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.weightit_methods Weighting methods

Description

.weightit_methods is a list containing the allowable weighting methods that can be supplied by
name to the method argument of weightit(), weightitMSM(), and weightit.fit(). Each entry
corresponds to an allowed method and contains information about what options are and are not
allowed for each method. While this list is primarily for internal use by checking functions in
WeightIt, it might be of use for package authors that want to support different weighting methods.

Usage

.weightit_methods

Format

An object of class list of length 10.

Details

Each component is itself a list containing the following components:

treat_type at least one of "binary", "multi-category", or "continuous" indicating which
treatment types are available for this method.

estimand which estimands are available for this method. All methods that support binary and
multi-category treatments accept "ATE", "ATT", and "ATC", as well as some other estimands
depending on the method. See get_w_from_ps() for more details about what each estimand
means.

alias a character vector of aliases for the method. When an alias is supplied, the corresponding
method will still be dispatched. For example, the canonical method to request entropy bal-
ancing is "ebal", but "ebalance" and "entropy" also work. The first value is the canonical
name.

description a string containing the description of the name in English.

ps a logical for whether propensity scores are returned by the method for binary treatments. Propen-
sity scores are never returned for multi-category or continuous treatments.

msm_valid a logical for whether the method can be validly used with longitudinal treatments.

msm_method_available a logical for whether a version of the method can be used that estimates
weights using a single model rather than multiplying the weights across time points. This is
related to the is.MSM.method argument of weightitMSM().

subclass_ok a logical for whether subclass can be supplied to compute subclassification weights
from the propensity scores.

packages_needed a character vector of the minimal packages required to use the method. Some
methods may require additional packages for certain options.

s.weights_ok a logical for whether sampling weights can be used with the method.
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missing a character vector of the allowed options that can be supplied to missing when missing
data is present. All methods accept "ind" for the missingness indicator approach; some other
methods accept additional values.

moments_int_ok a logical for whether moments, int, and quantile can be used with the method.

moments_default when moments_int_ok is TRUE, the default value of moments used with the
method. For most methods, this is 1.

density_ok a logical for whether arguments that control the density can be used with the method
when used with a continuous treatment.

stabilize_ok a logical for whether the stabilize argument (and num.formula for longitudinal
treatments) can be used with the method.

plot.weightit_ok a logical for whether plot() can be used on the weightit output with the
method.

See Also

weightit() and weightitMSM() for how the methods are used. Also see the individual methods
pages for information on whether and how each option can be used.

Examples

# Get all acceptable names
names(.weightit_methods)

# Get all acceptable names and aliases
lapply(.weightit_methods, `[[`, "alias")

# Which estimands are allowed with `method = "bart"`
.weightit_methods[["bart"]]$estimand

# All methods that support continuous treatments
supp <- sapply(.weightit_methods, function(x) {

"continuous" %in% x$treat_type
})
names(.weightit_methods)[supp]

# All methods that return propensity scores (for
# binary treatments only)
supp <- sapply(.weightit_methods, `[[`, "ps")
names(.weightit_methods)[supp]

anova.glm_weightit Methods for glm_weightit() objects

Description

anova() is used to compare nested models fit with glm_weightit(), mutinom_weightit(), ordinal_weightit(),
or coxph_weightit() using a Wald test that incorporates uncertainty in estimating the weights (if
any).
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Usage

## S3 method for class 'glm_weightit'
anova(
object,
object2,
test = "Chisq",
method = "Wald",
tolerance = 1e-07,
vcov = NULL,
...

)

Arguments

object, object2 an output from one of the above modeling functions. object2 is required.

test the type of test statistic used to compare models. Currently only "Chisq" (the
chi-square statistic) is allowed.

method the kind of test used to compare models. Currently only "Wald" is allowed.

tolerance for the Wald test, the tolerance used to determine if models are symbolically
nested.

vcov either a string indicating the method used to compute the variance of the es-
timated parameters for object, a function used to extract the variance, or the
variance matrix itself. Default is to use the variance matrix already present in
object. If a string or function, arguments passed to ... are supplied to the
method or function. (Note: for vcov(), can also be supplied as type.)

... other arguments passed to the function used for computing the parameter vari-
ance matrix, if supplied as a string or function, e.g., cluster, R, or fwb.args.

Details

anova() performs a Wald test to compare two fitted models. The models must be nested, but they
don’t have to be nested symbolically (i.e., the names of the coefficients of the smaller model do not
have to be a subset of the names of the coefficients of the larger model). The larger model must be
supplied to object and the smaller to object2. Both models must contain the same units, weights
(if any), and outcomes. The variance-covariance matrix of the coefficients of the smaller model is
not used.

Value

An object of class "anova" inheriting from class "data.frame".

See Also

glm_weightit() for the page documenting glm_weightit(), lm_weightit(), ordinal_weightit(),
multinom_weightit(), and coxph_weightit(). anova.glm() for model comparison of glm ob-
jects.
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Examples

data("lalonde", package = "cobalt")

# Model comparison for any relationship between `treat`
# and `re78` (not the same as testing for the ATE)
fit1 <- glm_weightit(

re78 ~ treat * (age + educ + race + married + nodegree +
re74 + re75), data = lalonde

)

fit2 <- glm_weightit(
re78 ~ age + educ + race + married + nodegree +
re74 + re75, data = lalonde

)

anova(fit1, fit2)

# Using the usual maximum likelihood variance matrix
anova(fit1, fit2, vcov = "const")

# Using a bootstrapped variance matrix
anova(fit1, fit2, vcov = "BS", R = 100)

# Model comparison between spline model and linear
# model; note they are nested but not symbolically
# nested
fit_s <- glm_weightit(

re78 ~ splines::ns(age, df = 4), data = lalonde
)

fit_l <- glm_weightit(
re78 ~ age, data = lalonde

)

anova(fit_s, fit_l)

as.weightit Create a weightit object manually

Description

This function allows users to get the benefits of a weightit object when using weights not esti-
mated with weightit() or weightitMSM(). These benefits include diagnostics, plots, and direct
compatibility with cobalt for assessing balance.
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Usage

as.weightit(x, ...)

## S3 method for class 'weightit.fit'
as.weightit(x, covs = NULL, ...)

## Default S3 method:
as.weightit(
x,
treat,
covs = NULL,
estimand = NULL,
s.weights = NULL,
ps = NULL,
...

)

as.weightitMSM(x, ...)

## Default S3 method:
as.weightitMSM(
x,
treat.list,
covs.list = NULL,
estimand = NULL,
s.weights = NULL,
ps.list = NULL,
...

)

Arguments

x required; a numeric vector of weights, one for each unit, or a weightit.fit
object from weightit.fit().

... additional arguments. These must be named. They will be included in the output
object.

covs an optional data.frame of covariates. For using WeightIt functions, this is not
necessary, but for use with cobalt it is. Note that when using with a weightit.fit
object, this should not be the matrix supplied to the covs argument of weightit.fit()
unless there are no factor/character variables in it. Ideally this is the original, un-
processed covariate data frame with factor variables included.

treat a vector of treatment statuses, one for each unit. Required when x is a vector of
weights.

estimand an optional character of length 1 giving the estimand. The text is not checked.

s.weights an optional numeric vector of sampling weights, one for each unit.

ps an optional numeric vector of propensity scores, one for each unit.
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treat.list a list of treatment statuses at each time point.

covs.list an optional list of data.frames of covariates of covariates at each time point.
For using WeightIt functions, this is not necessary, but for use with cobalt it is.

ps.list an optional list of numeric vectors of propensity scores at each time point.

Value

An object of class weightit (for as.weightit()) or weightitMSM (for as.weightitMSM()).

Examples

treat <- rbinom(500, 1, .3)
weights <- rchisq(500, df = 2)

W <- as.weightit(weights, treat = treat, estimand = "ATE")
summary(W)

# See ?weightit.fit for using as.weightit() with a
# weightit.fit object.

calibrate Calibrate Propensity Score Weights

Description

calibrate() performs Platt scaling to calibrate propensity scores as recommended by Gutman et
al. (2024). This involves fitting a new propensity score model using logistic regression with the
previously estimated propensity score as the sole predictor. Weights are computed using this new
propensity score.

Usage

calibrate(x, ...)

## Default S3 method:
calibrate(x, treat, s.weights = NULL, data = NULL, ...)

## S3 method for class 'weightit'
calibrate(x, ...)

Arguments

x A weightit object or a vector of propensity scores. Only binary treatments are
supported.

... Not used.

treat A vector of treatment status for each unit. Only binary treatments are supported.
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s.weights A vector of sampling weights or the name of a variable in data that contains
sampling weights.

data An optional data frame containing the variable named in s.weights when sup-
plied as a string.

Value

If the input is a weightit object, the output will be a weightit object with the propensity scores
replaced with the calibrated propensity scores and the weights replaced by weights computed from
the calibrated propensity scores.

If the input is a numeric vector of weights, the output will be a numeric vector of the calibrated
propensity scores.

References

Gutman, R., Karavani, E., & Shimoni, Y. (2024). Improving Inverse Probability Weighting by
Post-calibrating Its Propensity Scores. Epidemiology, 35(4). doi:10.1097/EDE.0000000000001733

See Also

weightit(), weightitMSM()

Examples

library("cobalt")
data("lalonde", package = "cobalt")

#Using GBM to estimate weights
(W <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "gbm", estimand = "ATT",
criterion = "smd.max"))

summary(W)

#Calibrating the GBM propensity scores
Wc <- calibrate(W)

#Calibrating propensity scores directly
PSc <- calibrate(W$ps, treat = lalonde$treat)

ESS Compute effective sample size of weighted sample

Description

Computes the effective sample size (ESS) of a weighted sample, which represents the size of an
unweighted sample with approximately the same amount of precision as the weighted sample under
consideration.

The ESS is calculated as (
∑

w)2/
∑

w2.

https://doi.org/10.1097/EDE.0000000000001733
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Usage

ESS(w)

Arguments

w a vector of weights

References

McCaffrey, D. F., Ridgeway, G., & Morral, A. R. (2004). Propensity Score Estimation With Boosted
Regression for Evaluating Causal Effects in Observational Studies. Psychological Methods, 9(4),
403–425. doi:10.1037/1082989X.9.4.403

Shook-Sa, B. E., & Hudgens, M. G. (2020). Power and sample size for observational studies of
point exposure effects. Biometrics, biom.13405. doi:10.1111/biom.13405

See Also

summary.weightit()

Examples

library("cobalt")
data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "glm", estimand = "ATE"))

summary(W1)
ESS(W1$weights[W1$treat == 0])
ESS(W1$weights[W1$treat == 1])

get_w_from_ps Compute weights from propensity scores

Description

Given a vector or matrix of propensity scores, outputs a vector of weights that target the provided
estimand.

Usage

get_w_from_ps(
ps,
treat,
estimand = "ATE",
focal = NULL,
treated = NULL,

https://doi.org/10.1037/1082-989X.9.4.403
https://doi.org/10.1111/biom.13405
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subclass = NULL,
stabilize = FALSE

)

Arguments

ps a vector, matrix, or data frame of propensity scores. See Details.

treat a vector of treatment status for each individual. See Details.

estimand the desired estimand that the weights should target. Current options include
"ATE" (average treatment effect), "ATT" (average treatment effect on the treated),
"ATC" (average treatment effect on the control), "ATO" (average treatment effect
in the overlap), "ATM" (average treatment effect in the matched sample), and
"ATOS" (average treatment effect in the optimal subset). See Details.

focal when estimand is "ATT" or "ATC", which group should be consider the (fo-
cal) "treated" or "control" group, respectively. If not NULL and estimand is not
"ATT" or "ATC", estimand will automatically be set to "ATT".

treated when treatment is binary, the value of treat that is considered the "treated"
group (i.e., the group for which the propensity scores are the probability of being
in). If NULL, get_w_from_ps() will attempt to figure it out on its own using
some heuristics. This really only matters when treat has values other than 0
and 1 and when ps is given as a vector or an unnamed single-column matrix or
data frame.

subclass numeric; the number of subclasses to use when computing weights using marginal
mean weighting through stratification (also known as fine stratification). If NULL,
standard inverse probability weights (and their extensions) will be computed; if a
number greater than 1, subclasses will be formed and weights will be computed
based on subclass membership. estimand must be "ATE", "ATT", or "ATC" if
subclass is non-NULL. See Details.

stabilize logical; whether to compute stabilized weights or not. This simply involves
multiplying each unit’s weight by the proportion of units in their treatment
group. For saturated outcome models and in balance checking, this won’t make
a difference; otherwise, this can improve performance.

Details

get_w_from_ps() applies the formula for computing weights from propensity scores for the desired
estimand. The formula for each estimand is below, with Ai the treatment value for unit i taking on
values A = (1, . . . , g), pa,i the probability of receiving treatment level a for unit i, and f is the
focal group (the treated group for the ATT and the control group for the ATC):

wATE
i = 1/pAi,i

wATT
i = wATE

i × pf,i

wATO
i = wATE

i /
∑
a∈A

1/pa,i

wATM
i = wATE

i ×min(p1,i, . . . , pg,i)

wATOS
i = wATE

i × ⊮ (α < p2,i < 1− α)
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get_w_from_ps() can only be used with binary and multi-category treatments.

Supplying the ps argument:
The ps argument can be entered in two ways:

• A numeric matrix with a row for each unit and a (named) column for each treatment level,
with each cell corresponding to the probability of receiving the corresponding treatment level

• A numeric vector with a value for each unit corresponding to the probability of being "treated"
(only allowed for binary treatments)

When supplied as a vector, get_w_from_ps() has to know which value of treat corresponds to
the "treated" group. For 0/1 variables, 1 will be considered treated. For other types of variables,
get_w_from_ps() will try to figure it out using heuristics, but it’s safer to supply an argument to
treated. When estimand is "ATT" or "ATC", supplying a value to focal is sufficient (for ATT,
focal is the treated group, and for ATC, focal is the control group).
When supplied as a matrix, the columns must be named with the levels of the treatment, and it is
assumed that each column corresponds to the probability of being in that treatment group. This is
the safest way to supply ps unless treat is a 0/1 variable. When estimand is "ATT" or "ATC", a
value for focal must be specified.

Marginal mean weighting through stratification (MMWS):
When subclass is not NULL, MMWS weights are computed. The implementation differs slightly
from that described in Hong (2010, 2012). First, subclasses are formed by finding the quantiles
of the propensity scores in the target group (for the ATE, all units; for the ATT or ATC, just the
units in the focal group). Any subclasses lacking members of a treatment group will be filled in
with them from neighboring subclasses so each subclass will always have at least one member
of each treatment group. A new subclass-propensity score matrix is formed, where each unit’s
subclass-propensity score for each treatment value is computed as the proportion of units with
that treatment value in the unit’s subclass. For example, if a subclass had 10 treated units and 90
control units in it, the subclass-propensity score for being treated would be .1 and the subclass-
propensity score for being control would be .9 for all units in the subclass.
For multi-category treatments, the propensity scores for each treatment are stratified separately as
described in Hong (2012); for binary treatments, only one set of propensity scores are stratified
and the subclass-propensity scores for the other treatment are computed as the complement of the
propensity scores for the stratified treatment.
After the subclass-propensity scores have been computed, the standard propensity score weighting
formulas are used to compute the unstabilized MMWS weights. To estimate MMWS weights
equivalent to those described in Hong (2010, 2012), stabilize must be set to TRUE, but, as with
standard propensity score weights, this is optional. Note that MMWS weights are also known as
fine stratification weights and described by Desai et al. (2017).

Value

A vector of weights. When subclass is not NULL, the subclasses are returned as the "subclass"
attribute. When estimand = "ATOS", the chosen value of alpha (the smallest propensity score
allowed to remain in the sample) is returned in the "alpha" attribute.

References

Binary treatments:
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• estimand = "ATO"

Li, F., Morgan, K. L., & Zaslavsky, A. M. (2018). Balancing covariates via propensity score
weighting. Journal of the American Statistical Association, 113(521), 390–400. doi:10.1080/
01621459.2016.1260466

• estimand = "ATM"

Li, L., & Greene, T. (2013). A Weighting Analogue to Pair Matching in Propensity Score Analy-
sis. The International Journal of Biostatistics, 9(2). doi:10.1515/ijb20120030

• estimand = "ATOS"

Crump, R. K., Hotz, V. J., Imbens, G. W., & Mitnik, O. A. (2009). Dealing with limited overlap in
estimation of average treatment effects. Biometrika, 96(1), 187–199. doi:10.1093/biomet/asn055

• Other estimands

Austin, P. C. (2011). An Introduction to Propensity Score Methods for Reducing the Effects
of Confounding in Observational Studies. Multivariate Behavioral Research, 46(3), 399–424.
doi:10.1080/00273171.2011.568786

• Marginal mean weighting through stratification (MMWS)

Hong, G. (2010). Marginal mean weighting through stratification: Adjustment for selection bias
in multilevel data. Journal of Educational and Behavioral Statistics, 35(5), 499–531. doi:10.3102/
1076998609359785
Desai, R. J., Rothman, K. J., Bateman, B. . T., Hernandez-Diaz, S., & Huybrechts, K. F. (2017).
A Propensity-score-based Fine Stratification Approach for Confounding Adjustment When Ex-
posure Is Infrequent: Epidemiology, 28(2), 249–257. doi:10.1097/EDE.0000000000000595

Multi-Category Treatments:
• estimand = "ATO"

Li, F., & Li, F. (2019). Propensity score weighting for causal inference with multiple treatments.
The Annals of Applied Statistics, 13(4), 2389–2415. doi:10.1214/19AOAS1282

• estimand = "ATM"

Yoshida, K., Hernández-Díaz, S., Solomon, D. H., Jackson, J. W., Gagne, J. J., Glynn, R. J.,
& Franklin, J. M. (2017). Matching weights to simultaneously compare three treatment groups:
Comparison to three-way matching. Epidemiology (Cambridge, Mass.), 28(3), 387–395. doi:10.1097/
EDE.0000000000000627

• Other estimands

McCaffrey, D. F., Griffin, B. A., Almirall, D., Slaughter, M. E., Ramchand, R., & Burgette, L.
F. (2013). A Tutorial on Propensity Score Estimation for Multiple Treatments Using Generalized
Boosted Models. Statistics in Medicine, 32(19), 3388–3414. doi:10.1002/sim.5753

• Marginal mean weighting through stratification

Hong, G. (2012). Marginal mean weighting through stratification: A generalized method for eval-
uating multivalued and multiple treatments with nonexperimental data. Psychological Methods,
17(1), 44–60. doi:10.1037/a0024918

See Also

method_glm
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Examples

library("cobalt")
data("lalonde", package = "cobalt")

ps.fit <- glm(treat ~ age + educ + race + married +
nodegree + re74 + re75, data = lalonde,

family = binomial)
ps <- ps.fit$fitted.values

w1 <- get_w_from_ps(ps, treat = lalonde$treat,
estimand = "ATT")

treatAB <- factor(ifelse(lalonde$treat == 1, "A", "B"))
w2 <- get_w_from_ps(ps, treat = treatAB,

estimand = "ATT", focal = "A")
all.equal(w1, w2)
w3 <- get_w_from_ps(ps, treat = treatAB,

estimand = "ATT", treated = "A")
all.equal(w1, w3)

# Using MMWS
w4 <- get_w_from_ps(ps, treat = lalonde$treat,

estimand = "ATE", subclass = 20,
stabilize = TRUE)

# A multi-category example using predicted probabilities
# from multinomial logistic regression
T3 <- factor(sample(c("A", "B", "C"), nrow(lalonde),

replace = TRUE))

multi.fit <- multinom_weightit(
T3 ~ age + educ + race + married +
nodegree + re74 + re75, data = lalonde,

vcov = "none"
)

ps.multi <- fitted(multi.fit)
head(ps.multi)

w5 <- get_w_from_ps(ps.multi, treat = T3,
estimand = "ATE")

glm_weightit Fitting Weighted Generalized Linear Models

Description

glm_weightit() is used to fit generalized linear models with a covariance matrix that accounts
for estimation of weights, if supplied. lm_weightit() is a wrapper for glm_weightit() with
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the Gaussian family and identity link (i.e., a linear model). ordinal_weightit() fits propor-
tional odds ordinal regression models. multinom_weightit() fits multinomial logistic regres-
sion models. coxph_weightit() fits a Cox proportional hazards model and is a wrapper for
survival::coxph(). By default, these functions use M-estimation to construct a robust covari-
ance matrix using the estimating equations for the weighting model and the outcome model when
available.

Usage

glm_weightit(
formula,
data,
family = gaussian,
weightit = NULL,
vcov = NULL,
cluster,
R = 500,
offset,
start = NULL,
etastart,
mustart,
control = list(...),
x = FALSE,
y = TRUE,
contrasts = NULL,
fwb.args = list(),
br = FALSE,
...

)

ordinal_weightit(
formula,
data,
link = "logit",
weightit = NULL,
vcov = NULL,
cluster,
R = 500,
offset,
start = NULL,
control = list(...),
x = FALSE,
y = TRUE,
contrasts = NULL,
fwb.args = list(),
...

)

multinom_weightit(
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formula,
data,
link = "logit",
weightit = NULL,
vcov = NULL,
cluster,
R = 500,
offset,
start = NULL,
control = list(...),
x = FALSE,
y = TRUE,
contrasts = NULL,
fwb.args = list(),
...

)

coxph_weightit(
formula,
data,
weightit = NULL,
vcov = NULL,
cluster,
R = 500,
x = FALSE,
y = TRUE,
fwb.args = list(),
...

)

lm_weightit(
formula,
data,
weightit = NULL,
vcov = NULL,
cluster,
R = 500,
offset,
start = NULL,
etastart,
mustart,
control = list(...),
x = FALSE,
y = TRUE,
contrasts = NULL,
...

)
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Arguments

formula an object of class "formula" (or one that can be coerced to that class): a symbolic
description of the model to be fitted. For coxph_weightit(), see survival::coxph()
for how this should be specified.

data a data frame containing the variables in the model. If not found in data, the vari-
ables are taken from environment(formula), typically the environment from
which the function is called.

family a description of the error distribution and link function to be used in the model.
This can be a character string naming a family function, a family function or the
result of a call to a family function. See family for details of family functions.

weightit a weightit or weightitMSM object; the output of a call to weightit() or
weightitMSM(). If not supplied, an unweighted model will be fit.

vcov string; the method used to compute the variance of the estimated parameters.
Allowable options include "asympt", which uses the asymptotically correct
M-estimation-based method that accounts for estimation of the weights when
available; "const", which uses the usual maximum likelihood estimates (only
available when weightit is not supplied); "HC0", which computes the robust
sandwich variance treating weights (if supplied) as fixed; "BS", which uses the
traditional bootstrap (including re-estimation of the weights, if supplied); "FWB",
which uses the fractional weighted bootstrap as implemented in fwb::fwb() (in-
cluding re-estimation of the weights, if supplied); and "none" to omit calcula-
tion of a variance matrix. If NULL (the default), will use "asympt" if weightit is
supplied and M-estimation is available and "HC0" otherwise. See the vcov_type
component of the outcome object to see which was used.

cluster optional; for computing a cluster-robust variance matrix, a variable indicating
the clustering of observations, a list (or data frame) thereof, or a one-sided for-
mula specifying which variable(s) from the fitted model should be used. Note
the cluster-robust variance matrix uses a correction for small samples, as is done
in sandwich::vcovCL() by default. Cluster-robust variance calculations are
available only when vcov is "asympt", "HC0", "BS", or "FWB".

R the number of bootstrap replications when vcov is "BS" or "FWB". Default is
500. Ignored otherwise.

offset optional; a numeric vector containing the model offset. See offset(). An offset
can also be preset in the model formula.

start optional starting values for the coefficients.
etastart, mustart

optional starting values for the linear predictor and vector of means. Passed to
glm().

control a list of parameters for controlling the fitting process.

x, y logical values indicating whether the response vector and model matrix used in
the fitting process should be returned as components of the returned value.

contrasts an optional list defining contrasts for factor variables. See model.matrix().

fwb.args an optional list of further arguments to supply to fwb::fwb() when vcov =
"FWB".
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br logical; whether to use bias-reduced regression as implemented by brglm2::brglmFit().
If TRUE, arguments passed to control or . . . will be passed to brglm2::brglmControl().

... arguments to be used to form the default control argument if it is not supplied
directly.

link for plor_weightit() and multinom_weightit(), a string corresponding to
the desired link function. For ordinal_weightit(), any allowed by binomial()
are accepted; for multinom_weightit(), only "logit" is allowed. Default is
"logit" for ordinal or multinomial logistic regression, respectively.

Details

glm_weightit() is essentially a wrapper for glm() that optionally computes a coefficient variance
matrix that can be adjusted to account for estimation of the weights if a weightit or weightitMSM
object is supplied to the weightit argument. When no argument is supplied to weightit or there is
no "Mparts" attribute in the supplied object, the default variance matrix returned will be the "HC0"
sandwich variance matrix, which is robust to misspecification of the outcome family (including
heteroscedasticity). Otherwise, the default variance matrix uses M-estimation to additionally adjust
for estimation of the weights. When possible, this often yields smaller (and more accurate) standard
errors. See the individual methods pages to see whether and when an "Mparts" attribute is included
in the supplied object. To request that a variance matrix be computed that doesn’t account for
estimation of the weights even when a compatible weightit object is supplied, set vcov = "HC0",
which treats the weights as fixed.

Bootstrapping can also be used to compute the coefficient variance matrix; when vcov = "BS" or
vcov = "FWB", which implement the traditional resampling-based and fractional weighted bootstrap,
respectively, the entire process of estimating the weights and fitting the outcome model is repeated
in bootstrap samples (if a weightit object is supplied). This accounts for estimation of the weights
and can be used with any weighting method. It is important to set a seed using set.seed() to
ensure replicability of the results. The fractional weighted bootstrap is more reliable but requires
the weighting method to accept sampling weights (which most do, and you’ll get an error if it
doesn’t). Setting vcov = "FWB" and supplying fwb.args = list(wtype = "multinom") also per-
forms the resampling-based bootstrap but with the additional features fwb provides (e.g., a progress
bar and parallelization) at the expense of needing to have fwb installed.

multinom_weightit() implements multinomial logistic regression using a custom function in
WeightIt. This implementation is less robust to failures than other multinomial logistic regres-
sion solvers and should be used with caution. Estimation of coefficients should align with that from
mlogit::mlogit() and mclogit::mblogit().

ordinal_weightit() implements proportional odds ordinal regression using a custom function in
WeightIt. Estimation of coefficients should align with that from MASS::polr().

coxph_weightit() is a wrapper for survival::coxph() to fit weighted survival models. It differs
from coxph() in that the cluster argument (if used) should be specified as a one-sided formula
(which can include multiple clustering variables) and uses a small sample correction for cluster
variance estimates when specified. Currently, M-estimation is not supported, so bootstrapping (i.e.,
vcov = "BS" or "FWB") is the only way to correctly adjust for estimation of the weights. By default,
the robust variance is estimated treating weights as fixed, which is the same variance returned when
robust = TRUE in coxph().

Functions in the sandwich package can be to compute standard errors after fitting, regardless of
how vcov was specified, though these will ignore estimation of the weights, if any. When no
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adjustment is done for estimation of the weights (i.e., because no weightit argument was sup-
plied or there was no "Mparts" component in the supplied object), the default variance matrix
produced by glm_weightit() should align with that from sandwich::vcovHC(. type = "HC0")
or sandwich::vcovCL(., type = "HC0", cluster = cluster) when cluster is supplied. Not all
types are available for all models.

Value

For lm_weightit() and glm_weightit(), a glm_weightit object, which inherits from glm. For
ordinal_weightit() and multinom_weightit(), an ordinal_weightit or multinom_weightit,
respectively. For coxph_weightit(), a coxph_weightit object, which inherits from coxph. See
survival::coxph() for details.

Unless vcov = "none", the vcov component contains the covariance matrix adjusted for the estima-
tion of the weights if requested and a compatible weightit object was supplied. The vcov_type
component contains the type of variance matrix requested. If cluster is supplied, it will be stored
in the "cluster" attribute of the output object, even if not used.

The model component of the output object (also the model.frame() output) will include two extra
columns when weightit is supplied: (weights) containing the weights used in the model (the
product of the estimated weights and the sampling weights, if any) and (s.weights) containing
the sampling weights, which will be 1 if s.weights is not supplied in the original weightit() call.

See Also

lm() and glm() for fitting generalized linear models without adjusting standard errors for estimation
of the weights. survival::coxph() for fitting Cox proportional hazards models without adjusting
standard errors for estimation of the weights.

Examples

data("lalonde", package = "cobalt")

# Logistic regression ATT weights
w.out <- weightit(treat ~ age + educ + married + re74,

data = lalonde, method = "glm",
estimand = "ATT")

# Linear regression outcome model that adjusts
# for estimation of weights
fit1 <- lm_weightit(re78 ~ treat, data = lalonde,

weightit = w.out)

summary(fit1)

# Linear regression outcome model that treats weights
# as fixed
fit2 <- lm_weightit(re78 ~ treat, data = lalonde,

weightit = w.out, vcov = "HC0")

summary(fit2)
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# example code

# Linear regression outcome model that bootstraps
# estimation of weights and outcome model fitting
# using fractional weighted bootstrap with "Mammen"
# weights
set.seed(123)
fit3 <- lm_weightit(re78 ~ treat, data = lalonde,

weightit = w.out,
vcov = "FWB",
R = 50, #should use way more
fwb.args = list(wtype = "mammen"))

summary(fit3)

# Multinomial logistic regression outcome model
# that adjusts for estimation of weights
lalonde$re78_3 <- factor(findInterval(lalonde$re78,

c(0, 5e3, 1e4)))

fit4 <- multinom_weightit(re78_3 ~ treat,
data = lalonde,
weightit = w.out)

summary(fit4)

# Ordinal probit regression that adjusts for estimation
# of weights
fit5 <- ordinal_weightit(ordered(re78_3) ~ treat,

data = lalonde,
link = "probit",
weightit = w.out)

summary(fit5)

glm_weightit-methods Methods for glm_weightit() objects

Description

This page documents methods for objects returned by glm_weightit(), lm_weightit(), ordinal_weightit(),
multinom_weightit(), and coxph_weightit(). predict() methods are described at predict.glm_weightit()
and anova() methods are described at anova.glm_weightit().

Usage

## S3 method for class 'glm_weightit'
summary(object, ci = FALSE, level = 0.95, transform = NULL, vcov = NULL, ...)

## S3 method for class 'multinom_weightit'
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summary(object, ci = FALSE, level = 0.95, transform = NULL, vcov = NULL, ...)

## S3 method for class 'ordinal_weightit'
summary(
object,
ci = FALSE,
level = 0.95,
transform = NULL,
thresholds = TRUE,
vcov = NULL,
...

)

## S3 method for class 'coxph_weightit'
summary(object, ci = FALSE, level = 0.95, transform = NULL, vcov = NULL, ...)

## S3 method for class 'glm_weightit'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

## S3 method for class 'glm_weightit'
vcov(object, complete = TRUE, vcov = NULL, ...)

## S3 method for class 'glm_weightit'
update(object, formula. = NULL, ..., evaluate = TRUE)

Arguments

object, x an output from one of the above modeling functions.

ci logical; whether to display Wald confidence intervals for estimated coeffi-
cients. Default is FALSE. (Note: this argument can also be supplied as conf.int.)

level when ci = TRUE, the desired confidence level.

transform the function used to transform the coefficients, e.g., exp (which can also be
supplied as a string, e.g., "exp"); passed to match.fun() before being used on
the coefficients. When ci = TRUE, this is also applied to the confidence interval
bounds. If specified, the standard error will be omitted from the output. Default
is no transformation.

vcov either a string indicating the method used to compute the variance of the es-
timated parameters for object, a function used to extract the variance, or the
variance matrix itself. Default is to use the variance matrix already present in
object. If a string or function, arguments passed to ... are supplied to the
method or function. (Note: for vcov(), can also be supplied as type.)

... for vcov() or summary() or confint() with vcov supplied, other arguments
used to compute the variance matrix depending on the method supplied to vcov,
e.g., cluster, R, or fwb.args. For update(), additional arguments to the call
or arguments with changed values. See glm_weightit() for details.

thresholds logical; whether to include thresholds in the summary() output for ordinal_weightit
objects. Default is TRUE.
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digits the number of significant digits to be passed to format(coef(x), .) when
print()ing.

complete logical; whether the full variance-covariance matrix should be returned also
in case of an over-determined system where some coefficients are undefined
and coef(.) contains NAs correspondingly. When complete = TRUE, vcov() is
compatible with coef() also in this singular case.

formula. changes to the model formula, passed to the new argument of update.formula().

evaluate whether to evaluate the call (TRUE, the default) or just return it.

Details

vcov() by default extracts the parameter covariance matrix already computed by the fitting func-
tion, and summary() and confint() uses this covariance matrix to compute standard errors and
Wald confidence intervals (internally calling confint.lm()), respectively. Supplying arguments to
vcov or ... will compute a new covariance matrix. If cluster was supplied to the original fitting
function, it will be incorporated into any newly computed covariance matrix unless cluster = NULL
is specified in vcov(), summary(), or confint(). For other arguments (e.g., R and fwb.args), the
defaults are those used by glm_weightit(). Note that for vcov = "BS" and vcov = "FWB" (and
vcov = "const" for multinom_weightit or ordinal_weightit objects), the environment for the
fitting function is used, so any changes to that environment may affect calculation. It is always safer
to simply recompute the fitted object with a new covariance matrix than to modify it with the vcov
argument, but it can be quicker to just request a new covariance matrix when refitting the model is
slow.

update() updates a fitted model object with new arguments, e.g., a new model formula, dataset,
or variance matrix. When only arguments that control the computation of the variance are sup-
plied, only the variance will be recalculated (i.e., the parameters will not be re-estimated). When
data is supplied, weightit is not supplied, and a weightit object was originally passed to the
model fitting function, the weightit object will be re-fit with the new dataset before the model
is refit using the new weights and new data. That is, calling update(obj, data = d) is equiv-
alent to calling update(obj, data = d, weightit = update(obj$weightit, data = d)) when a
weightit object was supplied to the model fitting function.

The estfun() method for multinom_weightit and ordinal_weightit objects (which is used by
function in the sandwich package to compute coefficient covariance matrices) simply extracts the
gradient component of the object. For glm_weightit and coxph_weightit objects, the glm and
coxph methods are dispatched instead.

Value

summary() returns a summary.glm_weightit() object, which has its own print() method. For
coxph_weightit() objects, the print() and summary() methods are more like those for glm
objects than for coxph objects.

Otherwise, all methods return the same type of object as their generics.

See Also

glm_weightit() for the page documenting glm_weightit(), lm_weightit(), ordinal_weightit(),
multinom_weightit(), and coxph_weightit(). summary.glm(), vcov(), confint() for the
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relevant methods pages. predict.glm_weightit() for computing predictions from the models.
anova.glm_weightit() for comparing models using a Wald test.

Examples

## See more examples at ?glm_weightit

make_full_rank Make a design matrix full rank

Description

When writing user-defined methods for use with weightit(), it may be necessary to take the
potentially non-full rank covs data frame and make it full rank for use in a downstream function.
This function performs that operation.

Usage

make_full_rank(mat, with.intercept = TRUE)

Arguments

mat a numeric matrix or data frame to be transformed. Typically this contains co-
variates. NAs are not allowed.

with.intercept whether an intercept (i.e., a vector of 1s) should be added to mat before making
it full rank. If TRUE, the intercept will be used in determining whether a column
is linearly dependent on others. Regardless, no intercept will be included in the
output.

Details

make_full_rank() calls qr() to find the rank and linearly independent columns of mat, which are
retained while others are dropped. If with.intercept is set to TRUE, an intercept column is added
to the matrix before calling qr(). Note that dependent columns that appear later in mat will be
dropped first.

See example at method_user.

Value

An object of the same type as mat containing only linearly independent columns.

Note

Older versions would drop all columns that only had one value. With with.intercept = FALSE, if
only one column has only one value, it will not be removed, and it will function as though there was
an intercept present; if more than only column has only one value, only the first one will remain.
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See Also

method_user, model.matrix()

Examples

set.seed(1000)
c1 <- rbinom(10, 1, .4)
c2 <- 1-c1
c3 <- rnorm(10)
c4 <- 10*c3
mat <- data.frame(c1, c2, c3, c4)

make_full_rank(mat) #leaves c2 and c4

make_full_rank(mat, with.intercept = FALSE) #leaves c1, c2, and c4

method_bart Propensity Score Weighting Using BART

Description

This page explains the details of estimating weights from Bayesian additive regression trees (BART)-
based propensity scores by setting method = "bart" in the call to weightit() or weightitMSM().
This method can be used with binary, multi-category, and continuous treatments.

In general, this method relies on estimating propensity scores using BART and then converting
those propensity scores into weights using a formula that depends on the desired estimand. This
method relies on dbarts::bart2() from the dbarts package.

Binary Treatments:
For binary treatments, this method estimates the propensity scores using dbarts::bart2(). The
following estimands are allowed: ATE, ATT, ATC, ATO, ATM, and ATOS. Weights can also be
computed using marginal mean weighting through stratification for the ATE, ATT, and ATC. See
get_w_from_ps() for details.

Multi-Category Treatments:
For multi-category treatments, the propensity scores are estimated using several calls to dbarts::bart2(),
one for each treatment group; the treatment probabilities are not normalized to sum to 1. The fol-
lowing estimands are allowed: ATE, ATT, ATC, ATO, and ATM. The weights for each estimand
are computed using the standard formulas or those mentioned above. Weights can also be com-
puted using marginal mean weighting through stratification for the ATE, ATT, and ATC. See
get_w_from_ps() for details.

Continuous Treatments:
For continuous treatments, weights are estimated as wi = fA(ai)/fA|X(ai), where fA(ai) (known
as the stabilization factor) is the unconditional density of treatment evaluated the observed treat-
ment value and fA|X(ai) (known as the generalized propensity score) is the conditional density
of treatment given the covariates evaluated at the observed value of treatment. The shape of fA(.)

https://CRAN.R-project.org/package=dbarts
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and fA|X(.) is controlled by the density argument described below (normal distributions by de-
fault), and the predicted values used for the mean of the conditional density are estimated using
BART as implemented in dbarts::bart2(). Kernel density estimation can be used instead of
assuming a specific density for the numerator and denominator by setting density = "kernel".
Other arguments to density() can be specified to refine the density estimation parameters.

Longitudinal Treatments:
For longitudinal treatments, the weights are the product of the weights estimated at each time
point.

Sampling Weights:
Sampling weights are not supported.

Missing Data:
In the presence of missing data, the following value(s) for missing are allowed:

"ind" (default) First, for each variable with missingness, a new missingness indicator variable
is created which takes the value 1 if the original covariate is NA and 0 otherwise. The miss-
ingness indicators are added to the model formula as main effects. The missing values in the
covariates are then replaced with the covariate medians. The weight estimation then proceeds
with this new formula and set of covariates. The covariates output in the resulting weightit
object will be the original covariates with the NAs.

M-estimation:
M-estimation is not supported.

Details

BART works by fitting a sum-of-trees model for the treatment or probability of treatment. The
number of trees is determined by the n.trees argument. Bayesian priors are used for the hyperpa-
rameters, so the result is a posterior distribution of predicted values for each unit. The mean of these
for each unit is taken for use in computing the (generalized) propensity score. Although the hyper-
parameters governing the priors can be modified by supplying arguments to weightit() that are
passed to the BART fitting function, the default values tend to work well and require little modifica-
tion (though the defaults differ for continuous and categorical treatments; see the dbarts::bart2()
documentation for details). Unlike many other machine learning methods, no loss function is op-
timized and the hyperparameters do not need to be tuned (e.g., using cross-validation), though
performance can benefit from tuning. BART tends to balance sparseness with flexibility by using
very weak learners as the trees, which makes it suitable for capturing complex functions without
specifying a particular functional form and without overfitting.

Reproducibility:
BART has a random component, so some work must be done to ensure reproducibility across
runs. See the Reproducibility section at dbarts::bart2() for more details. To ensure repro-
ducibility, one can do one of two things: 1) supply an argument to seed, which is passed to
dbarts::bart2() and sets the seed for single- and multi-threaded uses, or 2) call set.seed(),
though this only ensures reproducibility when using single-threading, which can be requested by
setting n.threads = 1. Note that to ensure reproducibility on any machine, regardless of the num-
ber of cores available, one should use single-threading and either supply seed or call set.seed().
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Additional Arguments

All arguments to dbarts::bart2() can be passed through weightit() or weightitMSM(), with
the following exceptions:

• test, weights,subset, offset.test are ignored
• combine.chains is always set to TRUE

• sampleronly is always set to FALSE

For continuous treatments only, the following arguments may be supplied:

density A function corresponding to the conditional density of the treatment. The standardized
residuals of the treatment model will be fed through this function to produce the numerator
and denominator of the generalized propensity score weights. If blank, dnorm() is used as
recommended by Robins et al. (2000). This can also be supplied as a string containing the
name of the function to be called. If the string contains underscores, the call will be split
by the underscores and the latter splits will be supplied as arguments to the second argument
and beyond. For example, if density = "dt_2" is specified, the density used will be that of
a t-distribution with 2 degrees of freedom. Using a t-distribution can be useful when extreme
outcome values are observed (Naimi et al., 2014).
Can also be "kernel" to use kernel density estimation, which calls density() to estimate the
numerator and denominator densities for the weights. (This used to be requested by setting
use.kernel = TRUE, which is now deprecated.)

bw, adjust, kernel, n If density = "kernel", the arguments to density(). The defaults are the
same as those in density() except that n is 10 times the number of units in the sample.

plot If density = "kernel", whether to plot the estimated densities.

Additional Outputs

obj When include.obj = TRUE, the bart2 fit(s) used to generate the predicted values. With multi-
category treatments, this will be a list of the fits; otherwise, it will be a single fit. The predicted
probabilities used to compute the propensity scores can be extracted using fitted().

References

Hill, J., Weiss, C., & Zhai, F. (2011). Challenges With Propensity Score Strategies in a High-
Dimensional Setting and a Potential Alternative. Multivariate Behavioral Research, 46(3), 477–513.
doi:10.1080/00273171.2011.570161

Chipman, H. A., George, E. I., & McCulloch, R. E. (2010). BART: Bayesian additive regression
trees. The Annals of Applied Statistics, 4(1), 266–298. doi:10.1214/09AOAS285

Note that many references that deal with BART for causal inference focus on estimating potential
outcomes with BART, not the propensity scores, and so are not directly relevant when using BART
to estimate propensity scores for weights.

See method_glm for additional references on propensity score weighting more generally.

See Also

weightit(), weightitMSM(), get_w_from_ps()

method_super for stacking predictions from several machine learning methods, including BART.

https://doi.org/10.1080/00273171.2011.570161
https://doi.org/10.1214/09-AOAS285
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Examples

library("cobalt")
data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "bart", estimand = "ATT"))

summary(W1)
bal.tab(W1)

#Balancing covariates with respect to race (multi-category)
(W2 <- weightit(race ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "bart", estimand = "ATE"))

summary(W2)
bal.tab(W2)

#Balancing covariates with respect to re75 (continuous)
#assuming t(3) conditional density for treatment
(W3 <- weightit(re75 ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "bart", density = "dt_3"))

summary(W3)
bal.tab(W3)

method_cbps Covariate Balancing Propensity Score Weighting

Description

This page explains the details of estimating weights from covariate balancing propensity scores by
setting method = "cbps" in the call to weightit() or weightitMSM(). This method can be used
with binary, multi-category, and continuous treatments.

In general, this method relies on estimating propensity scores using generalized method of moments
and then converting those propensity scores into weights using a formula that depends on the desired
estimand. This method relies on code written for WeightIt using optim().

Binary Treatments:
For binary treatments, this method estimates the propensity scores and weights using optim()
using formulas described by Imai and Ratkovic (2014). The following estimands are allowed:
ATE, ATT, and ATC.

Multi-Category Treatments:
For multi-category treatments, this method estimates the generalized propensity scores and weights
using optim() using formulas described by Imai and Ratkovic (2014). The following estimands
are allowed: ATE and ATT.
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Continuous Treatments:
For continuous treatments, this method estimates the generalized propensity scores and weights
using optim() using a modification of the formulas described by Fong, Hazlett, and Imai (2018).
See Details.

Longitudinal Treatments:
For longitudinal treatments, the weights are computed using methods similar to those described
by Huffman and van Gameren (2018). This involves specifying moment conditions for the models
at each time point as with single-time point treatments but using the product of the time-specific
weights as the weights that are used in the balance moment conditions. This yields weights that
balance the covariate at each time point. This is not the same implementation as is implemented
in CBPS::CBMSM(), and results should not be expected to align between the two methods. Any
combination of treatment types is supported.
For the over-identified version (i.e., setting over = TRUE), the empirical variance is used in the
objective function, whereas the expected variance averaging over the treatment is used with binary
and multi-category point treatments.

Sampling Weights:
Sampling weights are supported through s.weights in all scenarios.

Missing Data:
In the presence of missing data, the following value(s) for missing are allowed:

"ind" (default) First, for each variable with missingness, a new missingness indicator variable
is created which takes the value 1 if the original covariate is NA and 0 otherwise. The miss-
ingness indicators are added to the model formula as main effects. The missing values in
the covariates are then replaced with the covariate medians (this value is arbitrary and does
not affect estimation). The weight estimation then proceeds with this new formula and set
of covariates. The covariates output in the resulting weightit object will be the original
covariates with the NAs.

M-estimation:
M-estimation is supported for the just-identified CBPS (the default, setting over = FALSE) for bi-
nary and multi-category treatments. See glm_weightit() and vignette("estimating-effects")
for details.

Details

CBPS estimates the coefficients of a generalized linear model (for binary treatments), multinomial
logistic regression model (for multi-category treatments), or linear regression model (for continu-
ous treatments) that is used to compute (generalized) propensity scores, from which the weights are
computed. It involves replacing (or augmenting, in the case of the over-identified version) the stan-
dard regression score equations with the balance constraints in a generalized method of moments
estimation. The idea is to nudge the estimation of the coefficients toward those that produce bal-
ance in the weighted sample. The just-identified version (with exact = FALSE) does away with the
score equations for the coefficients so that only the balance constraints are used. The just-identified
version will therefore produce superior balance on the means (i.e., corresponding to the balance
constraints) for binary and multi-category treatments and linear terms for continuous treatments
than will the over-identified version.
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Just-identified CBPS is very similar to entropy balancing and inverse probability tilting. For the
ATT, all three methods will yield identical estimates. For other estimands, the results will differ.

Note that WeightIt provides different functionality from the CBPS package in terms of the versions
of CBPS available; for extensions to CBPS (e.g., optimal CBPS and CBPS for instrumental vari-
ables), the CBPS package may be preferred. Note that for longitudinal treatments, CBPS::CBMSM()
uses different methods and produces different results from weightitMSM() called with method =
"cbps".

Additional Arguments

moments and int are accepted. See weightit() for details.

The following additional arguments can be specified:

over logical; whether to request the over-identified CBPS, which combines the generalized linear
model regression score equations (for binary treatments), multinomial logistic regression score
equations (for multi-category treatments), or linear regression score equations (for continuous
treatments) to the balance moment conditions. Default is FALSE to use the just-identified
CBPS.

twostep logical; when over = TRUE, whether to use the two-step approximation to the general-
ized method of moments variance. Default is TRUE. Ignored when over = FALSE.

link "string"; the link used in the generalized linear model for the propensity scores when treat-
ment is binary. Default is "logit" for logistic regression, which is used in the original descrip-
tion of the method by Imai and Ratkovic (2014), but others are allowed: "logit", "probit",
"cauchit", and "cloglog" all use the binomial likelihood, "log" uses the Poisson likeli-
hood, and "identity" uses the Gaussian likelihood (i.e., the linear probability model). Note
that negative weights are possible with these last two and they should be used with caution.
Ignored for multi-category, continuous, and longitudinal treatments.

reltol the relative tolerance for convergence of the optimization. Passed to the control argument
of optim(). Default is sqrt(.Machine$double.eps).

maxit the maximum number of iterations for convergence of the optimization. Passed to the
control argument of optim(). Default is 1000.

quantile A named list of quantiles (values between 0 and 1) for each continuous covariate, which
are used to create additional variables that when balanced ensure balance on the corresponding
quantile of the variable. For example, setting quantile = list(x1 = c(.25, .5. , .75))
ensures the 25th, 50th, and 75th percentiles of x1 in each treatment group will be balanced in
the weighted sample. Can also be a single number (e.g., .5) or an unnamed list of length 1
(e.g., list(c(.25, .5, .75))) to request the same quantile(s) for all continuous covariates,
or a named vector (e.g., c(x1 = .5, x2 = .75) to request one quantile for each covariate. Only
allowed with binary and multi-category treatments.

Additional Outputs

obj When include.obj = TRUE, the output of the final call to optim() used to produce the model
parameters. Note that because of variable transformations, the resulting parameter estimates
may not be interpretable.
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Note

This method used to rely on functionality in the CBPS package, but no longer does. Slight differ-
ences may be found between the two packages in some cases due to numerical imprecision (or, for
continuous and longitudinal treatments, due to a difference in the estimator). WeightIt supports
arbitrary numbers of groups for the multi-category CBPS and any estimand, whereas CBPS only
supports up to four groups and only the ATE. The implementation of the just-identified CBPS for
continuous treatments also differs from that of CBPS, and departs slightly from that described by
Fong et al. (2018). The treatment mean and treatment variance are treated as random parameters
to be estimated and are included in the balance moment conditions. In Fong et al. (2018), the
treatment mean and variance are fixed to their empirical counterparts. For continuous treatments
with the over-identified CBPS, WeightIt and CBPS use different methods of specifying the GMM
variance matrix, which may lead to differing results.

Note that the default method differs between the two implementations; by default WeightIt uses
the just-identified CBPS, which is faster to fit, yields better balance, and is compatible with M-
estimation for estimating the standard error of the treatment effect, whereas CBPS uses the over-
identified CBPS by default. However, both the just-identified and over-identified versions are avail-
able in both packages.

References

Binary treatments:
Imai, K., & Ratkovic, M. (2014). Covariate balancing propensity score. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 76(1), 243–263.

Multi-Category treatments:
Imai, K., & Ratkovic, M. (2014). Covariate balancing propensity score. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 76(1), 243–263.

Continuous treatments:
Fong, C., Hazlett, C., & Imai, K. (2018). Covariate balancing propensity score for a continuous
treatment: Application to the efficacy of political advertisements. The Annals of Applied Statistics,
12(1), 156–177. doi:10.1214/17AOAS1101

Longitudinal treatments:
Huffman, C., & van Gameren, E. (2018). Covariate Balancing Inverse Probability Weights for
Time-Varying Continuous Interventions. Journal of Causal Inference, 6(2). doi:10.1515/jci2017-
0002
Note: one should not cite Imai & Ratkovic (2015) when using CBPS for longitudinal treatments.
Some of the code was inspired by the source code of the CBPS package.

See Also

weightit(), weightitMSM()

method_ebal and method_ipt for entropy balancing and inverse probability tilting, which work sim-
ilarly.

https://doi.org/10.1214/17-AOAS1101
https://doi.org/10.1515/jci-2017-0002
https://doi.org/10.1515/jci-2017-0002
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Examples

data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(W1a <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "cbps", estimand = "ATT"))

summary(W1a)
cobalt::bal.tab(W1a)

#Balancing covariates between treatment groups (binary)
#using over-identified CBPS with probit link
(W1b <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "cbps", estimand = "ATT",
over = TRUE, link = "probit"))

summary(W1b)
cobalt::bal.tab(W1b)

#Balancing covariates with respect to race (multi-category)
(W2 <- weightit(race ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "cbps", estimand = "ATE"))

summary(W2)
cobalt::bal.tab(W2)

#Balancing covariates with respect to re75 (continuous)
(W3 <- weightit(re75 ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "cbps"))

summary(W3)
cobalt::bal.tab(W3)

#Longitudinal treatments
data("msmdata")
(W4 <- weightitMSM(list(A_1 ~ X1_0 + X2_0,

A_2 ~ X1_1 + X2_1 +
A_1 + X1_0 + X2_0),

data = msmdata,
method = "cbps"))

summary(W4)
cobalt::bal.tab(W4)

method_ebal Entropy Balancing
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Description

This page explains the details of estimating weights using entropy balancing by setting method =
"ebal" in the call to weightit() or weightitMSM(). This method can be used with binary, multi-
category, and continuous treatments.

In general, this method relies on estimating weights by minimizing the negative entropy of the
weights subject to exact moment balancing constraints. This method relies on code written for
WeightIt using optim().

Binary Treatments:
For binary treatments, this method estimates the weights using optim() using formulas described
by Hainmueller (2012). The following estimands are allowed: ATE, ATT, and ATC. When the
ATE is requested, the optimization is run twice, once for each treatment group.

Multi-Category Treatments:
For multi-category treatments, this method estimates the weights using optim(). The following
estimands are allowed: ATE and ATT. When the ATE is requested, optim() is run once for each
treatment group. When the ATT is requested, optim() is run once for each non-focal (i.e., control)
group.

Continuous Treatments:
For continuous treatments, this method estimates the weights using optim() using formulas de-
scribed by Tübbicke (2022) and Vegetabile et al. (2021).

Longitudinal Treatments:
For longitudinal treatments, the weights are the product of the weights estimated at each time
point. This method is not guaranteed to yield exact balance at each time point. NOTE: the use of
entropy balancing with longitudinal treatments has not been validated!

Sampling Weights:
Sampling weights are supported through s.weights in all scenarios.

Missing Data:
In the presence of missing data, the following value(s) for missing are allowed:

"ind" (default) First, for each variable with missingness, a new missingness indicator variable
is created which takes the value 1 if the original covariate is NA and 0 otherwise. The miss-
ingness indicators are added to the model formula as main effects. The missing values in
the covariates are then replaced with the covariate medians (this value is arbitrary and does
not affect estimation). The weight estimation then proceeds with this new formula and set
of covariates. The covariates output in the resulting weightit object will be the original
covariates with the NAs.

M-estimation:
M-estimation is supported for all scenarios. See glm_weightit() and vignette("estimating-effects")
for details.
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Details

Entropy balancing involves the specification of an optimization problem, the solution to which is
then used to compute the weights. The constraints of the primal optimization problem correspond
to covariate balance on the means (for binary and multi-category treatments) or treatment-covariate
covariances (for continuous treatments), positivity of the weights, and that the weights sum to a
certain value. It turns out that the dual optimization problem is much easier to solve because it is
over only as many variables as there are balance constraints rather than over the weights for each
unit and it is unconstrained. Zhao and Percival (2017) found that entropy balancing for the ATT of a
binary treatment actually involves the estimation of the coefficients of a logistic regression propen-
sity score model but using a specialized loss function different from that optimized with maximum
likelihood. Entropy balancing is doubly robust (for the ATT) in the sense that it is consistent either
when the true propensity score model is a logistic regression of the treatment on the covariates or
when the true outcome model for the control units is a linear regression of the outcome on the co-
variates, and it attains a semi-parametric efficiency bound when both are true. Entropy balancing
will always yield exact mean balance on the included terms.

Additional Arguments

moments and int are accepted. See weightit() for details.

base.weights A vector of base weights, one for each unit. These correspond to the base weights
$q$ in Hainmueller (2012). The estimated weights minimize the Kullback entropy divergence
from the base weights, defined as

∑
w log(w/q), subject to exact balance constraints. These

can be used to supply previously estimated weights so that the newly estimated weights re-
tain the some of the properties of the original weights while ensuring the balance constraints
are met. Sampling weights should not be passed to base.weights but can be included in a
weightit() call that includes s.weights.

quantile A named list of quantiles (values between 0 and 1) for each continuous covariate, which
are used to create additional variables that when balanced ensure balance on the corresponding
quantile of the variable. For example, setting quantile = list(x1 = c(.25, .5. , .75))
ensures the 25th, 50th, and 75th percentiles of x1 in each treatment group will be balanced in
the weighted sample. Can also be a single number (e.g., .5) or an unnamed list of length 1
(e.g., list(c(.25, .5, .75))) to request the same quantile(s) for all continuous covariates,
or a named vector (e.g., c(x1 = .5, x2 = .75) to request one quantile for each covariate. Only
allowed with binary and multi-category treatments.

d.moments With continuous treatments, the number of moments of the treatment and covariate dis-
tributions that are constrained to be the same in the weighted sample as in the original sample.
For example, setting d.moments = 3 ensures that the mean, variance, and skew of the treatment
and covariates are the same in the weighted sample as in the unweighted sample. d.moments
should be greater than or equal to moments and will be automatically set accordingly if not (or
if not specified). Vegetabile et al. (2021) recommend setting d.moments = 3, even if moments
is less than 3. This argument corresponds to the tuning parameters $r$ and $s$ in Vegetabile et
al. (2021) (which here are set to be equal). Ignored for binary and multi-category treatments.

The arguments maxit and reltol can be supplied and are passed to the control argument of
optim(). The "BFGS" method is used, so the defaults correspond to this.
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The stabilize argument is ignored; in the past it would reduce the variability of the weights
through an iterative process. If you want to minimize the variance of the weights subject to balance
constraints, use method = "optweight".

Additional Outputs

obj When include.obj = TRUE, the output of the call to optim(), which contains the dual vari-
ables and convergence information. For ATE fits or with multi-category treatments, a list of
optim() outputs, one for each weighted group.

References

Binary Treatments:
estimand = "ATT":
Hainmueller, J. (2012). Entropy Balancing for Causal Effects: A Multivariate Reweighting
Method to Produce Balanced Samples in Observational Studies. Political Analysis, 20(1),
25–46. doi:10.1093/pan/mpr025
Zhao, Q., & Percival, D. (2017). Entropy balancing is doubly robust. Journal of Causal Infer-
ence, 5(1). doi:10.1515/jci20160010

estimand = "ATE":
Källberg, D., & Waernbaum, I. (2023). Large Sample Properties of Entropy Balancing Estima-
tors of Average Causal Effects. Econometrics and Statistics. doi:10.1016/j.ecosta.2023.11.004

Continuous Treatments:
Tübbicke, S. (2022). Entropy Balancing for Continuous Treatments. Journal of Econometric
Methods, 11(1), 71–89. doi:10.1515/jem20210002
Vegetabile, B. G., Griffin, B. A., Coffman, D. L., Cefalu, M., Robbins, M. W., & McCaffrey, D. F.
(2021). Nonparametric estimation of population average dose-response curves using entropy bal-
ancing weights for continuous exposures. Health Services and Outcomes Research Methodology,
21(1), 69–110. doi:10.1007/s10742020002362

See Also

weightit(), weightitMSM()

method_ipt and method_cbps for inverse probability tilting and CBPS, which work similarly.

Examples

data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "ebal", estimand = "ATT"))

summary(W1)
cobalt::bal.tab(W1)

#Balancing covariates with respect to race (multi-category)
(W2 <- weightit(race ~ age + educ + married +

https://doi.org/10.1093/pan/mpr025
https://doi.org/10.1515/jci-2016-0010
https://doi.org/10.1016/j.ecosta.2023.11.004
https://doi.org/10.1515/jem-2021-0002
https://doi.org/10.1007/s10742-020-00236-2
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nodegree + re74, data = lalonde,
method = "ebal", estimand = "ATE"))

summary(W2)
cobalt::bal.tab(W2)

#Balancing covariates and squares with respect to
#re75 (continuous), maintaining 3 moments of the
#covariate and treatment distributions
(W3 <- weightit(re75 ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "ebal", moments = 2,
d.moments = 3))

summary(W3)
cobalt::bal.tab(W3)

method_energy Energy Balancing

Description

This page explains the details of estimating weights using energy balancing by setting method =
"energy" in the call to weightit() or weightitMSM(). This method can be used with binary,
multi-category, and continuous treatments.

In general, this method relies on estimating weights by minimizing an energy statistic related to
covariate balance. For binary and multi-category treatments, this is the energy distance, which is a
multivariate distance between distributions, between treatment groups. For continuous treatments,
this is the sum of the distance covariance between the treatment variable and the covariates and the
energy distances between the treatment and covariates in the weighted sample and their distributions
in the original sample. This method relies on code written for WeightIt using osqp::osqp() from
the osqp package to perform the optimization. This method may be slow or memory-intensive for
large datasets.

Binary Treatments:
For binary treatments, this method estimates the weights using osqp() using formulas described
by Huling and Mak (2024). The following estimands are allowed: ATE, ATT, and ATC.

Multi-Category Treatments:
For multi-category treatments, this method estimates the weights using osqp() using formulas
described by Huling and Mak (2024). The following estimands are allowed: ATE and ATT.

Continuous Treatments:
For continuous treatments, this method estimates the weights using osqp() using formulas de-
scribed by Huling, Greifer, and Chen (2023).

Longitudinal Treatments:
For longitudinal treatments, the weights are the product of the weights estimated at each time
point. This method is not guaranteed to yield optimal balance at each time point. NOTE: the use
of energy balancing with longitudinal treatments has not been validated!

https://CRAN.R-project.org/package=osqp
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Sampling Weights:
Sampling weights are supported through s.weights in all scenarios. In some cases, sampling
weights will cause the optimization to fail due to lack of convexity or infeasible constraints.

Missing Data:
In the presence of missing data, the following value(s) for missing are allowed:

"ind" (default) First, for each variable with missingness, a new missingness indicator variable
is created which takes the value 1 if the original covariate is NA and 0 otherwise. The miss-
ingness indicators are added to the model formula as main effects. The missing values in
the covariates are then replaced with the covariate medians (this value is arbitrary and does
not affect estimation). The weight estimation then proceeds with this new formula and set
of covariates. The covariates output in the resulting weightit object will be the original
covariates with the NAs.

M-estimation:
M-estimation is not supported.

Details

Energy balancing is a method of estimating weights using optimization without a propensity score.
The weights are the solution to a constrain quadratic optimization problem where the objective func-
tion concerns covariate balance as measured by the energy distance and (for continuous treatments)
the distance covariance.

Energy balancing for binary and multi-category treatments involves minimizing the energy distance
between the treatment groups and between each treatment group and a target group (e.g., the full
sample for the ATE). The energy distance is a scalar measure of the difference between two multi-
variate distributions and is equal to 0 when the two distributions are identical.

Energy balancing for continuous treatments involves minimizing the distance covariance between
the treatment and the covariates; the distance covariance is a scalar measure of the association
between two (possibly multivariate) distributions that is equal to 0 when the two distributions are
independent. In addition, the energy distances between the treatment and covariate distributions
in the weighted sample and the treatment and covariate distributions in the original sample are
minimized.

The primary benefit of energy balancing is that all features of the covariate distribution are balanced,
not just means, as with other optimization-based methods like entropy balancing. Still, it is possible
to add additional balance constraints to require balance on individual terms using the moments ar-
gument, just like with entropy balancing. Energy balancing can sometimes yield weights with high
variability; the lambda argument can be supplied to penalize highly variable weights to increase the
effective sample size at the expense of balance.

Reproducibility:
Although there are no stochastic components to the optimization, a feature turned off by default is
to update the optimization based on how long the optimization has been running, which will vary
across runs even when a seed is set and no parameters have been changed. See the discussion here
for more details. To ensure reproducibility by default, adaptive_rho_interval is set to 10. See
osqp::osqpSettings() for details.

https://github.com/osqp/osqp-r/issues/19
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Additional Arguments

The following following additional arguments can be specified:

dist.mat the name of the method used to compute the distance matrix of the covariates or the
numeric distance matrix itself. Allowable options include "scaled_euclidean" for the Eu-
clidean (L2) distance on the scaled covariates (the default), "mahalanobis" for the Maha-
lanobis distance, and "euclidean" for the raw Euclidean distance. Abbreviations allowed.
Note that some user-supplied distance matrices can cause the R session to abort due to a bug
within osqp, so this argument should be used with caution. A distance matrix must be a
square, symmetric, numeric matrix with zeros along the diagonal and a row and column for
each unit. Can also be supplied as the output of a call to dist().

lambda a positive numeric scalar used to penalize the square of the weights. This value divided
by the square of the total sample size is added to the diagonal of the quadratic part of the
loss function. Higher values favor weights with less variability. Note this is distinct from
the lambda value described in Huling and Mak (2024), which penalizes the complexity of
individual treatment rules rather than the weights, but does correspond to lambda from Huling
et al. (2023). Default is .0001, which is essentially 0.

For binary and multi-category treatments, the following additional arguments can be specified:

improved logical; whether to use the improved energy balancing weights as described by Huling
and Mak (2024) when estimand = "ATE". This involves optimizing balance not only between
each treatment group and the overall sample, but also between each pair of treatment groups.
Huling and Mak (2024) found that the improved energy balancing weights generally outper-
formed standard energy balancing. Default is TRUE; set to FALSE to use the standard energy
balancing weights instead (not recommended).

quantile A named list of quantiles (values between 0 and 1) for each continuous covariate, which
are used to create additional variables that when balanced ensure balance on the corresponding
quantile of the variable. For example, setting quantile = list(x1 = c(.25, .5. , .75))
ensures the 25th, 50th, and 75th percentiles of x1 in each treatment group will be balanced in
the weighted sample. Can also be a single number (e.g., .5) or an unnamed list of length 1
(e.g., list(c(.25, .5, .75))) to request the same quantile(s) for all continuous covariates,
or a named vector (e.g., c(x1 = .5, x2 = .75) to request one quantile for each covariate.

For continuous treatments, the following additional arguments can be specified:

d.moments The number of moments of the treatment and covariate distributions that are con-
strained to be the same in the weighted sample as in the original sample. For example, setting
d.moments = 3 ensures that the mean, variance, and skew of the treatment and covariates are
the same in the weighted sample as in the unweighted sample. d.moments should be greater
than or equal to moments and will be automatically set accordingly if not (or if not specified).

dimension.adj logical; whether to include the dimensionality adjustment described by Huling
et al. (2023). If TRUE, the default, the energy distance for the covariates is weighted

√
p times

as much as the energy distance for the treatment, where p is the number of covariates. If
FALSE, the two energy distances are given equal weights. Default is TRUE.

The moments argument functions differently for method = "energy" from how it does with other
methods. When unspecified or set to zero, energy balancing weights are estimated as described by
Huling and Mak (2024) for binary and multi-category treatments or by Huling et al. (2023) for con-
tinuous treatments. When moments is set to an integer larger than 0, additional balance constraints
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on the requested moments of the covariates are also included, guaranteeing exact moment balance
on these covariates while minimizing the energy distance of the weighted sample. For binary and
multi-category treatments, this involves exact balance on the means of the entered covariates; for
continuous treatments, this involves exact balance on the treatment-covariate correlations of the
entered covariates.

Any other arguments will be passed to osqp::osqpSettings(). Some defaults differ from those
in osqpSettings(); see Reproducibility below.

Additional Outputs

obj When include.obj = TRUE, the output of the call to osqp::solve_osqp(), which contains
the dual variables and convergence information.

Note

Sometimes the optimization can fail to converge because the problem is not convex. A warning
will be displayed if so. In these cases, try simply re-fitting the weights without changing anything
(but see the Reproducibility section above). If the method repeatedly fails, you should try another
method or change the supplied parameters (though this is uncommon). Increasing max_iter or
changing adaptive_rho_interval might help.

If it seems like the weights are balancing the covariates but you still get a failure to converge, this
usually indicates that more iterations are needs to find the optimal solutions. This can occur when
moments or int are specified. max_iter should be increased, and setting verbose = TRUE allows
you to monitor the process and examine if the optimization is approaching convergence.

Author(s)

Noah Greifer, using code from Jared Huling’s independenceWeights package for continuous treat-
ments.

References

Binary and multi-category treatments:
Huling, J. D., & Mak, S. (2024). Energy balancing of covariate distributions. Journal of Causal
Inference, 12(1). doi:10.1515/jci20220029

Continuous treatments:
Huling, J. D., Greifer, N., & Chen, G. (2023). Independence weights for causal inference with
continuous treatments. Journal of the American Statistical Association, 0(ja), 1–25. doi:10.1080/
01621459.2023.2213485

See Also

weightit(), weightitMSM()

https://CRAN.R-project.org/package=independenceWeights
https://doi.org/10.1515/jci-2022-0029
https://doi.org/10.1080/01621459.2023.2213485
https://doi.org/10.1080/01621459.2023.2213485
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Examples

library("cobalt")
data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "energy", estimand = "ATE"))

summary(W1)
bal.tab(W1)

#Balancing covariates with respect to race (multi-category)
(W2 <- weightit(race ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "energy", estimand = "ATT",
focal = "black"))

summary(W2)
bal.tab(W2)

#Balancing covariates with respect to re75 (continuous)
(W3 <- weightit(re75 ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "energy", moments = 1))

summary(W3)
bal.tab(W3, poly = 2)

method_gbm Propensity Score Weighting Using Generalized Boosted Models

Description

This page explains the details of estimating weights from generalized boosted model-based propen-
sity scores by setting method = "gbm" in the call to weightit() or weightitMSM(). This method
can be used with binary, multi-category, and continuous treatments.

In general, this method relies on estimating propensity scores using generalized boosted modeling
and then converting those propensity scores into weights using a formula that depends on the desired
estimand. The algorithm involves using a balance-based or prediction-based criterion to optimize
in choosing the value of tuning parameters (the number of trees and possibly others). The method
relies on the gbm package.

This method mimics the functionality of functions in the twang package, but has improved perfor-
mance and more flexible options. See Details section for more details.

Binary Treatments:
For binary treatments, this method estimates the propensity scores using gbm::gbm.fit() and
then selects the optimal tuning parameter values using the method specified in the criterion
argument. The following estimands are allowed: ATE, ATT, ATC, ATO, and ATM. The weights

https://CRAN.R-project.org/package=gbm
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are computed from the estimated propensity scores using get_w_from_ps(), which implements
the standard formulas. Weights can also be computed using marginal mean weighting through
stratification for the ATE, ATT, and ATC. See get_w_from_ps() for details.

Multi-Category Treatments:
For binary treatments, this method estimates the propensity scores using gbm::gbm.fit() and
then selects the optimal tuning parameter values using the method specified in the criterion
argument. The following estimands are allowed: ATE, ATT, ATC, ATO, and ATM. The weights
are computed from the estimated propensity scores using get_w_from_ps(), which implements
the standard formulas. Weights can also be computed using marginal mean weighting through
stratification for the ATE, ATT, and ATC. See get_w_from_ps() for details.

Continuous Treatments:
For continuous treatments, this method estimates the generalized propensity score using gbm::gbm.fit()
and then selects the optimal tuning parameter values using the method specified in the criterion
argument.

Longitudinal Treatments:
For longitudinal treatments, the weights are the product of the weights estimated at each time
point.

Sampling Weights:
Sampling weights are supported through s.weights in all scenarios.

Missing Data:
In the presence of missing data, the following value(s) for missing are allowed:

"ind" (default) First, for each variable with missingness, a new missingness indicator variable
is created which takes the value 1 if the original covariate is NA and 0 otherwise. The miss-
ingness indicators are added to the model formula as main effects. The missing values in
the covariates are then replaced with the covariate medians (this value is arbitrary and does
not affect estimation). The weight estimation then proceeds with this new formula and set
of covariates. The covariates output in the resulting weightit object will be the original
covariates with the NAs.

"surr" Surrogate splitting is used to process NAs. No missingness indicators are created. Nodes
are split using only the non-missing values of each variable. To generate predicted values for
each unit, a non-missing variable that operates similarly to the variable with missingness is
used as a surrogate. Missing values are ignored when calculating balance statistics to choose
the optimal tree.

M-estimation:
M-estimation is not supported.

Details

Generalized boosted modeling (GBM, also known as gradient boosting machines) is a machine
learning method that generates predicted values from a flexible regression of the treatment on the
covariates, which are treated as propensity scores and used to compute weights. It does this by
building a series of regression trees, each fit to the residuals of the last, minimizing a loss function
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that depends on the distribution chosen. The optimal number of trees is a tuning parameter that
must be chosen; McCaffrey et al. (2004) were innovative in using covariate balance to select this
value rather than traditional machine learning performance metrics such as cross-validation accu-
racy. GBM is particularly effective for fitting nonlinear treatment models characterized by curves
and interactions, but performs worse for simpler treatment models. It is unclear which balance
measure should be used to select the number of trees, though research has indicated that balance
measures tend to perform better than cross-validation accuracy for estimating effective propensity
score weights.

WeightIt offers almost identical functionality to twang, the first package to implement this method.
Compared to the current version of twang, WeightIt offers more options for the measure of bal-
ance used to select the number of trees, improved performance, tuning of hyperparameters, more
estimands, and support for continuous treatments. WeightIt computes weights for multi-category
treatments differently from how twang does; rather than fitting a separate binary GBM for each pair
of treatments, WeightIt fits a single multi-class GBM model and uses balance measures appropriate
for multi-category treatments.

plot() can be used on the output of weightit() with method = "gbm" to display the results of the
tuning process; see Examples and plot.weightit() for more details.

Additional Arguments

The following additional arguments can be specified:

criterion A string describing the balance criterion used to select the best weights. See cobalt::bal.compute()
for allowable options for each treatment type. In addition, to optimize the cross-validation
error instead of balance, criterion can be set as "cv{#}", where {#} is replaced by a
number representing the number of cross-validation folds used (e.g., "cv5" for 5-fold cross-
validation). For binary and multi-category treatments, the default is "smd.mean", which mini-
mizes the average absolute standard mean difference among the covariates between treatment
groups. For continuous treatments, the default is "p.mean", which minimizes the average
absolute Pearson correlation between the treatment and covariates.

trim.at A number supplied to at in trim() which trims the weights from all the trees before
choosing the best tree. This can be valuable when some weights are extreme, which occurs
especially with continuous treatments. The default is 0 (i.e., no trimming).

distribution A string with the distribution used in the loss function of the boosted model. This is
supplied to the distribution argument in gbm::gbm.fit(). For binary treatments, "bernoulli"
and "adaboost" are available, with "bernoulli" the default. For multi-category treatments,
only "multinomial" is allowed. For continuous treatments "gaussian", "laplace", and
"tdist" are available, with "gaussian" the default. This argument is tunable.

n.trees The maximum number of trees used. This is passed onto the n.trees argument in
gbm.fit(). The default is 10000 for binary and multi-category treatments and 20000 for
continuous treatments.

start.tree The tree at which to start balance checking. If you know the best balance isn’t in the
first 100 trees, for example, you can set start.tree = 101 so that balance statistics are not
computed on the first 100 trees. This can save some time since balance checking takes up the
bulk of the run time for some balance-based stopping methods, and is especially useful when
running the same model adding more and more trees. The default is 1, i.e., to start from the
very first tree in assessing balance.
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interaction.depth The depth of the trees. This is passed onto the interaction.depth argu-
ment in gbm.fit(). Higher values indicate better ability to capture nonlinear and nonadditive
relationships. The default is 3 for binary and multi-category treatments and 4 for continuous
treatments. This argument is tunable.

shrinkage The shrinkage parameter applied to the trees. This is passed onto the shrinkage ar-
gument in gbm.fit(). The default is .01 for binary and multi-category treatments and .0005
for continuous treatments. The lower this value is, the more trees one may have to include to
reach the optimum. This argument is tunable.

bag.fraction The fraction of the units randomly selected to propose the next tree in the expan-
sion. This is passed onto the bag.fraction argument in gbm.fit(). The default is 1, but
smaller values should be tried. For values less then 1, subsequent runs with the same pa-
rameters will yield different results due to random sampling; be sure to seed the seed using
set.seed() to ensure replicability of results.

use.offset logical; whether to use the linear predictor resulting from a generalized linear model
as an offset to the GBM model. If TRUE, this fits a logistic regression model (for binary
treatments) or a linear regression model (for continuous treatments) and supplies the linear
predict to the offset argument of gbm.fit(). This often improves performance generally
but especially when the true propensity score model is well approximated by a GLM, and
this yields uniformly superior performance over method = "glm" with respect to criterion.
Default is FALSE to omit the offset. Only allowed for binary and continuous treatments. This
argument is tunable.

All other arguments take on the defaults of those in gbm::gbm.fit(), and some are not used at
all. For binary and multi-category treatments with a with cross-validation used as the criterion,
class.stratify.cv is set to TRUE by default.

The w argument in gbm.fit() is ignored because sampling weights are passed using s.weights.

For continuous treatments only, the following arguments may be supplied:

density A function corresponding to the conditional density of the treatment. The standardized
residuals of the treatment model will be fed through this function to produce the numerator
and denominator of the generalized propensity score weights. This can also be supplied as
a string containing the name of the function to be called. If the string contains underscores,
the call will be split by the underscores and the latter splits will be supplied as arguments to
the second argument and beyond. For example, if density = "dt_2" is specified, the density
used will be that of a t-distribution with 2 degrees of freedom. Using a t-distribution can be
useful when extreme outcome values are observed (Naimi et al., 2014).
Can also be "kernel" to use kernel density estimation, which calls density() to estimate the
numerator and denominator densities for the weights. (This used to be requested by setting
use.kernel = TRUE, which is now deprecated.)
If unspecified, a density corresponding to the argument passed to distribution. If "gaussian"
(the default), dnorm() is used. If "tdist", a t-distribution with 4 degrees of freedom is used.
If "laplace", a laplace distribution is used.

bw, adjust, kernel, n If density = "kernel", the arguments to density(). The defaults are the
same as those in density() except that n is 10 times the number of units in the sample.

plot If density = "kernel", whether to plot the estimated densities.

For tunable arguments, multiple entries may be supplied, and weightit() will choose the best
value by optimizing the criterion specified in criterion. See below for additional outputs that are
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included when arguments are supplied to be tuned. See Examples for an example of tuning. The
same seed is used for every run to ensure any variation in performance across tuning parameters
is due to the specification and not to using a random seed. This only matters when bag.fraction
differs from 1 (its default) or cross-validation is used as the criterion; otherwise, there are no random
components in the model.

Additional Outputs

info A list with the following entries:

best.tree The number of trees at the optimum. If this is close to n.trees, weightit()
should be rerun with a larger value for n.trees, and start.tree can be set to just
below best.tree. When other parameters are tuned, this is the best tree value in the best
combination of tuned parameters. See example.

tree.val A data frame with two columns: the first is the number of trees and the second is the
value of the criterion corresponding to that tree. Running plot() on this object will plot
the criterion by the number of trees and is a good way to see patterns in the relationship
between them and to determine if more trees are needed. When other parameters are
tuned, these are the number of trees and the criterion values in the best combination of
tuned parameters. See example.

If any arguments are to be tuned (i.e., they have been supplied more than one value), the
following two additional components are included in info:

tune A data frame with a column for each argument being tuned, the best value of the balance
criterion for the given combination of parameters, and the number of trees at which the
best value was reached.

best.tune A one-row data frame containing the values of the arguments being tuned that
were ultimately selected to estimate the returned weights.

obj When include.obj = TRUE, the gbm fit used to generate the predicted values.

Note

The criterion argument used to be called stop.method, which is its name in twang. stop.method
still works for backward compatibility. Additionally, the criteria formerly named as "es.mean",
"es.max", and "es.rms" have been renamed to "smd.mean", "smd.max", and "smd.rms". The
former are used in twang and will still work with weightit() for backward compatibility.

Estimated propensity scores are trimmed to 10−8 and 1 − 10−8 to ensure balance statistics can be
computed.

References

Binary treatments:
McCaffrey, D. F., Ridgeway, G., & Morral, A. R. (2004). Propensity Score Estimation With
Boosted Regression for Evaluating Causal Effects in Observational Studies. Psychological Meth-
ods, 9(4), 403–425. doi:10.1037/1082989X.9.4.403

Multi-Category Treatments:
McCaffrey, D. F., Griffin, B. A., Almirall, D., Slaughter, M. E., Ramchand, R., & Burgette, L.
F. (2013). A Tutorial on Propensity Score Estimation for Multiple Treatments Using Generalized
Boosted Models. Statistics in Medicine, 32(19), 3388–3414. doi:10.1002/sim.5753

https://doi.org/10.1037/1082-989X.9.4.403
https://doi.org/10.1002/sim.5753
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Continuous treatments:
Zhu, Y., Coffman, D. L., & Ghosh, D. (2015). A Boosting Algorithm for Estimating Generalized
Propensity Scores with Continuous Treatments. Journal of Causal Inference, 3(1). doi:10.1515/
jci20140022

See Also

weightit(), weightitMSM()

gbm::gbm.fit() for the fitting function.

Examples

library("cobalt")
data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "gbm", estimand = "ATE",
criterion = "smd.max",
use.offset = TRUE))

summary(W1)
bal.tab(W1)

# View information about the fitting process
W1$info$best.tree #best tree
plot(W1) #plot of criterion value against number of trees

#Balancing covariates with respect to race (multi-category)
(W2 <- weightit(race ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "gbm", estimand = "ATT",
focal = "hispan", criterion = "ks.mean"))

summary(W2)
bal.tab(W2, stats = c("m", "ks"))

#Balancing covariates with respect to re75 (continuous)
(W3 <- weightit(re75 ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "gbm", density = "kernel",
criterion = "p.rms", trim.at = .97))

summary(W3)
bal.tab(W3)

#Using a t(3) density and illustrating the search for
#more trees.
W4a <- weightit(re75 ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "gbm", density = "dt_3",
criterion = "p.max",
n.trees = 10000)

https://doi.org/10.1515/jci-2014-0022
https://doi.org/10.1515/jci-2014-0022
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W4a$info$best.tree #10000; optimum hasn't been found
plot(W4a) #decreasing at right edge

W4b <- weightit(re75 ~ age + educ + married +
nodegree + re74, data = lalonde,

method = "gbm", density = "dt_3",
criterion = "p.max",
start.tree = 10000,
n.trees = 20000)

W4b$info$best.tree #13417; optimum has been found
plot(W4b) #increasing at right edge

bal.tab(W4b)

#Tuning hyperparameters
(W5 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "gbm", estimand = "ATT",
criterion = "ks.max",
interaction.depth = 2:4,
distribution = c("bernoulli", "adaboost")))

W5$info$tune

W5$info$best.tune #Best values of tuned parameters
plot(W5) #plot criterion values against number of trees

bal.tab(W5, stats = c("m", "ks"))

method_glm Propensity Score Weighting Using Generalized Linear Models

Description

This page explains the details of estimating weights from generalized linear model-based propensity
scores by setting method = "glm" in the call to weightit() or weightitMSM(). This method can
be used with binary, multi-category, and continuous treatments.

In general, this method relies on estimating propensity scores with a parametric generalized linear
model and then converting those propensity scores into weights using a formula that depends on the
desired estimand. For binary and multi-category treatments, a binomial or multinomial regression
model is used to estimate the propensity scores as the predicted probability of being in each treat-
ment given the covariates. For ordinal treatments, an ordinal regression model is used to estimate
generalized propensity scores. For continuous treatments, a generalized linear model is used to
estimate generalized propensity scores as the conditional density of treatment given the covariates.



46 method_glm

Binary Treatments:
For binary treatments, this method estimates the propensity scores using glm(). An additional
argument is link, which uses the same options as link in family(). The default link is "logit",
but others, including "probit", are allowed. The following estimands are allowed: ATE, ATT,
ATC, ATO, ATM, and ATOS. Weights can also be computed using marginal mean weighting
through stratification for the ATE, ATT, and ATC. See get_w_from_ps() for details.

Multi-Category Treatments:
For multi-category treatments, the propensity scores are estimated using multinomial regression
from one of a few functions depending on the argument supplied to multi.method (see Additional
Arguments below). The following estimands are allowed: ATE, ATT, ATC, ATO, and ATM. The
weights for each estimand are computed using the standard formulas or those mentioned above.
Weights can also be computed using marginal mean weighting through stratification for the ATE,
ATT, and ATC. See get_w_from_ps() for details. Ordinal treatments are treated exactly the same
as non-order multi-category treatments except that additional models are available to estimate the
generalized propensity score (e.g., ordinal logistic regression).

Continuous Treatments:
For continuous treatments, weights are estimated as wi = fA(ai)/fA|X(ai), where fA(ai) (known
as the stabilization factor) is the unconditional density of treatment evaluated the observed treat-
ment value and fA|X(ai) (known as the generalized propensity score) is the conditional density
of treatment given the covariates evaluated at the observed value of treatment. The shape of fA(.)
and fA|X(.) is controlled by the density argument described below (normal distributions by de-
fault), and the predicted values used for the mean of the conditional density are estimated using
linear regression. Kernel density estimation can be used instead of assuming a specific density for
the numerator and denominator by setting density = "kernel". Other arguments to density()
can be specified to refine the density estimation parameters.

Longitudinal Treatments:
For longitudinal treatments, the weights are the product of the weights estimated at each time
point.

Sampling Weights:
Sampling weights are supported through s.weights in all scenarios except for multi-category
treatments with link = "bayes.probit" and for binary and continuous treatments with missing
= "saem" (see below). Warning messages may appear otherwise about non-integer successes, and
these can be ignored.

Missing Data:
In the presence of missing data, the following value(s) for missing are allowed:

"ind" (default) First, for each variable with missingness, a new missingness indicator variable
is created which takes the value 1 if the original covariate is NA and 0 otherwise. The miss-
ingness indicators are added to the model formula as main effects. The missing values in
the covariates are then replaced with the covariate medians (this value is arbitrary and does
not affect estimation). The weight estimation then proceeds with this new formula and set
of covariates. The covariates output in the resulting weightit object will be the original
covariates with the NAs.



method_glm 47

"saem" For binary treatments with link = "logit" or continuous treatments, a stochastic ap-
proximation version of the EM algorithm (SAEM) is used via the misaem package. No
additional covariates are created. See Jiang et al. (2019) for information on this method. In
some cases, this is a suitable alternative to multiple imputation.

M-estimation:
For binary treatments, M-estimation is supported when link is neither "flic" nor "flac" (see
below). For multi-category treatments, M-estimation is supported when multi.method is "weightit"
(the default) or "glm". For continuous treatments, M-estimation is supported when density is
not "kernel". The conditional treatment variance and unconditional treatment mean and vari-
ance are included as parameters to estimate, as these all go into calculation of the weights. For all
treatment types, M-estimation is not supported when missing = "saem". See glm_weightit()
and vignette("estimating-effects") for details. For longitudinal treatments, M-estimation
is supported whenever the underlying methods are.

Additional Arguments

For binary treatments, the following additional argument can be specified:

link the link used in the generalized linear model for the propensity scores. link can be any of
those allowed by binomial(). A br. prefix can be added (e.g., "br.logit"); this changes
the fitting method to the bias-corrected generalized linear models implemented in the brglm2
package. link can also be either "flic" or "flac" to fit the corresponding Firth corrected
logistic regression models implemented in the logistf package.

For multi-category treatments, the following additional arguments can be specified:

multi.method the method used to estimate the generalized propensity scores. Allowable op-
tions include "weightit" (the default) to use multinomial logistic regression implemented
in WeightIt, "glm" to use a series of binomial models using glm(), "mclogit" to use multi-
nomial logistic regression as implemented in mclogit::mblogit(), "mnp" to use Bayesian
multinomial probit regression as implemented in MNP::MNP(), and "brmultinom" to use bias-
reduced multinomial logistic regression as implemented in brglm2::brmultinom(). "weightit"
and "mclogit" should give near-identical results, the main difference being increased robust-
ness and customizability when using "mclogit" at the expense of not being able to use M-
estimation to compute standard errors after weighting. For ordered treatments, allowable op-
tions include "weightit" (the default) to use ordinal regression implemented in WeightIt or
"polr" to use ordinal regression implemented in MASS::polr(), unless link is "br.logit",
in which case bias-reduce ordinal logistic regression as implemented in brglm2::bracl() is
used. Ignored when missing = "saem". Using the defaults allows for the use of M-estimation
and requires no additional dependencies, but other packages may provide benefits such as
speed and flexibility.

link The link used in the multinomial, binomial, or ordered regression model for the generalized
propensity scores depending on the argument supplied to multi.method. When multi.method
= "glm", link can be any of those allowed by binomial(). When treatment is ordered and
multi.method is "weightit" or "polr", link can be any of those allowed by MASS::polr()
or "br.logit". Otherwise, link should be "logit" or not specified.

For continuous treatments, the following additional arguments may be supplied:

https://CRAN.R-project.org/package=misaem
https://CRAN.R-project.org/package=brglm2
https://CRAN.R-project.org/package=logistf


48 method_glm

density A function corresponding the conditional density of the treatment. The standardized
residuals of the treatment model will be fed through this function to produce the numera-
tor and denominator of the generalized propensity score weights. If blank, dnorm() is used
as recommended by Robins et al. (2000). This can also be supplied as a string containing
the name of the function to be called. If the string contains underscores, the call will be split
by the underscores and the latter splits will be supplied as arguments to the second argument
and beyond. For example, if density = "dt_2" is specified, the density used will be that of
a t-distribution with 2 degrees of freedom. Using a t-distribution can be useful when extreme
outcome values are observed (Naimi et al., 2014).
Can also be "kernel" to use kernel density estimation, which calls density() to estimate the
numerator and denominator densities for the weights. (This used to be requested by setting
use.kernel = TRUE, which is now deprecated.)

bw, adjust, kernel, n If density = "kernel", the arguments to density(). The defaults are the
same as those in density() except that n is 10 times the number of units in the sample.

plot If density = "kernel", whether to plot the estimated densities.

link The link used to fit the linear model for the generalized propensity score. Can be any allowed
by gaussian().

Additional arguments to glm() can be specified as well when it is used for fitting. The method argu-
ment in glm() is renamed to glm.method. This can be used to supply alternative fitting functions,
such as those implemented in the glm2 package. Other arguments to weightit() are passed to
... in glm(). In the presence of missing data with link = "logit" and missing = "saem", addi-
tional arguments are passed to misaem::miss.glm() and misaem::predict.miss.glm(), except
the method argument in misaem::predict.miss.glm() is replaced with saem.method.

For continuous treatments in the presence of missing data with missing = "saem", additional argu-
ments are passed to misaem::miss.lm() and misaem::predict.miss.lm().

Additional Outputs

obj When include.obj = TRUE, the (generalized) propensity score model fit. For binary treat-
ments, the output of the call to glm() or the requested fitting function. For multi-category
treatments, the output of the call to the fitting function (or a list thereof if multi.method =
"glm"). For continuous treatments, the output of the call to glm() for the predicted values in
the denominator density.
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292–299. doi:10.1097/EDE.0000000000000053

• SAEM linear regression for missing data

Jiang, W., Josse, J., & Lavielle, M. (2019). Logistic regression with missing covariates — Parame-
ter estimation, model selection and prediction within a joint-modeling framework. Computational
Statistics & Data Analysis, 106907. doi:10.1016/j.csda.2019.106907

See Also

weightit(), weightitMSM(), get_w_from_ps()

Examples

library("cobalt")
data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "glm", estimand = "ATT",
link = "probit"))

summary(W1)
bal.tab(W1)

#Balancing covariates with respect to race (multi-category)
(W2 <- weightit(race ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "glm", estimand = "ATE"))

summary(W2)
bal.tab(W2)

#Balancing covariates with respect to re75 (continuous)
#with kernel density estimate
(W3 <- weightit(re75 ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "glm", density = "kernel"))

summary(W3)
bal.tab(W3)

method_ipt Inverse Probability Tilting

Description

This page explains the details of estimating weights using inverse probability tilting by setting
method = "ipt" in the call to weightit() or weightitMSM(). This method can be used with
binary and multi-category treatments.

https://doi.org/10.1097/EDE.0000000000000053
https://doi.org/10.1016/j.csda.2019.106907
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In general, this method relies on estimating propensity scores using a modification of the usual
generalized linear model score equations to enforce balance and then converting those propensity
scores into weights using a formula that depends on the desired estimand. This method relies on
code written for WeightIt using rootSolve::multiroot().

Binary Treatments:
For binary treatments, this method estimates the weights using formulas described by Graham,
Pinto, and Egel (2012). The following estimands are allowed: ATE, ATT, and ATC. When the
ATE is requested, the optimization is run twice, once for each treatment group.

Multi-Category Treatments:
For multi-category treatments, this method estimates the weights using modifications of the for-
mulas described by Graham, Pinto, and Egel (2012). The following estimands are allowed: ATE
and ATT. When the ATE is requested, estimation is performed once for each treatment group.
When the ATT is requested, estimation is performed once for each non-focal (i.e., control) group.

Continuous Treatments:
Inverse probability tilting is not compatible with continuous treatments.

Longitudinal Treatments:
For longitudinal treatments, the weights are the product of the weights estimated at each time
point. This method is not guaranteed to yield exact balance at each time point. NOTE: the use of
inverse probability tilting with longitudinal treatments has not been validated!

Sampling Weights:
Sampling weights are supported through s.weights in all scenarios.

Missing Data:
In the presence of missing data, the following value(s) for missing are allowed:

"ind" (default) First, for each variable with missingness, a new missingness indicator variable
is created which takes the value 1 if the original covariate is NA and 0 otherwise. The miss-
ingness indicators are added to the model formula as main effects. The missing values in
the covariates are then replaced with the covariate medians (this value is arbitrary and does
not affect estimation). The weight estimation then proceeds with this new formula and set
of covariates. The covariates output in the resulting weightit object will be the original
covariates with the NAs.

M-estimation:
M-estimation is supported for all scenarios. See glm_weightit() and vignette("estimating-effects")
for details.

Details

Inverse probability tilting (IPT) involves specifying estimating equations that fit the parameters
of two or more generalized linear models with a modification that ensures exact balance on the
covariate means. These estimating equations are solved, and the estimated parameters are used
in the (generalized) propensity score, which is used to compute the weights. Conceptually and
mathematically, IPT is very similar to entropy balancing and just-identified CBPS. For the ATT and
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ATC, entropy balancing, just-identified CBPS, and IPT will yield identical results. For the ATE or
when link is specified as something other than "logit", the three methods differ.

Treatment effect estimates for binary treatments are consistent if the true propensity score is a logis-
tic regression or the outcome model is linear in the covariates and their interaction with treatments.
For entropy balancing, this is only true for the ATT, and for just-identified CBPS, this is only true
if there is no effect modification by covariates. In this way, IPT provides additional theoretical
guarantees over the other two methods, though potentially with some cost in precision.

Additional Arguments

moments and int are accepted. See weightit() for details.

quantile A named list of quantiles (values between 0 and 1) for each continuous covariate, which
are used to create additional variables that when balanced ensure balance on the corresponding
quantile of the variable. For example, setting quantile = list(x1 = c(.25, .5. , .75))
ensures the 25th, 50th, and 75th percentiles of x1 in each treatment group will be balanced in
the weighted sample. Can also be a single number (e.g., .5) or an unnamed list of length 1
(e.g., list(c(.25, .5, .75))) to request the same quantile(s) for all continuous covariates,
or a named vector (e.g., c(x1 = .5, x2 = .75) to request one quantile for each covariate.

link string; the link used to determine the inverse link for computing the (generalized) propensity
scores. Default is "logit", which is used in the original description of the method by Graham,
Pinto, and Egel (2012), but "probit", "cauchit", and "cloglog" are also allowed.

The stabilize argument is ignored.

Additional Outputs

obj When include.obj = TRUE, the output of the call to optim(), which contains the coefficient
estimates and convergence information. For ATE fits or with multi-category treatments, a list
of rootSolve::multiroot() outputs, one for each weighted group.

References

estimand = "ATE":
Graham, B. S., De Xavier Pinto, C. C., & Egel, D. (2012). Inverse Probability Tilting for Mo-
ment Condition Models with Missing Data. The Review of Economic Studies, 79(3), 1053–1079.
doi:10.1093/restud/rdr047

estimand = "ATT":
Sant’Anna, P. H. C., & Zhao, J. (2020). Doubly robust difference-in-differences estimators. Jour-
nal of Econometrics, 219(1), 101–122. doi:10.1016/j.jeconom.2020.06.003

See Also

weightit(), weightitMSM()

method_ebal and method_cbps for entropy balancing and CBPS, which work similarly.

https://doi.org/10.1093/restud/rdr047
https://doi.org/10.1016/j.jeconom.2020.06.003
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Examples

data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "ipt", estimand = "ATT"))

summary(W1)
cobalt::bal.tab(W1)

#Balancing covariates with respect to race (multi-category)
(W2 <- weightit(race ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "ipt", estimand = "ATE"))

summary(W2)
cobalt::bal.tab(W2)

method_npcbps Nonparametric Covariate Balancing Propensity Score Weighting

Description

This page explains the details of estimating weights from nonparametric covariate balancing propen-
sity scores by setting method = "npcbps" in the call to weightit() or weightitMSM(). This
method can be used with binary, multi-category, and continuous treatments.

In general, this method relies on estimating weights by maximizing the empirical likelihood of
the data subject to balance constraints. This method relies on CBPS::npCBPS() from the CBPS
package.

Binary Treatments:
For binary treatments, this method estimates the weights using CBPS::npCBPS(). The ATE is the
only estimand allowed. The weights are taken from the output of the npCBPS fit object.

Multi-Category Treatments:
For multi-category treatments, this method estimates the weights using CBPS::npCBPS(). The
ATE is the only estimand allowed. The weights are taken from the output of the npCBPS fit object.

Continuous Treatments:
For continuous treatments, this method estimates the weights using CBPS::npCBPS(). The weights
are taken from the output of the npCBPS fit object.

Longitudinal Treatments:
For longitudinal treatments, the weights are the product of the weights estimated at each time
point. This is not how CBPS::CBMSM() estimates weights for longitudinal treatments.

Sampling Weights:
Sampling weights are not supported with method = "npcbps".

https://CRAN.R-project.org/package=CBPS
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Missing Data:
In the presence of missing data, the following value(s) for missing are allowed:

"ind" (default) First, for each variable with missingness, a new missingness indicator variable
is created which takes the value 1 if the original covariate is NA and 0 otherwise. The miss-
ingness indicators are added to the model formula as main effects. The missing values in
the covariates are then replaced with the covariate medians (this value is arbitrary and does
not affect estimation). The weight estimation then proceeds with this new formula and set
of covariates. The covariates output in the resulting weightit object will be the original
covariates with the NAs.

M-estimation:
M-estimation is not supported.

Details

Nonparametric CBPS involves the specification of a constrained optimization problem over the
weights. The constraints correspond to covariate balance, and the loss function is the empirical
likelihood of the data given the weights. npCBPS is similar to entropy balancing and will generally
produce similar results. Because the optimization problem of npCBPS is not convex it can be slow
to converge or not converge at all, so approximate balance is allowed instead using the cor.prior
argument, which controls the average deviation from zero correlation between the treatment and
covariates allowed.

Additional Arguments

moments and int are accepted. See weightit() for details.

quantile A named list of quantiles (values between 0 and 1) for each continuous covariate, which
are used to create additional variables that when balanced ensure balance on the corresponding
quantile of the variable. For example, setting quantile = list(x1 = c(.25, .5. , .75))
ensures the 25th, 50th, and 75th percentiles of x1 in each treatment group will be balanced in
the weighted sample. Can also be a single number (e.g., .5) or an unnamed list of length 1
(e.g., list(c(.25, .5, .75))) to request the same quantile(s) for all continuous covariates,
or a named vector (e.g., c(x1 = .5, x2 = .75) to request one quantile for each covariate. Only
allowed with binary and multi-category treatments.

All arguments to npCBPS() can be passed through weightit() or weightitMSM().

All arguments take on the defaults of those in npCBPS().

Additional Outputs

obj When include.obj = TRUE, the nonparametric CB(G)PS model fit. The output of the call to
CBPS::npCBPS().

References

Fong, C., Hazlett, C., & Imai, K. (2018). Covariate balancing propensity score for a continuous
treatment: Application to the efficacy of political advertisements. The Annals of Applied Statistics,
12(1), 156–177. doi:10.1214/17AOAS1101

https://doi.org/10.1214/17-AOAS1101
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See Also

weightit(), weightitMSM(), method_cbps

CBPS::npCBPS() for the fitting function

Examples

# Examples take a long time to run
library("cobalt")
data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "npcbps", estimand = "ATE"))

summary(W1)
bal.tab(W1)

#Balancing covariates with respect to race (multi-category)
(W2 <- weightit(race ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "npcbps", estimand = "ATE"))

summary(W2)
bal.tab(W2)

method_optweight Optimization-Based Weighting

Description

This page explains the details of estimating optimization-based weights (also known as stable bal-
ancing weights) by setting method = "optweight" in the call to weightit() or weightitMSM().
This method can be used with binary, multi-category, and continuous treatments.

In general, this method relies on estimating weights by solving a quadratic programming problem
subject to approximate or exact balance constraints. This method relies on optweight::optweight()
from the optweight package.

Because optweight() offers finer control and uses the same syntax as weightit(), it is recom-
mended that optweight::optweight() be used instead of weightit() with method = "optweight".

Binary Treatments:
For binary treatments, this method estimates the weights using optweight::optweight(). The
following estimands are allowed: ATE, ATT, and ATC. The weights are taken from the output of
the optweight fit object.

Multi-Category Treatments:
For multi-category treatments, this method estimates the weights using optweight::optweight().
The following estimands are allowed: ATE and ATT. The weights are taken from the output of
the optweight fit object.

https://CRAN.R-project.org/package=optweight
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Continuous Treatments:
For binary treatments, this method estimates the weights using optweight::optweight(). The
weights are taken from the output of the optweight fit object.

Longitudinal Treatments:
For longitudinal treatments, optweight() estimates weights that simultaneously satisfy balance
constraints at all time points, so only one model is fit to obtain the weights. Using method =
"optweight" in weightitMSM() causes is.MSM.method to be set to TRUE by default. Setting
it to FALSE will run one model for each time point and multiply the weights together, a method
that is not recommended. NOTE: neither use of optimization-based weights with longitudinal
treatments has been validated!

Sampling Weights:
Sampling weights are supported through s.weights in all scenarios.

Missing Data:
In the presence of missing data, the following value(s) for missing are allowed:

"ind" (default) First, for each variable with missingness, a new missingness indicator variable
is created which takes the value 1 if the original covariate is NA and 0 otherwise. The miss-
ingness indicators are added to the model formula as main effects. The missing values in
the covariates are then replaced with the covariate medians (this value is arbitrary and does
not affect estimation). The weight estimation then proceeds with this new formula and set
of covariates. The covariates output in the resulting weightit object will be the original
covariates with the NAs.

M-estimation:
M-estimation is not supported.

Details

Stable balancing weights are weights that solve a constrained optimization problem, where the
constraints correspond to covariate balance and the loss function is the variance (or other norm)
of the weights. These weights maximize the effective sample size of the weighted sample subject
to user-supplied balance constraints. An advantage of this method over entropy balancing is the
ability to allow approximate, rather than exact, balance through the tols argument, which can
increase precision even for slight relaxations of the constraints.

plot() can be used on the output of weightit() with method = "optweight" to display the dual
variables; see Examples and plot.weightit() for more details.

Additional Arguments

moments and int are accepted. See weightit() for details.

quantile A named list of quantiles (values between 0 and 1) for each continuous covariate, which
are used to create additional variables that when balanced ensure balance on the corresponding
quantile of the variable. For example, setting quantile = list(x1 = c(.25, .5. , .75))
ensures the 25th, 50th, and 75th percentiles of x1 in each treatment group will be balanced in
the weighted sample. Can also be a single number (e.g., .5) or an unnamed list of length 1
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(e.g., list(c(.25, .5, .75))) to request the same quantile(s) for all continuous covariates,
or a named vector (e.g., c(x1 = .5, x2 = .75) to request one quantile for each covariate. Only
allowed with binary and multi-category treatments.

All arguments to optweight() can be passed through weightit() or weightitMSM(), with the
following exception:

• targets cannot be used and is ignored.

All arguments take on the defaults of those in optweight().

Additional Outputs

info A list with one entry:

duals A data frame of dual variables for each balance constraint.

obj When include.obj = TRUE, the output of the call to optweight::optweight().

Note

The specification of tols differs between weightit() and optweight(). In weightit(), one
tolerance value should be included per level of each factor variable, whereas in optweight(), all
levels of a factor are given the same tolerance, and only one value needs to be supplied for a factor
variable. Because of the potential for confusion and ambiguity, it is recommended to only supply
one value for tols in weightit() that applies to all variables. For finer control, use optweight()
directly.

Seriously, just use optweight::optweight(). The syntax is almost identical and it’s compatible
with cobalt, too.

References

Binary treatments:
Wang, Y., & Zubizarreta, J. R. (2020). Minimal dispersion approximately balancing weights:
Asymptotic properties and practical considerations. Biometrika, 107(1), 93–105. doi:10.1093/
biomet/asz050
Zubizarreta, J. R. (2015). Stable Weights that Balance Covariates for Estimation With Incomplete
Outcome Data. Journal of the American Statistical Association, 110(511), 910–922. doi:10.1080/
01621459.2015.1023805

Multi-Category Treatments:
de los Angeles Resa, M., & Zubizarreta, J. R. (2020). Direct and stable weight adjustment in
non-experimental studies with multivalued treatments: Analysis of the effect of an earthquake on
post-traumatic stress. Journal of the Royal Statistical Society: Series A (Statistics in Society),
n/a(n/a). doi:10.1111/rssa.12561

Continuous treatments:
Greifer, N. (2020). Estimating Balancing Weights for Continuous Treatments Using Constrained
Optimization. doi:10.17615/DYSSB342

https://doi.org/10.1093/biomet/asz050
https://doi.org/10.1093/biomet/asz050
https://doi.org/10.1080/01621459.2015.1023805
https://doi.org/10.1080/01621459.2015.1023805
https://doi.org/10.1111/rssa.12561
https://doi.org/10.17615/DYSS-B342
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See Also

weightit(), weightitMSM()

optweight::optweight() for the fitting function

Examples

data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "optweight", estimand = "ATT",
tols = 0))

summary(W1)
cobalt::bal.tab(W1)
plot(W1)

#Balancing covariates with respect to race (multi-category)
(W2 <- weightit(race ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "optweight", estimand = "ATE",
tols = .01))

summary(W2)
cobalt::bal.tab(W2)
plot(W2)

#Balancing covariates with respect to re75 (continuous)

method_super Propensity Score Weighting Using SuperLearner

Description

This page explains the details of estimating weights from SuperLearner-based propensity scores by
setting method = "super" in the call to weightit() or weightitMSM(). This method can be used
with binary, multi-category, and continuous treatments.

In general, this method relies on estimating propensity scores using the SuperLearner algorithm for
stacking predictions and then converting those propensity scores into weights using a formula that
depends on the desired estimand. For binary and multi-category treatments, one or more binary
classification algorithms are used to estimate the propensity scores as the predicted probability of
being in each treatment given the covariates. For continuous treatments, regression algorithms
are used to estimate generalized propensity scores as the conditional density of treatment given
the covariates. This method relies on SuperLearner::SuperLearner() from the SuperLearner
package.

https://CRAN.R-project.org/package=SuperLearner
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Binary Treatments:
For binary treatments, this method estimates the propensity scores using SuperLearner::SuperLearner().
The following estimands are allowed: ATE, ATT, ATC, ATO, ATM, and ATOS. Weights can also
be computed using marginal mean weighting through stratification for the ATE, ATT, and ATC.
See get_w_from_ps() for details.

Multi-Category Treatments:
For multi-category treatments, the propensity scores are estimated using several calls to SuperLearner::SuperLearner(),
one for each treatment group; the treatment probabilities are not normalized to sum to 1. The fol-
lowing estimands are allowed: ATE, ATT, ATC, ATO, and ATM. The weights for each estimand
are computed using the standard formulas or those mentioned above. Weights can also be com-
puted using marginal mean weighting through stratification for the ATE, ATT, and ATC. See
get_w_from_ps() for details.

Continuous Treatments:
For continuous treatments, the generalized propensity score is estimated using SuperLearner::SuperLearner().
In addition, kernel density estimation can be used instead of assuming a normal density for the
numerator and denominator of the generalized propensity score by setting density = "kernel".
Other arguments to density() can be specified to refine the density estimation parameters. plot
= TRUE can be specified to plot the density for the numerator and denominator, which can be
helpful in diagnosing extreme weights.

Longitudinal Treatments:
For longitudinal treatments, the weights are the product of the weights estimated at each time
point.

Sampling Weights:
Sampling weights are supported through s.weights in all scenarios.

Missing Data:
In the presence of missing data, the following value(s) for missing are allowed:

"ind" (default) First, for each variable with missingness, a new missingness indicator variable
is created which takes the value 1 if the original covariate is NA and 0 otherwise. The miss-
ingness indicators are added to the model formula as main effects. The missing values in
the covariates are then replaced with the covariate medians (this value is arbitrary and does
not affect estimation). The weight estimation then proceeds with this new formula and set
of covariates. The covariates output in the resulting weightit object will be the original
covariates with the NAs.

M-estimation:
M-estimation is not supported.

Details

SuperLearner works by fitting several machine learning models to the treatment and covariates
and then taking a weighted combination of the generated predicted values to use as the propensity
scores, which are then used to construct weights. The machine learning models used are supplied
using the SL.library argument; the more models are supplied, the higher the chance of correctly
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modeling the propensity score. The predicted values are combined using the method supplied in the
SL.method argument (which is nonnegative least squares by default). A benefit of SuperLearner is
that, asymptotically, it is guaranteed to perform as well as or better than the best-performing method
included in the library. Using Balance SuperLearner by setting SL.method = "method.balance"
works by selecting the combination of predicted values that minimizes an imbalance measure.

Additional Arguments

discrete if TRUE, uses discrete SuperLearner, which simply selects the best performing method.
Default FALSE, which finds the optimal combination of predictions for the libraries using
SL.method.

An argument to SL.library must be supplied. To see a list of available entries, use SuperLearner::listWrappers().

All arguments to SuperLearner::SuperLearner() can be passed through weightit() or weightitMSM(),
with the following exceptions:

• obsWeights is ignored because sampling weights are passed using s.weights.
• method in SuperLearner() is replaced with the argument SL.method in weightit().

For continuous treatments only, the following arguments may be supplied:

density A function corresponding to the conditional density of the treatment. The standardized
residuals of the treatment model will be fed through this function to produce the numerator
and denominator of the generalized propensity score weights. If blank, dnorm() is used as
recommended by Robins et al. (2000). This can also be supplied as a string containing the
name of the function to be called. If the string contains underscores, the call will be split
by the underscores and the latter splits will be supplied as arguments to the second argument
and beyond. For example, if density = "dt_2" is specified, the density used will be that of
a t-distribution with 2 degrees of freedom. Using a t-distribution can be useful when extreme
outcome values are observed (Naimi et al., 2014).
Can also be "kernel" to use kernel density estimation, which calls density() to estimate the
numerator and denominator densities for the weights. (This used to be requested by setting
use.kernel = TRUE, which is now deprecated.)

bw, adjust, kernel, n If density = "kernel", the arguments to density(). The defaults are the
same as those in density() except that n is 10 times the number of units in the sample.

plot If density = "kernel", whether to plot the estimated densities.

Balance SuperLearner:
In addition to the methods allowed by SuperLearner(), one can specify SL.method = "method.balance"
to use "Balance SuperLearner" as described by Pirracchio and Carone (2018), wherein covariate
balance is used to choose the optimal combination of the predictions from the methods specified
with SL.library. Coefficients are chosen (one for each prediction method) so that the weights
generated from the weighted combination of the predictions optimize a balance criterion, which
must be set with the criterion argument, described below.
criterion A string describing the balance criterion used to select the best weights. See cobalt::bal.compute()

for allowable options for each treatment type. For binary and multi-category treatments,
the default is "smd.mean", which minimizes the average absolute standard mean difference
among the covariates between treatment groups. For continuous treatments, the default is
"p.mean", which minimizes the average absolute Pearson correlation between the treatment
and covariates.
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Note that this implementation differs from that of Pirracchio and Carone (2018) in that here, bal-
ance is measured only on the terms included in the model formula (i.e., and not their interactions
unless specifically included), and balance results from a sample weighted using the estimated pre-
dicted values as propensity scores, not a sample matched using propensity score matching on the
predicted values. Binary and continuous treatments are supported, but currently multi-category
treatments are not.

Additional Outputs

info For binary and continuous treatments, a list with two entries, coef and cvRisk. For multi-
category treatments, a list of lists with these two entries, one for each treatment level.

coef The coefficients in the linear combination of the predictions from each method in SL.library.
Higher values indicate that the corresponding method plays a larger role in determining
the resulting predicted value, and values close to zero indicate that the method plays little
role in determining the predicted value. When discrete = TRUE, these correspond to the
coefficients that would have been estimated had discrete been FALSE.

cvRisk The cross-validation risk for each method in SL.library. Higher values indicate that
the method has worse cross-validation accuracy. When SL.method = "method.balance",
the sample weighted balance statistic requested with criterion. Higher values indicate
worse balance.

obj When include.obj = TRUE, the SuperLearner fit(s) used to generate the predicted values. For
binary and continuous treatments, the output of the call to SuperLearner::SuperLearner().
For multi-category treatments, a list of outputs to calls to SuperLearner::SuperLearner().

Note

Some methods formerly available in SuperLearner are now in SuperLearnerExtra, which can be
found on GitHub at https://github.com/ecpolley/SuperLearnerExtra.

The criterion argument used to be called stop.method, which is its name in twang. stop.method
still works for backward compatibility. Additionally, the criteria formerly named as es.mean,
es.max, and es.rms have been renamed to smd.mean, smd.max, and smd.rms. The former are
used in twang and will still work with weightit() for backward compatibility.

As of version 1.2.0, the default behavior for binary and multi-category treatments is to stratify on
the treatment when performing cross-validation to ensure all treatment groups are represented in
cross-validation. To recover previous behavior, set cvControl = list(stratifyCV = FALSE).

References

Binary treatments:
Pirracchio, R., Petersen, M. L., & van der Laan, M. (2015). Improving Propensity Score Estima-
tors’ Robustness to Model Misspecification Using Super Learner. American Journal of Epidemi-
ology, 181(2), 108–119. doi:10.1093/aje/kwu253

Continuous treatments:
Kreif, N., Grieve, R., Díaz, I., & Harrison, D. (2015). Evaluation of the Effect of a Continuous
Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain
Injury. Health Economics, 24(9), 1213–1228. doi:10.1002/hec.3189

https://github.com/ecpolley/SuperLearnerExtra
https://doi.org/10.1093/aje/kwu253
https://doi.org/10.1002/hec.3189
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Balance SuperLearner (SL.method = "method.balance"):
Pirracchio, R., & Carone, M. (2018). The Balance Super Learner: A robust adaptation of the Su-
per Learner to improve estimation of the average treatment effect in the treated based on propen-
sity score matching. Statistical Methods in Medical Research, 27(8), 2504–2518. doi:10.1177/
0962280216682055
See method_glm for additional references.

See Also

weightit(), weightitMSM(), get_w_from_ps()

Examples

library("cobalt")
data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "super", estimand = "ATT",
SL.library = c("SL.glm", "SL.stepAIC",

"SL.glm.interaction")))
summary(W1)
bal.tab(W1)

#Balancing covariates with respect to race (multi-category)
(W2 <- weightit(race ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "super", estimand = "ATE",
SL.library = c("SL.glm", "SL.stepAIC",

"SL.glm.interaction")))
summary(W2)
bal.tab(W2)

#Balancing covariates with respect to re75 (continuous)
#assuming t(8) conditional density for treatment
(W3 <- weightit(re75 ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "super", density = "dt_8",
SL.library = c("SL.glm", "SL.ridge",

"SL.glm.interaction")))
summary(W3)
bal.tab(W3)

#Balancing covariates between treatment groups (binary)
# using balance SuperLearner to minimize the maximum
# KS statistic
(W4 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "super", estimand = "ATT",
SL.library = c("SL.glm", "SL.stepAIC",

"SL.lda"),

https://doi.org/10.1177/0962280216682055
https://doi.org/10.1177/0962280216682055
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SL.method = "method.balance",
criterion = "ks.max"))

summary(W4)
bal.tab(W4, stats = c("m", "ks"))

method_user User-Defined Functions for Estimating Weights

Description

This page explains the details of estimating weights using a user-defined function. The function
must take in arguments that are passed to it by weightit() or weightitMSM() and return a vector
of weights or a list containing the weights.

To supply a user-defined function, the function object should be entered directly to method; for
example, for a function fun, method = fun.

Point Treatments:
The following arguments are automatically passed to the user-defined function, which should have
named parameters corresponding to them:

• treat: a vector of treatment status for each unit. This comes directly from the left hand side
of the formula passed to weightit() and so will have it’s type (e.g., numeric, factor, etc.),
which may need to be converted.

• covs: a data frame of covariate values for each unit. This comes directly from the right hand
side of the formula passed to weightit(). The covariates are processed so that all columns
are numeric; all factor variables are split into dummies and all interactions are evaluated.
All levels of factor variables are given dummies, so the matrix of the covariates is not full
rank. Users can use make_full_rank(), which accepts a numeric matrix or data frame and
removes columns to make it full rank, if a full rank covariate matrix is desired.

• s.weights: a numeric vector of sampling weights, one for each unit.
• ps: a numeric vector of propensity scores.
• subset: a logical vector the same length as treat that is TRUE for units to be included in the

estimation and FALSE otherwise. This is used to subset the input objects when exact is used.
treat, covs, s.weights, and ps, if supplied, will already have been subsetted by subset.

• estimand: a character vector of length 1 containing the desired estimand. The characters
will have been converted to uppercase. If "ATC" was supplied to estimand, weightit()
sets focal to the control level (usually 0 or the lowest level of treat) and sets estimand to
"ATT".

• focal: a character vector of length 1 containing the focal level of the treatment when the
estimand is the ATT (or the ATC as detailed above). weightit() ensures the value of focal
is a level of treat.

• stabilize: a logical vector of length 1. It is not processed by weightit() before it reaches
the fitting function.

• moments: a numeric vector of length 1. It is not processed by weightit() before it reaches
the fitting function except that as.integer() is applied to it. This is used in other methods
to determine whether polynomials of the entered covariates are to be used in the weight
estimation.



64 method_user

• int: a logical vector of length 1. It is not processed by weightit() before it reaches the
fitting function. This is used in other methods to determine whether interactions of the entered
covariates are to be used in the weight estimation.

None of these parameters are required to be in the fitting function. These are simply those that are
automatically available.
In addition, any additional arguments supplied to weightit() will be passed on to the fitting
function. weightit() ensures the arguments correspond to the parameters of the fitting function
and throws an error if an incorrectly named argument is supplied and the fitting function doesn’t
include \dots as a parameter.
The fitting function must output either a numeric vector of weights or a list (or list-like object)
with an entry named wither "w" or "weights". If a list, the list can contain other named entries,
but only entries named "w", "weights", "ps", and "fit.obj" will be processed. "ps" is a vector
of propensity scores and "fit.obj" should be an object used in the fitting process that a user may
want to examine and that is included in the weightit output object as "obj" when include.obj
= TRUE. The "ps" and "fit.obj" components are optional, but "weights" or "w" is required.

Longitudinal Treatments:
Longitudinal treatments can be handled either by running the fitting function for point treat-
ments for each time point and multiplying the resulting weights together or by running a method
that accommodates multiple time points and outputs a single set of weights. For the former,
weightitMSM() can be used with the user-defined function just as it is with weightit(). The
latter method is not yet accommodated by weightitMSM(), but will be someday, maybe.

See Also

weightit(), weightitMSM()

Examples

library("cobalt")
data("lalonde", package = "cobalt")

#A user-defined version of method = "ps"
my.ps <- function(treat, covs, estimand, focal = NULL) {

covs <- make_full_rank(covs)
d <- data.frame(treat, covs)
f <- formula(d)
ps <- glm(f, data = d, family = "binomial")$fitted
w <- get_w_from_ps(ps, treat = treat, estimand = estimand,

focal = focal)

list(w = w, ps = ps)
}

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = my.ps, estimand = "ATT"))

summary(W1)
bal.tab(W1)
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data("msmdata")
(W2 <- weightitMSM(list(A_1 ~ X1_0 + X2_0,

A_2 ~ X1_1 + X2_1 +
A_1 + X1_0 + X2_0,

A_3 ~ X1_2 + X2_2 +
A_2 + X1_1 + X2_1 +
A_1 + X1_0 + X2_0),

data = msmdata,
method = my.ps))

summary(W2)
bal.tab(W2)

# Kernel balancing using the `kbal` package, available
# using `pak::pak_install("chadhazlett/KBAL")`.
# Only the ATT and ATC are available.

## Not run:
kbal.fun <- function(treat, covs, estimand, focal, verbose, ...) {
args <- list(...)

if (!estimand %in% c("ATT", "ATC"))
stop("`estimand` must be \"ATT\" or \"ATC\".", call. = FALSE)

treat <- as.numeric(treat == focal)

args <- args[names(args) %in% names(formals(kbal::kbal))]
args$allx <- covs
args$treatment <- treat
args$printprogress <- verbose

cat_cols <- apply(covs, 2, function(x) length(unique(x)) <= 2)

if (all(cat_cols)) {
args$cat_data <- TRUE
args$mixed_data <- FALSE
args$scale_data <- FALSE
args$linkernel <- FALSE
args$drop_MC <- FALSE

}
else if (any(cat_cols)) {

args$cat_data <- FALSE
args$mixed_data <- TRUE
args$cat_columns <- colnames(covs)[cat_cols]
args$allx[,!cat_cols] <- scale(args$allx[,!cat_cols])
args$cont_scale <- 1

}
else {

args$cat_data <- FALSE
args$mixed_data <- FALSE

}
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k.out <- do.call(kbal::kbal, args)
w <- k.out$w

list(w = w, fit.obj = k.out)
}

(Wk <- weightit(treat ~ age + educ + married +
nodegree + re74, data = lalonde,

method = kbal.fun, estimand = "ATT",
include.obj = TRUE))

summary(Wk)
bal.tab(Wk, stats = c("m", "ks"))

## End(Not run)

msmdata Simulated data for a 3 time point sequential study

Description

This is a simulated dataset of 7500 units with covariates and treatment measured three times and
the outcome measured at the end from a hypothetical observational study examining the effect of
treatment delivered at each time point on an adverse event.

Usage

msmdata

Format

A data frame with 7500 observations on the following 10 variables.

X1_0 a count covariate measured at baseline
X2_0 a binary covariate measured at baseline
A_1 a binary indicator of treatment status at the first time point
X1_1 a count covariate measured at the first time point (after the first treatment)
X2_1 a binary covariate measured at the first time point (after the first treatment)
A_2 a binary indicator of treatment status at the second time point
X1_2 a count covariate measured at the second time point (after the second treatment)
X2_2 a binary covariate measured at the first time point (after the first treatment)
A_3 a binary indicator of treatment status at the third time point
Y_B a binary indicator of the outcome event (e.g., death)

Examples

data("msmdata")
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plot.weightit Plot information about the weight estimation process

Description

plot.weightit() plots information about the weights depending on how they were estimated. Cur-
rently, only weighting using method = "gbm" or "optweight" is supported. To plot the distribution
of weights, see plot.summary.weightit().

Usage

## S3 method for class 'weightit'
plot(x, ...)

Arguments

x a weightit object; the output of a call to weightit().

... Unused.

Details

method = "gbm":
After weighting with generalized boosted modeling, plot() displays the results of the tuning
process used to find the optimal number of trees (and tuning parameter values, if modified) that
are used in the final weights. The plot produced has the number of trees on the x-axis and the value
of the criterion on the y axis with a diamond at the optimal point. When multiple parameters
are selected by tuning, a separate line is displayed on the plot for each combination of tuning
parameters. When by is used in the call to weightit(), the plot is faceted by the by variable. See
method_gbm for more information on selecting tuning parameters.

method = "optweight":
After estimating stable balancing weights, plot() displays the values of the dual variables for
each balance constraint in a bar graph. Large values of the dual variables indicate the covariates
for which the balance constraint is causing increases in the variability of the weights, i.e., the
covariates for which relaxing the imbalance tolerance would yield the greatest gains in effective
sample size. For continuous treatments, the dual variables are split into those for the target (i.e.,
ensuring the mean of each covariate after weighting is equal to its unweighted mean) and those
for balance (i.e., ensuring the treatment-covariate correlations are no larger than the imbalance
tolerance). This is essentially a wrapper for optweight::plot.optweight().

Value

A ggplot object.

See Also

weightit(), plot.summary.weightit()
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Examples

# See example at the corresponding methods page

predict.glm_weightit Predictions for glm_weightit objects

Description

predict() generates predictions for models fit using glm_weightit(), ordinal_weightit(),
multinom_weightit(), or coxph_weightit(). This page only details the predict() methods af-
ter using glm_weightit(), ordinal_weightit(), or multinom_weightit(). See survival::predict.coxph()
for predictions when fitting Cox proportional hazards models using coxph_weightit().

Usage

## S3 method for class 'glm_weightit'
predict(object, newdata = NULL, type = "response", na.action = na.pass, ...)

## S3 method for class 'ordinal_weightit'
predict(
object,
newdata = NULL,
type = "response",
na.action = na.pass,
values = NULL,
...

)

## S3 method for class 'multinom_weightit'
predict(
object,
newdata = NULL,
type = "response",
na.action = na.pass,
values = NULL,
...

)

Arguments

object a glm_weightit object.

newdata optionally, a data frame in which to look for variables with which to predict. If
omitted, the fitted values applied to the original dataset are used.
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type the type of prediction desired. Allowable options include "response", pre-
dictions on the scale of the original response variable (also "probs"); "link",
predictions on the scale of the linear predictor (also "lp"); "class", the modal
predicted category for ordinal and multinomial models; and "mean", the ex-
pected value of the outcome for ordinal and multinomial models. See Details
for more information. The default is "response" for all models, which differs
from stats::predict.glm().

na.action function determining what should be done with missing values in newdata. The
default is to predict NA.

... further arguments passed to or from other methods.

values when type = "mean", the numeric values each level corresponds to. Should be
supplied as a named vector with outcome levels as the names. If NULL and the
outcome levels can be converted to numeric, those will be used. See Details.

Details

For generalized linear models other than ordinal and multinomial models, see stats::predict.glm()
for more information on how predictions are computed and which arguments can be specified. Note
that standard errors cannot be computed for the predictions using predict.glm_weightit().

For ordinal and multinomial models, setting type = "mean" computes the expected value of the
outcome for each unit; this corresponds to the sum of the values supplied in values weighted by
the predicted probability of those values. If values is omitted, predict() will attempt to con-
vert the outcome levels to numeric values, and if this cannot be done, an error will be thrown.
values should be specified as a named vector, e.g., values = c(one = 1, two = 2, three = 3),
where "one", "two", and "three" are the original outcome levels and 1, 2, and 3 are the numeric
values they correspond to. This method only makes sense to use if the outcome levels meaningfully
correspond to numeric values.

For ordinal models, setting type = "link" (also "lp") computes the linear predictor without in-
cluding the thresholds. This can be interpreted as the prediction of the latent variable underlying
the ordinal response. This cannot be used with multinomial models.

Value

A numeric vector containing the desired predictions, except for the following circumstances when
an ordinal or multinomial model was fit:

• when type = "response", a numeric matrix with a row for each unit and a column for each
level of the outcome with the predicted probability of the corresponding outcome in the cells

• when type = "class", a factor with the model predicted class for each unit; for ordinal mod-
els, this will be an ordered factor.

See Also

stats::predict.glm() for predictions from generalized linear models. glm_weightit() for
the fitting function. survival::predict.coxph() for predictions from Cox proportional hazards
models.
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Examples

data("lalonde", package = "cobalt")

# Logistic regression model
fit1 <- glm_weightit(

re78 > 0 ~ treat * (age + educ + race + married +
re74 + re75),

data = lalonde, family = binomial, vcov = "none")

summary(predict(fit1))

# G-computation using predicted probabilities
p0 <- predict(fit1, type = "response",

newdata = transform(lalonde,
treat = 0))

p1 <- predict(fit1, type = "response",
newdata = transform(lalonde,

treat = 1))

mean(p1) - mean(p0)

# Multinomial logistic regression model
lalonde$re78_3 <- factor(findInterval(lalonde$re78,

c(0, 5e3, 1e4)),
labels = c("low", "med", "high"))

fit2 <- multinom_weightit(
re78_3 ~ treat * (age + educ + race + married +

re74 + re75),
data = lalonde, vcov = "none")

# Predicted probabilities
head(predict(fit2))

# Class assignment accuracy
mean(predict(fit2, type = "class") == lalonde$re78_3)

# G-computation using expected value of the outcome
values <- c("low" = 2500,

"med" = 7500,
"high" = 12500)

p0 <- predict(fit2, type = "mean", values = values,
newdata = transform(lalonde,

treat = 0))

p1 <- predict(fit2, type = "mean", values = values,
newdata = transform(lalonde,

treat = 1))

mean(p1) - mean(p0)
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# Ordinal logistic regression
fit3 <- ordinal_weightit(

re78 ~ treat * (age + educ + race + married +
re74 + re75),

data = lalonde, vcov = "none")

# G-computation using expected value of the outcome;
# using original outcome values
p0 <- predict(fit3, type = "mean",

newdata = transform(lalonde,
treat = 0))

p1 <- predict(fit3, type = "mean",
newdata = transform(lalonde,

treat = 1))

mean(p1) - mean(p0)

sbps Subgroup Balancing Propensity Score

Description

Implements the subgroup balancing propensity score (SBPS), which is an algorithm that attempts to
achieve balance in subgroups by sharing information from the overall sample and subgroups (Dong,
Zhang, Zeng, & Li, 2020; DZZL). Each subgroup can use either weights estimated using the whole
sample, weights estimated using just that subgroup, or a combination of the two. The optimal
combination is chosen as that which minimizes an imbalance criterion that includes subgroup as
well as overall balance.

Usage

sbps(
obj,
obj2 = NULL,
moderator = NULL,
formula = NULL,
data = NULL,
smooth = FALSE,
full.search

)

Arguments

obj a weightit object containing weights estimated in the overall sample.
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obj2 a weightit object containing weights estimated in the subgroups. Typically this
has been estimated by including by in the call to weightit(). Either obj2 or
moderator must be specified.

moderator optional; a string containing the name of the variable in data for which weight-
ing is to be done within subgroups or a one-sided formula with the subgrouping
variable on the right-hand side. This argument is analogous to the by argument
in weightit(), and in fact it is passed on to by. Either obj2 or moderator must
be specified.

formula an optional formula with the covariates for which balance is to be optimized. If
not specified, the formula in obj$call will be used.

data an optional data set in the form of a data frame that contains the variables in
formula or moderator.

smooth logical; whether the smooth version of the SBPS should be used. This is only
compatible with weightit methods that return a propensity score.

full.search logical; when smooth = FALSE, whether every combination of subgroup and
overall weights should be evaluated. If FALSE, a stochastic search as described
in DZZL will be used instead. If TRUE, all 2R combinations will be checked,
where R is the number of subgroups, which can take a long time with many
subgroups. If unspecified, will default to TRUE if R <= 8 and FALSE otherwise.

Details

The SBPS relies on two sets of weights: one estimated in the overall sample and one estimated
within each subgroup. The algorithm decides whether each subgroup should use the weights es-
timated in the overall sample or those estimated in the subgroup. There are 2^R permutations of
overall and subgroup weights, where R is the number of subgroups. The optimal permutation is
chosen as that which minimizes a balance criterion as described in DZZL. The balance criterion
used here is, for binary and multi-category treatments, the sum of the squared standardized mean
differences within subgroups and overall, which are computed using cobalt::col_w_smd(), and
for continuous treatments, the sum of the squared correlations between each covariate and treatment
within subgroups and overall, which are computed using cobalt::col_w_corr().

The smooth version estimates weights that determine the relative contribution of the overall and
subgroup propensity scores to a weighted average propensity score for each subgroup. If P_O are
the propensity scores estimated in the overall sample and P_S are the propensity scores estimated
in each subgroup, the smooth SBPS finds R coefficients C so that for each subgroup, the ultimate
propensity score is C ∗ PS + (1− C) ∗ PO, and weights are computed from this propensity score.
The coefficients are estimated using optim() with method = "L-BFGS-B". When C is estimated to
be 1 or 0 for each subgroup, the smooth SBPS coincides with the standard SBPS.

If obj2 is not specified and moderator is, sbps() will attempt to refit the model specified in obj
with the moderator in the by argument. This relies on the environment in which obj was created
to be intact and can take some time if obj was hard to fit. It’s safer to estimate obj and obj2 (the
latter simply by including the moderator in the by argument) and supply these to sbps().

Value

A weightit.sbps object, which inherits from weightit. This contains all the information in obj
with the weights, propensity scores, call, and possibly covariates updated from sbps(). In addition,
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the prop.subgroup component contains the values of the coefficients C for the subgroups (which
are either 0 or 1 for the standard SBPS), and the moderator component contains a data.frame with
the moderator.

This object has its own summary method and is compatible with cobalt functions. The cluster
argument should be used with cobalt functions to accurately reflect the performance of the weights
in balancing the subgroups.

References

Dong, J., Zhang, J. L., Zeng, S., & Li, F. (2020). Subgroup balancing propensity score. Statistical
Methods in Medical Research, 29(3), 659–676. doi:10.1177/0962280219870836

See Also

weightit(), summary.weightit()

Examples

library("cobalt")
data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups within races
(W1 <- weightit(treat ~ age + educ + married +

nodegree + race + re74, data = lalonde,
method = "glm", estimand = "ATT"))

(W2 <- weightit(treat ~ age + educ + married +
nodegree + race + re74, data = lalonde,
method = "glm", estimand = "ATT",
by = "race"))

S <- sbps(W1, W2)
print(S)
summary(S)
bal.tab(S, cluster = "race")

#Could also have run
# sbps(W1, moderator = "race")

S_ <- sbps(W1, W2, smooth = TRUE)
print(S_)
summary(S_)
bal.tab(S_, cluster = "race")

summary.weightit Print and Summarize Output

https://doi.org/10.1177/0962280219870836
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Description

summary() generates a summary of the weightit or weightitMSM object to evaluate the properties
of the estimated weights. plot() plots the distribution of the weights. nobs() extracts the number
of observations.

Usage

## S3 method for class 'weightit'
summary(object, top = 5, ignore.s.weights = FALSE, ...)

## S3 method for class 'summary.weightit'
plot(x, binwidth = NULL, bins = NULL, ...)

## S3 method for class 'weightitMSM'
summary(object, top = 5, ignore.s.weights = FALSE, ...)

## S3 method for class 'summary.weightitMSM'
plot(x, binwidth = NULL, bins = NULL, time = 1, ...)

Arguments

object a weightit or weightitMSM object; the output of a call to weightit() or
weightitMSM().

top how many of the largest and smallest weights to display. Default is 5.
ignore.s.weights

whether or not to ignore sampling weights when computing the weight sum-
mary. If FALSE, the default, the estimated weights will be multiplied by the
sampling weights (if any) before values are computed.

... For plot(), additional arguments passed to graphics::hist() to determine
the number of bins, though ggplot2::geom_histogram() is actually used to
create the plot.

x a summary.weightit or summary.weightitMSM object; the output of a call to
summary.weightit() or summary.weightitMSM().

binwidth, bins arguments passed to ggplot2::geom_histogram() to control the size and/or
number of bins.

time numeric; the time point for which to display the distribution of weights. Default
is to plot the distribution for the first time points.

Value

For point treatments (i.e., weightit objects), summary() returns a summary.weightit object with
the following elements:

weight.range The range (minimum and maximum) weight for each treatment group.

weight.top The units with the greatest weights in each treatment group; how many are in-
cluded is determined by top.
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coef.of.var (Coef of Var)

The coefficient of variation (standard deviation divided by mean) of the weights
in each treatment group and overall.

scaled.mad (MAD)

The mean absolute deviation of the weights in each treatment group and overall
divided by the mean of the weights in the corresponding group.

negative entropy (Entropy)

The negative entropy (
∑

wlog(w)) of the weights in each treatment group and
overall divided by the mean of the weights in the corresponding group.

num.zeros The number of weights equal to zero.

effective.sample.size

The effective sample size for each treatment group before and after weighting.
See ESS().

For longitudinal treatments (i.e., weightitMSM objects), summary() returns a list of the above ele-
ments for each treatment period.

plot() returns a ggplot object with a histogram displaying the distribution of the estimated weights.
If the estimand is the ATT or ATC, only the weights for the non-focal group(s) will be displayed
(since the weights for the focal group are all 1). A dotted line is displayed at the mean of the
weights.

nobs() returns a single number. Note that even units with weights or s.weights of 0 are included.

See Also

weightit(), weightitMSM(), summary()

Examples

# See example at ?weightit or ?weightitMSM

trim Trim (Winsorize) Large Weights

Description

Trims (i.e., winsorizes) large weights by setting all weights higher than that at a given quantile to
the weight at the quantile or to 0. This can be useful in controlling extreme weights, which can
reduce effective sample size by enlarging the variability of the weights. Note that by default, no
observations are fully discarded when using trim(), which may differ from the some uses of the
word "trim" (see the drop argument below).
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Usage

trim(x, ...)

## S3 method for class 'weightit'
trim(x, at = 0, lower = FALSE, drop = FALSE, ...)

## Default S3 method:
trim(x, at = 0, lower = FALSE, treat = NULL, drop = FALSE, ...)

Arguments

x A weightit object or a vector of weights.

... Not used.

at numeric; either the quantile of the weights above which weights are to be
trimmed. A single number between .5 and 1, or the number of weights to be
trimmed (e.g., at = 3 for the top 3 weights to be set to the 4th largest weight).

lower logical; whether also to trim at the lower quantile (e.g., for at = .9, trimming
at both .1 and .9, or for at = 3, trimming the top and bottom 3 weights). Default
is FALSE to only trim the higher weights.

drop logical; whether to set the weights of the trimmed units to 0 or not. Default
is FALSE to retain all trimmed units. Setting to TRUE may change the original
targeted estimand when not the ATT or ATC.

treat A vector of treatment status for each unit. This should always be included when
x is numeric, but you can get away with leaving it out if the treatment is contin-
uous or the estimand is the ATE for binary or multi-category treatments.

Details

trim() takes in a weightit object (the output of a call to weightit() or weightitMSM()) or a
numeric vector of weights and trims (winsorizes) them to the specified quantile. All weights above
that quantile are set to the weight at that quantile unless drop = TRUE, in which case they are set
to 0. If lower = TRUE, all weights below 1 minus the quantile are trimmed. In general, trimming
weights can decrease balance but also decreases the variability of the weights, improving precision
at the potential expense of unbiasedness (Cole & Hernán, 2008). See Lee, Lessler, and Stuart
(2011) and Thoemmes and Ong (2015) for discussions and simulation results of trimming weights
at various quantiles. Note that trimming weights can also change the target population and therefore
the estimand.

When using trim() on a numeric vector of weights, it is helpful to include the treatment vector
as well. The helps determine the type of treatment and estimand, which are used to specify how
trimming is performed. In particular, if the estimand is determined to be the ATT or ATC, the
weights of the target (i.e., focal) group are ignored, since they should all be equal to 1. Otherwise,
if the estimand is the ATE or the treatment is continuous, all weights are considered for trimming.
In general, weights for any group for which all the weights are the same will not be considered in
the trimming.
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Value

If the input is a weightit object, the output will be a weightit object with the weights replaced
by the trimmed weights (or 0) and will have an additional attribute, "trim", equal to the quantile of
trimming.

If the input is a numeric vector of weights, the output will be a numeric vector of the trimmed
weights, again with the aforementioned attribute.

References

Cole, S. R., & Hernán, M. Á. (2008). Constructing Inverse Probability Weights for Marginal Struc-
tural Models. American Journal of Epidemiology, 168(6), 656–664.

Lee, B. K., Lessler, J., & Stuart, E. A. (2011). Weight Trimming and Propensity Score Weighting.
PLoS ONE, 6(3), e18174.

Thoemmes, F., & Ong, A. D. (2016). A Primer on Inverse Probability of Treatment Weighting and
Marginal Structural Models. Emerging Adulthood, 4(1), 40–59.

See Also

weightit(), weightitMSM()

Examples

library("cobalt")
data("lalonde", package = "cobalt")

(W <- weightit(treat ~ age + educ + married +
nodegree + re74, data = lalonde,

method = "glm", estimand = "ATT"))
summary(W)

#Trimming the top and bottom 5 weights
trim(W, at = 5, lower = TRUE)

#Trimming at 90th percentile
(W.trim <- trim(W, at = .9))

summary(W.trim)
#Note that only the control weights were trimmed

#Trimming a numeric vector of weights
all.equal(trim(W$weights, at = .9, treat = lalonde$treat),

W.trim$weights)

#Dropping trimmed units
(W.trim <- trim(W, at = .9, drop = TRUE))

summary(W.trim)
#Note that we now have zeros in the control group

#Using made up data and as.weightit()



78 weightit

treat <- rbinom(500, 1, .3)
weights <- rchisq(500, df = 2)
W <- as.weightit(weights, treat = treat,

estimand = "ATE")
summary(W)
summary(trim(W, at = .95))

weightit Estimate Balancing Weights

Description

weightit() allows for the easy generation of balancing weights using a variety of available meth-
ods for binary, continuous, and multi-category treatments. Many of these methods exist in other
packages, which weightit() calls; these packages must be installed to use the desired method.

Usage

weightit(
formula,
data = NULL,
method = "glm",
estimand = "ATE",
stabilize = FALSE,
focal = NULL,
by = NULL,
s.weights = NULL,
ps = NULL,
moments = NULL,
int = FALSE,
subclass = NULL,
missing = NULL,
verbose = FALSE,
include.obj = FALSE,
keep.mparts = TRUE,
...

)

Arguments

formula a formula with a treatment variable on the left hand side and the covariates to be
balanced on the right hand side. See glm() for more details. Interactions and
functions of covariates are allowed.

data an optional data set in the form of a data frame that contains the variables in
formula.
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method a string of length 1 containing the name of the method that will be used to
estimate weights. See Details below for allowable options. The default is "glm"
for propensity score weighting using a generalized linear model to estimate the
propensity score.

estimand the desired estimand. For binary and multi-category treatments, can be "ATE",
"ATT", "ATC", and, for some methods, "ATO", "ATM", or "ATOS". The default
for both is "ATE". This argument is ignored for continuous treatments. See
the individual pages for each method for more information on which estimands
are allowed with each method and what literature to read to interpret these esti-
mands.

stabilize whether or not and how to stabilize the weights. If TRUE, each unit’s weight will
be multiplied by a standardization factor, which is the the unconditional proba-
bility (or density) of each unit’s observed treatment value. If a formula, a gen-
eralized linear model will be fit with the included predictors, and the inverse of
the corresponding weight will be used as the standardization factor. Can only be
used with continuous treatments or when estimand = "ATE". Default is FALSE
for no standardization. See also the num.formula argument at weightitMSM().
For continuous treatments, weights are already stabilized, so setting stabilize
= TRUE will be ignored with a warning (supplying a formula still works).

focal when multi-category treatments are used and ATT weights are requested, which
group to consider the "treated" or focal group. This group will not be weighted,
and the other groups will be weighted to be more like the focal group. If speci-
fied, estimand will automatically be set to "ATT".

by a string containing the name of the variable in data for which weighting is to
be done within categories or a one-sided formula with the stratifying variable on
the right-hand side. For example, if by = "gender" or by = ~gender, a separate
propensity score model or optimization will occur within each level of the vari-
able "gender". Only one by variable is allowed; to stratify by multiply variables
simultaneously, create a new variable that is a full cross of those variables using
interaction().

s.weights A vector of sampling weights or the name of a variable in data that contains
sampling weights. These can also be matching weights if weighting is to be
used on matched data. See the individual pages for each method for information
on whether sampling weights can be supplied.

ps A vector of propensity scores or the name of a variable in data containing
propensity scores. If not NULL, method is ignored unless it is a user-supplied
function, and the propensity scores will be used to create weights. formula
must include the treatment variable in data, but the listed covariates will play no
role in the weight estimation. Using ps is similar to calling get_w_from_ps()
directly, but produces a full weightit object rather than just producing weights.

moments numeric; for some methods, the greatest power of each covariate to be balanced.
For example, if moments = 3, for each non-categorical covariate, the covariate,
its square, and its cube will be balanced. This argument is ignored for other
methods; to balance powers of the covariates, appropriate functions must be
entered in formula. See the individual pages for each method for information
on whether they accept moments.
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int logical; for some methods, whether first-order interactions of the covariates
are to be balanced. This argument is ignored for other methods; to balance inter-
actions between the variables, appropriate functions must be entered in formula.
See the individual pages for each method for information on whether they accept
int.

subclass numeric; the number of subclasses to use for computing weights using marginal
mean weighting with subclasses (MMWS). If NULL, standard inverse probabil-
ity weights (and their extensions) will be computed; if a number greater than
1, subclasses will be formed and weights will be computed based on subclass
membership. Attempting to set a non-NULL value for methods that don’t com-
pute a propensity score will result in an error; see each method’s help page for
information on whether MMWS weights are compatible with the method. See
get_w_from_ps() for details and references.

missing character; how missing data should be handled. The options and defaults
depend on the method used. Ignored if no missing data is present. It should be
noted that multiple imputation outperforms all available missingness methods
available in weightit() and should probably be used instead. Consider the
MatchThem package for the use of weightit() with multiply imputed data.

verbose logical; whether to print additional information output by the fitting function.

include.obj logical; whether to include in the output any fit objects created in the process
of estimating the weights. For example, with method = "glm", the glm objects
containing the propensity score model will be included. See the individual pages
for each method for information on what object will be included if TRUE.

keep.mparts logical; whether to include in the output components necessary to estimate
standard errors that account for estimation of the weights in glm_weightit().
Default is TRUE if such parts are present. See the individual pages for each
method for whether these components are produced. Set to FALSE to keep
the output object smaller, e.g., if standard errors will not be computed using
glm_weightit().

... other arguments for functions called by weightit() that control aspects of fit-
ting that are not covered by the above arguments. See Details.

Details

The primary purpose of weightit() is as a dispatcher to functions that perform the estimation of
balancing weights using the requested method. Below are the methods allowed and links to pages
containing more information about them, including additional arguments and outputs (e.g., when
include.obj = TRUE), how missing values are treated, which estimands are allowed, and whether
sampling weights are allowed.

"glm" Propensity score weighting using generalized linear models
"gbm" Propensity score weighting using generalized boosted modeling
"cbps" Covariate Balancing Propensity Score weighting
"npcbps" Non-parametric Covariate Balancing Propensity Score weighting
"ebal" Entropy balancing
"ipt" Inverse probability tilting
"optweight" Optimization-based weighting

https://CRAN.R-project.org/package=MatchThem
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"super" Propensity score weighting using SuperLearner
"bart" Propensity score weighting using Bayesian additive regression trees (BART)
"energy" Energy balancing

method can also be supplied as a user-defined function; see method_user for instructions and ex-
amples. Setting method = NULL computes unit weights.

When using weightit(), please cite both the WeightIt package (using citation("WeightIt"))
and the paper(s) in the references section of the method used.

Value

A weightit object with the following elements:

weights The estimated weights, one for each unit.

treat The values of the treatment variable.

covs The covariates used in the fitting. Only includes the raw covariates, which may
have been altered in the fitting process.

estimand The estimand requested.

method The weight estimation method specified.

ps The estimated or provided propensity scores. Estimated propensity scores are
returned for binary treatments and only when method is "glm", "gbm", "cbps",
"ipt", "super", or "bart".

s.weights The provided sampling weights.

focal The focal treatment level if the ATT or ATC was requested.

by A data.frame containing the by variable when specified.

obj When include.obj = TRUE, the fit object.

info Additional information about the fitting. See the individual methods pages for
what is included.

When keep.mparts is TRUE (the default) and the chosen method is compatible with M-estimation,
the components related to M-estimation for use in glm_weightit() are stored in the "Mparts"
attribute. When by is specified, keep.mparts is set to FALSE.

See Also

weightitMSM() for estimating weights with sequential (i.e., longitudinal) treatments for use in
estimating marginal structural models (MSMs).

weightit.fit(), which is a lower-level dispatcher function that accepts a matrix of covariates and
a vector of treatment statuses rather than a formula and data frame and performs minimal argument
checking and processing. It may be useful for speeding up simulation studies for which the correct
arguments are known. In general, weightit() should be used.

summary.weightit() for summarizing the weights
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Examples

library("cobalt")
data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(W1 <- weightit(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "glm", estimand = "ATT"))

summary(W1)
bal.tab(W1)

#Balancing covariates with respect to race (multi-category)
(W2 <- weightit(race ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "ebal", estimand = "ATE"))

summary(W2)
bal.tab(W2)

#Balancing covariates with respect to re75 (continuous)
(W3 <- weightit(re75 ~ age + educ + married +

nodegree + re74, data = lalonde,
method = "cbps"))

summary(W3)
bal.tab(W3)

weightit.fit Generate Balancing Weights with Minimal Input Processing

Description

weightit.fit() dispatches one of the weight estimation methods determined by method. It is an
internal function called by weightit() and should probably not be used except in special cases.
Unlike weightit(), weightit.fit() does not accept a formula and data frame interface and in-
stead requires the covariates and treatment to be supplied as a numeric matrix and atomic vector,
respectively. In this way, weightit.fit() is to weightit() what lm.fit() is to lm() - a thinner,
slightly faster interface that performs minimal argument checking.

Usage

weightit.fit(
covs,
treat,
method = "glm",
s.weights = NULL,
by.factor = NULL,
estimand = "ATE",
focal = NULL,
stabilize = FALSE,
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ps = NULL,
moments = NULL,
int = FALSE,
subclass = NULL,
missing = NULL,
verbose = FALSE,
include.obj = FALSE,
...

)

Arguments

covs a numeric matrix of covariates.

treat a vector of treatment statuses.

method a string of length 1 containing the name of the method that will be used to
estimate weights. See weightit() for allowable options. The default is "glm"
for propensity score weighting using a generalized linear model to estimate the
propensity score.

s.weights a numeric vector of sampling weights. See the individual pages for each method
for information on whether sampling weights can be supplied.

by.factor a factor variable for which weighting is to be done within levels. Corresponds
to the by argument in weightit().

estimand the desired estimand. For binary and multi-category treatments, can be "ATE",
"ATT", "ATC", and, for some methods, "ATO", "ATM", or "ATOS". The de-
fault for both is "ATE". This argument is ignored for continuous treatments.
See the individual pages for each method for more information on which es-
timands are allowed with each method and what literature to read to interpret
these estimands.

focal when multi-category treatments are used and ATT weights are requested, which
group to consider the "treated" or focal group. This group will not be weighted,
and the other groups will be weighted to be more like the focal group. Must be
non-NULL if estimand = "ATT" or "ATC".

stabilize logical; whether or not to stabilize the weights. For the methods that involve
estimating propensity scores, this involves multiplying each unit’s weight by the
proportion of units in their treatment group. Default is FALSE. Note this differs
from its use with weightit().

ps a vector of propensity scores. If specified, method will be ignored and set to
"glm".

moments, int, subclass
arguments to customize the weight estimation. See weightit() for details.

missing character; how missing data should be handled. The options depend on the
method used. If NULL, covs will be checked for NA values, and if present,
missing will be set to "ind". If "", covs will not be checked for NA values;
this can be faster when it is known there are none.

verbose whether to print additional information output by the fitting function.



84 weightit.fit

include.obj whether to include in the output any fit objects created in the process of estimat-
ing the weights. For example, with method = "glm", the glm objects containing
the propensity score model will be included. See the individual pages for each
method for information on what object will be included if TRUE.

... other arguments for functions called by weightit.fit() that control aspects of
fitting that are not covered by the above arguments.

Details

weightit.fit() is called by weightit() after the arguments to weightit() have been checked
and processed. weightit.fit() dispatches the function used to actually estimate the weights,
passing on the supplied arguments directly. weightit.fit() is not meant to be used by anyone
other than experienced users who have a specific use case in mind. The returned object contains
limited information about the supplied arguments or details of the estimation method; all that is
processed by weightit().

Less argument checking or processing occurs in weightit.fit() than does in weightit(), which
means supplying incorrect arguments can result in errors, crashes, and invalid weights, and error
and warning messages may not be helpful in diagnosing the problem. weightit.fit() does check
to make sure weights were actually estimated, though.

weightit.fit() may be most useful in speeding up simulation simulation studies that use weightit()
because the covariates can be supplied as a numeric matrix, which is often how they are generated in
simulations, without having to go through the potentially slow process of extracting the covariates
and treatment from a formula and data frame. If the user is certain the arguments are valid (e.g., by
ensuring the estimated weights are consistent with those estimated from weightit() with the same
arguments), less time needs to be spent on processing the arguments. Also, the returned object is
much smaller than a weightit object because the covariates are not returned alongside the weights.

Value

A weightit.fit object with the following elements:

weights The estimated weights, one for each unit.

treat The values of the treatment variable.

estimand The estimand requested. ATC is recoded as ATT.

method The weight estimation method specified.

ps The estimated or provided propensity scores. Estimated propensity scores are
returned for binary treatments and only when method is "glm", "gbm", "cbps",
"super", or "bart".

s.weights The provided sampling weights.

focal The focal treatment level if the ATT or ATC was requested.

fit.obj When include.obj = TRUE, the fit object.

info Additional information about the fitting. See the individual methods pages for
what is included.

The weightit.fit object does not have specialized print(), summary(), or plot() methods. It
is simply a list containing the above components. Use as.weightit() to convert it to a weightit
object, which does have these methods. See Examples.
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See Also

weightit(), which you should use for estimating weights unless you know better.

as.weightit() for converting a weightit.fit object to a weightit object.

Examples

library("cobalt")
data("lalonde", package = "cobalt")

# Balancing covariates between treatment groups (binary)
covs <- lalonde[c("age", "educ", "race", "married",

"nodegree", "re74", "re75")]
## Create covs matrix, splitting any factors using
## cobalt::splitfactor()
covs_mat <- as.matrix(splitfactor(covs))

WF1 <- weightit.fit(covs_mat, treat = lalonde$treat,
method = "glm", estimand = "ATT")

str(WF1)

# Converting to a weightit object for use with
# summary() and bal.tab()
W1 <- as.weightit(WF1, covs = covs)
W1
summary(W1)
bal.tab(W1)

weightitMSM Generate Balancing Weights for Longitudinal Treatments

Description

weightitMSM() allows for the easy generation of balancing weights for marginal structural models
for time-varying treatments using a variety of available methods for binary, continuous, and multi-
category treatments. Many of these methods exist in other packages, which weightit() calls; these
packages must be installed to use the desired method.

Usage

weightitMSM(
formula.list,
data = NULL,
method = "glm",
stabilize = FALSE,
by = NULL,
s.weights = NULL,
num.formula = NULL,
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moments = NULL,
int = FALSE,
missing = NULL,
verbose = FALSE,
include.obj = FALSE,
keep.mparts = TRUE,
is.MSM.method,
weightit.force = FALSE,
...

)

Arguments

formula.list a list of formulas corresponding to each time point with the time-specific treat-
ment variable on the left hand side and pre-treatment covariates to be balanced
on the right hand side. The formulas must be in temporal order, and must con-
tain all covariates to be balanced at that time point (i.e., treatments and covari-
ates featured in early formulas should appear in later ones). Interactions and
functions of covariates are allowed.

data an optional data set in the form of a data frame that contains the variables in the
formulas in formula.list. This must be a wide data set with exactly one row
per unit.

method a string of length 1 containing the name of the method that will be used to
estimate weights. See weightit() for allowable options. The default is "glm",
which estimates the weights using generalized linear models.

stabilize logical; whether or not to stabilize the weights. Stabilizing the weights in-
volves fitting a model predicting treatment at each time point from treatment
status at prior time points. If TRUE, a fully saturated model will be fit (i.e., all
interactions between all treatments up to each time point), essentially using the
observed treatment probabilities in the numerator (for binary and multi-category
treatments). This may yield an error if some combinations are not observed. De-
fault is FALSE. To manually specify stabilization model formulas, e.g., to spec-
ify non-saturated models, use num.formula. With many time points, saturated
models may be time-consuming or impossible to fit.

by a string containing the name of the variable in data for which weighting is to
be done within categories or a one-sided formula with the stratifying variable on
the right-hand side. For example, if by = "gender" or by = ~gender, a separate
propensity score model or optimization will occur within each level of the vari-
able "gender". Only one by variable is allowed; to stratify by multiply variables
simultaneously, create a new variable that is a full cross of those variables using
interaction().

s.weights A vector of sampling weights or the name of a variable in data that contains
sampling weights. These can also be matching weights if weighting is to be
used on matched data. See the individual pages for each method for information
on whether sampling weights can be supplied.

num.formula optional; a one-sided formula with the stabilization factors (other than the pre-
vious treatments) on the right hand side, which adds, for each time point, the
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stabilization factors to a model saturated with previous treatments. See Cole &
Hernán (2008) for a discussion of how to specify this model; including stabi-
lization factors can change the estimand without proper adjustment, and should
be done with caution. Can also be a list of one-sided formulas, one for each time
point. Unless you know what you are doing, we recommend setting stabilize
= TRUE and ignoring num.formula.

moments numeric; for some methods, the greatest power of each covariate to be balanced.
For example, if moments = 3, for each non-categorical covariate, the covariate,
its square, and its cube will be balanced. This argument is ignored for other
methods; to balance powers of the covariates, appropriate functions must be
entered in formula. See the individual pages for each method for information
on whether they accept moments.

int logical; for some methods, whether first-order interactions of the covariates
are to be balanced. This argument is ignored for other methods; to balance inter-
actions between the variables, appropriate functions must be entered in formula.
See the individual pages for each method for information on whether they accept
int.

missing character; how missing data should be handled. The options and defaults
depend on the method used. Ignored if no missing data is present. It should be
noted that multiple imputation outperforms all available missingness methods
available in weightit() and should probably be used instead. Consider the
MatchThem package for the use of weightit() with multiply imputed data.

verbose logical; whether to print additional information output by the fitting function.
include.obj whether to include in the output a list of the fit objects created in the process of

estimating the weights at each time point. For example, with method = "glm", a
list of the glm objects containing the propensity score models at each time point
will be included. See the help pages for each method for information on what
object will be included if TRUE.

keep.mparts logical; whether to include in the output components necessary to estimate
standard errors that account for estimation of the weights in glm_weightit().
Default is TRUE if such parts are present. See the individual pages for each
method for whether these components are produced. Set to FALSE to keep
the output object smaller, e.g., if standard errors will not be computed using
glm_weightit().

is.MSM.method whether the method estimates weights for multiple time points all at once (TRUE)
or by estimating weights at each time point and then multiplying them together
(FALSE). This is only relevant for user-specified functions.

weightit.force several methods are not valid for estimating weights with longitudinal treat-
ments, and will produce an error message if attempted. Set to TRUE to bypass
this error message.

... other arguments for functions called by weightit() that control aspects of fit-
ting that are not covered by the above arguments. See Details at weightit().

Details

Currently only "wide" data sets, where each row corresponds to a unit’s entire variable history, are
supported. You can use reshape() or other functions to transform your data into this format; see

https://CRAN.R-project.org/package=MatchThem


88 weightitMSM

example below.

In general, weightitMSM() works by separating the estimation of weights into separate procedures
for each time period based on the formulas provided. For each formula, weightitMSM() simply
calls weightit() to that formula, collects the weights for each time period, and multiplies them
together to arrive at longitudinal balancing weights.

Each formula should contain all the covariates to be balanced on. For example, the formula corre-
sponding to the second time period should contain all the baseline covariates, the treatment variable
at the first time period, and the time-varying covariates that took on values after the first treatment
and before the second. Currently, only wide data sets are supported, where each unit is represented
by exactly one row that contains the covariate and treatment history encoded in separate variables.

The "cbps" method, which calls CBPS() in CBPS, will yield different results from CBMSM() in
CBPS because CBMSM() takes a different approach to generating weights than simply estimating
several time-specific models.

Value

A weightitMSM object with the following elements:

weights The estimated weights, one for each unit.

treat.list A list of the values of the time-varying treatment variables.

covs.list A list of the covariates used in the fitting at each time point. Only includes the
raw covariates, which may have been altered in the fitting process.

data The data.frame originally entered to weightitMSM().

estimand "ATE", currently the only estimand for MSMs with binary or multi-category
treatments.

method The weight estimation method specified.

ps.list A list of the estimated propensity scores (if any) at each time point.

s.weights The provided sampling weights.

by A data.frame containing the by variable when specified.

stabilization The stabilization factors, if any.

When keep.mparts is TRUE (the default) and the chosen method is compatible with M-estimation,
the components related to M-estimation for use in glm_weightit() are stored in the "Mparts.list"
attribute. When by is specified, keep.mparts is set to FALSE.

References

Cole, S. R., & Hernán, M. A. (2008). Constructing Inverse Probability Weights for Marginal Struc-
tural Models. American Journal of Epidemiology, 168(6), 656–664. doi:10.1093/aje/kwn164

See Also

weightit() for information on the allowable methods

summary.weightitMSM() for summarizing the weights

https://doi.org/10.1093/aje/kwn164
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Examples

library("cobalt")

data("msmdata")
(W1 <- weightitMSM(list(A_1 ~ X1_0 + X2_0,

A_2 ~ X1_1 + X2_1 +
A_1 + X1_0 + X2_0,

A_3 ~ X1_2 + X2_2 +
A_2 + X1_1 + X2_1 +
A_1 + X1_0 + X2_0),

data = msmdata,
method = "glm"))

summary(W1)
bal.tab(W1)

#Using stabilization factors
W2 <- weightitMSM(list(A_1 ~ X1_0 + X2_0,

A_2 ~ X1_1 + X2_1 +
A_1 + X1_0 + X2_0,

A_3 ~ X1_2 + X2_2 +
A_2 + X1_1 + X2_1 +
A_1 + X1_0 + X2_0),

data = msmdata,
method = "glm",
stabilize = TRUE,
num.formula = list(~ 1,

~ A_1,
~ A_1 + A_2))

#Same as above but with fully saturated stabilization factors
#(i.e., making the last entry in 'num.formula' A_1*A_2)
W3 <- weightitMSM(list(A_1 ~ X1_0 + X2_0,

A_2 ~ X1_1 + X2_1 +
A_1 + X1_0 + X2_0,

A_3 ~ X1_2 + X2_2 +
A_2 + X1_1 + X2_1 +
A_1 + X1_0 + X2_0),

data = msmdata,
method = "glm",
stabilize = TRUE)
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