Title: | The Variance Gamma Distribution |
---|---|
Description: | Provides functions for the variance gamma distribution. Density, distribution and quantile functions. Functions for random number generation and fitting of the variance gamma to data. Also, functions for computing moments of the variance gamma distribution of any order about any location. In addition, there are functions for checking the validity of parameters and to interchange different sets of parameterizations for the variance gamma distribution. |
Authors: | David Scott <[email protected]> and Christine Yang Dong <[email protected]> |
Maintainer: | David Scott <[email protected]> |
License: | GPL (>= 2) |
Version: | 0.4-2 |
Built: | 2025-01-19 06:51:28 UTC |
Source: | CRAN |
summary
Method for class "vgFit"
.
## S3 method for class 'vgFit' summary(object, ...) ## S3 method for class 'summary.vgFit' print(x, digits = max(3, getOption("digits") - 3), ...)
## S3 method for class 'vgFit' summary(object, ...) ## S3 method for class 'summary.vgFit' print(x, digits = max(3, getOption("digits") - 3), ...)
object |
An object of class |
x |
An object of class |
digits |
The number of significant digits to use when printing. |
... |
Further arguments passed to or from other methods. |
summary.vgFit
calculates standard errors for the estimates of
,
,
, and
of the variance gamma distribution parameter vector
param
if the Hessian from the call to optim
or
nlm
is available. Because the parameters in the call to
the optimiser are ,
,
and
, the delta method is
used to obtain the standard errors for
and
.
If the Hessian is available, summary.vgFit
computes
standard errors for the estimates of ,
,
, and
, and adds them to
object
as object$sds
. Otherwise, no calculations are performed and the
composition of object
is unaltered.
summary.vgFit
invisibly returns x
with class changed to
summary.vgFit
.
See vgFit
for the composition of an object of class
vgFit
.
print.summary.vgFit
prints a summary in the same format as
print.vgFit
when the Hessian is not available from
the fit. When the Hessian is available, the standard errors for the
parameter estimates are printed in parentheses beneath the parameter
estimates, in the manner of fitdistr
in the package
MASS
.
### Continuing the vgFit(.) example: param <- c(0,0.5,0,0.5) dataVector <- rvg(500, param = param) fit <- vgFit(dataVector) print(fit) summary(fit)
### Continuing the vgFit(.) example: param <- c(0,0.5,0,0.5) dataVector <- rvg(500, param = param) fit <- vgFit(dataVector) print(fit) summary(fit)
Functions to calculate the mean, variance, skewness, kurtosis and mode of a specific variance gamma distribution.
vgMean(vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu)) vgVar(vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu)) vgSkew(vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu)) vgKurt(vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu)) vgMode(vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu))
vgMean(vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu)) vgVar(vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu)) vgSkew(vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu)) vgKurt(vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu)) vgMode(vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu))
vgC |
The location parameter |
sigma |
The spread parameter |
theta |
The asymmetry parameter |
nu |
The shape parameter |
param |
Specifying the parameters as a vector which takes the form
|
vgMean
gives the mean of the variance gamma distribution,
vgVar
the variance, vgSkew
the skewness, vgKurt
the
kurtosis, and vgMode
the mode.
The formulae used for the mean and variance are as given in
Seneta (2004).
If is greater than or equal to 2, the mode is equal to the value
of the parameter
. Otherwise, it is found by a numerical
optimisation using
optim
.
The parameterisation of the variance gamma distribution used
for these functions is the
one. See
vgChangePars
to transfer between parameterisations.
David Scott [email protected], Christine Yang Dong [email protected]
Seneta, E. (2004). Fitting the variance-gamma model to financial data. J. Appl. Prob., 41A:177–187. Kotz, S, Kozubowski, T. J., and Podgórski, K. (2001). The Laplace Distribution and Generalizations. Birkhauser, Boston, 349 p.
dvg
, vgChangePars
,vgCalcRange
,
besselK
.
param <- c(2,2,2,0.5) vgMean(param = param) ## Or to specify parameter values individually, use: vgMean (2,2,2,0.5) vgVar(param = param) vgSkew(param = param) vgKurt(param = param) vgMode(param = param) maxDens <- dvg(vgMode(param = param), param = param) vgRange <- vgCalcRange(param = param, tol = 10^(-2)*maxDens) curve(dvg(x, param = param), vgRange[1], vgRange[2]) abline(v = vgMode(param = param), col = "blue") abline(v = vgMean(param = param), col = "red")
param <- c(2,2,2,0.5) vgMean(param = param) ## Or to specify parameter values individually, use: vgMean (2,2,2,0.5) vgVar(param = param) vgSkew(param = param) vgKurt(param = param) vgMode(param = param) maxDens <- dvg(vgMode(param = param), param = param) vgRange <- vgCalcRange(param = param, tol = 10^(-2)*maxDens) curve(dvg(x, param = param), vgRange[1], vgRange[2]) abline(v = vgMode(param = param), col = "blue") abline(v = vgMean(param = param), col = "red")
Density function, distribution function, quantiles and
random number generation for the variance gamma distribution
with parameters (location),
(spread),
(asymmetry) and
(shape).
Utility routines are included for the derivative of the density function and
to find suitable break points for use in determining the distribution
function.
dvg(x, vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu), log = FALSE, tolerance = .Machine$double.eps ^ 0.5, ...) pvg(q, vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu), lower.tail = TRUE, log.p = FALSE, small = 10^(-6), tiny = 10^(-10), deriv = 0.3, subdivisions = 100, accuracy = FALSE, ...) qvg(p, vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu), lower.tail = TRUE, log.p = FALSE, small = 10^(-6), tiny = 10^(-10), deriv = 0.3, nInterpol = 100, subdivisions = 100, ...) rvg(n, vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu)) ddvg (x, vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu), log = FALSE, tolerance = .Machine$double.eps ^ 0.5, ...) vgBreaks (vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu), small = 10^(-6), tiny = 10^(-10), deriv = 0.3, ...)
dvg(x, vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu), log = FALSE, tolerance = .Machine$double.eps ^ 0.5, ...) pvg(q, vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu), lower.tail = TRUE, log.p = FALSE, small = 10^(-6), tiny = 10^(-10), deriv = 0.3, subdivisions = 100, accuracy = FALSE, ...) qvg(p, vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu), lower.tail = TRUE, log.p = FALSE, small = 10^(-6), tiny = 10^(-10), deriv = 0.3, nInterpol = 100, subdivisions = 100, ...) rvg(n, vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu)) ddvg (x, vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu), log = FALSE, tolerance = .Machine$double.eps ^ 0.5, ...) vgBreaks (vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu), small = 10^(-6), tiny = 10^(-10), deriv = 0.3, ...)
x , q
|
Vector of quantiles. |
p |
Vector of probabilities. |
n |
Number of observations to be generated. |
vgC |
The location parameter |
sigma |
The spread parameter |
theta |
The asymmetry parameter |
nu |
The shape parameter |
param |
Specifying the parameters as a vector which takes the form
|
log , log.p
|
Logical; if TRUE, probabilities p are given as log(p); not yet implemented. |
lower.tail |
If TRUE (default), probabilities are |
small |
Size of a small difference between the distribution function and zero or one. See Details. |
tiny |
Size of a tiny difference between the distribution function and zero or one. See Details. |
deriv |
Value between 0 and 1. Determines the point where the derivative becomes substantial, compared to its maximum value. See Details. |
accuracy |
Uses accuracy calculated by~ |
subdivisions |
The maximum number of subdivisions used to integrate the density returning the distribution function. |
nInterpol |
The number of points used in |
tolerance |
Size of a machine difference between two values. See Details. |
... |
Passes arguments to |
Users may either specify the values of the parameters individually or
as a vector. If both forms are specifed but with different values,
then the values specified by vector param
will always overwrite
the other ones.
The variance gamma distribution has density
where is the modified Bessel function of the
third kind of order
, and
Special cases:
1. If and
, then the density
function is approximate to
2. If and
,
then the density function is taken the value Inf.
Use vgChangePars
to convert from the
,
or
parameterisations given in Kotz et al. (2001)
to the
parameterisation used above.
pvg
breaks the real line into eight regions in order to
determine the integral of dvg
. The break points determining the
regions are found by vgBreaks
, based on the values of
small
, tiny
, and deriv
. In the extreme tails of
the distribution where the probability is tiny
according to
vgCalcRange
, the probability is taken to be zero. In the inner
part of the distribution, the range is divided in 6 regions, 3 above
the mode, and 3 below. On each side of the mode, there are two break
points giving the required three regions. The outer break point is
where the probability in the tail has the value given by the variable
small
. The inner break point is where the derivative of the
density function is deriv
times the maximum value of the
derivative on that side of the mode. In each of the 6 inner regions
the numerical integration routine
safeIntegrate
(which is a wrapper for
integrate
) is used to integrate the density dvg
.
qvg
uses the breakup of the real line into the same 8
regions as pvg
. For quantiles which fall in the 2 extreme
regions, the quantile is returned as -Inf
or Inf
as
appropriate. In the 6 inner regions splinefun
is used to fit
values of the distribution function generated by pvg
. The
quantiles are then found using the uniroot
function.
pvg
and qvg
may generally be expected to be
accurate to 5 decimal places.
The variance gamma distribution is discussed in Kotz et al
(2001). It can be seen to be the weighted difference of two
i.i.d. gamma variables shifted by the value of
.
rvg
uses this representation to generate
oberservations from the variance gamma distribution.
dvg
gives the density function, pvg
gives the distribution
function, qvg
gives the quantile function and rvg
generates random variates. An estimate of the accuracy of the
approximation to the distribution function may be found by setting
accuracy=TRUE
in the call to pvg
which then returns
a list with components value
and error
.
ddvg
gives the derivative of dvg
.
vgBreaks
returns a list with components:
xTiny |
Value such that probability to the left is less than
|
xSmall |
Value such that probability to the left is less than
|
lowBreak |
Point to the left of the mode such that the
derivative of the density is |
highBreak |
Point to the right of the mode such that the
derivative of the density is |
xLarge |
Value such that probability to the right is less than
|
xHuge |
Value such that probability to the right is less than
|
modeDist |
The mode of the given variance gamma distribution. |
David Scott [email protected], Christine Yang Dong [email protected]
Seneta, E. (2004). Fitting the variance-gamma model to financial data. J. Appl. Prob., 41A:177–187. Kotz, S, Kozubowski, T. J., and Podgórski, K. (2001). The Laplace Distribution and Generalizations. Birkhauser, Boston, 349 p.
## Use the following rules for vgCalcRange when plotting graphs for dvg, ## ddvg and pvg. ## if nu < 2, use: ## maxDens <- dvg(vgMode(param = c(vgC, sigma, theta, nu)), ## param = c(vgC, sigma, theta, nu), log = FALSE) ## vgRange <- vgCalcRange(param = c(vgC, sigma, theta, nu), ## tol = 10^(-2)*maxDens, density = TRUE) ## if nu >= 2 and theta < 0, use: ## vgRange <- c(vgC-2,vgC+6) ## if nu >= 2 and theta > 0, use: ## vgRange <- c(vgC-6,vgC+2) ## if nu >= 2 and theta = 0, use: ## vgRange <- c(vgC-4,vgC+4) # Example 1 (nu < 2) ## For dvg and pvg param <- c(0,0.5,0,0.5) maxDens <- dvg(vgMode(param = param), param = param, log = FALSE) ## Or to specify parameter values individually, use: maxDens <- dvg(vgMode(0,0.5,0,0.5), 0,0.5,0,0.5, log = FALSE) vgRange <- vgCalcRange(param = param, tol = 10^(-2)*maxDens, density = TRUE) par(mfrow = c(1,2)) curve(dvg(x, param = param), from = vgRange[1], to = vgRange[2], n = 1000) title("Density of the Variance Gamma Distribution") curve(pvg(x, param = param), from = vgRange[1], to = vgRange[2], n = 1000) title("Distribution Function of the Variance Gamma Distribution") ## For rvg require(DistributionUtils) dataVector <- rvg(500, param = param) curve(dvg(x, param = param), range(dataVector)[1], range(dataVector)[2], n = 500) hist(dataVector, freq = FALSE, add = TRUE) title("Density and Histogram of the Variance Gamma Distribution") logHist(dataVector, main = "Log-Density and Log-Histogram of the Generalized Hyperbolic Distribution") curve(log(dvg(x, param = param)), add = TRUE, range(dataVector)[1], range(dataVector)[2], n = 500) ## For dvg and ddvg par(mfrow = c(2,1)) curve(dvg(x, param = param), from = vgRange[1], to = vgRange[2], n = 1000) title("Density of the Variance Gamma Distribution") curve(ddvg(x, param = param), from = vgRange[1], to = vgRange[2], n = 1000) title("Derivative of the Density of the Variance Gamma Distribution") # Example 2 (nu > 2 and theta = 0) ## For dvg and pvg param <- c(0,0.5,0,3) vgRange <- c(0-4,0+4) par(mfrow = c(1,2)) curve(dvg(x, param = param), from = vgRange[1], to = vgRange[2], n = 1000) title("Density of the Variance Gamma Distribution") curve(pvg(x, param = param), from = vgRange[1], to = vgRange[2], n = 1000) title("Distribution Function of the Variance Gamma Distribution") ## For rvg X2 <- rvg(500, param = param) curve(dvg(x, param = param), min(X2), max(X2), n = 500) hist(X2, freq = FALSE, add =TRUE) title("Density and Histogram of the Variance Gamma Distribution") DistributionUtils::logHist(X2, main = "Log-Density and Log-Histogramof the Generalized Hyperbolic Distribution") curve(log(dvg(x, param = param)), add = TRUE, min(X2), max(X2), n = 500) ## For dvg and ddvg par(mfrow = c(2,1)) curve(dvg(x, param = param), from = vgRange[1], to = vgRange[2], n = 1000) title("Density of the Variance Gamma Distribution") curve(ddvg(x, param = param), from = vgRange[1], to = vgRange[2], n = 1000) title("Derivative of the Density of the Variance Gamma Distribution") ## Use the following rules for vgCalcRange when plotting graphs for vgBreaks. ## if (nu < 2), use: ## maxDens <- dvg(vgMode(param =c(vgC, sigma, theta, nu)), ## param = c(vgC, sigma, theta, nu), log = FALSE) ## vgRange <- vgCalcRange(param = param, tol = 10^(-6)*maxDens, density = TRUE) ## if (nu >= 2) and theta < 0, use: ## vgRange <- c(vgC-2,vgC+6) ## if (nu >= 2) and theta > 0, use: ## vgRange <- c(vgC-6,vgC+2) ## if (nu >= 2) and theta = 0, use: ## vgRange <- c(vgC-4,vgC+4) ## Example 3 (nu < 2) ## For vgBreaks param <- c(0,0.5,0,0.5) maxDens <- dvg(vgMode(param = param), param = param, log = FALSE) vgRange <- vgCalcRange(param = param, tol = 10^(-6)*maxDens, density = TRUE) curve(dvg(x, param = param), from = vgRange[1], to = vgRange[2], n = 1000) bks <- vgBreaks(param = param) abline(v = bks) title("Density of the Variance Gamma Distribution with breaks") ## Example 4 (nu > 2 and theta = 0) ## For vgBreaks param <- c(0,0.5,0,3) vgRange <- c(0-4,0+4) curve(dvg(x, param = param), from = vgRange[1], to = vgRange[2], n = 1000) bks <- vgBreaks(param = param) abline(v = bks) title("Density of the Variance Gamma Distribution with breaks")
## Use the following rules for vgCalcRange when plotting graphs for dvg, ## ddvg and pvg. ## if nu < 2, use: ## maxDens <- dvg(vgMode(param = c(vgC, sigma, theta, nu)), ## param = c(vgC, sigma, theta, nu), log = FALSE) ## vgRange <- vgCalcRange(param = c(vgC, sigma, theta, nu), ## tol = 10^(-2)*maxDens, density = TRUE) ## if nu >= 2 and theta < 0, use: ## vgRange <- c(vgC-2,vgC+6) ## if nu >= 2 and theta > 0, use: ## vgRange <- c(vgC-6,vgC+2) ## if nu >= 2 and theta = 0, use: ## vgRange <- c(vgC-4,vgC+4) # Example 1 (nu < 2) ## For dvg and pvg param <- c(0,0.5,0,0.5) maxDens <- dvg(vgMode(param = param), param = param, log = FALSE) ## Or to specify parameter values individually, use: maxDens <- dvg(vgMode(0,0.5,0,0.5), 0,0.5,0,0.5, log = FALSE) vgRange <- vgCalcRange(param = param, tol = 10^(-2)*maxDens, density = TRUE) par(mfrow = c(1,2)) curve(dvg(x, param = param), from = vgRange[1], to = vgRange[2], n = 1000) title("Density of the Variance Gamma Distribution") curve(pvg(x, param = param), from = vgRange[1], to = vgRange[2], n = 1000) title("Distribution Function of the Variance Gamma Distribution") ## For rvg require(DistributionUtils) dataVector <- rvg(500, param = param) curve(dvg(x, param = param), range(dataVector)[1], range(dataVector)[2], n = 500) hist(dataVector, freq = FALSE, add = TRUE) title("Density and Histogram of the Variance Gamma Distribution") logHist(dataVector, main = "Log-Density and Log-Histogram of the Generalized Hyperbolic Distribution") curve(log(dvg(x, param = param)), add = TRUE, range(dataVector)[1], range(dataVector)[2], n = 500) ## For dvg and ddvg par(mfrow = c(2,1)) curve(dvg(x, param = param), from = vgRange[1], to = vgRange[2], n = 1000) title("Density of the Variance Gamma Distribution") curve(ddvg(x, param = param), from = vgRange[1], to = vgRange[2], n = 1000) title("Derivative of the Density of the Variance Gamma Distribution") # Example 2 (nu > 2 and theta = 0) ## For dvg and pvg param <- c(0,0.5,0,3) vgRange <- c(0-4,0+4) par(mfrow = c(1,2)) curve(dvg(x, param = param), from = vgRange[1], to = vgRange[2], n = 1000) title("Density of the Variance Gamma Distribution") curve(pvg(x, param = param), from = vgRange[1], to = vgRange[2], n = 1000) title("Distribution Function of the Variance Gamma Distribution") ## For rvg X2 <- rvg(500, param = param) curve(dvg(x, param = param), min(X2), max(X2), n = 500) hist(X2, freq = FALSE, add =TRUE) title("Density and Histogram of the Variance Gamma Distribution") DistributionUtils::logHist(X2, main = "Log-Density and Log-Histogramof the Generalized Hyperbolic Distribution") curve(log(dvg(x, param = param)), add = TRUE, min(X2), max(X2), n = 500) ## For dvg and ddvg par(mfrow = c(2,1)) curve(dvg(x, param = param), from = vgRange[1], to = vgRange[2], n = 1000) title("Density of the Variance Gamma Distribution") curve(ddvg(x, param = param), from = vgRange[1], to = vgRange[2], n = 1000) title("Derivative of the Density of the Variance Gamma Distribution") ## Use the following rules for vgCalcRange when plotting graphs for vgBreaks. ## if (nu < 2), use: ## maxDens <- dvg(vgMode(param =c(vgC, sigma, theta, nu)), ## param = c(vgC, sigma, theta, nu), log = FALSE) ## vgRange <- vgCalcRange(param = param, tol = 10^(-6)*maxDens, density = TRUE) ## if (nu >= 2) and theta < 0, use: ## vgRange <- c(vgC-2,vgC+6) ## if (nu >= 2) and theta > 0, use: ## vgRange <- c(vgC-6,vgC+2) ## if (nu >= 2) and theta = 0, use: ## vgRange <- c(vgC-4,vgC+4) ## Example 3 (nu < 2) ## For vgBreaks param <- c(0,0.5,0,0.5) maxDens <- dvg(vgMode(param = param), param = param, log = FALSE) vgRange <- vgCalcRange(param = param, tol = 10^(-6)*maxDens, density = TRUE) curve(dvg(x, param = param), from = vgRange[1], to = vgRange[2], n = 1000) bks <- vgBreaks(param = param) abline(v = bks) title("Density of the Variance Gamma Distribution with breaks") ## Example 4 (nu > 2 and theta = 0) ## For vgBreaks param <- c(0,0.5,0,3) vgRange <- c(0-4,0+4) curve(dvg(x, param = param), from = vgRange[1], to = vgRange[2], n = 1000) bks <- vgBreaks(param = param) abline(v = bks) title("Density of the Variance Gamma Distribution with breaks")
qqvg
produces a variance gamma Q-Q plot of the values in
y
.
ppvg
produces a variance gamma P-P (percent-percent) or
probability plot of the values in y
.
Graphical parameters may be given as arguments to qqvg
and
ppvg
.
qqvg(y, vgC = NULL, sigma = NULL, theta = NULL, nu = NULL, param = c(vgC, sigma, theta, nu), main = "Variance Gamma Q-Q Plot", xlab = "Theoretical Quantiles", ylab = "Sample Quantiles", plot.it = TRUE, line = TRUE, ...) ppvg(y, vgC = NULL, sigma = NULL, theta = NULL, nu = NULL, param = c(vgC, sigma, theta, nu), main = "Variance Gamma P-P Plot", xlab = "Uniform Quantiles", ylab = "Probability-integral-transformed Data", plot.it = TRUE, line = TRUE, ...)
qqvg(y, vgC = NULL, sigma = NULL, theta = NULL, nu = NULL, param = c(vgC, sigma, theta, nu), main = "Variance Gamma Q-Q Plot", xlab = "Theoretical Quantiles", ylab = "Sample Quantiles", plot.it = TRUE, line = TRUE, ...) ppvg(y, vgC = NULL, sigma = NULL, theta = NULL, nu = NULL, param = c(vgC, sigma, theta, nu), main = "Variance Gamma P-P Plot", xlab = "Uniform Quantiles", ylab = "Probability-integral-transformed Data", plot.it = TRUE, line = TRUE, ...)
y |
The data sample. |
vgC |
The location parameter |
sigma |
The spread parameter |
theta |
The asymmetry parameter |
nu |
The shape parameter |
param |
An optional option, specifying the parameters as a vector
which takes the form |
main |
Plot title. |
xlab , ylab
|
Plot labels. |
plot.it |
Logical. Should the result be plotted? |
line |
Add line through origin with unit slope. |
... |
Further graphical parameters. |
Users may specify the parameter values of the data sample y
using
argument param
. If param
is not specified by users, then
the values are estimated from y
by vgFit
. For more details of
fiting a variance gamma distribution to data, see vgFit
.
For qqvg
and ppvg
, a list with components:
x |
The x coordinates of the points that are to be plotted. |
y |
The y coordinates of the points that are to be plotted. |
David Scott [email protected], Christine Yang Dong [email protected]
Wilk, M. B. and Gnanadesikan, R. (1968) Probability plotting methods for the analysis of data. Biometrika. 55, 1–17.
## Example 1: the parameter values are known par(mfrow = c(1,2)) y <- rvg(200, param = c(2,2,1,2)) qqvg(y, param = c(2,2,1,2),line = FALSE) abline(0, 1, col = 2) ppvg(y, param = c(2,2,1,2)) ## Example 2: the parameter values are unknown par(mfrow = c(1,2)) y <- rvg(200, param = c(2,2,1,2)) qqvg(y, line = FALSE) abline(0, 1, col = 2) ppvg(y)
## Example 1: the parameter values are known par(mfrow = c(1,2)) y <- rvg(200, param = c(2,2,1,2)) qqvg(y, param = c(2,2,1,2),line = FALSE) abline(0, 1, col = 2) ppvg(y, param = c(2,2,1,2)) ## Example 2: the parameter values are unknown par(mfrow = c(1,2)) y <- rvg(200, param = c(2,2,1,2)) qqvg(y, line = FALSE) abline(0, 1, col = 2) ppvg(y)
Given the parameter vector param
or the idividual parameter values
of a variance gamma
distribution, this function determines the range outside of which the density
function is negligible, to a specified tolerance. The parameterization used
is the
one (see
dvg
). To use another parameterization, use
vgChangePars
.
vgCalcRange(vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC, sigma, theta, nu), tol = 10^(-5), density = TRUE, ...)
vgCalcRange(vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC, sigma, theta, nu), tol = 10^(-5), density = TRUE, ...)
vgC |
The location parameter |
sigma |
The spread parameter |
theta |
The asymmetry parameter |
nu |
The shape parameter |
param |
Specifying the parameters as a vector which takes the form
|
tol |
Tolerance. |
density |
Logical. If |
... |
Extra arguments for calls to |
Users may either specify the values of the parameters individually or as a
vector. If both forms are specifed but with different values, then the
values specified by vector param
will always overwrite the other ones.
The particular variance gamma distribution being considered is
specified by the value of the parameter param
.
If density = TRUE
, the function gives a range, outside of which
the density is less than the given tolerance. Useful for plotting the
density. Also used in determining break points for the separate
sections over which numerical integration is used to determine the
distribution function. The points are found by using
uniroot
on the density function.
If density = FALSE
, the function returns the message:
"Distribution function bounds not yet implemented
".
A two-component vector giving the lower and upper ends of the range.
David Scott [email protected], Christine Yang Dong [email protected]
Seneta, E. (2004). Fitting the variance-gamma model to financial data. J. Appl. Prob., 41A:177–187. Kotz, S, Kozubowski, T. J., and Podgórski, K. (2001). The Laplace Distribution and Generalizations. Birkhauser, Boston, 349 p.
## Use the following rules for vgCalcRange when plotting graphs for dvg, ## ddvg and pvg. ## if nu < 2, use: ## maxDens <- dvg(vgMode(param = c(vgC, sigma, theta, nu)), ## param = c(vgC, sigma, theta, nu), log = FALSE) ## vgRange <- vgCalcRange(param = c(vgC, sigma, theta, nu), ## tol = 10^(-2)*maxDens, density = TRUE) ## if nu >= 2 and theta < 0, use: ## vgRange <- c(vgC-2,vgC+6) ## if nu >= 2 and theta > 0, use: ## vgRange <- c(vgC-6,vgC+2) ## if nu >= 2 and theta = 0, use: ## vgRange <- c(vgC-4,vgC+4) param <- c(0,0.5,0,0.5) maxDens <- dvg(vgMode(param = param), param = param) vgRange <- vgCalcRange(param = param, tol = 10^(-2)*maxDens) vgRange curve(dvg(x, param = param), vgRange[1], vgRange[2]) curve(dvg(x, param = param), vgRange[1], vgRange[2]) param <- c(2,2,0,3) vgRange <- c(2-4,2+4) vgRange curve(dvg(x, param = param), vgRange[1], vgRange[2]) ## Not run: vgCalcRange(param = param, tol = 10^(-3), density = FALSE)
## Use the following rules for vgCalcRange when plotting graphs for dvg, ## ddvg and pvg. ## if nu < 2, use: ## maxDens <- dvg(vgMode(param = c(vgC, sigma, theta, nu)), ## param = c(vgC, sigma, theta, nu), log = FALSE) ## vgRange <- vgCalcRange(param = c(vgC, sigma, theta, nu), ## tol = 10^(-2)*maxDens, density = TRUE) ## if nu >= 2 and theta < 0, use: ## vgRange <- c(vgC-2,vgC+6) ## if nu >= 2 and theta > 0, use: ## vgRange <- c(vgC-6,vgC+2) ## if nu >= 2 and theta = 0, use: ## vgRange <- c(vgC-4,vgC+4) param <- c(0,0.5,0,0.5) maxDens <- dvg(vgMode(param = param), param = param) vgRange <- vgCalcRange(param = param, tol = 10^(-2)*maxDens) vgRange curve(dvg(x, param = param), vgRange[1], vgRange[2]) curve(dvg(x, param = param), vgRange[1], vgRange[2]) param <- c(2,2,0,3) vgRange <- c(2-4,2+4) vgRange curve(dvg(x, param = param), vgRange[1], vgRange[2]) ## Not run: vgCalcRange(param = param, tol = 10^(-3), density = FALSE)
This function interchanges between the following 4 parameterizations of the variance gamma distribution:
1.
2.
3.
4.
The first set of parameterizations is given in Seneta (2004). The second and
third ones are the parameterizations given in Kotz . (2001). The
last set takes the form of the generalized hyperbolic distribution
parameterization.
is not included since the
variance gamma distribution is a limiting case of generalized
hyperbolic distribution with
always equal to 0.
vgChangePars(from, to, param, noNames = FALSE)
vgChangePars(from, to, param, noNames = FALSE)
from |
The set of parameters to change from. |
to |
The set of parameters to change to. |
param |
"from" parameter vector consisting of 4 numerical elements. |
noNames |
Logical. When |
In the 3 parameterizations, the following must be positive:
1.
2.
3.
4.
In addition in the 4th parameterization, the absolute value of
must be less than
.
A numerical vector of length 4 representing param
in the
to
parameterization.
David Scott [email protected], Christine Yang Dong [email protected]
Seneta, E. (2004). Fitting the variance-gamma model to financial data. J. Appl. Prob., 41A:177–187. Kotz, S, Kozubowski, T. J., and Podgórski, K. (2001). The Laplace Distribution and Generalizations. Birkhauser, Boston, 349 p.
param1 <- c(2,2,1,3) # Parameterization 1 param2 <- vgChangePars(1, 2, param1) # Convert to parameterization 2 param2 # Parameterization 2 vgChangePars(2, 1, as.numeric(param2)) # Convert back to parameterization 1 param3 <- c(1,2,0,0.5) # Parameterization 3 param1 <- vgChangePars(3, 1, param3) # Convert to parameterization 1 param1 # Parameterization 1 vgChangePars(1, 3, as.numeric(param1)) # Convert back to parameterization 3
param1 <- c(2,2,1,3) # Parameterization 1 param2 <- vgChangePars(1, 2, param1) # Convert to parameterization 2 param2 # Parameterization 2 vgChangePars(2, 1, as.numeric(param2)) # Convert back to parameterization 1 param3 <- c(1,2,0,0.5) # Parameterization 3 param1 <- vgChangePars(3, 1, param3) # Convert to parameterization 1 param1 # Parameterization 1 vgChangePars(1, 3, as.numeric(param1)) # Convert back to parameterization 3
Given a putative set of parameters for the variance gamma distribution, the functions checks if the parameters are in the correct range, and if the set has the correct length of 4.
vgCheckPars(param, ...)
vgCheckPars(param, ...)
param |
Numeric. Putative parameter values for a Variance Gamma distribution. |
... |
Further arguments for calls to |
The vector param
takes the form c(c, sigma, theta, nu)
.
If either sigma
or nu
is negative, then an error message
is returned.
If the vector param
has a length not equal to 4, then an error
message is returned.
A list with components:
case |
Whichever of |
errMessage |
An appropriate error message if an error was found,
the empty string |
David Scott [email protected], Christine Yang Dong [email protected]
vgCheckPars(c(0,1,0,1)) # normal vgCheckPars(c(0,0,0,1)) # error vgCheckPars(c(0,1,0,-2)) # error vgCheckPars(c(0,1,0)) # error
vgCheckPars(c(0,1,0,1)) # normal vgCheckPars(c(0,0,0,1)) # error vgCheckPars(c(0,1,0,-2)) # error vgCheckPars(c(0,1,0)) # error
Fits a variance gamma distribution to data. Displays the histogram, log-histogram (both with fitted densities), Q-Q plot and P-P plot for the fit which has the maximum likelihood.
vgFit(x, freq = NULL, breaks = NULL, paramStart = NULL, startMethod = "Nelder-Mead", startValues = "SL", method = "Nelder-Mead", hessian = FALSE, plots = FALSE, printOut = FALSE, controlBFGS = list(maxit = 200), controlNM = list(maxit = 1000), maxitNLM = 1500, ...) ## S3 method for class 'vgFit' print(x, digits = max(3, getOption("digits") - 3), ...) ## S3 method for class 'vgFit' plot(x, which = 1:4, plotTitles = paste(c("Histogram of ","Log-Histogram of ", "Q-Q Plot of ","P-P Plot of "), x$obsName, sep = ""), ask = prod(par("mfcol")) < length(which) && dev.interactive(), ...)
vgFit(x, freq = NULL, breaks = NULL, paramStart = NULL, startMethod = "Nelder-Mead", startValues = "SL", method = "Nelder-Mead", hessian = FALSE, plots = FALSE, printOut = FALSE, controlBFGS = list(maxit = 200), controlNM = list(maxit = 1000), maxitNLM = 1500, ...) ## S3 method for class 'vgFit' print(x, digits = max(3, getOption("digits") - 3), ...) ## S3 method for class 'vgFit' plot(x, which = 1:4, plotTitles = paste(c("Histogram of ","Log-Histogram of ", "Q-Q Plot of ","P-P Plot of "), x$obsName, sep = ""), ask = prod(par("mfcol")) < length(which) && dev.interactive(), ...)
x |
Data vector for |
freq |
A vector of weights with length equal to |
breaks |
Breaks for histogram, defaults to those generated by
|
paramStart |
A user specified starting parameter vector param taking
the form |
startMethod |
Method used by |
startValues |
Code giving the method of determining starting values for finding the maximum likelihood estimate of param, default method is "SL". See Details. |
method |
Different optimisation methods to consider, default is "Nelder-Mead". See Details. |
hessian |
Logical. If |
plots |
Logical. If |
printOut |
Logical. If |
controlBFGS |
A list of control parameters for |
controlNM |
A list of control parameters for |
maxitNLM |
A positive integer specifying the maximum number of
iterations when using the |
digits |
Desired number of digits when the object is printed. |
which |
If a subset of the plots is required, specify a subset of
the numbers |
plotTitles |
Titles to appear above the plots. |
ask |
Logical. If |
... |
Passes arguments to |
startMethod
can be either "BFGS"
or
"Nelder-Mead"
.
startValues
can be one of the following:
"US"
User-supplied.
"SL"
Based on a fitted skew-Laplace distribution.
"MoM"
Method of moments.
For the details concerning the use of paramStart
,
startMethod
, and startValues
, see
vgFitStart
.
The three optimisation methods currently available are:
"BFGS"
Uses the quasi-Newton method "BFGS"
as
documented in optim
.
"Nelder-Mead"
Uses an implementation of the Nelder and
Mead method as documented in optim
.
"nlm"
Uses the nlm
function in R.
For details of how to pass control information for optimisation using
optim
and nlm
, see optim
and
nlm.
When method = "Nelder-Mead"
is used, very rarely, it would return an
error message of "error in optim(paramStart,...)", use method = "BFGS"
or method = "nlm"
instead in that case.
When method = "nlm"
is used, warnings may be produced. These do
not appear to be a problem.
A list with components:
param |
A vector giving the maximum likelihood estimate of
param, as |
maxLik |
The value of the maximised log-likelihood. |
hessian |
If |
method |
Optimisation method used. |
conv |
Convergence code. See the relevant documentation (either
|
iter |
Number of iterations of optimisation routine. |
obs |
The data used to fit the hyperbolic distribution. |
obsName |
A character string with the actual |
paramStart |
Starting value of param returned by call to
|
svName |
Descriptive name for the method finding start values. |
startValues |
Acronym for the method of finding start values. |
breaks |
The cell boundaries found by a call to
|
midpoints |
The cell midpoints found by a call to
|
empDens |
The estimated density found by a call to
|
David Scott [email protected], Christine Yang Dong [email protected]
Seneta, E. (2004). Fitting the variance-gamma model to financial data. J. Appl. Prob., 41A:177–187.
optim
, nlm
, par
,
hist
, logHist
,
qqvg
, ppvg
,
dskewlap
and
vgFitStart
.
param <- c(0,0.5,0,0.5) dataVector <- rvg(500, param = param) ## See how well vgFit works vgFit(dataVector) vgFit(dataVector, plots = TRUE) fit <- vgFit(dataVector) par(mfrow = c(1,2)) plot(fit, which = c(1,3)) ## Use nlm instead of default param <- c(0,0.5,0,0.5) dataVector <- rvg(500, param = param) vgFit(dataVector, method = "nlm", hessian = TRUE) ## Use BFGS instead of deault param <- c(0,0.5,0,0.5) dataVector <- rvg(500, param = param) vgFit(dataVector, method = "BFGS", hessian = TRUE)
param <- c(0,0.5,0,0.5) dataVector <- rvg(500, param = param) ## See how well vgFit works vgFit(dataVector) vgFit(dataVector, plots = TRUE) fit <- vgFit(dataVector) par(mfrow = c(1,2)) plot(fit, which = c(1,3)) ## Use nlm instead of default param <- c(0,0.5,0,0.5) dataVector <- rvg(500, param = param) vgFit(dataVector, method = "nlm", hessian = TRUE) ## Use BFGS instead of deault param <- c(0,0.5,0,0.5) dataVector <- rvg(500, param = param) vgFit(dataVector, method = "BFGS", hessian = TRUE)
Finds starting values for input to a maximum likelihood routine for fitting variance gamma distribution to data.
vgFitStart(x, breaks = NULL, startValues = "SL", paramStart = NULL, startMethodSL = "Nelder-Mead", startMethodMoM = "Nelder-Mead", ...) vgFitStartMoM(x, startMethodMoM = "Nelder-Mead", ...)
vgFitStart(x, breaks = NULL, startValues = "SL", paramStart = NULL, startMethodSL = "Nelder-Mead", startMethodMoM = "Nelder-Mead", ...) vgFitStartMoM(x, startMethodMoM = "Nelder-Mead", ...)
x |
Data vector. |
breaks |
Breaks for histogram. If missing, defaults to those
generated by
|
startValues |
Vector of the different starting values to consider. See Details. |
paramStart |
Starting values for param if
|
startMethodSL |
Method used by call to |
startMethodMoM |
Method used by call to |
... |
Passes arguments to |
Possible values of the argument startValues
are the following:
"US"
User-supplied.
"SL"
Based on a fitted skew-Laplace distribution.
"MoM"
Method of moments.
If startValues = "US"
then a value must be supplied for
paramStart
.
If startValues = "MoM"
, vgFitStartMoM
is
called. These starting values are based on Barndorff-Nielsen et
al (1985).
If startValues = "SL"
, or startValues = "MoM"
an initial
optimisation is needed to find the starting values. These
optimisations call optim
.
vgFitStart
returns a list with components:
vgStart |
A vector with elements |
xName |
A character string with the actual |
breaks |
The cell boundaries found by a call to
|
midpoints |
The cell midpoints found by a call to
|
empDens |
The estimated density found by a call to
|
vgFitStartMoM
returns only the method of moments estimates
as a vector with elements vgC
, lSigma
(log of sigma),
theta
and lNu
(log of nu).
David Scott [email protected], Christine Yang Dong [email protected]
Seneta, E. (2004). Fitting the variance-gamma model to financial data. J. Appl. Prob., 41A:177–187.
dvg
, dskewlap
,
vgFit
, hist
, and
optim
.
param <- c(0,0.5,0,0.5) dataVector <- rvg(500, param = param) vgFitStart(dataVector,startValues="SL") vgFitStartMoM(dataVector) vgFitStart(dataVector,startValues="MoM")
param <- c(0,0.5,0,0.5) dataVector <- rvg(500, param = param) vgFitStart(dataVector,startValues="SL") vgFitStartMoM(dataVector) vgFitStart(dataVector,startValues="MoM")
This function can be used to calculate raw moments, mu moments, central moments and moments about any other given location for the variance gamma (VG) distribution.
vgMom(order, vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu), momType = "raw", about = 0)
vgMom(order, vgC = 0, sigma = 1, theta = 0, nu = 1, param = c(vgC,sigma,theta,nu), momType = "raw", about = 0)
order |
Numeric. The order of the moment to be calculated. Not permitted to be a vector. Must be a positive whole number except for moments about zero. |
vgC |
The location parameter |
sigma |
The spread parameter |
theta |
The asymmetry parameter |
nu |
The shape parameter |
param |
Specifying the parameters as a vector which takes the form
|
momType |
Common types of moments to be calculated, default is "raw". See Details. |
about |
Numeric. The point around which the moment is to be calculated, default is 0. See Details. |
For the parameters of the variance gamma distribution, users may
either specify the values individually or as a vector. If both forms
are specified but with different values, then the values specified by
vector param
will always overwrite the other ones. In
addition, the parameters values are examined by calling the function
vgCheckPars
to see if they are valid for the VG distribution.
order
is also checked by calling the function
is.wholenumber
in DistributionUtils
package to see whether
a whole number is given.
momType
can be either "raw" (moments about zero), "mu"
(moments about vgC), or "central" (moments about mean). If one of
these moment types is specified, then there is no need to specify the
about
value. For moments about any other location, the
about
value must be specified. In the case that both
momType
and about
are specified and contradicting, the
function will always calculate the moments based on about
rather than momType
.
To calculate moments of the VG distribution, the function first
calculates mu moments by the formula defined below and then transforms mu
moments to central moments or raw moments or moments about any other
location as required by calling momChangeAbout
in
DistributionUtils
package.
To calculate mu moments of the variance gamma distribution, the function
first transforms the parameterization of
to the generalized hyperbolic
distribution's parameterization of
(see
vgChangePars
for details).
Then, the mu moments of the variance gamma distribution are given by
where and
and
is the recursive coefficient
(see
momRecursion
for details).
This formula is developed from the mu moments formula of the
generalized hyperbolic distribution given in Scott,
Würtz and Tran (2008). Note that the part in []
of this equation is actually equivalent to the formula of raw moments
of the gamma distribution. So the function calls gammaRawMom
in
GeneralizedHyperbolic
package when implementing the computations.
The moment specified. In the case of raw moments, Inf
is
returned if the moment is infinite.
David Scott [email protected], Christine Yang Dong [email protected]
Paolella, Marc S. (2007) Intermediate Probability: A Computational Approach, Chichester: Wiley Scott, D. J., Würtz, D. and Tran, T. T. (2008) Moments of the Generalized Hyperbolic Distribution. Preprint.
vgCheckPars
, vgChangePars
,
vgMean
,
vgVar
, vgSkew
, vgKurt
,
is.wholenumber
,
momRecursion
,
momChangeAbout
and
momIntegrated
.
### Raw moments of the VG distribution vgMom(3, param=c(2,1,2,1), momType = "raw") ### Mu moments of the VG distribution vgMom(2, param=c(2,1,2,1), momType = "mu") ### Central moments of the VG distribution vgMom(4, param=c(2,1,2,1), momType = "central") ### Moments about any locations vgMom(4, param=c(2,1,2,1), about = 1)
### Raw moments of the VG distribution vgMom(3, param=c(2,1,2,1), momType = "raw") ### Mu moments of the VG distribution vgMom(2, param=c(2,1,2,1), momType = "mu") ### Central moments of the VG distribution vgMom(4, param=c(2,1,2,1), momType = "central") ### Moments about any locations vgMom(4, param=c(2,1,2,1), about = 1)
These objects store different parameter sets of the Variance Gamma
distribution for testing or demonstrating purpose as
matrixes. Specifically, the parameter sets vgSmallShape
and
vgLargeShape
have constant (standard) location and spread
parameters of =0 and
=1; where asymmetry
and shape parameters vary from
=(-2, 0, 2) and
=(0.5, 1, 2) for
vgSmallShape
and
=(-4, -2, 0, 2, 4) and
=(0.25, 0.5, 1,
2, 4) for
vgLargeShape
.
The parameter sets vgSmallParam
and vgLargeParam
have varied
values of all 4 parameters. vgSmallParam
contains all of the parameter
combinations from =(-2, 0, 2),
=(0.5, 1, 2),
=(-2, 0, 2) and
=(0.5, 1, 2).
vgLargeParam
contains all of the parameter combinations from
=(-4, -2, 0, 2, 4),
=(0.25, 0.5, 1, 2, 4),
=(-4, -2, 0, 2, 4) and
=(0.25, 0.5, 1, 2, 4).
data(vgParam)
data(vgParam)
vgSmallShape
: a 9 by 4 matrix;
vgLargeShape
: a 25 by 4 matrix;
vgSmallParam
: a 81 by 4 matrix;
vgLargeParam
: a 625 by 4 matrix.
David Scott [email protected], Christine Yang Dong [email protected]
data(vgParam) ## Testing the accuracy of vgMean for (i in 1:nrow(vgSmallParam)) { param <- vgSmallParam[i,] x <- rvg(10000,param = param) sampleMean <- mean(x) funMean <- vgMean(param = param) difference <- abs(sampleMean - funMean) print(difference) }
data(vgParam) ## Testing the accuracy of vgMean for (i in 1:nrow(vgSmallParam)) { param <- vgSmallParam[i,] x <- rvg(10000,param = param) sampleMean <- mean(x) funMean <- vgMean(param = param) difference <- abs(sampleMean - funMean) print(difference) }