Package: WQM (via r-universe)

November 11, 2024

```
Type Package
Title Wavelet-Based Quantile Mapping for Postprocessing Numerical
      Weather Predictions
Version 0.1.4
Author Ze Jiang [aut, cre] (<a href="https://orcid.org/0000-0002-3472-0829">https://orcid.org/0000-0002-3472-0829</a>),
      Fiona Johnson [aut] (<a href="https://orcid.org/0000-0001-5708-1807">https://orcid.org/0000-0001-5708-1807</a>)
Maintainer Ze Jiang <ze.jiang@unsw.edu.au>
Description The wavelet-based quantile mapping (WQM) technique is
      designed to correct biases in spatio-temporal precipitation
      forecasts across multiple time scales. The WQM method
      effectively enhances forecast accuracy by generating an
      ensemble of precipitation forecasts that account for
      uncertainties in the prediction process. For a comprehensive
      overview of the methodologies employed in this package, please
      refer to Jiang, Z., and Johnson, F. (2023)
      <doi:10.1029/2022EF003350>. The package relies on two packages
      for continuous wavelet transforms: 'WaveletComp', which can be
      installed automatically, and 'wmtsa', which is optional and
      available from the CRAN archive
      <https://cran.r-project.org/src/contrib/Archive/wmtsa/>. Users
      need to manually install 'wmtsa' from this archive if they
      prefer to use 'wmtsa' based decomposition.
License GPL (>= 3)
Encoding UTF-8
LazyData true
Depends R (>= 3.5.0)
Imports MBC, WaveletComp, matrixStats, ggplot2
Suggests stats, tidyr, dplyr, wmtsa, scales, data.table, graphics,
      testthat (>= 3.0.0), knitr, rmarkdown, bookdown
Config/testthat/edition 3
RoxygenNote 7.3.2
```

VignetteBuilder knitr

bc_cwt

NeedsCompilation no

Repository CRAN

Date/Publication 2024-10-11 08:00:18 UTC

Config/pak/sysreqs libgsl0-dev

Contents

```
      bc_cwt
      2

      fun_cwt_J
      3

      fun_icwt
      4

      fun_ifft
      5

      NWP.rain
      5

      prsim
      6

      RankHist
      6

      sample
      7

Index
```

bc_cwt

CWT based quantile mapping

Description

CWT based quantile mapping

Usage

```
bc_cwt(
  data,
  subset,
  variable,
  theta = 0.1,
  QM = c("MBC", "MRS", "QDM"),
  number_sim = 5,
  wavelet = "morlet",
  dt = 1,
  dj = 1,
 method = "M2",
  block = 3,
  seed = NULL,
 PR.cal = FALSE,
  do.plot = FALSE,
)
```

fun_cwt_J

Arguments

data a list of input dataset

subset a index of number denoting the subset for calibration variable a character string denoting the type of variable.

theta threshold of rainfall.

QM a character string denoting the qm method used.

number_sim The total number of realizations.

wavelet a character string denoting the wavelet filter to use in calculating the CWT.

dt sampling resolution in the time domain.

dj sampling resolution in the frequency domain.

method Shuffling method, M1: non-shuffling and M2: shuffling. M2 by default.

block Block size.

seed Seed for shuffling process.

PR.cal Logical value for phase randomization of calibration.

do.plot Logical value for ploting.

... Additional arguments for QDM.

Value

a list of post-processed data

fun_cwt_J Function: Total number of decomposition levels

Description

Function: Total number of decomposition levels

Usage

```
fun_cwt_J(n, dt, dj)
```

Arguments

n sample size.

dt sampling resolution in the time domain.dj sampling resolution in the frequency domain.

Value

the total number of decomposition levels.

fun_icwt

fun_icwt

Inverse of continuous wavelet transform

Description

Inverse of continuous wavelet transform

Usage

```
fun_icwt(x.wave, dt, dj, flag.wav = "WaveletComp", scale = NULL)
```

Arguments

x.wave input complex matrix.

dt sampling resolution in the time domain.

dj sampling resolution in the frequency domain.

flag.wav String for two different CWT packages.

scale Wavelet scales.

Value

reconstructed time series

References

fun_stoch_sim_wave in PRSim, Brunner and Furrer, 2020.

Examples

```
set.seed(100)

dt<-1
dj<-1/8
flag.wav <- switch(2, "wmtsa", "WaveletComp")

n <- 100
x <- rnorm(n)
x.wave <- t(WaveletComp::WaveletTransform(x=x)$Wave)
rec <- fun_icwt(x.wave, dt, dj, flag.wav)

x.wt <- WaveletComp::analyze.wavelet(data.frame(x=x),"x",dt=dt,dj=dj)
rec_orig <- WaveletComp::reconstruct(x.wt,only.sig = FALSE, plot.rec = FALSE)$series$x.r

### compare to original series
op <- par(mfrow = c(1, 1), mar=c(3,3,1,1), mgp=c(1, 0.5, 0))
plot(1:n, x, type="1", lwd=5, xlab=NA, ylab=NA)
lines(1:n, rec_orig, col="blue", lwd=1)</pre>
```

fun_ifft 5

fun_ifft

Inverse Fourier transform

Description

Inverse Fourier transform

Usage

```
fun_ifft(x, do.plot = FALSE)
```

Arguments

x input time series.

do.plot Logical value of plot.

Value

reconstruction time series

References

fun_stoch_sim in PRSim, Brunner and Furrer, 2020.

Examples

```
x <- rnorm(100)
x.new <- fun_ifft(x, do.plot=TRUE)</pre>
```

NWP.rain

Australia NWP rainfall forecasts at lead 1h over Sydney region

Description

A dataset containing 160 stations including observation and raw forecasts.

Usage

```
data(NWP.rain)
```

6 RankHist

prsim

Phase randomization and shuffling

Description

Phase randomization and shuffling

Usage

```
prsim(
  modulus,
  phases,
  noise_mat,
  method = c("M1", "M2")[2],
  size = 3,
  seed = NULL
)
```

Arguments

modulus Modulus of complex values.

phases Argument of complex values.

noise_mat Complex matrix from random time series.

method Shuffling method, M1: non-shuffling and M2: shuffling. M2 by default.

size Block size.

seed Seed for shuffling process.

Value

A new complex matrix

RankHist

Verification Rank and Histogram

Description

Verification Rank and Histogram

Usage

```
RankHist(forecasts, observations, do.plot = FALSE)
```

sample 7

Arguments

forecasts A matrix of ensemble forecasts, in which the rows corresponds to locations and

times and the columns correspond to the individual ensemble members.

observations A vector of observations corresponding to the locations and times of the fore-

casts.

do.plot Logical value of plot.

Value

A vector giving the rank of verifying observations relative to the corresponding ensemble forecasts. The verification rank historgram is plotted.

References

ensembleBMA::verifRankHist

sample

Sample data: Rainfall forecasts data

Description

A dataset containing 2 stations including observation and raw forecasts.

Usage

data(sample)

Index