Package 'WormTensor'

Title: A Clustering Method for Time-Series Whole-Brain Activity Data of 'C. elegans'
Description: A toolkit to detect clusters from distance matrices. The distance matrices are assumed to be calculated between the cells of multiple animals ('Caenorhabditis elegans') from input time-series matrices. Some functions for generating distance matrices, performing clustering, evaluating the clustering, and visualizing the results of clustering and evaluation are available. We're also providing the download function to retrieve the calculated distance matrices from 'figshare' <https://figshare.com>.
Authors: Kentaro Yamamoto [aut, cre], Koki Tsuyuzaki [aut], Itoshi Nikaido [aut]
Maintainer: Kentaro Yamamoto <[email protected]>
License: MIT + file LICENSE
Version: 0.1.1
Built: 2024-10-22 06:53:46 UTC
Source: CRAN

Help Index


Components for WormTensor object

Description

These are generic methods for WormTensor

Usage

worm_membership(object, k)

worm_clustering(
  object,
  algorithm = c("MCMI", "OINDSCAL", "CSPA"),
  num.iter = 30,
  thr = 1e-10,
  verbose = FALSE
)

worm_evaluate(object, labels = NULL)

worm_visualize(
  object,
  out.dir = tempdir(),
  algorithm = c("tSNE", "UMAP"),
  seed = 1234,
  tsne.dims = 2,
  tsne.perplexity = 15,
  tsne.verbose = FALSE,
  tsne.max_iter = 1000,
  umap.n_neighbors = 15,
  umap.n_components = 2,
  silhouette.summary = FALSE
)

Arguments

object

WormTensor object

k

Assumed number of clusters

algorithm

Dimensional reduction methods

num.iter

The upper limit of iterations (Default value is 30)

thr

The lower limit of relative change in estimates (Default value is 1E-10)

verbose

Control message

labels

Labels for external evaluation

out.dir

Output directory (default: tempdir())

seed

Arguments passed to set.seed (default: 1234)

tsne.dims

Output dimensionality (default: 2)

tsne.perplexity

Perplexity paramete (default: 15)

tsne.verbose

logical; Whether progress updates should be printed (default: TRUE)

tsne.max_iter

The number of iterations (default: 1000)

umap.n_neighbors

The size of local neighborhood (default: 15)

umap.n_components

The dimension of the space to embed into (default: 2)

silhouette.summary

logical; If true a summary of cluster silhouettes are printed.


Generates WormTensor object A WormTensor object is generated from distance matrices.

Description

Generates WormTensor object A WormTensor object is generated from distance matrices.

Usage

as_worm_tensor(Ds)

Arguments

Ds

A list containing distance matrices

Value

An object containing distance matrices and metadata

Examples

worm_download("mSBD", qc = "PASS")$Ds |> as_worm_tensor() -> object

Generates clustering result A clustering result is generated from a membership tensor.

Description

Generates clustering result A clustering result is generated from a membership tensor.

Usage

## S4 method for signature 'WormTensor'
worm_clustering(
  object,
  algorithm = c("MCMI", "OINDSCAL", "CSPA"),
  num.iter = 30,
  thr = 1e-10,
  verbose = FALSE
)

Arguments

object

WormTensor object with a membership tensor

algorithm

Clustering methods

num.iter

The upper limit of iterations (Default value is 30)

thr

The lower limit of relative change in estimates (Default value is 1E-10)

verbose

Control message

Value

WormTensor object with a clustering result added

Examples

# Pipe Operation
    worm_download("Euclid", qc = "WARN")$Ds |>
        as_worm_tensor() |>
            worm_membership(k = 6) -> object
    worm_clustering(object, verbose = TRUE) -> ob_mcmi
    worm_clustering(object, algorithm = "OINDSCAL", verbose = TRUE) -> ob_oind
    worm_clustering(object, algorithm = "CSPA", verbose = TRUE) -> ob_cspa

Generates distance matrices Distance matrices are generated between the cells of multiple animals (Caenorhabditis elegans) from time-series matrices.

Description

Generates distance matrices Distance matrices are generated between the cells of multiple animals (Caenorhabditis elegans) from time-series matrices.

Usage

worm_distance(data, distance = c("mSBD", "SBD", "Euclid"))

Arguments

data

Time-series matrices

distance

"mSBD" or "SBD" or "Euclid" can be specified. mSBD means modified Shape-based distance.

Value

A list containing distance matrices

Examples

# Toy data
n_cell_x <- 13
n_cell_y <- 24
n_cell_z <- 29
n_cells <- 30
n_time_frames <- 100

# 13 cells, 100 time frames
animal_x <- matrix(runif(n_cell_x * n_time_frames),
    nrow = n_cell_x, ncol = n_time_frames
)
rownames(animal_x) <- sample(seq(n_cells), n_cell_x)
colnames(animal_x) <- seq(n_time_frames)

# 24 cells, 100 time frames
animal_y <- matrix(runif(n_cell_y * n_time_frames),
    nrow = n_cell_y, ncol = n_time_frames
)
rownames(animal_y) <- sample(seq(n_cells), n_cell_y)
colnames(animal_y) <- seq(n_time_frames)

# 29 cells, 100 time frames
animal_z <- matrix(runif(n_cell_z * n_time_frames),
    nrow = n_cell_z, ncol = n_time_frames
)
rownames(animal_z) <- sample(seq(n_cells), n_cell_z)
colnames(animal_z) <- seq(n_time_frames)

# Positive Control of Difference between SBD and mSBD
animal_z[2, ] <- -animal_x[1, ]
X <- list(
    animal_x = animal_x,
    animal_y = animal_y,
    animal_z = animal_z
)
Ds_mSBD <- worm_distance(X, "mSBD")

Downloads distance matrices 28 animals' data including 24 normal and 4 noisy are retrieved from figshare.

Description

Downloads distance matrices 28 animals' data including 24 normal and 4 noisy are retrieved from figshare.

Usage

worm_download(distance = c("mSBD", "Euclid"), qc = c("PASS", "WARN", "FAIL"))

Arguments

distance

"mSBD" or "Euclid" can be specified

qc

"PASS" or "WARN" or "FAIL" can be specified. "PASS" downloads 24 data except 4 noisy data. "WARN" downloads 27 data except 1 noisy data. "FAIL" downloads all 28 data.

Value

A List of containing distance matrices. The list also includes metadata for each animals.

Examples

Ds_Euclid <- worm_download("Euclid", qc = "WARN")
    Ds_mSBD <- worm_download("mSBD", qc = "PASS")

Evaluates clustering result An evaluation result is generated from a WormTensor object.

Description

Evaluates clustering result An evaluation result is generated from a WormTensor object.

Usage

## S4 method for signature 'WormTensor'
worm_evaluate(object, labels = NULL)

Arguments

object

WormTensor object with a result of worm_clustering

labels

Labels for external evaluation

Value

WormTensor object with an evaluation result added

Examples

# Pipe Operation
    worm_download("mSBD", qc = "PASS")$Ds |>
        as_worm_tensor() |>
            worm_membership(k = 6) |>
                worm_clustering() -> object
     # Internal evaluation
     worm_evaluate(object) -> object_internal

     # External evaluation by sample labels
     labels <- list(
         label1 = sample(3, length(object@clustering), replace = TRUE),
         label2 = sample(4, length(object@clustering), replace = TRUE),
         label3 = sample(5, length(object@clustering), replace = TRUE)
     )
     worm_evaluate(object, labels) -> object_external

     # External evaluation by worm_download labels
     Ds_mSBD <- worm_download("mSBD", qc = "PASS")
     labels <- list(
         label1 = replace(
             Ds_mSBD$labels$Class,
             which(is.na(Ds_mSBD$labels$Class)),
             "NA"
         ),
         label2 = sample(4, length(object@clustering), replace = TRUE),
         label3 = sample(5, length(object@clustering), replace = TRUE)
     )
     worm_evaluate(object, labels) -> object_external_Class

Generates membership tensor A membership tensor is generated from distance matrices.

Description

Generates membership tensor A membership tensor is generated from distance matrices.

Usage

## S4 method for signature 'WormTensor'
worm_membership(object, k)

Arguments

object

WormTensor object with distance matrices

k

Assumed number of clusters

Value

WormTensor object with membership tensor added

Examples

# Pipe Operation
    worm_download("mSBD", qc = "PASS")$Ds |>
        as_worm_tensor() -> object
    # k=6
    worm_membership(object, k = 6) -> object_k6

Plots evaluation result A visualization result is generated from a WormTensor object.

Description

Plots evaluation result A visualization result is generated from a WormTensor object.

Usage

## S4 method for signature 'WormTensor'
worm_visualize(
  object,
  out.dir = tempdir(),
  algorithm = c("tSNE", "UMAP"),
  seed = 1234,
  tsne.dims = 2,
  tsne.perplexity = 15,
  tsne.verbose = FALSE,
  tsne.max_iter = 1000,
  umap.n_neighbors = 15,
  umap.n_components = 2,
  silhouette.summary = FALSE
)

Arguments

object

WormTensor object with a result of worm_evaluate

out.dir

Output directory (default: tempdir())

algorithm

Dimensional reduction methods

seed

Arguments passed to set.seed (default: 1234)

tsne.dims

Output dimensionality (default: 2)

tsne.perplexity

Perplexity parameter (default: 15)

tsne.verbose

logical; Whether progress updates should be printed (default: TRUE)

tsne.max_iter

Number of iterations (default: 1000)

umap.n_neighbors

The size of the local neighborhood (default: 15)

umap.n_components

The dimension of the space to embed into (default: 2)

silhouette.summary

logical; If true a summary of cluster silhouettes are printed.

Value

Silhouette plots. ARI with a merge result and each animal(with MCMI). Dimensional reduction plots colored by cluster, no. of identified cells, consistency(with labels), Class_label(with labels).

References

The .dist_nn function is quoted from dist_nn (not exported function) in package uwot(https://github.com/jlmelville/uwot/tree/f467185c8cbcd158feb60dde608c9da153ed10d7).

Examples

# Temporary directory to save figures
    out.dir <- tempdir()

    # Labels
    worm_download("mSBD", qc = "PASS")$Ds |>
        as_worm_tensor() |>
            worm_membership(k = 6) |>
                worm_clustering() -> object
    Ds_mSBD <- worm_download("mSBD", qc = "PASS")
    labels <- list(
        label1 = replace(
            Ds_mSBD$labels$Class,
            which(is.na(Ds_mSBD$labels$Class)),
            "NA"
        ),
        label2 = sample(4, length(object@clustering), replace = TRUE),
        label3 = sample(5, length(object@clustering), replace = TRUE)
    )

    # Pipe Operation (without Labels)
    worm_download("mSBD", qc = "PASS")$Ds |>
        as_worm_tensor() |>
            worm_membership(k = 6) |>
                worm_clustering() |>
                    worm_evaluate() |>
                        worm_visualize(out.dir) -> object_no_labels

    # Pipe Operation (with Labels)
    worm_download("mSBD", qc = "PASS")$Ds |>
        as_worm_tensor() |>
            worm_membership(k = 6) |>
                worm_clustering() |>
                    worm_evaluate(labels) |>
                        worm_visualize(out.dir) -> object_labels

S4 class used by as_worm_tensor.R, worm_membership.R, worm_clustering.R, worm_evaluate.R, worm_visualize.R

Description

S4 class used by as_worm_tensor.R, worm_membership.R, worm_clustering.R, worm_evaluate.R, worm_visualize.R

Slots

dist_matrices

list

n_animals

numeric

union_cellnames

character

n_union_cells

numeric

membership_tensor

Tensor

k

numeric

clustering_algorithm

character

clustering

numeric

weight

numeric

factor

matrix

consensus

matrix

eval

list

dimension_reduction_algorithm

character