamespaces<-,XMLNode-method

(xmlNamespaceDefinitions), 118
xmlNativeTreeParse (xmlTreeParse), 149
xmlNode, 11, 86, 120, 122, 124, 127
XMLNode-class, 122
xmlOutputBuffer, 78, 113, 123, 146, 147
xmlOutputDOM, 78, 113, 146, 147
xmlOutputDOM (xmlOutputBuffer), 123
xmlParent, 115, 125
xmlParent,XMLHashTreeNode-method

(xmlParent), 125
xmlParent,XMLInternalNode-method

(xmlParent), 125
xmlParent,XMLTreeNode-method

(xmlParent), 125
xmlParent.XMLInternalNode (xmlParent),

125
xmlParent<- (addChildren), 4
xmlParse, 16, 17, 27, 34, 43, 48, 65, 74, 88,

92–94, 119, 127–129, 143
xmlParse (xmlTreeParse), 149
xmlParseDoc, 127, 153
xmlParserContextFunction, 129
xmlParseString (isXMLString), 48
xmlPINode (xmlNode), 120
xmlRoot, 88, 97, 130, 145, 154
xmlSApply, 53

172 INDEX

xmlSApply (xmlApply), 87
xmlSchemaAttributeGroupRef-class

(schema-class), 81
xmlSchemaAttributeRef-class

(schema-class), 81
xmlSchemaElementRef-class

(schema-class), 81
xmlSchemaNotationRef-class

(schema-class), 81
xmlSchemaParse, 132
xmlSchemaParse (xmlTreeParse), 149
xmlSchemaRef-class (schema-class), 81
xmlSchemaTypeRef-class (schema-class),

81
xmlSchemaValidate, 81, 131
xmlSearchNs, 133
xmlSerializeHook, 134
xmlSize, 49, 90, 92, 135, 163
xmlSource, 95, 136
xmlSource,character-method (xmlSource),

136
xmlSource,XMLInternalDocument-method

(xmlSource), 136
xmlSource,XMLNodeSet-method

(xmlSource), 136
xmlSourceFunctions (xmlSource), 136
xmlSourceFunctions,character-method

(xmlSource), 136
xmlSourceFunctions,XMLInternalDocument-method

(xmlSource), 136
xmlSourceSection (xmlSource), 136
xmlSourceSection,character-method

(xmlSource), 136
xmlSourceSection,XMLInternalDocument-method

(xmlSource), 136
xmlSourceThread (xmlSource), 136
xmlSourceThread,character-method

(xmlSource), 136
xmlSourceThread,list-method

(xmlSource), 136
xmlSourceThread,XMLInternalDocument-method

(xmlSource), 136
xmlStopParser, 107, 139
XMLString-class (isXMLString), 48
xmlStructuredStop, 141, 152, 153
xmlTextNode, 5, 11, 124
xmlTextNode (xmlNode), 120
xmlToDataFrame, 74, 142

xmlToDataFrame,ANY,ANY,ANY,ANY,list-method
(xmlToDataFrame), 142

xmlToDataFrame,ANY,ANY,ANY,ANY,XMLInternalNodeList-method
(xmlToDataFrame), 142

xmlToDataFrame,ANY,ANY,ANY,ANY,XMLNodeSet-method
(xmlToDataFrame), 142

xmlToDataFrame,character,ANY,ANY,ANY,ANY-method
(xmlToDataFrame), 142

xmlToDataFrame,list,ANY,ANY,ANY,ANY-method
(xmlToDataFrame), 142

xmlToDataFrame,XMLInternalDocument,ANY,ANY,ANY,missing-method
(xmlToDataFrame), 142

xmlToDataFrame,XMLInternalElementNode,ANY,ANY,ANY,ANY-method
(xmlToDataFrame), 142

xmlToDataFrame,XMLInternalNodeList,ANY,ANY,ANY,ANY-method
(xmlToDataFrame), 142

xmlToDataFrame,XMLNodeSet,ANY,ANY,ANY,ANY-method
(xmlToDataFrame), 142

xmlToList, 74, 144
xmlToS4, 52, 145
xmlToS4,XMLInternalNode-method

(xmlToS4), 145
xmlTree, 6, 53, 57, 77, 113, 122, 124, 126, 146
XMLTreeNode-class (XMLNode-class), 122
xmlTreeParse, 16, 19, 21, 29, 38, 43, 47, 48,

62, 66, 67, 86, 92, 97–99, 102,
105–107, 112, 113, 115, 116, 119,
121–123, 126, 127, 131, 135, 137,
139, 141, 142, 145, 149

xmlValue, 31, 118, 154, 159
xmlValue<- (xmlValue), 159
xmlValue<-,XMLAbstractNode-method

(xmlValue), 159
xmlValue<-,XMLInternalTextNode-method

(xmlValue), 159
xmlValue<-,XMLTextNode-method

(xmlValue), 159
XMLXIncludeEndNode-class

(XMLNode-class), 122
xmlXIncludes (getXIncludes), 45
XMLXIncludeStartNode-class

(XMLNode-class), 122
xpathApply, 34, 68, 75, 119, 145, 149, 154
xpathApply (getNodeSet), 34
xpathSApply, 71
xpathSApply (getNodeSet), 34

	addChildren
	addNode
	append.xmlNode
	asXMLNode
	asXMLTreeNode
	catalogLoad
	catalogResolve
	coerceNodes
	compareXMLDocs
	docName
	Doctype
	Doctype-class
	dtdElement
	dtdElementValidEntry
	dtdIsAttribute
	dtdValidElement
	ensureNamespace
	findXInclude
	free
	genericSAXHandlers
	getChildrenStrings
	getEncoding
	getHTMLLinks
	getLineNumber
	getNodeSet
	getRelativeURL
	getSibling
	getXIncludes
	getXMLErrors
	isXMLString
	length.XMLNode
	libxmlVersion
	makeClassTemplate
	names.XMLNode
	newXMLDoc
	newXMLNamespace
	parseDTD
	parseURI
	parseXMLAndAdd
	print.XMLAttributeDef
	processXInclude
	readHTMLList
	readHTMLTable
	readKeyValueDB
	readSolrDoc
	removeXMLNamespaces
	replaceNodeWithChildren
	saveXML
	SAXState-class
	schema-class
	setXMLNamespace
	startElement.SAX
	supportsExpat
	toHTML
	toString.XMLNode
	xmlApply
	XMLAttributes-class
	xmlAttributeType
	xmlAttrs
	xmlChildren
	xmlCleanNamespaces
	xmlClone
	XMLCodeFile-class
	xmlContainsEntity
	xmlDOMApply
	xmlElementsByTagName
	xmlElementSummary
	xmlEventHandler
	xmlEventParse
	xmlGetAttr
	xmlHandler
	xmlHashTree
	XMLInternalDocument-class
	xmlName
	xmlNamespace
	xmlNamespaceDefinitions
	xmlNode
	XMLNode-class
	xmlOutputBuffer
	xmlParent
	xmlParseDoc
	xmlParserContextFunction
	xmlRoot
	xmlSchemaValidate
	xmlSearchNs
	xmlSerializeHook
	xmlSize
	xmlSource
	xmlStopParser
	xmlStructuredStop
	xmlToDataFrame
	xmlToList
	xmlToS4
	xmlTree
	xmlTreeParse
	xmlValue
	[.XMLNode
	[<-.XMLNode
	Index

