WQM

Required packages

library(WQM)

library(MBC)
#> Loading required package: Matrix
#> Loading required package: energy
#> Loading required package: FNN
library(WaveletComp)

library(tidyr)
#> 
#> Attaching package: 'tidyr'
#> The following objects are masked from 'package:Matrix':
#> 
#>     expand, pack, unpack
library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(data.table)
#> 
#> Attaching package: 'data.table'
#> The following objects are masked from 'package:dplyr':
#> 
#>     between, first, last
library(scales)
library(ggplot2)
#> 
#> Attaching package: 'ggplot2'
#> The following object is masked from 'package:WaveletComp':
#> 
#>     arrow

Load data

data(NWP.rain)
summary(NWP.rain)
#>       Lead        Date                           Station            mod        
#>  Min.   :1   Min.   :2018-03-19 14:00:00.00   047058 :  5114   Min.   :  0.00  
#>  1st Qu.:1   1st Qu.:2019-02-02 02:00:00.00   073019 :  5114   1st Qu.:  0.00  
#>  Median :1   Median :2019-12-21 05:00:00.00   201001 :  5114   Median :  0.00  
#>  Mean   :1   Mean   :2019-12-21 16:58:39.04   203005 :  5114   Mean   :  0.26  
#>  3rd Qu.:1   3rd Qu.:2020-11-07 14:00:00.00   203010 :  5114   3rd Qu.:  0.00  
#>  Max.   :1   Max.   :2021-09-24 21:00:00.00   203030 :  5114   Max.   :132.37  
#>                                               (Other):787556   NA's   :39658   
#>       obs         
#>  Min.   : 0.0000  
#>  1st Qu.: 0.0000  
#>  Median : 0.0000  
#>  Mean   : 0.0733  
#>  3rd Qu.: 0.0000  
#>  Max.   :64.4000  
#>  NA's   :2509

station.no <- levels(NWP.rain$Station)

Ind.samp <- c(34,75)[1]; Ind.samp
#> [1] 34
station.samp <- station.no[Ind.samp]; station.samp
#> [1] "210018"
station.samp
#> [1] "210018"

NWP.rain.h <- NWP.rain %>% na.omit() %>% subset(Station==station.samp)
summary(NWP.rain.h)
#>       Lead        Date                           Station          mod         
#>  Min.   :1   Min.   :2018-03-19 14:00:00.00   210018 :5113   Min.   : 0.0000  
#>  1st Qu.:1   1st Qu.:2019-02-02 02:00:00.00   047058 :   0   1st Qu.: 0.0000  
#>  Median :1   Median :2019-12-21 02:00:00.00   073019 :   0   Median : 0.0000  
#>  Mean   :1   Mean   :2019-12-21 15:07:47.50   201001 :   0   Mean   : 0.2541  
#>  3rd Qu.:1   3rd Qu.:2020-11-07 08:00:00.00   203005 :   0   3rd Qu.: 0.0000  
#>  Max.   :1   Max.   :2021-09-24 21:00:00.00   203010 :   0   Max.   :80.1094  
#>                                               (Other):   0                    
#>       obs         
#>  Min.   :0.00000  
#>  1st Qu.:0.00000  
#>  Median :0.00000  
#>  Mean   :0.06505  
#>  3rd Qu.:0.00000  
#>  Max.   :9.80000  
#> 

#obs overview
plot(NWP.rain.h$obs, type="l",col=1, ylab="P", xlab=NA)
lines(NWP.rain.h$mod, type="l", col=2)

Continous Wavelet Transform

folds <- cut(seq(1,nrow(NWP.rain.h)),breaks=2,labels=FALSE)
subset <- which(folds==1, arr.ind=TRUE)

variable <- "prep"
PRand <- TRUE
seed <- 2021-11-28


###===============================###===============================###
if(TRUE){
  data <- list()
  l <- 1
  data[[l]] <- NWP.rain.h
  #cat("Station:", l)

  ### list for storing results
  data_sim <- list()
  data[[l]]$index <- as.numeric(format(data[[l]]$Date,format='%j'))

  summary(data[[l]]$obs[subset])
  wt_o <- t(WaveletComp::WaveletTransform(x=data[[l]]$obs[subset],dt=dt,dj=dj)$Wave)
  wt_m <- t(WaveletComp::WaveletTransform(x=data[[l]]$mod[subset],dt=dt,dj=dj)$Wave)
  wt_p <- t(WaveletComp::WaveletTransform(x=data[[l]]$mod[-subset],dt=dt,dj=dj)$Wave)

  if(l==1) print(paste0("No of decomposition level: ", ncol(wt_o)))

  ### return CWT coefficients as a complex matrix with rows and columns representing times and scales, respectively.
  wt_o_mat <- as.matrix(wt_o)
  real.o <- Re(wt_o_mat)
  modulus.o <- Mod(wt_o_mat)       ### derive modulus of complex numbers (radius)
  phases.o <- Arg(wt_o_mat)        ### extract phases (argument)

  apply(modulus.o, 2, var)

  wt_m_mat <- as.matrix(wt_m)
  real.m <- Re(wt_m_mat)
  modulus.m <- Mod(wt_m_mat)
  phases.m <- Arg(wt_m_mat)

  wt_p_mat <- as.matrix(wt_p)
  real.p <- Re(wt_p_mat)
  modulus.p <- Mod(wt_p_mat)
  phases.p <- Arg(wt_p_mat)
}
#> [1] "No of decomposition level: 9"

Amplitudes and Phases

# CWT plot----
# selected decomposition level to plot
level.samp <- c(seq(1,ncol(modulus.o), by=1));level.samp
#> [1] 1 2 3 4 5 6 7 8 9

df.cwt <- data.frame(No=data[[l]]$Date[subset],
                     obs=data[[l]]$obs[subset],modulus.o) %>%
  gather(Group, Value,2:(ncol(modulus.o)+2))

df.cwt_sub <- subset(df.cwt, Group %in% c("obs",paste0("X",level.samp)))
summary(factor(df.cwt_sub$Group))
#>   X1   X2   X3   X4   X5   X6   X7   X8   X9  obs 
#> 2557 2557 2557 2557 2557 2557 2557 2557 2557 2557

##observations----
p0 <- ggplot(subset(df.cwt_sub,Group=="obs"), aes(x=No, y=Value)) +
  geom_line()+
  #facet_grid(Group~., switch="both") +
  #facet_wrap(Group~., strip.position = "left", ncol=1, labeller = label_parsed) +
  scale_y_continuous(breaks = pretty_breaks(n = 4)) +
  scale_x_datetime(date_breaks="3 month", date_labels ="%Y-%m", expand = c(0,0)) +
  #scale_x_continuous(breaks = scales::pretty_breaks(n = 10)) +
  labs(y="Precipitation(mm/h)") +
  theme_bw() +
  theme(text = element_text(size = 16),
        plot.margin = unit(c(0.5,1,0.5, 1), "cm"),
        panel.grid.minor = element_blank(),
        panel.grid.major = element_blank(),

        strip.text.y = element_text(size=16),
        # axis.text.y = element_text(angle = 90, hjust=0.5, size=12),
        # axis.title.x = element_text(size=16),
        # axis.title.y = element_text(size=16),
        strip.background = element_blank(),
        strip.placement = "outside",
        axis.title.x = element_blank(),
        #axis.title.y = element_blank()
  )
p0


##amplitudes of observations----
df.cwt_sub$Group <- factor(df.cwt_sub$Group, labels=c("obs",paste('italic(s)[',level.samp-1,']',sep = '')))

p1 <- ggplot(subset(df.cwt_sub,Group!="obs"), aes(x=No, y=Value)) +
      geom_line()+
      #facet_grid(Group~., switch="both") +
      facet_wrap(Group~., strip.position = "left", ncol=1, labeller = label_parsed) +
      scale_y_continuous(breaks = pretty_breaks(n = 4)) +
      scale_x_datetime(date_breaks="3 month", date_labels ="%Y-%m",expand = c(0,0)) +
      #scale_x_continuous(breaks = scales::pretty_breaks(n = 10)) +
      labs(y="Amplitudes", color="temp") +
      theme_bw() +
      theme(text = element_text(size = 16),
            plot.margin = unit(c(0.2,0.4,0.5, 0), "cm"),
            panel.grid.minor = element_blank(),
            panel.grid.major = element_blank(),

            strip.text.y = element_text(size=16),
            # axis.text.y = element_text(angle = 90, hjust=0.5, size=12),
            # axis.title.x = element_text(size=16),
            # axis.title.y = element_text(size=16),
            strip.background = element_blank(),
            strip.placement = "outside",
            axis.title.x = element_blank(),
            axis.title.y = element_text(margin = margin(t = 0, r = -2, b = 0, l = 0))
            #axis.title.y = element_blank()
      )
p1 %>% print()


##phases of observations----
df.cwt <- data.frame(No=data[[l]]$Date[subset],
                     obs=data[[l]]$obs[subset],phases.o) %>%
  gather(Group, Value,2:(ncol(modulus.o)+2))

df.cwt_sub <- subset(df.cwt, Group %in% c("obs",paste0("X",level.samp)))
summary(factor(df.cwt_sub$Group))
#>   X1   X2   X3   X4   X5   X6   X7   X8   X9  obs 
#> 2557 2557 2557 2557 2557 2557 2557 2557 2557 2557

df.cwt_sub$Group <- factor(df.cwt_sub$Group, labels=c("obs",paste('italic(s)[',level.samp-1,']',sep = '')))

p2 <- ggplot(subset(df.cwt_sub,Group!="obs"), aes(x=No, y=Value)) +
      geom_line()+
      #facet_grid(Group~., switch="both") +
      facet_wrap(Group~., strip.position = "left", ncol=1, labeller = label_parsed) +
      scale_y_continuous(limits=c(-pi,pi),breaks = pretty_breaks(n = 4)) +
      #scale_x_continuous(breaks = scales::pretty_breaks(n = 10)) +
      scale_x_datetime(date_breaks="3 month", date_labels ="%Y-%m",expand = c(0,0)) +
      labs(y="Phases",color="temp") +
      theme_bw() +
      theme(text = element_text(size = 16),
            plot.margin = unit(c(0.2,0.4,0.5, 0), "cm"),
            panel.border = element_rect(color = 'black'),
            panel.grid.minor = element_blank(),
            panel.grid.major = element_blank(),

            strip.text.y = element_text(size=16),

            # axis.text.y = element_text(angle = 90, hjust=0.5, size=12),
            # axis.title.x = element_text(size=16),
            # axis.title.y = element_text(size=16),
            strip.background = element_blank(),
            strip.placement = "outside",
            axis.title.x = element_blank(),
            axis.title.y = element_text(margin = margin(t = 0, r = -2, b = 0, l = 0))
            #axis.title.y = element_blank()
      )
p2 %>% print()

Bias correction

if(QM %like% "MBC"){
  modulus.tmp <- do.call(QM,list(o.c=modulus.o, m.c=modulus.m,
                                 m.p=modulus.p, ratio.seq=rep(TRUE, ncol(modulus.m)), #trace=TRUE,
                                 silent=TRUE,n.tau=100
                                 ))
  modulus.bcc <- modulus.tmp$mhat.c
  modulus.bcf <- modulus.tmp$mhat.p
} else if(QM=="MRS") {
  modulus.tmp <- do.call(QM,list(o.c=modulus.o, m.c=modulus.m, m.p=modulus.p))
  modulus.bcc <- modulus.tmp$mhat.c
  modulus.bcf <- modulus.tmp$mhat.p
} else if(QM=="QDM") {
  #cat("QDM with ratio=T \n")
  modulus.tmp <- lapply(1:ncol(modulus.o), function(i)
    QDM(o.c=modulus.o[,i], m.c=modulus.m[,i], m.p=modulus.p[,i], ratio=FALSE))
  modulus.bcc <- sapply(modulus.tmp, function(ls) ls$mhat.c)
  modulus.bcf <- sapply(modulus.tmp, function(ls) ls$mhat.p)
}

sum(modulus.bcc<0)
#> [1] 0
sum(modulus.bcf<0)
#> [1] 28

modulus.bcf[modulus.bcf<0] <-0
modulus.bcc[modulus.bcc<0] <-0

phases.tmp <- lapply(1:ncol(phases.o), function(i)
  QDM(o.c=phases.o[,i], m.c=phases.m[,i], m.p=phases.p[,i]))
phases.bcc <- sapply(phases.tmp, function(ls) ls$mhat.c)
phases.bcf <- sapply(phases.tmp, function(ls) ls$mhat.p)

## modulus----
df.modulus <- rbind(data.frame(mod="obs",no=data[[l]]$Date[subset],modulus.o),
                      data.frame(mod="cur",no=data[[l]]$Date[subset],modulus.m),
                      data.frame(mod="bcc",no=data[[l]]$Date[subset],modulus.bcc)) %>%
    gather(lev, amp, 3:((ncol(modulus.o)+2))) #%>% mutate(amp=as.numeric(amp), subset=as.numeric(subset))

summary(df.modulus$mod)
#>    Length     Class      Mode 
#>     69039 character character
df.modulus$mod <- factor(df.modulus$mod, levels = c("obs","cur","bcc"),
                         labels = c("obs"="Observed","mod"="Raw","QM"))

df.modulus_sub <- subset(df.modulus, lev %in% c(paste0("X",level.samp)))
summary(factor(df.modulus_sub$lev))
#>   X1   X2   X3   X4   X5   X6   X7   X8   X9 
#> 7671 7671 7671 7671 7671 7671 7671 7671 7671

df.modulus_sub$lev <- factor(df.modulus_sub$lev, labels=c(paste('italic(s)[',level.samp-1,']',sep = '')))

p3 <- ggplot(df.modulus_sub, aes(x=no, y=amp, color=mod)) +
      geom_line(linewidth=0.5)+
      #facet_grid(Group~., switch="both") +
      facet_wrap(lev~., strip.position = "left", ncol=1, labeller = label_parsed) +
      scale_color_manual(values=c("black","red","blue"))+
      #scale_y_continuous(limits=c(-pi,pi),breaks = scales::pretty_breaks(n = 3)) +
      #scale_x_continuous(breaks = scales::pretty_breaks(n = 10)) +
      scale_x_datetime(date_breaks="3 month", date_labels ="%Y-%m", expand = c(0,0)) +
      labs(color=NULL, x="Date") +
      theme_bw() +
      theme(text = element_text(size = 12),
            plot.margin = unit(c(0.2,0.1,0.5, 0), "cm"),
            panel.border = element_rect(color = 'black'),
            panel.grid.minor = element_blank(),
            panel.grid.major = element_blank(),

            strip.text.y = element_text(size=16),

            # axis.text.y = element_text(angle = 90, hjust=0.5, size=12),
            # axis.title.x = element_text(size=16),
            # axis.title.y = element_text(size=16),
            #legend.position = 'none',
            legend.position = c(0.68,0.98),
            legend.direction = "horizontal",
            legend.background = element_rect(fill = "transparent"),

            strip.background = element_blank(),
            strip.placement = "outside",
            #axis.title.x = element_blank(),
            axis.title.y = element_blank()
      )
#> Warning: A numeric `legend.position` argument in `theme()` was deprecated in ggplot2
#> 3.5.0.
#> ℹ Please use the `legend.position.inside` argument of `theme()` instead.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.

p3


summary(df.modulus_sub)
#>        mod              no                                   lev       
#>  Observed:23013   Min.   :2018-03-19 14:00:00.00   italic(s)[0]: 7671  
#>  Raw     :23013   1st Qu.:2018-08-26 09:00:00.00   italic(s)[1]: 7671  
#>  QM      :23013   Median :2019-02-02 02:00:00.00   italic(s)[2]: 7671  
#>                   Mean   :2019-02-02 12:27:24.43   italic(s)[3]: 7671  
#>                   3rd Qu.:2019-07-12 09:00:00.00   italic(s)[4]: 7671  
#>                   Max.   :2019-12-21 02:00:00.00   italic(s)[5]: 7671  
#>                                                    (Other)     :23013  
#>       amp         
#>  Min.   : 0.0000  
#>  1st Qu.: 0.0811  
#>  Median : 0.4642  
#>  Mean   : 0.6524  
#>  3rd Qu.: 0.9022  
#>  Max.   :14.8106  
#> 

p4 <- ggplot(df.modulus_sub) +
        stat_ecdf(aes(x=amp, color=mod, size=mod), geom = "step",pad = TRUE) +
        facet_wrap(lev~., strip.position = "left", ncol=1, labeller = label_parsed)+

        scale_x_continuous(trans="log2",limits = c(1/2^10,16), breaks=c(0.001,0.05,1,6)) +
        #scale_x_continuous(trans="sqrt",limits = c(0,4), breaks=c(0,1,2,4)) +

        scale_color_manual(values=c("black","red","blue"))+
        scale_size_manual(values=c(1,0.5,0.5))+
        #guides(color=guide_legend(override.aes = list(size=5))) +
        labs(color=NULL, size=NULL, x="log2") +
        theme_bw() +
        theme(text = element_text(size = 12),
              plot.margin = unit(c(0.2,0.1,0.5, 0), "cm"),
              panel.border = element_rect(color = 'black'),
              panel.grid.minor = element_blank(),
              panel.grid.major = element_blank(),

              strip.text.y = element_text(size=16),
              # axis.text.y = element_text(angle = 90, hjust=0.5, size=12),
              # axis.title.x = element_text(size=16),
              # axis.title.y = element_text(size=16),
              legend.position = 'none',

              strip.background = element_blank(),
              strip.placement = "outside",
              #axis.title.x = element_blank(),
              axis.title.y = element_blank()
        )
#> Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
#> ℹ Please use `linewidth` instead.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.
p4
#> Warning: Removed 6195 rows containing non-finite outside the scale range
#> (`stat_ecdf()`).

Phase Randomization

# Phase random - validation same for calibration
noise_mat <- list()
for (r in 1:num.sim) {

  data.obs <- as.vector(sapply(data, function(ls) ls$obs[subset]))
  ts_wn <- sample(data.obs, size=length(data[[1]]$obs[-subset]), replace=T)

  wt_noise <- t(WaveletComp::WaveletTransform(x=ts_wn,dt=dt,dj=dj)$Wave)

  noise_mat[[r]] <- as.matrix(wt_noise)
}

phases.rand <- lapply(1:num.sim, function(r)  {
  tmp <- Arg(noise_mat[[r]])

  ord.phases <- apply(phases.p, 2, order)
  #ord.phases <- apply(phases.p, 2, order)

  tmp.rank <- apply(tmp, 2, sort)
  tmp.n <- sapply(1:ncol(tmp), function(ii) {tmp[ord.phases[,ii],ii] <- tmp.rank[,ii];
  return(tmp[,ii])})

  return(tmp.n)
})

## bcf----
mat_new_val <- matrix(complex(modulus=modulus.bcf,argument=phases.p),ncol=ncol(phases.p))
rec_val <- fun_icwt(x.wave=mat_new_val,dt=dt,dj=dj)
if(variable=="prep") rec_val[rec_val<=theta] <- 0

### apply wavelet reconstruction to randomized signal----
mat_val_r <- prsim(modulus.bcf, phases.p, noise_mat)

data_sim_val <- sapply(1:num.sim, function(r) fun_icwt(x.wave=mat_val_r[[r]], dt=dt, dj=dj))
if(variable=="prep") data_sim_val[data_sim_val<=theta] <- 0
colnames(data_sim_val) <- paste0("r",seq(1:num.sim))

data.val <- data[[l]][-subset,]
data.val$bcf <-  rec_val
data.val <- data.frame(data.val, data_sim_val)

summary(data.val)
#>       Lead        Date                           Station          mod         
#>  Min.   :1   Min.   :2019-12-21 08:00:00.00   210018 :2556   Min.   : 0.0000  
#>  1st Qu.:1   1st Qu.:2020-05-31 13:30:00.00   047058 :   0   1st Qu.: 0.0000  
#>  Median :1   Median :2020-11-07 11:00:00.00   073019 :   0   Median : 0.0000  
#>  Mean   :1   Mean   :2020-11-07 20:49:38.86   201001 :   0   Mean   : 0.3163  
#>  3rd Qu.:1   3rd Qu.:2021-04-18 04:30:00.00   203005 :   0   3rd Qu.: 0.0000  
#>  Max.   :1   Max.   :2021-09-24 21:00:00.00   203010 :   0   Max.   :32.3750  
#>                                               (Other):   0                    
#>       obs              index            bcf               r1        
#>  Min.   :0.00000   Min.   :  1.0   Min.   :0.0000   Min.   :0.0000  
#>  1st Qu.:0.00000   1st Qu.: 82.0   1st Qu.:0.0000   1st Qu.:0.0000  
#>  Median :0.00000   Median :162.5   Median :0.0000   Median :0.0000  
#>  Mean   :0.08904   Mean   :166.7   Mean   :0.1721   Mean   :0.1409  
#>  3rd Qu.:0.00000   3rd Qu.:242.2   3rd Qu.:0.0000   3rd Qu.:0.0000  
#>  Max.   :9.80000   Max.   :366.0   Max.   :5.9194   Max.   :5.9842  
#>                                                                     
#>        r2               r3               r4              r5        
#>  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
#>  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000  
#>  Median :0.0000   Median :0.0000   Median :0.000   Median :0.0000  
#>  Mean   :0.1527   Mean   :0.1554   Mean   :0.141   Mean   :0.1559  
#>  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:0.0000  
#>  Max.   :5.8791   Max.   :5.9579   Max.   :5.965   Max.   :5.9030  
#> 

Quantile Mapping

# QM approach-------------------------------------------------------------------
for(k_fold in 1){

  data.o <- data[[l]]$obs[subset];
  data.m <- data[[l]]$mod[subset];
  data.p <- data[[l]]$mod[-subset];

  data.tmp <- QDM(o.c=data.o, m.c=data.m, m.p=data.p, ratio=TRUE)#, ratio.max = 1, trace=theta))
  data.bcc <- data.tmp$mhat.c
  data.bcf <- data.tmp$mhat.p

}

Compare

df_fut <- cbind(data.val[,c('Date',"obs","mod","bcf",paste0("r",1:num.sim))],qm=data.bcf) %>%
  gather(Group, Value,2:(4+num.sim+1))
summary(factor(df_fut$Group))
#>  bcf  mod  obs   qm   r1   r2   r3   r4   r5 
#> 2556 2556 2556 2556 2556 2556 2556 2556 2556

summary(df_fut)
#>       Date                           Group               Value        
#>  Min.   :2019-12-21 08:00:00.00   Length:23004       Min.   : 0.0000  
#>  1st Qu.:2020-05-31 13:30:00.00   Class :character   1st Qu.: 0.0000  
#>  Median :2020-11-07 11:00:00.00   Mode  :character   Median : 0.0000  
#>  Mean   :2020-11-07 20:49:38.86                      Mean   : 0.1539  
#>  3rd Qu.:2021-04-18 04:30:00.00                      3rd Qu.: 0.0000  
#>  Max.   :2021-09-24 21:00:00.00                      Max.   :32.3750
p5 <- ggplot(data=df_fut,aes(x=Value,color = Group, size=Group)) +
  stat_ecdf(aes(color = Group, size=Group), geom = "step", pad = FALSE) +
  #stat_density(geom='line', position='identity') +
  #facet_grid(W~Station, scales = "free") + #, labeller = labeller(Grid = Predictor.labs)) +
  # scale_color_manual(values=c("black","red","green","blue"))+#,
  # scale_size_manual(values=c(1,1,0.5,0.5))+
  scale_color_manual(values = c("Black",alpha("Red",0.6),alpha("green",0.6),
                                alpha("blue",0.6), rep('grey',5))) +
  scale_size_manual(values=c(1,1,0.5,0.5, rep(0.1,5))) +

  #labels=c("obs","mod.c","mod.bcc")) +

  scale_x_continuous(limits=c(0, 20), breaks = pretty_breaks(n = 3)) +
  #labs(color=paste0(variable.ncep[i], "-level: ",level[j])) +
  guides(color=guide_legend(override.aes = list(alpha=1)),
         size=guide_legend(override.aes = list(size=1))) +
  theme_bw() +
  theme(text = element_text(size = 16),
        plot.margin = unit(c(1,1,0.5, 1), "cm"),
        # panel.grid.minor = element_blank(),
        # panel.grid.major = element_blank(),
        # axis.text.y = element_text(angle = 90, hjust=0.5, size=12),
        # axis.title.x = element_text(size=16),
        # axis.title.y = element_text(size=16),
        legend.title=element_blank(),
        axis.title.x = element_blank(),
        axis.title.y = element_blank()
  )

p5
#> Warning: Removed 4 rows containing non-finite outside the scale range
#> (`stat_ecdf()`).