Package: WMAP (via r-universe)

November 8, 2024

Title Weighted Meta-Analysis with Pseudo-Populations

Version 1.0.0

Description Implementation of integrative weighting approaches for multiple observational studies and causal inferences. The package features three weighting approaches, each representing a special case of the unified weighting framework, introduced by Guha and Li (2024) <doi:10.1093/biomtc/ujae070>, which includes an extension of inverse probability weights for data integration settings.

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.2

LazyData true

Imports pkgcond, ggplot2, zeallot, caret, randomForest, forcats, utils, stats, grDevices

Depends R (>= 3.5.0)

NeedsCompilation no

Author Subharup Guha [aut, cre], Mengqi Xu [aut], Kashish Priyam [aut], Yi Li [aut]

Maintainer Subharup Guha <s.guha@ufl.edu>

Repository CRAN

Date/Publication 2024-11-07 18:40:02 UTC

Config/pak/sysreqs libicu-dev

Contents

balancing.weights	2
causal.estimate	3
demo	5
plot.causal_estimates	5
summary.balancing_weights	6
summary.causal_estimates	7

Index

2

balancing.weights Compute balancing weights using FLEXOR or other methods

Description

This function calculates balancing weights based on the specified pseudo-population method.

Usage

```
balancing.weights(
   S,
   Z,
   X,
   method,
   naturalGroupProp,
   num.random = 40,
   gammaMin = 0.001,
   gammaMax = (1 - 0.001),
   seed = NULL,
   verbose = TRUE
)
```

Arguments

S	Vector of factor levels representing the study memberships. Takes values in $\{1,, J\}$.	
Z	Vector of factor levels representing the group memberships. Takes values in $\{1,, K\}$.	
Х	Covariate matrix of N rows and p columns.	
method	Pseudo-population method, i.e., weighting method. Take values in FLEXOR, IC, or IGO.	
naturalGroupProp		
	Relevant only for FLEXOR method: a fixed user-specified probability vector θ .	
num.random	Relevant only for FLEXOR method: number of random starting points of γ in the two-step iterative procedure. Default is 40.	
gammaMin	Relevant only for FLEXOR method: Lower bound for each γ_s in the two-step iterative procedure. Default is 0.001.	
gammaMax	Relevant only for FLEXOR method: Upper bound for each γ_s in the two-step iterative procedure. Default is 0.999.	
seed	Seed for random number generation. Default is NULL.	
verbose	Logical; Relevant only for FLEXOR method: if TRUE (default), displays progress messages during computation to the console. Set to FALSE to suppress these messages.	

Value

An S3 list object with the following components:

wt.v N empirically normalized sample weights.

percentESS Percentage sample effective sample size (ESS) for the pseudo-population.

Examples

```
data(demo)
balancing.weights(S, Z, X, method = "IC", naturalGroupProp)
```

causal.estimate Estimate causal effects using FLEXOR or other methods

Description

This function estimates causal effects based on the specified pseudo-population method. The FLEXOR method involves an iterative two-step procedure.

Usage

```
causal.estimate(
   S,
   Z,
   X,
   Y,
   B = 100,
   method,
   naturalGroupProp = NULL,
   num.random = 40,
   gammaMin = 0.001,
   gammaMax = (1 - 0.001),
   seed = NULL,
   verbose = TRUE
)
```

Arguments

S	Vector of factor levels representing the study memberships. Takes values in {1,, J}.
Z	Vector of factor levels representing the group memberships. Takes values in $\{1,, K\}$.
Х	Covariate matrix of N rows and p columns.
Y	Matrix of L outcomes, with dimensions $N \times L$.
В	Number of bootstrap samples for variance estimation. Default is 100.

method	Pseudo-population method, i.e., weighting method. Take values in FLEXOR, IC, or IGO.	
naturalGroupProp		
	Relevant only for FLEXOR method: a fixed user-specified probability vector θ .	
num.random	Relevant only for FLEXOR method: number of random starting points of γ in the two-step iterative procedure. Default is 40.	
gammaMin	Relevant only for FLEXOR method: Lower bound for each γ_s in the two-step iterative procedure. Default is 0.001.	
gammaMax	Relevant only for FLEXOR method: Upper bound for each γ_s in the two-step iterative procedure. Default is 0.999.	
seed	Seed for random number generation. Default is NULL.	
verbose	Logical; if TRUE (default), displays progress messages during computation to the console. Set to FALSE to suppress these messages.	

Value

An S3 list object with the following components:

percentESS Percentage sample effective sample size (ESS) of the pseudo-population.

moments.ar An array of dimension $3 \times K \times L$, containing:

- Estimated means, standard deviations (SDs), and medians (dimension 1),
- For K groups (dimension 2),
- And *L* counterfactual outcomes (dimension 3).

otherFeatures.v Estimated mean group differences for L outcomes.

collatedMoments.ar An array of dimension $3 \times K \times L \times B$, containing:

- moments.ar of the *b*th bootstrap sample (dimensions 1–3),
- For *B* bootstrap samples (dimension 4).

collatedOtherFeatures.mt A matrix of dimension $L \times B$ containing:

- otherFeatures.v of the *b*th bootstrap sample (dimension 1),
- For *B* bootstrap samples (dimension 2).

collatedESS A vector of length *B* containing percentage sample ESS for *B* bootstrap samples. **method** Pseudo-population method, i.e., weighting method.

Examples

```
data(demo)
set.seed(1)
causal.estimate(S, Z, X, Y, B = 5, method = "IC", naturalGroupProp)
```

demo

Description

A dataset containing example data for demonstration purposes.

Usage

data(demo)

Format

An rda object, with 450 observations and the following variables:

- **S** A vector of factor levels, representing the study memberships.
- Z A vector of factor levels, representing the group memberships.
- X A covariate matrix.
- Y An outcome matrix.

naturalGroupProp The relative group prevalences of the larger natural population. Necessary only for FLEXOR weights; it should be skipped for IC and IGO weights.

groupNames Disease subtype names "IDC" or "ILC"

Details

Demo Dataset

Examples

data(demo)

plot.causal_estimates Plot method for objects of class 'causal_estimates'

Description

Plot method for objects of class 'causal_estimates'

Usage

```
## S3 method for class 'causal_estimates'
plot(x, ...)
```

Arguments

х	An object of class 'causal_estimates'.
	Additional arguments including:
	y_limit The y-axis range. Default is c(0, 50).
	color The boxplot color. Default is "red".

Value

A boxplot of percent sample ESS for a specific weighting method (FLEXOR, IC, or IGO)

summary.balancing_weights

Summary method for objects of class 'balancing_weights'

Description

Summary method for objects of class 'balancing_weights'

Usage

```
## S3 method for class 'balancing_weights'
summary(object, ...)
```

Arguments

object	An object of class 'balancing_weights'
	Additional arguments affecting the summary produced (so far no additional ar-
	guments are needed, so leave blank).

Value

Printed summary of the 'balancing_weights' object, including:

Weight length The total number of weights.

Weight distribution Statistical summary of weight values.

percentESS Percentage sample effective sample size (ESS) for the pseudo-population.

Examples

```
data(demo)
output1 <- balancing.weights(S, Z, X, method = "IC", naturalGroupProp)
summary(output1)</pre>
```

summary.causal_estimates

Summary method for objects of class 'causal_estimates'

Description

Summary method for objects of class 'causal_estimates'

Usage

S3 method for class 'causal_estimates'
summary(object, ...)

Arguments

object	An object of class 'causal_estimates'
	Additional arguments affecting the summary produced (so far no additional ar- guments are needed, so leave blank).

Value

Printed summary of the 'causal_estimates' object, including:

Percentage sample ESS Percentage sample effective sample size (ESS) for the pseudo-population.

- **Mean differences with 95% CI** The mean differences between two groups with their corresponding 95% confidence intervals.
- Sigma ratios with 95% CI The ratios of standard deviations between two groups with their corresponding 95% confidence intervals.

Examples

```
data(demo)
set.seed(1)
output2 <- causal.estimate(S, Z, X, Y, B = 5, method = "IC", naturalGroupProp)
summary(output2)</pre>
```

Index

balancing.weights, 2
causal.estimate, 3
demo, 5
groupNames(demo), 5
naturalGroupProp(demo), 5
plot.causal_estimates, 5
S(demo), 5
summary.balancing_weights, 6
summary.causal_estimates, 7
X(demo), 5
Y(demo), 5
Z(demo), 5