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VGAMextra-package Additions and extensions of the VGAM package.

Description

VGAMextra supplies additional functions and methods to the package VGAM, under three main
topics:

** Time series modelling. A novel class of VGLMs to model univariate time series, called vec-
tor generalized linear time series models (VGLTSMs). It is characterized by incorporating past
information in the VGLM/VGAM loglikelihood.

** 1–parameter distribution mean modelling. We return full circle by developing new link functions
for the mean of 1–parameter distributions. VGAMs, VGLMs and GAMLSSs are restricted to loca-
tion, scale and shape, however, the VGLM/VGAM framework has infrastructure to accommodate
new links as a function of the parameters.

** Quantile modelling of 1–parameter distributions. Similarly, we have implemented link functions
to model the quantiles of several 1–parameter distributions, for quantile regression.

Details

The inference infrastructure of VGAMextra relies on the VGLM/VGAM framework. Particularly,
estimation is carried out via IRLS using Fisher scoring, whilst additive models and reduced rank
regression are also accommodated by all VGAMextra family functions.

At present, this package allows the extent of VGLMs/VGAMs to operate popular time series models
as special cases, as well as cointegrated time series (bivariate case), and modelling choices for
volatility models incorporating explanatories in the variance equation. The central family functions
in this respect are ARXff, MAXff, ARMAX.GARCHff, and VGLM.INGARCHff.

Regarding modelling the mean/quantile-functions, VGAMextra affords links for several 1-parameter
distributions, e.g., expMlink, benini1Qlink, or inv.chisqMlink. Collectively, the quantile-links
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represent an alternative to quantile regression by directly modelling the quantile function for distri-
butions beyond the exponential family (See Example 3 below).

The VGLM/VGAM framework is very large and encompasses a wide range of multivariate response
types and models, e.g., it includes univariate and multivariate distributions, categorical data analysis,
and extreme values. See VGAM-package for a broad description and further information on VGAM.

Future work

* Implement VGLM time series family functions to handle error correction models (ECMs) for
cointegrated time series. Upgrade this framework beyond the bivariate case, e.g., the the Vector
ECM (VECMs).

* Upgrade VGLMs time series family functions to handle multivariate time series, e.g., the VAR
model (Coming shortly).

* Incorporate VGLM/VGAM-links to model the mean and quantile functions of distributions with
> 1 parameters.

* Develop the class of multiple reduced–rank VGLMs towards time series, to handle, e.g., vector
error correction models (VECMs), for multiple cointegrated time series.

Warning

VGAMextra is revised, altered, and/or upgraded on a regular basis. Hence, be aware that any
feature, e.g., function names, arguments, or methods, may be modified without prior notice. Check
the NEWS for the latest changes and additions across the different versions.

Author(s)

Victor Miranda, <victor.miranda@aut.ac.nz>.

Maintainer: Victor Miranda, <victor.miranda@aut.ac.nz>.

Contributor: Thomas Yee, <t.yee@auckland.ac.nz>.
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See Also
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~vmir178/.

Examples

##### EXAMPLE 1. An AR(1) model with ARCH(1) errors.
# Chan et.al. (2013) proposed a long and technical methodology to
# estimate the tail index of an AR(1) with ARCH(1) errors involving
# its estimation by QMLE. I fit this model straightforwardly by MLE
# using the family function ARXff() for time series, and constraining
# the effect of Y^2_{t - 1} to the conditional variance using
# constraint matrices.

# Generate some data
set.seed(1)
nn <- ceiling(runif(1, 150, 160))
my.rho <- rhobitlink(-1.0, inverse = TRUE) # -0.46212
my.mu <- 0.0
my.omega <- 1
my.b <- 0.5
tsdata <- data.frame(x2 = sort(runif(n = nn)))
tsdata <- transform(tsdata, index = 1:nn, TS1 = runif(nn))

for (ii in 2:nn)
tsdata$TS1[ii] <- my.mu + my.rho * tsdata$TS1[ii-1] +
sqrt(my.omega + my.b * (tsdata$TS1[ii-1])^2) * rnorm(1)

# Remove the burn-in data:
nnr <- ceiling(nn/5)
tsdata <- tsdata[-(1:nnr), ]
tsdata["index"] <- 1:(nn - nnr)

# The timeplot.
with(tsdata, plot(ts(TS1), lty = "solid", col = "blue", xlab ="Time", ylab = "Series"))
abline(h = mean(tsdata[, "TS1"]), lty = "dotted")

# The constraint matrices, to inhibit the effect of Y^2_{t - 1}
# over sigma^2 only.
const.mat <- list('(Intercept)' = diag(3), 'TS1l1sq' = cbind(c(0, 1, 0)))

# Set up the data using function WN.lags() from VGAMextra to generate
# our 'explanatory'
tsdata <- transform(tsdata, TS1l1sq = WN.lags(y = cbind(tsdata[, "TS1"])^2, lags = 1))

# Fitting the model
fit.Chan.etal <- vglm(TS1 ~ TS1l1sq, ARXff(order = 1, # AR order

zero = NULL, noChecks = FALSE,

https://www.stat.auckland.ac.nz/~vmir178/
https://www.stat.auckland.ac.nz/~vmir178/
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var.arg = TRUE, lvar = "identitylink"),
crit = "loglikelihood", trace = TRUE,
constraints = const.mat, data = tsdata) ## Constraints...

summary(fit.Chan.etal, lrt0 = TRUE, score0 = TRUE, wald0 = TRUE)
constraints(fit.Chan.etal)

###### EXAMPLE 2. VGLMs handling cointegrated (bivariate) time series.
# In this example, vglm() accommodates an error correction model
# of order (2, 2) to fit two (non-stationary) cointegrated time series.

# Simulating some data.
set.seed(2017081901)
nn <- 280
rho <- 0.75
s2u <- exp(log(1.5)) # Gaussian noise1
s2w <- exp(0) # Gaussian noise2
my.errors <- rbinorm(nn, mean1 = 0, mean2 = 0, var1 = s2u, var2 = s2w, cov12 = rho)
ut <- my.errors[, 1]
wt <- my.errors[, 2]
yt <- xt <- numeric(0)

xt[1] <- ut[1] # Initial value: error.u[0]
yt[1] <- wt[1] # Initial value: error.w[0]
beta <- c(0.0, 2.5, -0.32) # Coefficients true values.

for (ii in 2:nn) {
xt[ii] <- xt[ii - 1] + ut[ii]
yt[ii] <- beta[1] + beta[2] * xt[ii] + beta[3] * yt[ii - 1] + wt[ii]

}

# Regression of yt on xt, save residuals. Compute Order--1 differences.
errors.coint <- residuals(lm(yt ~ xt)) # Residuals from the static regression yt ~ xt
difx1 <- diff(ts(xt), lag = 1, differences = 1) # First difference for xt
dify1 <- diff(ts(yt), lag = 1, differences = 1) # First difference for yt

# Set up the dataset (coint.data), including Order-2 lagged differences.
coint.data <- data.frame(embed(difx1, 3), embed(dify1, 3))
colnames(coint.data) <- c("difx1", "difxLag1", "difxLag2",

"dify1", "difyLag1", "difyLag2")

# Remove unutilized lagged errors accordingly. Here, use from t = 3.
errors.cointLag1 <- errors.coint[-c(1:2, nn)]
coint.data <- transform(coint.data, errors.cointLag1 = errors.cointLag1)

# Plotting the data
plot(ts(yt[-c(1:3, NULL)]), lty = 4, type = "l", col = "red",

main = "", xlab = "Time", las = 1, ylim = c(-32, 20),
ylab = expression("Series"~x[t]~"and"~y[t]))

lines(ts(xt[-c(1:3, NULL)]), lty = 4, type = "l", col = "blue")
legend("bottomleft", c(expression("Series"~x[t]),

expression("Series"~y[t])),
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col = c("red", "blue"), lty = c(4, 4))

# Fitting an error correction model (2, 2), aka ECM(2, 2)
fit.coint <- vglm(cbind(dify1, difx1) ~ errors.cointLag1 + difxLag1 + difyLag1 +

difxLag2 + difyLag2,
binormal(zero = c("sd", "rho")), # 'sigma', 'rho' are intercept--only.
trace = FALSE, data = coint.data)

summary(fit.coint)
coef(fit.coint, matrix = TRUE)

##### EXAMPLE 3. Quantile Modelling (QM).
# Here, the quantile function of the Maxwell distribution is modelled
# for percentiles 25%, 50% and 75%. The resulting quantile-curves
# are plotted. The rate parameter is determined by an artificial covariate.

set.seed(123)
# An artificial covariate.
maxdata <- data.frame(x2 = sort(runif(n <- nn <- 120)))
# The 'rate' function.
mymu <- function(x) exp(2 - 6 * sin(2 * x - 0.2) / (x + 0.5)^2)
# Set up the data.
maxdata <- transform(maxdata, y = rmaxwell(n, rate = mymu(x2)))

# 25%, 50% and 75% quantiles are to be modelled.
mytau <- c(0.25, 0.50, 0.75)
mydof <- 4

### Using B-splines with 'mydof'-degrees of freedom on the predictors
fit.QM <- vglm(Q.reg(y, pvector = mytau) ~ bs(x2, df = mydof),

family = maxwell(link = maxwellQlink(p = mytau), zero = NULL),
data = maxdata, trace = TRUE)

summary(fit.QM, lscore0 = TRUE)
head(predictors(fit.QM)) # The 'fitted values'

## The 25%, 50%, and 75% quantile curves.
mylwd <- 1.5
with(maxdata, plot(x2, y, col = "orange",

main = "Example 1; Quantile Modelling",
ylab = "y", pch = "o", cex = 0.75))

with(maxdata, matlines(x2, predict(fit.QM)[, 1], col = "blue",
lty = "dotted", lwd = mylwd))

with(maxdata, matlines(x2, predict(fit.QM)[, 2], col = "chocolate",
lty = "dotted", lwd = mylwd))

with(maxdata, matlines(x2, predict(fit.QM)[, 3], col = "brown",
lty = "dotted", lwd = mylwd))

legend("topleft", c("percentile25", "percentile50", "percentile75"),
lty = rep("dotted", 3), lwd = rep(mylwd, 3))
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### Double check: The data (in percentage) below the 25%, 50%, and 75% curves
round(length(predict(fit.QM)[, 1][(maxdata$y

<= predict(fit.QM)[, 1] )]) /nn, 5) * 100 ## Should be 25% approx
round(length(predict(fit.QM)[, 2][(maxdata$y

<= predict(fit.QM)[, 2] )]) /nn, 5) * 100 ## Should be 50% approx
round(length(predict(fit.QM)[, 3][(maxdata$y

<= predict(fit.QM)[, 3] )]) /nn, 5) * 100 ## Should be 75% approx

ap.mx Air pollution Data, Mexico City.

Description

Daily air pollution levels in Mexico City, January 2004 – June 2005.

Usage

data(ap.mx)

Format

This data frame stores time series vectors with the following information:

time Time vector.

PM10 24–hr average concentration of PM10, in micrograms per milliliter.

O3 Daily maximum 8–hour moving average of ozone, in micrograms per milliliter.

temp Daily mean average of temperature, in celsius degrees.

HR Daily mean average (%) of relative humidity.

Details

These are readings of PM10, O3, temperature and humidity between 1 January 2004 and 30 June
2005 in Mexico City Metropolitan Area. Each observation is the 24–hr mean average (between
00:00 and 23:59 hrs), except for ozone, where the maximum over all the sliding 8–hour–windows,
between 00:00 and 23:59 hrs is reported, viz. the daily maximum 8–hour moving average.

Source

National Institute of Ecology. Gathers and disseminates the data generated by the central air quality
monitoring network in Mexico City. Website: https://www.gob.mx/inecc/
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Examples

data(ap.mx)
summary(ap.mx[, -1])
class(ap.mx[, "PM10"])

layout(matrix(c(1, 1, 2,3), 2, 2, byrow = TRUE))
plot.ts(ts(ap.mx$PM10), ylab = expression(PM[10]~"Series"),

col = "brown", xaxt = "n", las = 1)
xtick <- c(1, 92, 183, 275, 367, 457, 518)
xtext <- c("Jan/04", "April/04", "July/04", "Oct/04", "Jan/05",

"April/05", "June/05")
axis(side = 1, at = xtick, labels = FALSE)
text(x = xtick, par("usr")[3], labels = xtext,

pos = 1, xpd = TRUE, col = "black")
pacf(ap.mx$PM10, main = "", ylim= c(-0.5, 1), lag.max = 60, las = 1)
acf(ap.mx$PM10, main = "", ylim= c(-0.5, 1), lag.max = 60, las = 1)

ARIMAX.errors.ff VGLTSMs Family Functions: Generalized integrated regression with
order–(p, q) ARMA errors

Description

A VLTSMff for dynamic regression. Estimates regression models with order–(p, d, q) ARIMA
errors by maximum likelihood.

Usage

ARIMAX.errors.ff(order = c(1, 1, 1),
zero = "var", # optionally, "mean".
order.trend = 0,
include.int = TRUE,
diffCovs = TRUE,
xLag = 0,
include.currentX = TRUE,
lvar = "loglink",
lmean = "identitylink")

Arguments

order The usual (p, d, q) integer vector as in, e.g., ARIMAXff. By default, an order–
(p, q) ARMA model is fitted on the errors, whlist d is the degree of differencing
on the response.

zero What linear predictor is modelled as intercept–only? See zero and CommonVGAMffArguments
for further details.

order.trend Non–negative integer. Allows to incorporate a polynomial trend of order order.trend
in the forecast mean function.
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include.int Logical. Should an intercept (int) be included in the model for yt? Default is
TRUE. See below for details.

diffCovs Logical. If TRUE (default) the order–d difference of the covariates is internally
computed and then incorporated in the regression model. Else, only the current
values are included.

xLag Integer. If entered, the covariates, say xt are laggeg (up to order xLag) and then
embedded in the regression model. See below for further details.

include.currentX

Logical. If TRUE, the actual values, xt, are included in the regression model.
Else, this is ignored and only the lagged xt−1, . . . ,xt−xLag will be included.

lvar, lmean Link functions applied to conditional mean and the variance. Same as uninormal.

Details

The generalized linear regression model with ARIMA errors is another subclass of VGLTSMs (Mi-
randa and Yee, 2018).

For a univariate time series, say yt, and a p–dimensional vector of covariates xt covariates, the
model described by this VGLTSM family function is

yt = βTxt + ut,

ut = θ1ut−1 + · · ·+ θput−p + zt + ϕ1zt−1 + · · ·+ ϕ1zt−q.

The first entry in xt equals 1, allowing an intercept, for every $t$. Set include.int = FALSE to set
this to zero, dimissing the intercept.

Also, if diffCovs = TRUE, then the differences up to order d of the set xt are embedded in the model
for yt. If xLag> 0, the lagged values up to order xLag of the covariates are also included.

The random disturbances zt are by default handled as N(0, σ2
z). Then, denoting Φt as the history

of the process (xt+1, ut) up to time t, yields

E(yt|Φt−1) = βTxt + θ1ut−1 + · · ·+ θput−p + ϕ1zt−1 + · · ·+ ϕ1zt−q.

Denoting µt = E(yt|Φt−1), the default linear predictor for this VGLTSM family function is

η = (µt, log σ
2
z)

T .

Value

An object of class "vglmff" (see vglmff-class) to be used by VGLM/VGAM modelling func-
tions, e.g., vglm or vgam.

Note

If d = 0 in order, then ARIMAX.errors.ff will perform as ARIMAXff.

Author(s)

Victor Miranda
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See Also

ARIMAXff, CommonVGAMffArguments, uninormal, vglm.

Examples

### Estimate a regression model with ARMA(1, 1) errors.
## Covariates are included up to lag 1.
set.seed(20171123)
nn <- 250
x2 <- rnorm(nn) # One covariate
sigma2 <- exp(1.15); theta1 <- 0.5; phi1 <- 0.27 # True coefficients
beta0 <- 1.25; beta1 <- 0.25; beta2 <- 0.5

y <- numeric(nn)
u <- numeric(nn)
z <- numeric(nn)

u[1] <- rnorm(1)
z[1] <- rnorm(1, 0, sqrt(sigma2))

for(ii in 2:nn) {
z[ii] <- rnorm(1, 0, sqrt(sigma2))
u[ii] <- theta1 * u[ii - 1] + phi1 * z[ii - 1] + z[ii]
y[ii] <- beta0 + beta1 * x2[ii] + beta2 * x2[ii - 1] + u[ii]

}

# Remove warm-up values.
x2 <- x2[-c(1:100)]
y <- y[-c(1:100)]

plot(ts(y), lty = 2, col = "blue", type = "b")
abline(h = 0, lty = 2)

## Fit the model.
ARIMAX.reg.fit <- vglm(y ~ x2, ARIMAX.errors.ff(order = c(1, 0, 1), xLag = 1),

data = data.frame(y = y, x2 = x2), trace = TRUE)
coef(ARIMAX.reg.fit, matrix = TRUE)
summary(ARIMAX.reg.fit, HD = FALSE)

# Compare to arima()
# arima() can't handle lagged values of 'x2' by default, but these
# may entered at argument 'xreg'.
arima(y, order = c(1, 0, 1), xreg = cbind(x2, c(0, x2[-150])))
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ARIMAXff VGLTSMs Family functions: The Order–(p, d, q) Autoregressive Inte-
grated Moving Average Model (ARIMA(p, d, q)) with covariates

Description

Maximum likelihood estimation of the drift, standard deviation or variance of the random noise, and
coefficients of an autoregressive integrated moving average process of order-(p, d, q) with covariates
by MLE using Fisher scoring. No seasonal terms handled yet. No seasonal components handled
yet.

Usage

ARIMAXff(order = c(1, 1, 0),
zero = c("ARcoeff", "MAcoeff"),
diffCovs = TRUE,
xLag = 0,
include.current = FALSE,
type.EIM = c("exact", "approximate")[1],
var.arg = TRUE,
nodrift = FALSE,
noChecks = FALSE,
ldrift = "identitylink",
lsd = "loglink",
lvar = "loglink",
lARcoeff = "identitylink",
lMAcoeff = "identitylink",
idrift = NULL,
isd = NULL,
ivar = NULL,
iARcoeff = NULL,
iMAcoeff = NULL)

Arguments

order Integer vector with three components, (p, d, q): The AR order (p), the degree
of differencing (d), and the MA order (q).

zero Integer or character–strings vector. Name(s) or position(s) of the parameters/linear
predictors to be modeled as intercept-only. Details at zero.

diffCovs Logical. The default is diffCovs = TRUE, which means that the order–d dif-
ferences of the covariates (if entered) are internally computed and then incorpo-
rated in the conditional–mean model. Otherwise, only the current actual values
of the covariates are included.

xLag Integer, non–negative. If xLag > 0, the covariates at current time, xt, plus the
lagged covariates up to order 'xLag' are embedded into the design matrix (as
covariates too). Leave xLag = 0 and only the current value, xt, will be consid-
ered. See more details below.
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include.current

Logical. Same as ARIMAX.errors.ff.

type.EIM The type of expected information matrix (EIM) of the ARMA process to be
utilized in Fisher scoring. type.EIM = "exact" (default) enables the exact IM
(Porat, et.al. 1986), otherwise the approximate version is utilized.

var.arg Logical. If FALSE (default), then the standard deviation of the random noise is
estimated. Else, the variance estimate is returned.

nodrift Logical. nodrift = TRUE supresses estimation of the intercept (the drift in the
ARMA case), which is set to zero internally.

noChecks Logical. If FALSE (default), this family function internally checks stationarity
(AR case) and invertibility (MA case) of the the estimated model. A warning is
correspondingly displayed.

ldrift, lsd, lvar, lARcoeff, lMAcoeff
Link functions applied to the intercept, the random noise standard deviation (or
optionally, the variance), and the coefficients in the ARMA–type conditional–
mean model.

idrift, isd, ivar, iARcoeff, iMAcoeff
Optional initial values for the intercept (drift), noise SD (or variance), and ARMA
coeffcients (a vector of length p+ q). If failure to converge occurs then try dif-
ferent values and monitor convergence by using trace = TRUE in the vglm()
call.

Details

Let xt be a (probably time–varying) vector of suitable covariates. The ARIMAX model handled by
ARIMAXff is

∇dYt = µ⋆ + βT∇dxt + θ1∇dYt−1 + · · ·+ θp∇dYt−p + ϕ1εt−1 + · · ·+ ϕqεt−q + ε,

with ∇d(·) the operator differencing a series d times. If diffCovs = TRUE, this function differencing
the covariates d times too.

Similarly, ARMAXff manages

∇dYt = µ⋆ + βTxt + θ1Yt−1 + · · ·+ θpYt−p + ϕ1εt−1 + · · ·+ ϕqεt−q + ε,

where
εt|Φt−1

∼ N(0, σ2
εt|Φt−1

).

Note, σ2
ε|Φt−1

is conditional on Φt−1, the information of the joint process (Yt−1,xt), at time t, and
hence may be modelled in terms of xt, if required.

ARIMAXff() and ARMAXff() handle multiple responses, thus a matrix can be used as the response.
Note, no seasonal terms handled. This feature is to be incorporated shortly.

The default linear predictor is

η =
(
µ, log σ2

εt|Φt−1
, θ1, . . . , θp, ϕ1, . . . , ϕq

)T

.

Other links are also handled. See Links.
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Further choices for the random noise, besides Gaussian, will be implemented over time.

As with ARXff and MAXff, choices for the EIMs are "exact" and "approximate". Covariates may
be incorporated in the fit for any linear predictor above. Hence, ARIMAXff supports non–stationary
processes (σ2

εt|Φt−1
) may depend on Xt. Also, constraint matrices on the linear predictors may be

entered through cm.ARMA or using the argument constraints, from vglm.

Checks on stationarity and invertibility on the esitmated process are performed by default. Set
noChecks = TRUE to dismiss this step.

Value

An object of class "vglmff" (see vglmff-class) to be used by VGLM/VGAM modelling func-
tions, e.g., vglm or vgam.

Warning

zero can be a numeric or a character–strings vector specifying the position(s) or the name(s) of
the parameter(s) modeled as intercept–only. Numeric values can be set as usual (See CommonVGAMffArguments).
If names are entered, the parameter names in this family function are:

c("drift.mean", "noiseVar" || "noiseSD", "ARcoeff", "MAcoeff").

Manually modify this if required. For simplicity, the second choice is recommended.

Note

No seasonal components handled yet.

If no covariates, xt, are incorporated in the analysis, then ARIMAXff fits an ordinary ARIMA model.
Ditto with ARMAXff.

If nodrift = TRUE, then the ’drift’ is removed from the vector of parameters and is not estimated.

By default, an ARMA model of order–c(1, 0) with order–1 differences is fitted. When initial values
are entered (isd, iARcoeff, etc.), they are recycled according to the number of responses.

Also, the ARMA coefficients are intercept–only (note, zero = c("ARcoeff", "MAcoeff")) This
may altered via zero, or by constraint matrices (See constraints) using cm.ARMA.

Checks on stationarity and/or invertibility can be manually via checkTS.VGAMextra.

Author(s)

Victor Miranda and T. W. Yee

References

Miranda, V. and Yee, T.W. (2018) Vector Generalized Linear Time Series Models. In preparation.

Porat, B., and Friedlander, B. (1986) Computation of the Exact Information Matrix of Gaussian
Time Series with Stationary Random Components. IEEE Transactions on Acoustics, Speech and
Signal Processing. ASSp-34(1), 118–130.

See Also

ARXff, MAXff, checkTS.VGAMextra, cm.ARMA, CommonVGAMffArguments, constraints, vglm.
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Examples

set.seed(3)
nn <- 90
theta <- c(0.12, 0.17) # AR coefficients
phi <- c(-0.15, 0.20) # MA coefficients.
sdWNN <- exp(1.0) # SDs
mu <- c(1.25, 0.85) # Mean (not drift) of the process.
covX <- runif(nn + 1) # A single covariate.
mux3 <- mu[1] + covX
##
## Simulate ARMA processes. Here, the drift for 'tsd3' depends on covX.
##
tsdata <- data.frame(TS1 = mu[1] + arima.sim(model = list(ar = theta, ma = phi,

order = c(2, 1, 2)), n = nn, sd = sdWNN ),
TS2 = mu[2] + arima.sim(model = list(ar = theta, ma = phi,

order = c(2, 1, 2)), n = nn, sd = exp(2 + covX)),
TS3 = mux3 + arima.sim(model = list(ar = theta, ma = phi,

order = c(2, 1, 2)), n = nn, sd = exp(2 + covX) ),
x2 = covX)

### EXAMPLE 1. Fitting a simple ARIMA(2, 1, 2) using vglm().
# Note that no covariates involved.
fit.ARIMA1 <- vglm(TS1 ~ 1, ARIMAXff(order = c(2, 1, 2), var.arg = FALSE,

# OPTIONAL INITIAL VALUES
# idrift = c(1.5)*(1 - sum(theta)),
# ivar = exp(4), isd = exp(2),
# iARcoeff = c(0.20, -0.3, 0.1),
# iMAcoeff = c(0.25, 0.35, 0.1),
type.EIM = "exact"),

data = tsdata, trace = TRUE, crit = "log")
Coef(fit.ARIMA1)
summary(fit.ARIMA1)
vcov(fit.ARIMA1, untransform = TRUE)
#------------------------------------------------------------------------#
# Fitting same model using arima().
#------------------------------------------------------------------------#
# COMPARE to EXAMPLE1
( fitArima <- arima(tsdata$TS1, order = c(2, 1, 2)) )

### EXAMPLE 2. Here only the ARMA coefficients and drift are intercept-only.
# The random noise variance is not constant.
fit.ARIMA2 <- vglm(TS2 ~ x2, ARIMAXff(order = c(2, 1, 2), var.arg = TRUE,

lARcoeff = "rhobitlink", lMAcoeff = "identitylink",
type.EIM = c("exact", "approximate")[1],
# NOTE THE ZERO ARGUMENT.
zero = c("drift.mean", "ARcoeff", "MAcoeff")),

data = tsdata, trace = TRUE)

coef(fit.ARIMA2, matrix = TRUE)
summary(fit.ARIMA2)
constraints(fit.ARIMA2)
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### EXAMPLE 3. Here only ARMA coefficients are intercept-only.
# The random noise variance is not constant.
# Note that the "drift" and the "variance" are "generated" in
# terms of 'x2' above for TS3.

fit.ARIMA3 <- vglm(TS3 ~ x2, ARIMAXff(order = c(1, 1, 2), var.arg = TRUE,
lARcoeff = "identitylink", lMAcoeff = "identitylink",
type.EIM = c("exact", "approximate")[1], nodrift = FALSE,
zero = c( "ARcoeff", "MAcoeff")), # NOTE THE ZERO ARGUMENT.

data = tsdata, trace = TRUE)

coef(fit.ARIMA3, matrix = TRUE)
summary(fit.ARIMA3)
constraints(fit.ARIMA3)

ARMA.studentt.ff VGLTSMs Family Functions: Generalized autoregressive moving av-
erage model with Student-t errors

Description

For an ARMA model, estimates a 3–parameter Student-t distribution characterizing the errors plus
the ARMA coefficients by MLE usign Fisher scoring. Central Student–t handled currently.

Usage

ARMA.studentt.ff(order = c(1, 0),
zero = c("scale", "df"),
cov.Reg = FALSE,
llocation = "identitylink",
lscale = "loglink",
ldf = "logloglink",
ilocation = NULL,
iscale = NULL,
idf = NULL)

Arguments

order Two–entries vector, non–negative. The order $u$ and $v$ of the ARMA model.

zero Same as studentt3.

cov.Reg Logical. If covariates are entered, Should these be included in the ARMA model
as a Regressand? Default is FALSE, then only embedded in the linear predictors.

llocation, lscale, ldf, ilocation, iscale, idf
Same as studentt3.
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Details

The normality assumption for time series analysis is relaxed to handle heavy–tailed data, giving
place to the ARMA model with shift-scaled Student-t errors, another subclass of VGLTSMs.

For a univariate time series, say yt, the model described by this VGLTSM family function is

θ(B)yt = ϕ(B)εt,

where εt are distributed as a shift-scaled Student–twith ν degrees of freedom, i.e., εt ∼ t(νt, µt, σt).
This family functions estimates the location (µt), scale (σt) and degrees of freedom (νt) parameters,
plus the ARMA coefficients by MLE.

Currently only centered Student–t distributions are handled. Hence, the non–centrality parameter is
set to zero.

The linear/additive predictors are η = (µ, log σ, log log ν)T , where log σ and ν are intercept–only
by default.

Value

An object of class "vglmff" (see vglmff-class) to be used by VGLM/VGAM modelling func-
tions, e.g., vglm or vgam.

Note

If order = 0, then AR.studentt.ff fits a usual 3–parameter Student–t, as with studentt3.

If covariates are incorporated in the analysis, these are embedded in the location–parameter model.
Modify this through zero. See CommonVGAMffArguments for details on zero.

Author(s)

Victor Miranda

See Also

ARIMAXff, studentt, vglm.

Examples

### Estimate the parameters of the errors distribution for an
## AR(1) model. Sample size = 50

set.seed(20180218)
nn <- 250
y <- numeric(nn)
ncp <- 0 # Non--centrality parameter
nu <- 3.5 # Degrees of freedom.
theta <- 0.45 # AR coefficient
res <- numeric(250) # Vector of residuals.

y[1] <- rt(1, df = nu, ncp = ncp)
for (ii in 2:nn) {
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res[ii] <- rt(1, df = nu, ncp = ncp)
y[ii] <- theta * y[ii - 1] + res[ii]

}
# Remove warm up values.
y <- y[-c(1:200)]
res <- res[-c(1:200)]

### Fitting an ARMA(1, 0) with Student-t errors.
AR.stut.er.fit <- vglm(y ~ 1, ARMA.studentt.ff(order = c(1, 0)),

data = data.frame(y = y), trace = TRUE)

summary(AR.stut.er.fit)
Coef(AR.stut.er.fit)

plot(ts(y), col = "red", lty = 1, ylim = c(-6, 6), main = "Plot of series Y with Student-t errors")
lines(ts(fitted.values(AR.stut.er.fit)), col = "blue", lty = 2)
abline( h = 0, lty = 2)

ARXff VGLTSMs family functions: Order–p Autoregressive Model with co-
variates

Description

Maximum likelihood estimation of the order–p autoregressive model (AR(p)) with covariates. Esti-
mates the drift, standard deviation (or variance) of the random noise (not necessarily constant), and
coefficients of the conditional–mean model.

Usage

ARXff(order = 1,
zero = c(if (nodrift) NULL else "ARdrift", "ARcoeff"),
xLag = 0,
type.EIM = c("exact", "approximate")[1],
var.arg = TRUE,
nodrift = FALSE,
noChecks = FALSE,
ldrift = "identitylink",
lsd = "loglink",
lvar = "loglink",
lARcoeff = "identitylink",
idrift = NULL,
isd = NULL,
ivar = NULL,
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iARcoeff = NULL)

Arguments

order The order (i.e., ’p’) of the AR model, which is recycled if needed. See below
for further details. By default, an autoregressive model of order-1 is fitted.

zero Integer or character–strings vector. Name(s) or position(s) of the parameters/linear
predictors to be modeled as intercept-only. Details at zero.

xLag Same as ARIMAXff.
type.EIM, var.arg, nodrift, noChecks

Same as ARIMAXff.
ldrift, lsd, lvar, lARcoeff

Link functions applied to the drift, the standar deviation (or variance) of the
noise, and the AR coefficients. Same as ARIMAXff.
Further details on CommonVGAMffArguments.

idrift, isd, ivar, iARcoeff
Same as ARIMAXff.

Details

This family function describes an autoregressive model of order-p with covariates (ARX(p)). It is a
special case of the subclass VGLM–ARIMA (Miranda and Yee, 2018):

Yt|Φt−1 = µt + θ1Yt−1 + . . .+ θpYt−p + εt,

where xt a (possibly time–varying) covariate vector and µt = µ⋆ + βTxt is a (time–dependent)
scaled–mean, known as drift.

At this stage, conditional Gaussian white noise, εt|Φt−1 is handled, in the form

εt|Φt−1 ∼ N(0, σ2
εt|Φt−1

).

The distributional assumptions on the observations are then

Yt|Φt−1 ∼ N(µt|Φt−1
, σ2

εt|Φt−1
),

involving the conditional mean equation for the ARX(p) model:

µt|Φt−1
= µt + βT ∗ xtθ1Yt−1 + . . .+ θpYt−p.

Φt denotes the information of the joint process
(
Yt,x

T
t+1

)
, at time t.

The loglikelihood is computed by dARp, at each Fisher scoring iteration.

The linear predictor is

η =
(
µt, log σ

2
εt|Φt−1

, θ1, . . . , θp

)T

.

Note, the covariates may also intervene in the conditional variance model log σ2
εt|Φt−1

. Hence, this
family function does not restrict the noise to be strictly white noise (in the sense of constant vari-
ance).
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The unconditional mean, E(Yt) = µ, satisfies

µ→ µ⋆

1− (θ1 + . . .+ θp)

when the process is stationary, and no covariates are involved.

This family function currently handles multiple responses so that a matrix can be used as the re-
sponse. Also, for further details on VGLM/VGAM–link functions refer to Links.

Further choices for the random noise, besides Gaussian, will be implemented over time.

Value

An object of class "vglmff" (see vglmff-class). The object is used by VGLM/VGAM modelling
functions, such as vglm or vgam.

Note

zero can be either an integer vector or a vector of character strings specifying either the position(s)
or name(s) (partially or not) of the parameter(s) modeled as intercept-only. Numeric values can be
set as usual (See CommonVGAMffArguments). Character strings can be entered as per parameter
names in this family function, given by:

c("drift", "noiseVar" or "noiseSD", "ARcoeff").

Users can modify the zero argument according to their needs.

By default, µt and the coefficients θ1, . . . , θp are intercept–only. That is, log σ2
εt|Φt−1

is modelled
in terms of any explanatories entered in the formula.

Users, however, can modify this according to their needs via zero. For example, set the covariates
in the drift model, µt. In addition, specific constraints for parameters are handled through the
function cm.ARMA.

If var.arg = TRUE, this family function estimates σ2
εt|Φt−1

. Else, the σεt|Φt−1
estimate is returned.

For this family function the order is recycled. That is, order will be replicated up to the number
of responses given in the vglm call is matched.

Warning

Values of the estimates may not correspond to stationary ARs, leading to low accuracy in the MLE
estimates, e.g., values very close to 1.0. Stationarity is then examined, via checkTS.VGAMextra, if
noChecks = FALSE (default) and no constraint matrices are set (See constraints for further details
on this). If the estimated model very close to be non-stationary, then a warning will be outlined.
Set noChecks = TRUE to completely ignore this.

NOTE: Full details on these ’checks’ are shown within the summary() output.

Author(s)

Victor Miranda and T. W. Yee
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References

Madsen, H. (2008) Time Series Analysis. Florida, USA: Chapman & Hall(Sections 5.3 and 5.5).

Porat, B., and Friedlander, B. (1986) Computation of the Exact Information Matrix of Gaussian
Time Series with Stationary Random Components. IEEE Transactions on Acoustics, Speech and
Signal Processing. ASSp-34(1), 118–130.

See Also

ARIMAXff, ARMAXff, MAXff, checkTS.VGAMextra, CommonVGAMffArguments, Links, vglm,

Examples

set.seed(1)
nn <- 150
tsdata <- data.frame(x2 = runif(nn)) # A single covariate.
theta1 <- 0.45; theta2 <- 0.31; theta3 <- 0.10 # Coefficients
drift <- c(1.3, -1.1) # Two responses.
sdAR <- c(sqrt(4.5), sqrt(6.0)) # Two responses.

# Generate AR sequences of order 2 and 3, under Gaussian noise.
# Note, the drift for 'TS2' depends on x2 !
tsdata <- data.frame(tsdata, TS1 = arima.sim(nn,

model = list(ar = c(theta1, theta1^2)), rand.gen = rnorm,
mean = drift[1], sd = sdAR[1]),

TS2 = arima.sim(nn,
model = list(ar = c(theta1, theta2, theta3)), rand.gen = rnorm,
mean = drift[2] + tsdata$x2 , sd = sdAR[2]))

# EXAMPLE 1. A simple AR(2), maximizing the exact log-likelihood
# Note that parameter constraints are involved for TS1, but not
# considered in this fit. "rhobitlink" is used as link for AR coeffs.

fit.Ex1 <- vglm(TS1 ~ 1, ARXff(order = 2, type.EIM = "exact",
#iARcoeff = c(0.3, 0.3, 0.3), # OPTIONAL INITIAL VALUES
# idrift = 1, ivar = 1.5, isd = sqrt(1.5),
lARcoeff = "rhobitlink"),

data = tsdata, trace = TRUE, crit = "loglikelihood")
Coef(fit.Ex1)
summary(fit.Ex1)
vcov(fit.Ex1, untransform = TRUE) # Conformable with this fit.
AIC(fit.Ex1)
#------------------------------------------------------------------------#
# Fitting same model using arima().
#------------------------------------------------------------------------#
(fitArima <- arima(tsdata$TS1, order = c(2, 0, 0)))
# Compare with 'fit.AR'. True are theta1 = 0.45; theta1^2 = 0.2025
Coef(fit.Ex1)[c(3, 4, 2)] # Coefficients estimated in 'fit.AR'

# EXAMPLE 2. An AR(3) over TS2, with one covariate affecting the drift only.
# This analysis makes sense as the TS2's drift is a function ox 'x2',
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# i.e., 'x2' affects the 'drift' parameter only. The noise variance
# (var.arg = TRUE) is estimated, as intercept-only. See the 'zero' argument.

#------------------------------------------------------------------------#
# This model CANNOT be fitted using arima()
#------------------------------------------------------------------------#
fit.Ex2 <- vglm(TS2 ~ x2, ARXff(order = 3, zero = c("noiseVar", "ARcoeff"),

var.arg = TRUE),
## constraints = cm.ARMA(Model = ~ 1, lags.cm = 3, Resp = 1),

data = tsdata, trace = TRUE, crit = "log")

# True are theta1 <- 0.45; theta2 <- 0.31; theta3 <- 0.10
coef(fit.Ex2, matrix = TRUE)
summary(fit.Ex2)
vcov(fit.Ex2)
BIC(fit.Ex2)
constraints(fit.Ex2)

# EXAMPLE 3. Fitting an ARX(3) on two responses TS1, TS2; intercept-only model with
# constraints over the drifts. Here,
# a) No checks on invertibility performed given the use of cm.ARMA().
# b) Only the drifts are modeled in terms of 'x2'. Then, 'zero' is
# set correspondingly.
#------------------------------------------------------------------------#
# arima() does not handle this model.
#------------------------------------------------------------------------#
fit.Ex3 <- vglm(cbind(TS1, TS2) ~ x2, ARXff(order = c(3, 3),

zero = c("noiseVar", "ARcoeff"), var.arg = TRUE),
constraints = cm.ARMA(Model = ~ 1 + x2, lags.cm = c(3, 3), Resp = 2),
trace = TRUE, data = tsdata, crit = "log")

coef(fit.Ex3, matrix = TRUE)
summary(fit.Ex3)
vcov(fit.Ex3)
constraints(fit.Ex3)

benini1Qlink Link functions for the quantiles of several 1–parameter continuous dis-
tributions

Description

Computes the benini1Qlink transformation, its inverse and the first two derivatives.
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Usage

benini1Qlink(theta, p = stop("Argument 'p' must be entered."),
y0 = stop("Argument 'y0' must be specified."),
bvalue = NULL, inverse = FALSE,
deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. See below for further details.
p Numeric. A single value between 0.0 and 1.0. It is the p–quantile to be modeled

by this link function.
y0 Same as benini1.
bvalue, inverse, deriv, short, tag

See Links.

Details

This is a link function to model any p–quantile of the 1–parameter Benini distribution. It is called
the benini1Qlink transformation defined as

log y0 +

√
− log(1− p)

s

where y0 > 0 is a scale parameter and s is a positive shape parameter, as in benini1.

Numerical values of s or p out of range may result in Inf, -Inf, NA or NaN.

In particular, arguments inverse and deriv are disregarded if theta is character.

Value

For deriv = 0, the benini1Qlink transformation of theta, when inverse = FALSE. If inverse =
TRUE, then the inverse transformation given by -log(1 - p) / (theta - log y0)^2 is returned.

For deriv = 1, this function returns the derivative d eta / d theta, if inverse = FALSE. Else, the
reciprocal d theta / d eta as a function of theta.

If deriv = 2, then the second order derivatives in terms of theta are accordingly returned.

Warning

The horizontal straight line log y0 is a lower asymptote for this link function as θ increases to
∞. Thus, when inverse = TRUE and deriv = 0 entries at theta becoming η must be greater than
log y0. Else, NaN will be returned. See examples 2 and 3 below.

Note

Numerical instability may occur for values theta too close to zero or lower than log y0. Use
argument bvalue to replace them before computing the link.

Author(s)

V. Miranda and Thomas W. Yee.
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See Also

benini1, Links.

Examples

## E1. benini1Qlink() and its inverse ##
p <- 0.50; y0 = 1.25 ## Modeling the median
my.s <- seq(0, 5, by = 0.1)[-1]
max(my.s - benini1Qlink(benini1Qlink(my.s, p = p, y0 = y0),

p = p, y0 = y0, inverse =TRUE)) ## Zero

## E2. Plot of the benini1Qlink() transformation and its inverse ##
## Note, inverse = TRUE implies that argument 'theta' becomes 'eta'. ##
## which must be greater than log(y0). Else, value less than log(y0) ##
## are replaced by NaN. ##

#--- THE LINK
my.b <- seq(0, 5, by = 0.01)[-1]
plot(benini1Qlink(theta = my.b, p = p, y0 = y0) ~ my.b,

type = "l", col = "blue", lty = "dotted", lwd = 3,
xlim = c(-0.1, 6), ylim = c(-0.1, 5), las = 1,
main = c("Blue is benini1Qlink(), green is the inverse"),
ylab = "eta = benini1Qlink", xlab = "theta")

abline(h = 0, v = 0, lwd = 2)

#--- THE INVERSE
lines(my.b, benini1Qlink(theta = my.b, p = p, y0 = y0, inv = TRUE),

col = "green", lwd = 2, lty = "dashed")
#--- Tracing the identity function for double--check
lines(my.b, my.b)

## E3. WARNING! The first two values are less than log(y0) ##
benini1Qlink(theta = c(0.10, 0.15, 0.25, 0.35) , p = p, y0 = y0, inverse = TRUE)

borel.tannerMlink Link functions for the mean of 1–parameter discrete distributions: The
Borel–Tanner distribution.

Description

Computes the borel.tannerMlink transformation, its inverse and the first two derivatives.

Usage

borel.tannerMlink(theta, Qsize = 1,
bvalue = NULL, inverse = FALSE,
deriv = 0, short = TRUE, tag = FALSE)
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Arguments

theta Numeric or character. See below for further details.

Qsize A positive integer. It is called Q. Same as borel.tanner. Default it 1.
bvalue, inverse, deriv, short, tag

Details at Links

Details

As with zetaffMlink or yulesimonMlink, this link function is part of a set of link functions in
VGAM developed under a common methodology: by taking the logarithm of the mean of the
corresponding distribution.

In particular, this link function emerges by computing the logarithm of the mean of the Borel–
Tanner distribution. It is defined as

borel.tannerMlink(a) = − log(Q−1 − aQ−1),

where a, 0 < a < 1, is a scale parameter as in borel.tanner.

The domain set of borel.tannerMlink is the open interval (0, 1), except when inverse = TRUE and
deriv = 0. See below for further details about this. Moreover, unlike zetaffMlink or posPoiMlink,
the inverse of borel.tannerMlink can be written in closed–form.

Values of a (i.e. theta) out of range will result in NaN of NA.

If theta is a character, arguments inverse and deriv are discarded.

Value

For deriv = 0, the borel.tannerMlink transformation of theta, if inverse = FALSE. When inverse
= TRUE, theta becomes η and the inverse of borel.tannerMlink, given by

1− Q

eη
,

is returned. Here, the domain set changes to (0,∞).

For deriv = 1, d eta / d theta as a function of theta if inverse = FALSE, else the reciprocal d
theta / d eta.

Similarly, when deriv = 2 the second order derivatives in terms of theta are returned.

References

Haight, F. and Brueuer, M. A. (1960) The Borel–Tanner distribution. Biometrika, 47, 143–150.

Note

The vertical line a = 1 is an asymptote for this link function, which sharply grows for values of a too
close to 1.0 from the left. For such cases, Inf might result when computing borel.tannerMlink.

This link function is useful to model any parameter in (0, 1). Then, some problems may occur if
there are covariates causing out of range values.
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Author(s)

V. Miranda and T. W. Yee

See Also

borel.tanner, yulesimonMlink, zetaffMlink, posPoiMlink, Links.

Examples

## Example 1. Special values for theta (or eta, accordingly) ##
a.par <- c(0, 1:10/10, 20, 1e1, Inf, -Inf, NaN, NA)

# The borel.tannerMlink transformation and the first two derivatives.
print(rbind(a.par,
deriv1 = borel.tannerMlink(theta = a.par, inverse = FALSE, deriv = 1),
deriv2 = borel.tannerMlink(theta = a.par, inverse = FALSE, deriv = 2)),
digits = 2)

# The inverse of 'borel.tannerMlink()' and the first two derivatives.
# 'theta' turns into 'eta'.
print(rbind(a.par,

Invderiv1 = borel.tannerMlink(theta = a.par, inverse = TRUE, deriv = 1),
Invderiv2 = borel.tannerMlink(theta = a.par, inverse = TRUE, deriv = 2)),
digits = 2)

## Example 2 ##
a.param <- c(0, 1, 5, 10, 1e2, 1e3)
rbind(a.values = a.param,

inv.BT = borel.tannerMlink(theta = a.param, inverse = TRUE))

data.inv <- borel.tannerMlink(borel.tannerMlink(a.param, inv = TRUE)) - a.param
summary(data.inv) ## Should be zero

## Example 3. Some link functions in VGAM with domain set (0, 1) ##
a.param <- ppoints(100)

par(lwd = 2)
plot(a.param, borel.tannerMlink(a.param), ylim = c(-5, 7), xlim = c(-0.01, 1.01),

type = "l", col = "gray10", ylab = "transformation",
las = 1, main = "Some probability link functions")

lines(a.param, logffMlink(a.param), col = "blue")
lines(a.param, logitlink(a.param), col = "limegreen")
lines(a.param, probitlink(a.param), col = "purple")
lines(a.param, clogloglink(a.param), col = "chocolate")
lines(a.param, cauchitlink(a.param), col = "tan")
abline(v = c(0.5, 1), lty = "dashed")
abline(v = 0, h = 0, lty = "dashed")
legend(0.05, 7, c("borel.tanneMlink", "logffMlink", "logitlink", "probitlink",

"clogloglink", "cauchitlink"),
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col = c("gray10", "blue", "limegreen", "purple", "chocolate", "tan"),
lwd = 1)

par(lwd = 1)

break.VGAMextra Names/Value of linear predictors/parameters in time series family
functions.

Description

Splitting out the names of linear predictors or Numeric values for parameters in time series family
functions in VGAMextra.

Usage

break.VGAMextra(eta = NULL,
M1 = NULL,
noInter = NULL,
bOrder = NULL,
NOS = NULL,
lInter = "identitylink",
lvar = "loglink",
lsd = "loglink",
lcoeff1 = "rhobitlink",
lcoeff2 = "rhobitlink",
typeTS = "AR",
namesLP = FALSE,
Complete = FALSE,
varArg = NULL)

Arguments

eta A matrix of dimensions c(n, M) storing the linear predictors values coming
from the vglm fit. Here, M is the number of parameters. See warning below for
further information.

M1 Number of parameters involved in the vglm fit.

noInter Logical. To determine whether the intercept is estimated. If 'TRUE', the inter-
cept is not estimated and set to 0.

bOrder A vector. The order of the linear process fitted. Either a single number (if one
response), or a vector (if multiple responses).

NOS Integer. Number of respones set in the vglm call.
lInter, lvar, lsd, lcoeff1, lcoeff2

Link functions applied to parameters. Same as in ARXff, or MAXff.

typeTS Character. Currently, options "AR" for Autoregressive, and "MA" for Moving
Average processes are handled.
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namesLP Logical. This function returns either the names of linear the predictors/parameters
( if namesLP = TRUE ) or parameter values (default) broken down from the eta
matrix.

Complete Logical. If TRUE, columns of zeros are incorporated into the matrix eta. See
below for further details.

varArg Sames as in ARXff or MAXff

Details

Time series family functions in VGAMextra currently recycle the order set in the vglm. Particu-
larly, it occurs when the number of responses is fewer than the specified order. For instance, if the
order set in vglm is c(1, 3), and 5 responses are managed, then the new order becomes c(1, 3, 1, 3, 1).

Due to such flexibility, time series family functions require specific functions to unload the amount
of code within each one.

Moreover, when the order is recycled, the matrix eta is completed, as if the order was the same for
each response. This feature is enabled when Complete = TRUE. This ‘common’ order turns out to be
the maximum order established in the vector order. This trick makes the family function to work
properly. To return to the riginal ‘order’, eta is reduced in the same number of colums initially
added.

break.VGAMextra works in this context. It may return either the names of the linear predic-
tors/parameters, or the parameter values splitted out as a list. Thus, link functions entered in the
vglm call must be passed down to this functions. For further details on link functions refer to
CommonVGAMffArguments.

Value

A list containing either the names of the linear predictors or the parameters values (not linear pre-
dictors) unwrapped from tje eta matrix, as follows:

a) If namesLP = FALSE (default), value of parameters are returned in this order: the intercept (1),
standard deviation and variance of the white noise (2, 3), and the coefficients (4).

b) If namesLP = TRUE, names of linear predictors are returned in the first entry, whereas parameter
names are allocated to the second entry.

Yee and Wild (1996) provide more detailed information about the relationship between linear pre-
dictors and parameters within the VGLM statistical framework.

Warning

Note that library VGAM is definitely required.

Warning

Be aware of the dimensions of matrix eta. It is c(n, M), where n is the sample size, and M is
the number of parameters. If multiple responses, then M equals the summation of parameters
individually.

Author(s)

Victor Miranda and T. W. Yee
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References

Yee, T. W. and Wild, C. J. (1996) Vector Generalized Additive Models. Journal of the Royal
Statistical Society, Series B, Methodological, 58(3), 481–493.

See Also

ARXff, MAXff, CommonVGAMffArguments, vglm.

Examples

library(VGAM)

eta <- matrix(runif(100), nrow = 10, ncol = 10)
M1 <- c(5, 5)
noInter <- FALSE
bOrder <- c(3, 3)
NOS <- 2

### ONLY LINEAR PREDICTORS/PARAMETERS NAMES!
### RETURNED OBJECT IS A LIST !

break.VGAMextra(M1 = M1,
noInter = noInter,
bOrder = bOrder,
NOS = NOS,
typeTS = "AR",
namesLP = TRUE,
varArg = TRUE)

### PARAMETER VALUEs... "UNWRAPPED". Inverse link functions are applied.
### Note that namesLP must be set to FALSE

break.VGAMextra(eta = eta,
M1 = M1,
noInter = noInter,
bOrder = bOrder,
NOS = NOS,
typeTS = "AR",
namesLP = FALSE,
varArg = TRUE)
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checkTS.VGAMextra Polynomial roots based on transfer operators in Vector Generalized
Time Series Family Functions

Description

checkTS.VGAMextra computes the polynomial roots as per transfer operator in Vector Generalized
Time Series Family Functions in VGAMextra

Usage

checkTS.VGAMextra(thetaEst = NULL,
tsclass = c("AR", "MA"),
chOrder = 1,
NofS = 1,
retmod = TRUE,
pRoots = TRUE)

Arguments

thetaEst A vector of coefficients. Its lenght must be NofS * chOrder. If vglm is called,
then thetaEst contains the estimated coefficients of the model specified in
formula .

tsclass Character indicating the model class to be checked. Presently, options "AR" and
"MA" are handled.

chOrder Positive integer. The order of polynomial associated to the underlying procees
involved: either $p$ or $q$, which apply for "AR" or "MA" rspectively.

NofS A positive integer denoting the number of Time Series to verify. In the vglm
environment, NofS is the number of responses given in formula.

retmod Logical. If TRUE (default), the Module of all roots as per transfer operator in
the process established in tsclass is returned. Else, essentially the roots are
returned.

pRoots Logical. If TRUE (default), the roots computed from estimated models are dis-
played along with the time series family function execution.

Details

Stationarity and/or Invertibility of time series (TS) are usually verified via the roots of the polyno-
mial derived from the transfer operators.

In particular, checkTS.VGAMextra computes such roots via the coefficients estimated by vector
generalized TS family functions available in VGAMextra ( ARXff, and MAXff).

Specifically, checkTS.VGAMextra verifies whether the TS analyzed via vglm is stationary or invert-
ible, accordingly.
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Note that an autoregressive process of order-p [AR(p)] with coefficients θ1, . . . , θp can be written
in the form

θ(B)Yt = εt,

where

θ(B) = 1−
p∑

k=1

θkB
k

Here, θ(B) is referred to as the transfer operator of the process, and BkYt = Yt−k,, for k =
0, 1, . . . , p, is the lagged single-function.

In general, an autoregressive process of order-p is stationary if the roots of

θ(z) = 1− θ1z − . . .− θqz
q

lie outside the unit circle, i.e. |z| > 1.

Similarly, a moving-average process of order-q can be formulated (without loss of generality µ = 0)

Yt = ψ(B)εt,

where ψ(B) is the transfer operator, given by

ψ(B) = 1 +

q∑
k=1

ψkB
k,

Note that ψ0 = 1, and Bkεt = εt− k.

Hence, a moving-average process of order-q [MA(q)], generally given by (note µ = 0)

Yt = ϕ1εt−1 + . . .+ ϕqεt−q + εt,

is invertible if all the roots of

ϕ(B) = 1 + ϕ1B + . . .+ ϕqB
q

lie outside the unit circle., i.e.m |z| > 1.

Parallel arguments can be stated for autoregressive moving aberage processes (ARMA). See Box
and Jenkins (1970) for further details.

Value

A vector whose elements are the roots of polynomials inherited from transfer operators according
to the process analyzed.

Alternatively, the modules of roots can by returned instead of merely roots via the retmod argument.
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Warning

The argument thetaEst manages the coefficients of the TS model(s) in turn. Then, it must be NofS
* chOrder length, where NofS is the number of responses established in the vglm call. Here the
coefficients for each response must be sequentially groped.

A moving average process is always stationary (See Madsen (2007) for further details). Conse-
quently, the MAXff in VGAMextra verifies (by default) only for invertibility. To enable this option
set nowarning = FALSE in the MAXff call.

Similarly, ARXff verifies whether the TS data fitted is stationary, whereas ARMAXff() verifies both
properties.

Note

For TS family functions in the VGLM/VGAM framework, checkTS.VGAMextra is called at the
final iteration of Fisher scoring. It means that the MLE estimates are actually evaluated to verify
whether the process is stationary or invertible.

If any root has module less than 1 + 1e− 5, a warning is displayed for informative purposes.

Argument thetaEst manages the parameters of the TS model in turn.

Author(s)

Victor Miranda and T. W. Yee.

References

Box, G.E.P. and Jenkins, G.M. (1970) Time Series Analysis: Forecasting and Control. Holden-Day,
San Francisco, USA.

Madsen, H (2007) Time Series Analysis. Chapman and Hall/CRC, Boca Raton, Florida, USA.

Examples

# A moving average process order-3 with coeffs --> c(2.4, -5.6, 0.83)
#-------------------------#
# This is NOT invertible !
#-------------------------#

MAcoeffs <- c(2.4, -5.6, 0.83)
checkTS.VGAMextra(thetaEst = MAcoeffs,

tsclass = "MA",
chOrder = 3,
retmod = FALSE)

# AR process order-3 with coeffs --> c( 0.45, 0.45^2, 0.45^3 )
#-------------------------#
# This is stationary !
#-------------------------#

ARcoeffs <- c( 0.45 , 0.45^2 , 0.45^3 )
checkTS.VGAMextra(thetaEst = ARcoeffs,
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tsclass = "AR",
chOrder = 3,
retmod = TRUE,
pRoots = TRUE) # DEFAULT for 'pRoots'

cm.ARMA Constraint matrices for vector generalized time series family func-
tions.

Description

Constraint matrices for coefficients of vector genelized time series family functions in VGAMextra.

Usage

cm.ARMA(Model = ~ 1,
Resp = 1,
lags.cm = 2,
offset = -2,
whichCoeff = 1,
factorSeq = 2)

Arguments

Model A symbolic description of the model being fitted. Must match that formula
specified in the vglm() call.

lags.cm Vector of POSITIVE integers greater than 1 indicating the order for each re-
sponse. It must match the orders entered in the vglm call. Its default value is 2,
assuming that a TS process of order greater than 1 is being fitted. If lags.cm <
2, then NO constraints are required as only one coefficient (AR, MA or ARMA)
is being estimated.

offset Vector of integers specifying the position of the ARMA coefficient at which con-
straints initiate FOR each response. If negative, it is recycled and the absolute
value is used. The default value is -2, which refers to the fourth position on the
vector parameter, right after the drift or mean, the white noise sd, and the first
ARMA coefficient.
Particularly, if only one coefficient is being estimated, i.e, an AR or MA process
of order-1 is being fitted, then NO restrictions over the (unique) coefficient are
needed. Consequently, abs(offset < 2) leads to a message error.

whichCoeff Vector of POSITIVE integers strictly less than ‘abs(offset)’, each entry aplies
to each response in the vglm(...) call. This argument allows the user to spec-
ify the unrestricted coefficient to be considered for constraints. For instance,
whichCoeff = 2 means that θ2 is the required coefficient to compute the con-
straint matrices. By default, whichCoeff = -1 which implies that θ1 is used for
this purpose.
If whichCoeff is greater than or equal to abs(offset), an error message is
displayed since constraints must be function of unrestricted parameters.
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Resp The number of responses in the model fitted. Must match the number of re-
sponses given in formula in the vglm call.

factorSeq Vector of POSITIVE integers. Thus far, restrictions handled are geometric se-
quences and arithmetic progressions. Hence, factorSeq specifies either the
initial power or factor at restrictions.
See below for further details.

Details

NOTE: Except for the Model, all arguments of length 1 are recycled when Resp ≥ 2.

Time Series family functions in VGAMextra that are derived from AR(p) or MA(q) processes
include the drift term (or mean) and the white noise standard deviation as the first two elements in
the vector parameter. For an MA(4), for example, it is given by

(µ, σε, ϕ1, ϕ2, ϕ3, ϕ4).

Thus, constraint matrices on coefficients can be stated from the second coefficient, i.e., from ϕ2.
This feature is specified with offset = -2 by default.

In other words, offset indicates the exact position at which parameter restrictions commence. For
example, offset = -3 indicates that ϕ3 is the first coefficient over which constraints are applied.
Then, in order to successfully utilize this argument, it must be greater than or equal to 2 in absolute
value. Otherwise, an error message will be displayed as no single restriction are amenable with ϕ1
only.

Furthermore, if lags.cm = 1, i.e, a AR or MA process of order one is being fitted, then NO con-
straints are required either, as only one coefficient is directly considered.

Hence, the miminum absolute value for argument offset is 2

As for the factorSeq argument, its defaul value is 2. Let factorSeq = 4, lags.cm = 5, offset =
-3, and whichCoeff = 1. The coefficient restrictions if a geometric progression is assumed are

θ3 = θ41,

θ4 = θ51,

θ5 = θ61,

If coefficient restrictions are in arithmetic sequence, constraints are given by

θ3 = 4 ∗ θ1,

θ4 = 5 ∗ θ1,

θ5 = 6 ∗ θ1,

The difference lies on thelink function used: loglink for the first case, and identitylink for the
latter.

Note that conditions above are equivalent to test the following two Null Hypotheses:

Ho : θk = θk1



cm.ARMA 35

or
Ho : θk = j ∗ θ1

for k = 3, 4, 5.

Simpler hypotheses can be tested by properly setting all arguments in cm.ARMA(). For instance, the
default list of constraint matrices returned by cm.ARMA() allows to test

Ho : θk = θj1

for k = 2, in a TS model of order-2 with one response.

Value

A list of constraint matrices with specific restrictions over the AR(p), MA(q) or ARMA (p, q) coef-
ficients. Each matrix returned is conformable with the VGAM/VGLM framework.

Paragrpah above means that each constraint matrix returned by cm.ARMA() is full-rank with M
rows (number of parameters), as required by VGAM. Note that constraint matrices within the
VGAM/VGLM framework are M by M identity matrices by default.

Restrictions currently handled by cm.ARMA() are (increasing) arithmetic and geometric progres-
sions.

Warning

Hypotheses above can be tested by properly applying parameter link functions. If the test

Ho : θk = θk1 ,

arises, then constraint matrices returned by cm.ARMA() are conformable to the use of loglink.

On the other hand, the following hypothesis

Ho : θk = k ∗ θ1,

properly adapts to the link function identitylink. k = 2, 3, ldots.

For further details on parameter link functions within VGAM, see CommonVGAMffArguments.

Note

cm.ARMA() can be utilized to compute constraint matrices for many VGLTSM fmaily functions,
e.g., ARXff and MAXff in VGAMextra.

More improvements such as restrictions on the drift parameter and white noise standard deviation
will be set later.

Author(s)

Victor Miranda and T. W. Yee

References

Yee, T. W. and Hastie, T. J. (2003) Reduced-rank vector generalized linear models. Statistical
Modelling, 3, 15–41.

Yee, T. W. (2008) The VGAM Package. R News, 8, 28–39.
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See Also

loglink, rhobitlink, CommonVGAMffArguments.

Examples

#############
# Example 1.
#############
# Constraint matrices for a TS family function (AR or MA)
# with 6 lagged terms.
# Restriction commences at the third position (theta[3]) powered to
# or multiplied by 4. Intercept-only model.
position <- -3
numberLags <- 6
myfactor <- 4
cm.ARMA(offset = position, lags.cm = numberLags, factorSeq = myfactor)

# With one covariate
cm.ARMA(Model = ~ x2, offset = position,

lags.cm = numberLags, factorSeq = myfactor)

# Or 2 responses...
cm.ARMA(offset = position, lags.cm = numberLags,

factorSeq = myfactor, Resp = 2)

# The following call causes an ERROR.
# cm.ARMA(offset = -1, lags.cm = 6, factorSeq = 2)

##############
# Example 2.
##############

# In this example, the use of constraints via 'cm.ARMA()' is
# included in the 'vglm' call. Here, two AR(2) models are fitted
# in the same call (i.e. two responses), where different constraints
# are set, as follows:
# a) list(ar = c(theta1, theta1^2)) and
# b) list(ar = c(theta2, theta2^2 )).

# 2.0 Generate the data.
set.seed(1001)
nn <- 100
# A single covariate.
covdata <- data.frame(x2 = runif(nn))

theta1 <- 0.40; theta2 <- 0.55
drift <- c(0.5, 0.75)
sdAR <- c(sqrt(2.5), sqrt(2.0))
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# Generate AR sequences, TS1 and TS2, considering Gaussian white noise

# Save both in a data.frame object: the data.
tsdata <-

data.frame(covdata, # Not used
TS1 = arima.sim(nn,

model = list(ar = c(theta1, theta1^2)),
rand.gen = rnorm,
mean = drift[1], sd = sdAR[1]),

TS2 = arima.sim(nn,
model = list(ar = c(theta2, theta2^2)),
rand.gen = rnorm,
mean = drift[2], sd = sdAR[2]))

# 2.1 Fitting both time series with 'ARXff'... multiple responses case.
fit1 <- vglm(cbind(TS1, TS2) ~ 1,

ARXff(order = c(2, 2), type.EIM = "exact"),
data = tsdata,
trace = TRUE)

Coef(fit1)
coef(fit1, matrix = TRUE)
summary(fit1)

## Same length for both vectors, i.e. no constraints.
length(Coef(fit1))
length(coef(fit1, matrix = TRUE))

###2.2 Now, fit the same models with suitable constraints via 'cm.ARMA()'
# Most importantly, "loglink" is used as link function to adequately match
# the relationship between coefficients and constraints. That is:
# theta2 = theta1^2, then log(theta2) = 2 * log(theta1).

fit2 <- vglm(cbind(TS1, TS2) ~ 1,
ARXff(order = c(2, 2), type.EIM = "exact", lARcoeff = "loglink"),
constraints = cm.ARMA(Model = ~ 1,

Resp = 2,
lags.cm = c(2, 2),
offset = -2),

data = tsdata,
trace = TRUE)

Coef(fit2)
coef(fit2, matrix = TRUE)
summary(fit2)

# NOTE, for model 1, Coeff2 = Coeff1^2, then log(Coeff2) = 2 * log(Coeff1)
( mycoef <- coef(fit2, matrix = TRUE)[c(3, 4)] )
2 * mycoef[1] - mycoef[2] # SHOULD BE ZERO

# Ditto for model 2:
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( mycoef <- coef(fit2, matrix = TRUE)[c(7, 8)] )
2 * mycoef[1] - mycoef[2] # SHOULD BE ZERO

## Different lengths, due to constraints
length(Coef(fit2))
length(coef(fit2, matrix = TRUE))

dmultinorm Density for the multivariate Normal distribution

Description

Density for the multivariate Normal distribution

Usage

dmultinorm(vec.x, vec.mean = c(0, 0),
mat.cov = c(1, 1, 0),
log = FALSE)

Arguments

vec.x For the R–multivariate Normal, an R–vector of quantiles.

vec.mean The vector of means.

mat.cov The vector of variances and covariances, arranged in that order. See below for
further details.

log Logical. If TRUE, the logged values are returned.

Details

This implementation of the multivariate (say R–dimensional) Normal density handles the variances
and covariances, instead of correlation parameters.

For more than one observation, arrange all entries in matrices accordingly.

For each observation, mat.cov is a vector of length R × (R + 1)/2, where the first R entries
are the variances σ2i, i = 1, . . . , R, and then the covariances arranged as per rows, that is, covij
i = 1, . . . , R, j = i+ 1, . . . , R.

By default, it returns the density of two independent standard Normal distributions.

Value

The density of the multivariate Normal distribution.
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Warning

For observations whose covariance matrix is not positive definite, NaN will be returned.

Author(s)

Victor Miranda

See Also

binormal.

Examples

###
### Two - dimensional Normal density.
###
set.seed(180228)
nn <- 25
mean1 <- 1; mean2 <- 1.5; mean3 = 2
var1 <- exp(1.5); var2 <- exp(-1.5); var3 <- exp(1); cov12 = 0.75
dmvndata <- rbinorm(nn, mean1 = 1, mean2 = 1.5, var1 = var1, var2 = var2,

cov12 = cov12)

## Using dbinorm() from VGAM.
d2norm.data <- dbinorm(x1 = dmvndata[, 1], x2 = dmvndata[, 2],

mean1 = mean1, mean2 = mean2, var1 = var1, var2 = var2,
cov12 = cov12)

## Using dmultinorm().
d2norm.data2 <- dmultinorm(vec.x = dmvndata, vec.mean = c(mean1, mean2),

mat.cov = c(var1, var2, cov12))
summary(d2norm.data)
summary(d2norm.data2)
##
## 3--dimensional Normal.
##
dmvndata <- cbind(dmvndata, rnorm(nn, mean3, sqrt(var3)))

d2norm.data3 <- dmultinorm(dmvndata, vec.mean = c(mean1, mean2, mean3),
mat.cov = c(var1, var2, var3, cov12, 0, 0))

hist(d2norm.data3)
summary(d2norm.data3)

ECM.EngleGran VGLTSM family function for the Two–dimensional Error–Correction
Model (Engle and Granger, 1987) for I(1)–variables
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Description

Estimates a bidimensional error-correction model of order–(K, L), as proposed by Engle–Granger
(Two step–approach; 1987), with bivariate normal errors by maximum likelihood estimation using
Fisher scoring.

Usage

ECM.EngleGran(ecm.order = c(1, 1),
zero = c("var", "cov"),
resids.pattern = c("intercept", "trend",

"neither", "both")[1],
lag.res = 1,
lmean = "identitylink",
lvar = "loglink",
lcov = "identitylink",
ordtsDyn = 0)

Arguments

ecm.order Length–2 (positive) integer vector. The order of the ECM model.

zero Integer or character–string vector. Details at zero.

resids.pattern Character. How the static linear regression y2,t ∼ y1,t must be settle to estimate
the residuals ẑt. The default is a linear model with intercept, and no trend term.
See below for details.

lag.res Numeric, single positive integer. The error term for the long–run equilibrium
path is lagged up to order lag.res. See below for further details.

lmean, lvar, lcov
Same as MVNcov.

ordtsDyn Positive integer. Allows to compare the estimated coefficients with those pro-
vided by the package ’tsDyn’. See below for further details.

Details

This is an implementation of the two–step approach as proposed by Engle–Granger [1987] to esti-
mate an order–(K, L) bidimensional error correction model (ECM) with bivariate normal errors.

This ECM class models the dynamic behaviour of two cointegrated I(1)-variables, say y1,t and y2,t
with, probably, y2,t a function of y1,t. Note, the response must be a two–column matrix, where the
first entry is the regressor, i.e, y1,t above, and the regressand in the second colum. See Example 2
below.

The general specification of the ECM class described by this family function is

∆y1,t|Φt−1 = ϕ0,1 + γ1ẑt−k +

K∑
i=1

ϕ1,i∆y2,t−i +

L∑
j=1

ϕ2,j∆y1,t−j + ε1,t,

∆y2,t|Φt−1 = ψ0,1 + γ2ẑt−k +

K∑
i=1

ψ1,i∆y1,t−i +

L∑
j=1

ψ2,j∆y2,t−j + ε2,t.
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Under the binormality assumption on the errors (ε1,t, ε2,t)T with covariance matrix V, model above
can be seen as a VGLM fitting linear models over the conditional means, µ∆y1,t

= E(∆y1,t|Φt−1)
and µ∆y2,t

= E(∆y2,t|Φt−1), producing

(∆y1,t|Φt−1,∆y2,t|Φt−1)
T ∼ N2(µ∆y1,t

, µ∆y2,t
,V)

The covariance matrix is assumed to have elements σ2
1 , σ

2
2 , and Cov12.

Hence, the parameter vector is

θ = (ϕ0,1, γ1, ϕ1,i, ϕ2,j , ψ0,1, γ2, ψ1,i, ψ2,j , σ
2
1 , σ

2
2 ,Cov12)

T ,

for i = 1, . . . ,K and j = 1, . . . , L.

The linear predictor is

η = (µ∆y1,t
, µ∆y2,t

, loglink σ2
1 , loglink σ

2
2 ,Cov12)T .

The estimated cointegrated vector, β̂⋆ = (1,−β̂)
T

is obtained by linear regression depending upon
resids.pattern, as follows:

1) y2,t = β0 + β1y1,t + zt, if resids.pattern = "intercept",

2) y2,t = β1y1,t + β2t+ zt, if resids.pattern = "trend",

3) y2,t = β1y1,t + zt, if resids.pattern = "neither", or else,

4) y2,t = β0 + β1y1,t + β2t+ zt, if resids.pattern = "both",

where β̂ = (β̂0, β̂1, β̂2)
T , and zt assigns the error term.

Note, the estimated residuals, ẑt are (internally) computed from any of the linear models 1) – 4) se-
lected, and then lagged up to order alg.res, and embedded as explanatories in models ∆y1,t|Φt−1

and ∆y3,t|Φt−1 above. By default, ẑt−1 are considered (as lag.res = 1), although it may be any
lag ẑt−k, for k > 0. Change this through argument lag.res.

Value

An object of class "vglmff" (see vglmff-class) to be used by VGLM/VGAM modelling func-
tions, e.g., vglm or vgam.

Note

Reduced–Rank VGLMs (RR-VGLMs) can be utilized to aid the increasing number of parameters
as K and L grows. See rrvglm.

By default, σ2
1 , σ

2
2 and Cov12 are intercept–only. Set argument zero accordingly to change this.

Package tsDyn also has routines to fit ECMs. However, the bivariate–ECM handled (similar to
that one above) differs in their parametrization: tsDyn considers the current estimated residual, ẑt
instead of ẑt−1 in models ∆y1,t|Φt−1 and ∆y2,t|Φt−1.

See Example 3 below which compares ECMs fitted with VGAMextra and tsDyn.

Author(s)

Victor Miranda
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References

Engle, R.F. and Granger C.W.J. (1987) Co-integration and error correction: Representation, estima-
tion and testing. Econometrica, 55(2), 251–276.

Pfaff, B. (2011) Analysis of Integrated and Cointegrated Time Series with R. Seattle, Washington,
USA: Springer.

See Also

MVNcov, rrvglm, CommonVGAMffArguments, Links, vglm.

Examples

## Example 1. Comparing the Engle -- Granger procedure carried oud by two procedures.
## ECM.EngleGran() makes easier the fitting process.
## Here, we will use:
## A) The R code 4.2, in Chapter 4, Pfaff (2011).
## This code 1) generates artificial data and 2) fits an ECM, following
## the Engle --Granger procedure.
## B) The ECM.EngleGran() family function to fit the same model assuming
## bivariate normal innovations.
## The downside in the R code 4.2 is the assumption of no--correlation among
## the errors. These are generated indenpendently.
## A)
## STEP 1. Set up the data (R code as in Pfaff (2011)).
nn <- 100
set.seed(123456)
e1 <- rnorm(nn) # Independent of e2
e2 <- rnorm(nn)
y1 <- cumsum(e1)
y2 <- 0.6 * y1 + e2
lr.reg <- lm(y2 ~ y1)
error <- residuals(lr.reg)
error.lagged <- error[-c(nn - 1, nn)]
dy1 <- diff(y1)
dy2 <- diff(y2)
diff.dat <- data.frame(embed(cbind(dy1, dy2), 2))
colnames(diff.dat) <- c('dy1', 'dy2', 'dy1.1', 'dy2.1')

## STEP 2. Fit the ECM model, using lm(), R code as in Pfaff (2011).
ecm.reg <- lm(dy2 ~ error.lagged + dy1.1 + dy2.1, data = diff.dat)

summary(ecm.reg)

## B) Now, using ECM.EngleGran() and VGLMs, the steps at A) can be skipped.
## Enter the I(1)--variables in the response vector only, putting down the
## the dependent variable from the I(1) set, i.e. y2, in the second column.

coint.data <- data.frame(y1 = y1, y2 = y2)
fit.ECM <- vglm(cbind(y1, y2) ~ 1, ECM.EngleGran, data = coint.data, trace = TRUE)
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## Check coefficients ##
coef(fit.ECM, matrix = TRUE) ## Compare 'Diff2' with summary(ecm.reg)
coef(summary(ecm.reg))

head(depvar(fit.ECM)) # The estimated differences (first order)
vcov(fit.ECM)
constraints(fit.ECM, matrix = TRUE)

## Not run:
### Example 2. Here, we compare ECM.EngleGran() from VGAMextra with VECM() from
## package "tsDyn" when fitting an ECM(1, 1). We will make use of
## the argument 'ordtsDyn' so that the outcomes can be compared.

library("tsDyn") # Need to be installed first.
fit.tsDyn1 <- with(coint.data, VECM(cbind(y2, y1), lag = 1, estim = "2OLS")) # MODEL 1
summary(fit.tsDyn1)

### Fit same model using ECM.EngleGran(). NOTE: Set ordtsDyn = 1 !! # MODEL 2
fit.ECM.2 <- vglm(cbind(y1, y2) ~ 1, ECM.EngleGran(ecm.order = c(1, 1),

resids.pattern = "neither", ordtsDyn = 1),
data = coint.data, trace = TRUE)

coef.ECM.2 <- coef(fit.ECM.2, matrix = TRUE)
fit.tsDyn1$coefficients ## From pakage 'tsDyn'.
t(coef.ECM.2[, 1:2][c(2, 1, 4, 3), ][, 2:1]) ## FROM VGAMextra

### Example 3. An ECM(2, 2), with residuals estimated by OLS, with NO intercept
### and NO trend term. The data set is 'zeroyld', from package tsDyn.
### ECM.EngleGran() and with VECM() willbe compared again.
data(zeroyld, package = "tsDyn")

# Fit a VECM with Engle-Granger 2OLS estimator:
vecm.eg <- VECM(zeroyld, lag=2, estim = "2OLS")
summary(vecm.eg)

# For the same data, fit a VECM with ECM.EngleGran(), from VGAMextra.
# Set ordtsDyn = 1 for compatibility!
fit.ECM.3 <- vglm(cbind(long.run, short.run) ~ 1, ECM.EngleGran(ecm.order = c(2, 2),

resids.pattern = "neither", ordtsDyn = 1),
data = zeroyld, trace = TRUE)

coef.ECM.3 <- coef(fit.ECM.3, matrix = TRUE)

#### Compare results
vecm.eg$coefficients # From tsDyn
t(coef.ECM.3[, 1:2][c(2, 1, 5, 3, 6, 4 ),][, 2:1]) # FROM VGAMextra

## End(Not run)
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expMlink Link functions for the mean of 1–parameter continuous distributions:
The exponential distribution.

Description

Computes the expMlink transformation, its inverse and the first two derivatives.

Usage

expMlink(theta, location = 0, bvalue = NULL, inverse = FALSE,
deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. This is θ although may be η depending on the other
parameters. See below for further details.

location This is a known location parameter. Same as location in exponential.
bvalue, inverse, deriv, short, tag

See Links.

Details

This is a link function to model the mean of the exponential distribution, exponential. It is defined
as

η = log(A+ λ−1),

where λ > 0 is a rate parameter and A is a known location parameter, same as exponential.

Numerical values of λ out of range may result in Inf, -Inf, NA or NaN.

Value

For deriv = 0, the expMlink transformation of theta when inverse = FALSE. If inverse = TRUE,
then the inverse exp(theta - A)^(-1).

For deriv = 1, d eta / d theta when inverse = FALSE. If inverse = TRUE, then d theta / d eta
as a function of theta.

Similarly, when deriv = 2, the second derivatives in terms of theta are returned.

Note

Numerical instability may occur for values theta too close to zero. Use argument bvalue to replace
them before computing the link.

If theta is character, then arguments inverse and deriv are ignored. See Links for further details.

Author(s)

V. Miranda and Thomas W. Yee.
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See Also

exponential, Links.

Examples

## E1. Modelling the mean of the exponential distribution ##
set.seed(17010402)
nn <- 100
edata <- data.frame(x2 = runif(nn) - 0.5, x3 = runif(nn) - 0.5)
edata <- transform(edata, eta = 0.2 - 0.7 * x2 + 1.9 * x3)

#----- The mean is a function of 'x2' and 'x3' ------#
edata <- transform(edata, rate = expMlink(eta, inverse = TRUE))

edata <- transform(edata, y = rexp(nn, rate = rate))
with(edata, stem(y))
with(edata, hist(y))

exp.fit <- vglm(y ~ x2 + x3, exponential(link = "expMlink"),
data = edata, zero = NULL, trace = TRUE, crit = "log")

coef(exp.fit, matrix = TRUE)
summary(exp.fit)

## E2. expMlink() and its inverse ##
theta <- 0.1 + 1:5
location <- 1.5
my.diff <- theta - expMlink(expMlink(theta = theta,

location = location), location = location, inverse =TRUE)
summary(my.diff) # Zero

## E3. Special values in a matrix ##
theta <- matrix(c(Inf, -Inf, NA, NaN, 1 , 2), ncol = 3, nrow = 2)
expMlink(theta = theta, location = location)

expQlink Link functions for the quantiles of several 1–parameter continuous dis-
tributions.

Description

Computes the expQlink transformation, its inverse and the first two derivatives.

Usage

expQlink(theta, p = stop("Argument 'p' must be entered."),
bvalue = NULL, inverse = FALSE,
deriv = 0, short = TRUE, tag = FALSE)
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Arguments

theta Numeric or character. This is θ although may be η depending on the other
parameters. See below for further details.

p Numeric. A prespecified number between 0 and 1. The particular p–quantile to
be modelled. For example, p = 0.5 means that the median is considered by this
link function.

bvalue, inverse, deriv, short, tag
See Links.

Details

This is a link function to model any fixed quantile, say ξp, of the exponential distribution. It is called
the expQlink transformation and is defined as

log(1− p)−1/λ,

where λ is positive as in exponential.

Numerical values of λ or p out of range may result in Inf, -Inf, NA or NaN.

Value

With deriv = 0, the expQlink transformation of theta for prespecified p when inverse = FALSE.
If inverse = TRUE, then the inverse -log(1 - p)/theta.

For deriv = 1, this link function returns d eta / d theta when inverse = FALSE. If inverse =
TRUE, then d theta / d eta as a function of theta.

Similarly, when deriv = 2, the second derivatives in terms of theta are returned.

Note

Numerical instability may occur for values theta too close to zero. Use argument bvalue to replace
them before computing the link.

If theta is character, then arguments inverse and deriv are ignored. See Links for further details.

Author(s)

V. Miranda and Thomas W. Yee.

See Also

exponential, Links.

Examples

## E1. expQlink() and its inverse ##
p <- 0.25 # Modelling the first quartile.
my.theta <- seq(0, 5, by = 0.1)[-1]
my.diff <- my.theta - expQlink(expQlink(my.theta, p = p), p = p, inverse =TRUE)
summary(my.diff) # Zero
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## E2. Special values ##
expQlink(theta = c(Inf, -Inf, NA, NaN), p = p)

## E3. Plot of expQlink() for different quantiles ##
plot(expQlink(my.theta, p = p) ~ my.theta,

type = "l", lty = "dotted", col = "blue", lwd = 2,
main = "expQink(p) transformation", xlab = "theta", ylab = "expQLink",
xlim = c(-0.5, 5), ylim = c(-0.5, 5))

abline(h = 0, v = 0, lwd = 2)
lines(my.theta, expQlink(my.theta, p = 0.50), col = "green", lty = "dotted", lwd = 2)
lines(my.theta, expQlink(my.theta, p = 0.75), col = "red", lty = "dotted", lwd = 2)
legend(2, 4, c("p = 0.25", "p = 0.50", "p = 0.75"), col = c("blue", "green", "red"),

lwd = c(2, 2, 2), lty = c("dotted", "dotted", "dotted"))

gamma1Qlink Link functions for the quantiles of several 1–parameter continuous dis-
tributions

Description

Computes the gamma1Qlink transformation, its inverse and the first two derivatives.

Usage

gamma1Qlink(theta, p = stop("Argument 'p' must be specified."),
bvalue = NULL, inverse = FALSE,
deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. It is θ by default although it could be η depending upon
other arguments. See Links for further details about this.

p A numeric vector of p–quantiles (numbers between 0 and 1) to be modeled by
this link function.

bvalue, inverse, deriv, short, tag
See Links.

Details

This link function has been specifically designed to model any p–quantile of the 1–parameter
gamma distribution, gamma1, in the VGLM/VGAM context. It is defined as

η = log qgamma(p, shape =s),

where s is a positive shape parameter as in gamma1, whilst qgamma() is the quantile function qgamma.
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The inverse of the gamma1Qlink cannot be expressed in closed form. Instead, the inverse image,
sη , of η is numerically approximated by newtonRaphson.basic.

Numerical values of s or p out of range will result in Inf, -Inf, NA or NaN correspondingly.

Arguments inverse and deriv are dismissed if theta is character.

Value

For deriv = 0, the gamma1Qlink transformation of theta, when inverse = FALSE. If inverse =
TRUE, then theta becomes η, and therefore, the approximate inverse image of η is returned.

For deriv = 1, the partial derivative d eta / d theta is returned, if inverse = FALSE. If inverse =
TRUE, then the reciprocal d theta / d eta as a function of theta.

If deriv = 2, then the second order derivatives as a function of theta.

Note

Numerical instability may occur for values theta too large, or too close to 0.0. Use argument
bvalue to replace them before computing the link.

Author(s)

V. Miranda and Thomas W. Yee.

See Also

gamma1, qgamma, Links.

Examples

## E1. gamma1QLink() and values causing NaNs or out of range ##

p <- 0.75 # The third quartile is of interest.
my.s <- seq(0, 5, by = 0.1)[-1]

max(my.s - gamma1Qlink(gamma1Qlink(my.s, p = p), p = p, inverse =TRUE)) ## Zero

## E2. Special values of theta ##
gamma1Qlink(theta = c(-0.15, -0.10, 0, 1:10) , p = p, inverse = FALSE) ## NaNs
gamma1Qlink(theta = c(-5, -3, 0, 1:10) , p = p, inverse = TRUE) ## Out of range

## E3. Plot of gamma1QLink() and its inverse. ##

# gamma1Qlink()
plot(gamma1Qlink(theta = my.s, p = p) ~ my.s,

type = "l", col = "blue", lty = "dotted", lwd = 3,
xlim = c(-0.1, 5), ylim = c(-5, 15), las = 1,
main = c("Blue is gamma1Qlink(), green is the inverse"),
ylab = "gamma1Qlink transformation", xlab = "theta")

abline(h = 0, v = 0, lwd = 2)
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# The inverse
lines(my.s, gamma1Qlink(theta = my.s, p = p, inverse = TRUE),

col = "green", lwd = 2, lty = "dashed")

# The identity function, for double-checking.
lines(my.s, my.s, lty = "dotted")

gammaRff 2–parameter Gamma Distribution

Description

Estimates the 2–parameter gamma distribution by maximum likelihood. One linear predictor mod-
els the mean.

Usage

gammaRff(zero = "shape", lmu = "gammaRMlink",
lrate = NULL, lshape = "loglink",
irate = NULL, ishape = NULL, lss = TRUE)

Arguments

zero Specifies the parameters to be modelled as intercept–only.
See CommonVGAMffArguments.

lmu The link function applied to the gamma distribution mean, i.e., gammaRMlink.
lrate, lshape, irate, ishape, lss

Same as gammaR.

Details

This family function slightly enlarges the functionalities of gammaR by directly modelling the mean
of the gamma distribution. It performs very much like gamma2, but involves the ordinary (not
reparametrized) density, given by

f(y;α, β) =
βα

Γ(α)
e−βyyα−1,

Here, α and β are positive shape and rate parameters as in gammaR. The default linear predictors
are η1 = gammaRMlink(α;β) = log µ = log(α/β), and η2 = logα, unlike η1 = log β and
η2 = logα from gammaR.

lmu overrides lrate and no link other than gammaRMlink is a valid entry (lmu). To mimic gammaR
simply set lmu = NULL and lrate = "loglink". The mean (µ) is returned as the fitted values.

gammaRff differs from gamma2. The latter estimates a re-parametrization of the gamma distribution
in terms µ and α. This VGAM family function does not handle censored data.
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Value

An object of class "vglm". See vglm-class for full details.

Note

The parameters α and β match the arguments shape and rate of rgamma.

Multiple responses are handled.

Author(s)

V. Miranda and Thomas W. Yee.

References

Yee, T. W. (2015) Vector Generalized Linear and Additive Models: With an Implementation in R.
Springer, New York, USA.

See Also

gammaRMlink, CommonVGAMffArguments, gammaR, gamma2, Links.

Examples

### Modelling the mean in terms of x2, two responses.

set.seed(2017022101)
nn <- 80
x2 <- runif(nn)
mu <- exp(2 + 0.5 * x2)

# Shape and rate parameters in terms of 'mu'
shape <- rep(exp(1), nn)
rate <- gammaRMlink(theta = log(mu), shape = shape,

inverse = TRUE, deriv = 0)

# Generating some random data
y1 <- rgamma(n = nn, shape = shape, rate = rate)
gdata <- data.frame(x2 = x2, y1 = y1)
rm(y1)

# lmu = "gammaRMlink" replaces lshape, whilst lrate = "loglink"
fit1 <- vglm(cbind(y1, y1) ~ x2,

gammaRff(lmu = "gammaRMlink", lss = TRUE, zero = "shape"),
data = gdata, trace = TRUE, crit = "log")

coef(fit1, matrix = TRUE)
summary(fit1)

# Comparing fitted values with true values.
compare1 <- cbind(fitted.values(fit1)[, 1, drop = FALSE], mu)
colnames(compare1) <- c("Fitted.vM1", "mu")
head(compare1)
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### Mimicking gammaR. Note that lmu = NULL.
fit2 <- vglm(y1 ~ x2, gammaRff(lmu = NULL, lrate = "loglink",

lshape = "loglink", lss = FALSE, zero = "shape"),
data = gdata, trace = TRUE, crit = "log")

# Compare fitted values with true values.
compare2 <- with(gdata, cbind(fitted.values(fit2), y1, mu))
colnames(compare2) <- c("Fitted.vM2", "y", "mu")
head(compare2)

### Fitted values -- Model1 vs Fitted values -- Model2
fit1vsfit2 <- cbind(fitted.values(fit1)[, 1, drop = FALSE],

fitted.values(fit2))
colnames(fit1vsfit2) <- c("Fitted.vM1", "Fitted.vM2")
head(fit1vsfit2)

### Use gamma2()
fit3 <- vglm(y1 ~ x2, gamma2,

data = gdata, trace = TRUE, crit = "log")
fit1.fit3 <- cbind(fitted.values(fit1)[, 1, drop = FALSE],

fitted.values(fit2), fitted.values(fit3))
colnames(fit1.fit3) <- c("Fitted.vM1", "Fitted.vM2", "Fitted.vM3")
head(fit1.fit3)

gammaRMlink Link functions for the mean of 2–parameter continuous distributions:
The gamma distribution.

Description

Computes the gammaRMlink transformation, its inverse and the first two derivatives.

Usage

gammaRMlink(theta, shape = NULL, wrt.param = NULL,
bvalue = NULL, inverse = FALSE,
deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. This is θ (’rate’ parameter) but iy may be η depending on
the other parameters. See below for further details.

shape The shape parameter. Same as gammaRff.



52 gammaRMlink

wrt.param Positive integer, either 1 or 2. The partial derivatives are computed with respect
to one of the two linear predictors involved with this link. Further details listed
below.

bvalue, inverse, deriv, short, tag
See Links.

Details

The link to model the mean of the 2–parameter gamma distribution.

The gammaRMlink transformation, for given α (’shape’ parameter), is defined as

η = η(α;β) = log
α

β
,

where β > 0 is a rate parameter. This link is expressly a function of β, i.e. θ, therefore α (shape)
must be entered at every call.

Numerical values of α or β out of range may result in Inf, -Inf, NA or NaN.

Value

For deriv = 0, the gammaRMlink transformation of theta, i.e. β, when inverse = FALSE. If inverse
= TRUE, then θ becomes η, and the inverse, α * exp(-theta), for given α, is returned.

For deriv = 1, theta becomes θ = (β, α) =(θ1, θ2), and η = (η1, η2), and then, the argument
wrt.param must be considered:

A) If inverse = FALSE, then d eta1 / d theta1 when wrt.param = 1, and d eta1 / d theta2 if
wrt.param = 2.

B) For inverse = TRUE, this function returns d theta1 / d eta1 and d theta2 / d eta1 conformably
arranged in a matrix, if wrt.param = 1, as a function of θi, i = 1, 2. Also, when wrt.param = 2, a
matrix with columns dtheta1 / d eta2 and dtheta2 / d eta2 is returned.

Similarly, when deriv = 2, the second derivatives in terms of theta are returned.

Note

Numerical instability may occur for values theta too close to zero. Use argument bvalue to replace
them before computing the link.

If theta is character, then arguments inverse and deriv are ignored. See Links for further details.

Author(s)

V. Miranda and Thomas W. Yee.

See Also

gammaRff, gammaR, Links.
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Examples

eta <- seq(-3, 3, by = 0.1) # this is eta = log(mu(b, a)).
shape <- rep(exp(0.8), length(eta)) # 'shape' argument.

## E1. Get 'rate' values.
theta <- gammaRMlink(theta = eta, shape = shape, inverse = TRUE) # rate

## Not run:
## E2. Plot theta vs. eta, 'shape' fixed.

plot(theta, eta, type = "l", las = 1, ylab = "",
main = "gammaRMlink(theta; shape)")

## End(Not run)

## E3. gammaRMlink() and its inverse ##
etabis <- gammaRMlink(theta = theta, shape = shape, inverse = FALSE)
my.diff <- eta - etabis
summary(my.diff) # Zero

## E4. Special values arranged in a matrix ##
bbeta <- matrix(eta[1:9], ncol = 3, nrow = 3) #Ensure equal dimensions.
alpha <- matrix(c(Inf, -Inf, NA, NaN, -1 , 1, 0, -2, 2), ncol = 3, nrow = 3)
# The gammaRMlink transformation (log(a/b))
gammaRMlink(theta = bbeta, shape = alpha, inv = FALSE) # NaNs produced.
# Same as
log(alpha/bbeta)

gen.betaIImr Generalized Beta Distribution of the Second Kind family function

Description

Maximum likelihood estimation of the 4-parameter generalized beta II distribution using Fisher
scoring.

Usage

gen.betaIImr(lscale = "loglink",
lshape1.a = "loglink",
lshape2.p = "loglink",
lshape3.q = "loglink",
iscale = NULL,
ishape1.a = NULL,
ishape2.p = NULL,
ishape3.q = NULL,
imethod = 1,
lss = TRUE,
gscale = exp(-5:5),



54 gen.betaIImr

gshape1.a = exp(-5:5),
gshape2.p = exp(-5:5),
gshape3.q = exp(-5:5),
probs.y = c(0.25, 0.50, 0.75),
zero = "shape" )

Arguments

lscale, lshape1.a, lshape2.p, lshape3.q
Parameter link functions applied to the shape parameter a, scale parameter scale,
shape parameter p, and shape parameter q. All four parameters are positive. See
Links for more choices.

iscale, ishape1.a, ishape2.p, ishape3.q
Optional initial values for b, a, p and q. Default is NULL for all of them, meaning
initial values are computed internally.

imethod Initializing method to internally compute the initial values. Currently, only
method = 1 is handled.

gscale, gshape1.a, gshape2.p, gshape3.q
Grid search initial values. See CommonVGAMffArguments for further informa-
tion.

zero Numeric or Character vector. Position(s) or name(s) of the parameters/linear
predictors to be modeled as intercept-only. Details at CommonVGAMffArguments.

lss, probs.y See CommonVGAMffArguments for important information.

Details

This distribution is most useful for unifying a substantial number of size distributions. For example,
the Singh-Maddala, Dagum, Fisk (log-logistic), Lomax (Pareto type II), inverse Lomax, beta distri-
bution of the second kind distributions are all special cases. Full details can be found in Kleiber and
Kotz (2003), and Brazauskas (2002). The argument names given here are used by other families
that are special cases of this family. Fisher scoring is used here and for the special cases too.

The 4-parameter generalized beta II distribution has density

f(y) = ayap−1/[bapB(p, q){1 + (y/b)a}p+q]

for a > 0, b > 0, p > 0, q > 0, y ≥ 0. Here B is the beta function, and b is the scale parameter
scale, while the others are shape parameters. The mean is

E(Y ) = bΓ(p+ 1/a) Γ(q − 1/a)/(Γ(p) Γ(q))

provided −ap < 1 < aq; these are returned as the fitted values.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.
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Warning

zero can be a numeric or a character vector specifying the position(s) or the name(s) (partially or
not) of the linear predictors modeled as intercept–only. Numeric values can be entered as usual. If
names are used, note that the linear predictors in this family function are

c("scale", "shape1.a", "shape2.p", "shape3.q").

For simplicity, using names rather than numeric vectors is recommended.

Note

Paramaters "shape1.a", "shape2.p", "shape3.q" are modeled as intercept only, by default.

If the self-starting initial values fail, try experimenting with the initial value arguments, iscale,
ishape1.a, ishape2.p and ishape3.q whose default is NULL. Also, the constraint −ap < 1 < aq
may be violated as the iterations progress so it is worth monitoring convergence, e.g., set trace =
TRUE.

Successful convergence depends on choosing good initial values. This process might be difficult for
this distribution, since 4 parameters are involved. Presently, only method = 1 is internally handled to
set initial values. It involves grid search, an internal implementation of the well-known grid search
algorithm for exhaustive searching through a manually specified subset of the hyperparameter space.

Default value of lss is TRUE standing for the following order: location (b), shape1.a (a), shape2.p
(p), shape3.q (q). In order to match the arguments of existing R functions, the option lss = FALSE
might be set leading to switch the position of location (b) and shape1.a (a), only.

Author(s)

T. W. Yee and V. Miranda.

References

Brazauskas, V. (2002) Fisher information matrix for the Feller-Pareto distribution. Statistics &
Probability Letters, 59, 159–167.

Kleiber, C. and Kotz, S. (2003) Statistical Size Distributions in Economics and Actuarial Sciences.
Wiley Series in Probability and Statistics. Hoboken, New Jersey, USA.

McDonald, J. B. and Xu, Y. J. (1995) A generalization of the beta distribution with applications.
Journal of Econometrics. 66, p.133–152.

McDonald, J. B. (1984) Some generalized functions for the size distribution of income. Economet-
rica, 52, 647–663.

See Also

betaff, betaII, dagum, sinmad, fisk, lomax, inv.lomax, paralogistic, inv.paralogistic,
genbetaIIDist.
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Examples

#----------------------------------------------------------------------- #
# An example.- In this data set parameters 'shape1.a' and 'shape3.q' are
# generated in terms of x2.

set.seed(1003)
nn <- 200
gdata1 <- data.frame(x2 = runif(nn))
gdata <- transform(gdata1,

y1 = rgen.betaII(nn, scale = exp(1.1), shape1.a = exp(1.2 + x2),
shape2.p = exp(0.7) , shape3.q = exp(2.1 - x2)),

y2 = rgen.betaII(nn, scale = exp(2.0), shape1.a = exp(1.8 + x2),
shape2.p = exp(2.3) , shape3.q = exp(1.9 - x2)),

y3 = rgen.betaII(nn, scale = exp(1.5), shape1.a = exp(1.8),
shape2.p = exp(2.3) , shape3.q = exp(1.3)))

#------------------------------------------------------------------------#
# A single intercept-only model. No covariates.
# Note the use of (optional) initial values.
fit <- vglm(y2 ~ 1, #y3 ~ 1

gen.betaIImr(lss = TRUE,
# OPTIONAL INITIAL VALUES
#iscale = exp(1.5),
#ishape1.a = exp(1.8),
#ishape2.p = exp(2.3),
#ishape3.q = exp(1.3),

imethod = 1),
data = gdata, trace = TRUE, crit = "loglik")

Coef(fit)
coef(fit, matrix = TRUE)
summary(fit)

#------------------------------------------------------------------------#
# An intercept-only model. Two responses.
fit1 <- vglm(cbind(y2, y2) ~ 1, # cbind(y1, y2)

gen.betaIImr(lss = TRUE),
data = gdata, trace = TRUE, crit = "loglik")

Coef(fit1)
coef(fit1, matrix = TRUE)
summary(fit1)
vcov(fit1, untransform = TRUE)

#------------------------------------------------------------------------#
# An example incorporating one covariate. Constraints are set accordingly.
# x2 affects shape1.a and shape3.q.
# Note that the first option uses 'constraints', whilst in the second
# choice we use the argument 'zero' to 'set' the same constraints.

### Option 1.
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c1 <- rbind(0, 1, 0, 0)
c2 <- rbind(0, 0, 0, 1)
mycons <- matrix( c(c1, c2), nc = 2, byrow = FALSE)

fit2 <- vglm(y1 ~ x2, gen.betaIImr(lss = TRUE, zero = NULL),
data = gdata, trace = TRUE, crit = "loglik",
constraints = list(x2 = mycons ))

coef(fit2, matrix = TRUE)
summary(fit2)
vcov(fit2)
constraints(fit2)

### Option 2.
fit3 <- vglm(y1 ~ x2,

gen.betaIImr(lss = TRUE,
zero = c("scale", "shape2.p")),

data = gdata, trace = TRUE, crit = "loglik")

coef(fit3, matrix = TRUE)
summary(fit3)
vcov(fit3)
constraints(fit3)

genbetaIIDist The Generalized Beta Distribution of the Second King

Description

Density, distribution function, inverse distribution (quantile function) and random generation for
the Generalized Beta of the Second Kind (GB2).

Usage

dgen.betaII(x, scale = 1.0, shape1.a = 1.0, shape2.p = 1.0, shape3.q = 1.0,
log = FALSE)

pgen.betaII(q, scale = 1.0, shape1.a = 1.0, shape2.p = 1.0, shape3.q = 1.0,
lower.tail = TRUE, log.p = FALSE)

qgen.betaII(p, scale = 1.0, shape1.a = 1.0, shape2.p = 1.0, shape3.q = 1.0,
lower.tail = TRUE, log.p = FALSE)

rgen.betaII(n, scale = 1.0, shape1.a = 1.0, shape2.p = 1.0, shape3.q = 1.0)

Arguments

x, q Vector of quantiles.
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p Vector of probabilities.

n Number of observations. If length(n) > 1, its length is taken to be the numbre
required.

scale, shape1.a, shape2.p, shape3.q
Strictly positive scale and shape parameters.

log, log.p, lower.tail
Same meaning as in Beta

Details

The GB2 Distribution is defined by the probability density (pdf)

f(y) =
axap−1

bapB(p, q)[1 + (y/b)a]p+q,

for y > 0, and b, a, p, q > 0. Here, B(p, q) is the beta function as in beta.

The GB2 Distribution and the Beta Distribution (see Beta) are linked, as follows: Let X be a ran-
dom variable with the Beta density and parameters p = shape1 and q = shape2. Then, introducing
additional b = scale and a = shape parameters, the variable

Y =
(x/b)a

1 + (x/b)a

has the GB2 Distribution, with parameters b, a, p, q.

The GB2 kth moment exists for −ap < k < aq and is given by

E(Y k) =
bkB(p+ k/a, q − k/a)

B(p, q)

or, equivalently,

E(Y k) =
bkΓ(p+ k/a)Γ(q − k/a)

Γ(p)Γ(q)
).

Here, Γ(·) is the gamma function as in gamma.

Value

dgen.betaII() returns the density (p.d.f), pgen.betaII() gives the distribution function (p.d.f),
qgen.betaII() gives the quantile function (Inverse Distribution function), and rgen.betaII()
generates random numbers from the GB2 distribution.

Note

Values of the shape2.p parameter moderately close to zero may imply obtaning numerical values
too close to zero or values represented as zero in computer arithmetic from the function rgen.betaII().

Additionally, for specific values of the arguments x, q, p such as Inf, -Inf, NaN and NA, the func-
tions qgen.betaII(), pgen.betaII() and qgen.betaII() will return the limit when the argument
tends to such value.

In particular, the quantile qgen.betaII() retunrs zero for negative values and Inf for missed
probabilities greater than 1.0.
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Author(s)

V. Miranda and T. W. Yee

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, ch.6, p.255. Dover, New York, USA.

Kleiber, C. and Kotz, S. (2003) Statistical Size Distributions in Economics and Actuarial Sciences.
Wiley Series in Probability and Statistics. Hoboken, New Jersey, USA.

McDonald, J. B. and Xu, Y. J. (1995) A generalization of the beta distribution with applications.
Journal of Econometrics, 66, p.133–152.

McDonald, J. B. (1984) Some generalized functions for the size distribution of income. Economet-
rica, 52, p.647–663.

See Also

Beta, beta.

Examples

# Setting parameters to both examples below.
b <- exp(0.4) # Scale parameter.
a <- exp(0.5) # Shape1.a
p <- exp(0.3) # Shape2.p
q <- exp(1.4) # Shape3.q

# (1) ______________
probs.y <- seq(0.0, 1.0, by = 0.01)
data.1 <- qgen.betaII(p = probs.y, scale = b, shape1.a = a,

shape2.p = p, shape3.q = q)
max(abs(pgen.betaII(q = data.1, scale = b, shape1.a = a,

shape2.p = p, shape3.q = q)) - probs.y) # Should be 0.

# (2)_________________
xx <- seq(0, 10.0, length = 200)
yy <- dgen.betaII(xx, scale = b, shape1.a = a, shape2.p = p, shape3.q = q)
qtl <- seq(0.1, 0.9, by = 0.1)
d.qtl <- qgen.betaII(qtl, scale = b, shape1.a = a, shape2.p = p, shape3.q = q)
plot(xx, yy, type = "l", col = "red",

main = "Red is the GB2 density, blue is the GB2 Distribution Function",
sub = "Brown dashed lines represent the 10th, ..., 90th percentiles",
las = 1, xlab = "x", ylab = "", xlim = c(0, 3), ylim = c(0,1))

abline(h = 0, col = "navy", lty = 2)
abline(h = 1, col = "navy", lty = 2)
lines(xx, pgen.betaII(xx, scale = b, shape1.a = a,

shape2.p = b, shape3.q = q), col= "blue")
lines(d.qtl, dgen.betaII(d.qtl, scale = b, shape1.a = a,

shape2.p = p, shape3.q = q),
type ="h", col = "brown", lty = 3)
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geometricffMlink Link functions for the mean of 1–parameter discrete distributions: The
Geometric Distribution.

Description

Computes the geometricffMlink transformation, including its inverse and the first two derivatives.

Usage

geometricffMlink(theta, bvalue = NULL, inverse = FALSE,
deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. See below for further details.
bvalue, inverse, deriv, short, tag

Details at Links

Details

This is a natural link function to model the mean of the (discret) geometric distribution, geometric,
defined as the logarithmm of its mean, i.e.,

η = − log
p

1− p
= −logit(p).

Here, p is the probability of succes, as in geometric.

While this link function can be used to model any parameter lying in (0, 1), it is particularly useful
for event-rate geometric data where the mean can be written in terms of some rate of events, say
λ = λ(x), as

µ = λ(x)t,

and the time t (as log t) can be easily incorporated in the analysis as an offset.

Under this link function the domain set for p is (0, 1). Hence, values of ρ too close to the extremes,
or out of range will result in Inf, -Inf, NA or NaN. Use argument bvalue to adequately replace them
before computing the link function.

If theta is a character, arguments inverse and deriv are disregarded.

Value

For deriv = 0, the geometricffMlink transformation of theta when inverse = FALSE. When
inverse = TRUE then theta becomes η, and exp(-theta) / (exp(-theta) - 1) is returned.

For deriv = 1, d eta / d theta, if inverse = FALSE, else the reciprocal d theta / d eta as a function
of theta.

For deriv = 2 the second order derivatives are correspondingly returned.
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Warning

Numerical instability may occur if covariates are used leading to values of p out of range. Try to
overcome this by using argument bvalue.

Note

This function may return Inf of -Inf for values of p too close to 0 and 1 respectively.

Author(s)

V. Miranda and T. W. Yee

See Also

geometric, Links, logitlink, logffMlink.

Examples

### Example 1 ###
my.probs <- ppoints(100)
geol.inv <-

geometricffMlink(theta = geometricffMlink(theta = my.probs), # the inverse
inverse = TRUE) - my.probs

summary(geol.inv) ## zero

### Example 2. Special values of 'prob' ###
my.probs <- c(-Inf, -2, -1, 0, 0.25, 0.75, 1.0, 5, Inf, NaN, NA)
rbind(probs = my.probs,

geoffMlink = geometricffMlink(theta = my.probs),
inv.geoffl = geometricffMlink(theta = my.probs, inverse = TRUE))

### Example 3 Some probability link functions ###

my.probs <- ppoints(100)

par(lwd = 2)
plot(my.probs, logitlink(my.probs), xlim = c(-0.1, 1.1), ylim = c(-5, 8),

type = "l", col = "limegreen",
ylab = "transformation", las = 1, main = "Some probability link functions")

lines(my.probs, geometricffMlink(my.probs), col = "gray50")
lines(my.probs, logffMlink(my.probs), col = "blue")
lines(my.probs, probitlink(my.probs), col = "purple")
lines(my.probs, clogloglink(my.probs), col = "chocolate")
lines(my.probs, cauchitlink(my.probs), col = "tan")
abline(v = c(0.5, 1), lty = "dashed")
abline(v = 0, h = 0, lty = "dashed")
legend(0.1, 8,

c("geometricffMlink", "logffMlink","logitlink", "probitlink",
"clogloglink", "cauchitlink"),
col = c("gray50", "blue", "limegreen", "purple", "chocolate", "tan"),
lwd = 1, cex = 0.5)
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par(lwd = 1)

HKdata Air pollution and hospital admissions due to respiratory and cardio-
vascular causes, Hong Kong.

Description

Daily air pollution levels and hospital admissions due to respiratory and cardiovascular causes,
between 1 January 1994 and 31 December 1997, Hong Kong.

Usage

data(HKdata)

Format

This is a subset of the data analyzed in Xia and Tong (2006) which stores the following time series:

no Time vector,

cardio, resp Integer. Daily hospital admissions due to respiratory and cardiovascular causes, 1
January 1994 and 31 December 1997.

no2, so2, rsp, o3 Numeric. Daily mean average of NO2, SO2, respirable suspended particles (rsp;
that is PM10), and O3, in parts per billion (ppb).

temp, hum Numeric. Daily mean average of temperature (Celsius deg.) and humidity (%)

mon, tue, wed, thur, fri, sat Factors with two levels. Weekdays/weekends indicator variables.

Source

Data set retrieved from https://blog.nus.edu.sg/homepage/research/

References

Xia, Y. and Tong, H. (2006) Cumulative effects of air pollution on public health. Statistics in
Medicine. 25(29), 3548-3559.

Examples

data(HKdata)
summary(HKdata[, -1])

https://blog.nus.edu.sg/homepage/research/
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inv.chisqDist The Inverse Chi–squared Distribution

Description

Density, CDF, quantile function and random number generator for the Inverse Chi–squared distri-
bution.

Usage

dinv.chisq(x, df, log = FALSE)
pinv.chisq(q, df, lower.tail = TRUE, log.p = FALSE)
qinv.chisq(p, df, lower.tail = TRUE, log.p = FALSE)
rinv.chisq(n, df)

Arguments

x, q, p, n Same as Chisquare.
df, lower.tail, log, log.p

Same as Chisquare.

Details

The inverse chi–squared distribution with non–negative df = ν degrees of freedom implemented
here has density

f(x; ν) =
2−ν/2x−ν/2−1e−1/(2x)

Γ(ν/2)
,

where x > 0, and Γ is the gamma function.

The mean is 1/(ν − 2), for ν > 2, and the variance is given by 2/[(ν − 2)2(ν − 4)], for ν > 4.

Also, as with Chisquare, the degrees of freedom can be non–integer.

Value

dinv.chisq returns the density, pinv.chisq returns the distribution function, qinv.chisq gives
the quantiles, and rinv.chisq generates random numbers from this distribution.

Source

Specifically, it is the probability distribution of a random variable whose reciprocal follows a chi–
squared distribution, i.e.,

If Y ∼ chi–squared(ν), then 1/Y ∼ Inverse chi–squared(ν).

As a result, dinv.chisq, pinv.chisq, qinv.chisq and rinv.chisq use the functions Chisquare
as a basis. Hence, invalid arguments will lead these functions to return NA or NaN accordingly.
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Note

Yet to do: A non–central parameter as an argument, if amenable.

Two similar versions of the Inverse chi–squared distribution with ν degrees of freedom may be
found in the literature, as follows:

Let Y ∼ chi–squared(ν), then

I. 1/Y ∼ Inverse chi–squared(ν), and II. ν/Y ∼ Inverse chi–squared(ν).

Here, the former, which is the popular version, has been implemented.

Author(s)

V. Miranda

References

Johnson, N.L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions. Chapters
18 (volume 1) and 29 (volume 2). Wiley, New York.

See Also

Chisquare, gamma.

Examples

## Example 1 ##
nn <- 50; df <- 1.4
data.1 <- ppoints(nn)
data.q <- qinv.chisq(-data.1, df = df, log.p = TRUE)
data.p <- -log(pinv.chisq(data.q, df = df))
max(abs(data.p - data.1)) # Should be zero

## Example 2 ##

xx <- seq(0, 3.0, len = 301)
yy <- dinv.chisq(xx, df = df)
qtl <- seq(0.1, 0.9, by = 0.1)
d.qtl <- qinv.chisq(qtl, df = df)
plot(xx, yy, type = "l", col = "orange",

main = "Orange is density, blue is cumulative distribution function",
sub = "Brown dashed lines represent the 10th, ... 90th percentiles",
las = 1, xlab = "x", ylab = "", ylim = c(0, 1))

abline(h = 0, col= "navy", lty = 2)
lines(xx, pinv.chisq(xx, df = df), col = "blue")
lines(d.qtl, dinv.chisq(d.qtl, df = df), type ="h", col = "brown", lty = 3)
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inv.chisqff Inverse Chi–squared Distribution.

Description

Maximum likelihood estimation of the degrees of freedom for an inverse chi–squared distribution
using Fisher scoring.

Usage

inv.chisqff(link = "loglink", zero = NULL)

Arguments

link, zero link is the link function applied to the degrees of freedom, leading to the unique
linear predictor in this family function. By default, the link is loglink.
zero allows to model the single linear predictor as intercept–only.
For further details, see CommonVGAMffArguments.

Details

The inverse chi–squared distribution with df = ν ≥ 0 degrees of freedom implemented here has
density

f(x; ν) =
2−ν/2x−ν/2−1e−1/(2x)

Γ(ν/2)
,

where x > 0, and Γ is the gamma function. The mean of Y is 1/(ν − 2) (returned as the fitted
values), provided ν > 2.

That is, while the expected information matrices used here are valid in all regions of the parameter
space, the regularity conditions for maximum likelihood estimation are satisfied only if ν > 2. To
enforce this condition, choose link = logoff(offset = -2).

As with, chisq, the degrees of freedom are treated as a parameter to be estimated using (by de-
fault) the link loglink. However, the mean can also be modelled with this family function. See
inv.chisqMlink for specific details about this.

This family VGAM function handles multiple responses.

Value

An object of class "vglmff". See vglmff-class for further details.

Warning

By default, the single linear/additive predictor in this family function, say η = log dof , can be
modeled in terms of covariates, i.e., zero = NULL. To model η as intercept–only set zero = "dof".

See zero for more details about this.
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Note

As with chisq or Chisquare, the degrees of freedom are non–negative but allowed to be non–
integer.

Author(s)

V. Miranda.

See Also

loglink, CommonVGAMffArguments, inv.chisqMlink, zero.

Examples

set.seed(17010504)
dof <- 2.5
yy <- rinv.chisq(100, df = dof)
ics.d <- data.frame(y = yy) # The data.

fit.inv <- vglm(cbind(y, y) ~ 1, inv.chisqff,
data = ics.d, trace = TRUE, crit = "coef")

Coef(fit.inv)
summary(fit.inv)

inv.chisqMlink Link functions for the mean of 1–parameter continuous distributions:
The inverse chi–squared distribution.

Description

Computes the inv.chisqMlink transformation, its inverse and the first two derivatives.

Usage

inv.chisqMlink(theta, bvalue = NULL, inverse = FALSE,
deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. This is θ by default but may be η depending on the other
parameters. See below for further details.

bvalue, inverse, deriv, short, tag
See Links.
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Details

This link functions models the mean of the inverse chi–squared distribution, inv.chisqff.

It is defined as
η = − log(df − 2),

where df denotes the (non–negative) degrees of freedom, as in inv.chisqff.

Notice, however, that df > 2 is required for the mean of this distribution to be real. Consequently,
the domain set for df for this link function is (2,∞).

Numerical values of df out of range will result in NA or NaN.

Value

For deriv = 0, the inv.chisqMlink transformation of theta when inverse = FALSE. If inverse
= TRUE, then the inverse exp(-theta) + 2.

For deriv = 1, d eta / d theta when inverse = FALSE. If inverse = TRUE, then d theta / d eta
as a function of theta.

When deriv = 2, the second derivatives in terms of theta are returned.

Note

Numerical instability may occur for values theta too large or possibly, too close to 2. Use argument
bvalue to replace them before computing the link.

If theta is character, then arguments inverse and deriv are ignored. See Links for further details.

Author(s)

V. Miranda and Thomas W. Yee.

See Also

inv.chisqff, Links.

Examples

## E1. Modelling the mean of the exponential distribution ##
set.seed(17010502)
dof <- 2.5
isq.data <- data.frame(x2 = runif(100, 0, 1))
isq.data <- transform(isq.data, y = rinv.chisq(n = 100, df = dof + x2))

hist(isq.data$y)

fit.inv <- vglm(y ~ x2, family = inv.chisqff(link = "inv.chisqMlink"),
data = isq.data, trace = TRUE )

coef(fit.inv, matrix = TRUE)
summary(fit.inv)
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## E3. Special values in a matrix ##
(theta <- matrix(c(Inf, -Inf, NA, NaN, 1 , 2, 3, 4), ncol = 4, nrow = 2))
inv.chisqMlink(theta = theta) ## NaNs for df = theta <= 2

## E2. inv.chisqMlink() and its inverse ##
theta <- 0.1 + 1:5 # dof = df
my.diff <- theta - inv.chisqMlink(inv.chisqMlink(theta = theta), inverse =TRUE)
summary(my.diff) # Zero

invgamma2mr 2 - parameter Inverse Gamma Distribution

Description

Estimates the 2-parameter Inverse Gamma distribution by maximum likelihood estimation.

Usage

invgamma2mr(lmu = "loglink",
lshape = logofflink(offset = -2),
parallel = FALSE,
ishape = NULL,
imethod = 1,
zero = "shape")

Arguments

lmu, lshape Link functions applied to the (positives) mu and shape parameters (called µ and
a respectively), according to gamma2. See CommonVGAMffArguments for further
information.

parallel Same as gamma2. Details at CommonVGAMffArguments.

ishape Optional initial value for shape, same as gamma2

imethod Same as gamma2.

zero Numeric or character vector. Position or name(s) of the parameters/linear pre-
dictors to be modeled as intercept–only. Default is "shape". Details at CommonVGAMffArguments.

Details

The Gamma distribution and the Inverse Gamma distribution are related as follows:Let X be a
random variable distributed asGamma(a, β), where a > 0 denotes the shape parameter and β > 0
is the scale paramater. Then Y = 1/X is an Inverse Gamma random variable with parameters scale
= a and shape = 1/β.

The Inverse Gamma density function is given by
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f(y;µ, a) =
(a− 1)aµa

Γ(a)
y−a−1 e−µ(a−1)/y,

for µ > 0, a > 0 and y > 0. Here, Γ(·) is the gamma function, as in gamma. The mean of Y is
µ = µ (returned as the fitted values) with variance σ2 = µ2/(a− 2) if a > 2, else is infinite. Thus,
the link function for the shape parameter is logloglink. Then, by default, the two linear/additive
predictors are η1 = log(µ), and η2 = log(a), i.e in the VGLM context, η = (log(µ), loglog(a)

This VGAM family function handles multiple reponses by implementing Fisher scoring and unlike
gamma2, the working-weight matrices are not diagonal. The Inverse Gamma distribution is right-
skewed and either for small values of a (plus modest µ) or very large values of µ (plus moderate
a > 2), the density has values too close to zero.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

Note that zero can be a numeric or a character vector specifying the position of the names (par-
tially or not) of the linear predictor modeled as intercept only. In this family function such names
are

c("mu", "shape").

Numeric values can be entered as usual. See CommonVGAMffArguments for further details.

Note

The response must be strictly positive.

If mu and shape are vectors, then rinvgamma(n = n, shape = shape, scale = mu/(shape - 1) will
generate random inverse gamma variates of this parameterization, etc.; see invgammaDist.

Given the math relation between the Gamma and the Inverse Gamma distributions, the parameter-
ization of this VGAM family function underlies on the parametrization of the 2-parameter gamma
distribution described in the monograph

Author(s)

Victor Miranda and T. W. Yee

References

McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd ed. London, UK. Chapman
& Hall.

See Also

invgammaDist, gamma2 for the 2-parameter gamma distribution, GammaDist, CommonVGAMffArguments,
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Examples

#------------------------------------------------------------------------#
# Essentially fitting a 2-parameter inverse gamma distribution
# with 2 responses.

set.seed(101)
y1 = rinvgamma(n = 500, scale = exp(2.0), shape = exp(2.0))
y2 = rinvgamma(n = 500, scale = exp(2.5), shape = exp(2.5))
gdata <- data.frame(y1, y2)

fit1 <- vglm(cbind(y1, y2) ~ 1,
family = invgamma2mr(zero = NULL,

# OPTIONAL INITIAL VALUE
# ishape = exp(2),

imethod = 1),
data = gdata, trace = TRUE)

Coef(fit1)
c(Coef(fit1), log(mean(gdata$y1)), log(mean(gdata$y2)))
summary(fit1)
vcov(fit1, untransform = TRUE)

#------------------------------------------------------------------------#
# An example including one covariate.
# Note that the x2 affects the shape parameter, which implies that both,
# 'mu' and 'shape' are affected.
# Consequently, zero must be set as NULL !

x2 <- runif(1000)
gdata <- data.frame(y3 = rinvgamma(n = 1000,

scale = exp(2.0),
shape = exp(2.0 + x2)))

fit2 <- vglm(y3 ~ x2,
family = invgamma2mr(lshape = "loglink", zero = NULL),
data = gdata, trace = TRUE)

coef(fit2, matrix = TRUE)
summary(fit2)
vcov(fit2)

invgammaDist The Inverse Gamma Distribution

Description

Density, distribution function, quantile function and random numbers generator for the Inverse
Gamma Distribution.
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Usage

dinvgamma(x, scale = 1/rate, shape, rate = 1, log = FALSE)
pinvgamma(q, scale = 1/rate, shape, rate = 1, lower.tail = TRUE, log.p = FALSE)
qinvgamma(p, scale = 1/rate, shape, rate = 1, lower.tail = TRUE, log.p = FALSE)
rinvgamma(n, scale = 1/rate, shape, rate = 1)

Arguments

x, q, p, n Same as GammaDist.

scale, shape Scale and shape parameters, same as GammaDist. Both must be positive.

rate Same as GammaDist.
log, log.p, lower.tail

Same as GammaDist.

Details

The Inverse Gamma density with parameters scale = b and shape = s is given by

f(y) =
bs

Γ(s)
y−s−1e−b/y,

for y > 0, b > 0, and s > 0. Here, Γ(·) is the gamma function as in gamma

The relation between the Gamma Distribution and the Inverse Gamma Distribution is as follows:

Let X be a random variable distributed as Gamma (b, s), then Y = 1/X is distributed as Inverse
Gamma (1/b, s). It is worth noting that the math relation between the scale paramaters of both, the
Inverse Gamma and Gamma distributions, is inverse.

Thus, algorithms of dinvgamma(), pinvgamma(), qinvgamma() and rinvgamma() underlie on the
algorithms GammaDist.

Let Y distributed as Inverse Gamma (b, s). Then the kth moment of Y exists for −∞ < k < s and
is given by

E[Y k] =
Γ(s− k)

Γ(s)
bk.

The mean (if s > 1) and variance (if s > 2) are

E[Y ] =
b

(s− 1)
; V ar[Y ] =

b2

(s− 1)2 × (s− 2)
.

Value

dinvgamma() returns the density, pinvgamma() gives the distribution function, qinvgamma() gives
the quantiles, and rinvgamma() generates random deviates.

Warning

The order of the arguments scale and shape does not match GammaDist.
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Note

Unlike the GammaDist, small values of a (plus modest µ) or very large values of µ (plus moderate
a > 2), generate Inverse Gamma values so near to zero. Thus, rinvgamma in invgammaDist may
return either values too close to zero or values represented as zero in computer arithmetic.

In addition, function dinvgamma will return zero for x = 0, which is the limit of the Inverse Gamma
density when ′x′ tends to zero.

Author(s)

V. Miranda and T. W. Yee.

References

Kleiber, C. and Kotz, S. (2003) Statistical Size Distributions in Economics and Actuarial Sciences.
Wiley Series in Probability and Statistics. Hoboken, New Jersey, USA.

See Also

GammaDist, gamma.

Examples

# Example 1.______________________
n <- 20
scale <- exp(2)
shape <- exp(1)
data.1 <- runif(n, 0, 1)
data.q <- qinvgamma(-data.1, scale = scale, shape = shape, log.p = TRUE)
data.p <- -log(pinvgamma(data.q, scale = scale, shape = shape))
arg.max <- max(abs(data.p - data.1)) # Should be zero

# Example 2.______________________
scale <- exp(1.0)
shape <- exp(1.2)
xx <- seq(0, 3.0, len = 201)
yy <- dinvgamma(xx, scale = scale, shape = shape)
qtl <- seq(0.1, 0.9, by = 0.1)
d.qtl <- qinvgamma(qtl, scale = scale, shape = shape)
plot(xx, yy, type = "l", col = "orange",

main = "Orange is density, blue is cumulative distribution function",
sub = "Brown dashed lines represent the 10th, ... 90th percentiles",
las = 1, xlab = "x", ylab = "", ylim = c(0, 1))

abline(h = 0, col= "navy", lty = 2)
lines(xx, pinvgamma(xx, scale = scale, shape = shape), col = "blue")
lines(d.qtl, dinvgamma(d.qtl, scale = scale, shape = shape),

type ="h", col = "brown", lty = 3)
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invweibull2mr 2- parameter Inverse Weibull Distribution

Description

Maximum likelihood estimation of the 2-parameter Inverse Weibull distribution. No observations
should be censored.

Usage

invweibull2mr(lscale = loglink,
lshape = logofflink(offset = -2),
iscale = NULL,
ishape = NULL,
imethod = 2,
lss = TRUE,
gscale = exp(-4:4),
gshape = exp(-4:4),
probs.y = c(0.25, 0.50, 0.75),
zero = "shape")

Arguments

lscale, lshape Parameter link functions applied to the (positive) shape parameter (called a be-
low) and (positive) scale parameter (called b below). Given that the shape
parameter must be greater than 2, lshape = logofflink(offset = -2) by de-
fault. See Links for more choices.

iscale, ishape Optional initial values for the shape and scale parameters.

gscale, gshape See CommonVGAMffArguments.

lss, probs.y Details at CommonVGAMffArguments.

imethod Initializing method internally implemented. Currently only the values 1 and 2
are allowed and NO observations should be censored.

zero Numeric or character vector. The position(s) of the name(s) of the parame-
ters/linear predictors to be modeled as intercept–only. Default is "shape". De-
tails at CommonVGAMffArguments

Details

The Weibull distribution and the Inverse Weibull distributions are related as follows:

Let X be a Weibull random variable with paramaters scale =b and shape =a. Then, the random
variable Y = 1/X has the Inverse Weibull density with parameters scale = 1/b and shape = a.

The Inverse weibull density for a response Y is given by

f(y; a, b) = a(ba)y−a−1 exp[−(y/b)( − a)]
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for a > 0, b > 0, y > 0. The mean, that is returned as the fitted values, (if a > 1) and the variance
(if a > 2) are

E[Y ] = b Γ(1− 1/a); V ar[Y ] = b2 [Γ(1− 2/a)− (Γ(1− 1/a))2].

Fisher scoring is used to estimate both parameters. Although the expected information matrices used
are valid in all regions of the parameter space, the regularity conditions for maximum likelihood
estimation (MLE) are satisfied only if a > 2 (according to Kleiber and Kotz (2003)). If this is
violated then a warning message is issued. To enforce a > 2, it has been set by default that lshape
= logofflink(offset = 2).

As a result of the math relation between the Weibull and the Inverse Weibull distributions, regularity
conditions for inference for the latter, are the following: if a ≤ 1 then the MLE’s are not consisten,
if 1 < a < 2 then MLEs exist but are not assymptotically normal, if a = 2, the MLE’s exist and
are normal and asymptotically efficient but the convergence rate is slower compared when a > 2.
If a > 2, then the MLE’s have classical asymptotic properties.

Value

An object of class "vglmff" (see vglmff-class). The object is used to model special models such
as vglm and vgam.

Warning

Note that zero can be a numeric or a character vector specifying the position of the names (par-
tially or not) of the linear predictor modeled as intercept only. In this family function these names
are

c("scale", "shape").

Numeric values can be entered as usual. See CommonVGAMffArguments for further details. For
simplicity, the second choice is recommended.

If the shape parameter is less than two (i.e. less than exp(0.69315)), then misleading inference
may result ! (see above the regularity condition for the ’variance’), e.g., in the summary and vcov
of the object.

However, the larger the shape parameter is (for instance, greater than exp(2.5), plus reasonable
scale), the more unstable the algorithm may become. The reason is that inverse weibull densities
under such conditions are highly peaked and left skewed. Thus, density values are too close to zero
(or values represented as zero in computer arithmetic).

Note

By default, the shape paramater is modeled as intercept only.

Successful convergence depends on having reasonably good initial values. If the initial values
chosen by this function are not good, make use the two initial value arguments, iscale and ishape.

This VGAM family function currently handles multiple responses however, it does not handle cen-
sored data. This feature will be considered in a later version of the package.

The Inverse Weibull distribution, which is that of Y = 1/X where X has the Weibull density, is
known as the log-Gompertz distribution.
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Author(s)

Victor Miranda and T. W. Yee.

References

Harper, W. V., Eschenbach, T. G. and James, T. R. (2011) Concerns about Maximum Likelihood
Estimation for the Three-Parameter Weibull Distribution: Case Study of Statistical Software. The
American Statistician, 65(1), 44-54.

Kleiber, C. and Kotz, S. (2003) Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

Johnson, N. L. and Kotz, S. and Balakrishnan, N. (1994) Continuous Univariate Distributions, 2nd
edition, Volume 1, New York: Wiley.

See Also

invweibullDist, weibullR.

Examples

#-----------------------------------------------------------------------#
# Here, covariate 'x2' affects the scale parameter.
# See how data is generated.

set.seed(102)
wdata <- data.frame(x2 = runif(nn <- 1000)) # Complete data
wdata <- transform(wdata,

y1 = rinvweibull(nn, scale = exp(2.5 - (0.5) * x2),
shape = exp(1.5) ),

y2 = rinvweibull(nn, scale = exp(1.5 + x2),
shape = exp(1.25) ))

#------------------------------------------------------------------------#
# Fitting the Inverse Weibull distribution accordingly.
# Note that multiple responses are handled.

fit1 <- vglm(cbind(y1, y2) ~ x2,
invweibull2mr(zero = "shape",

# OPTIONAL INITIAL VALUE. Be carefull here when
# entered initial value. Sensitive distribution

ishape = exp(1.2),
lss = TRUE),

data = wdata, trace = TRUE, crit = "log")

coef(fit1, matrix = TRUE)
vcov(fit1)
summary(fit1)

### A second option (producing same results!!) might be to use the
### constraints argument in the 'vglm()' call. Note that 'x2' affects
### the scale parameter only.
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fit2 <- vglm(y1 ~ x2,
invweibull2mr(zero = NULL),
data = wdata, trace = TRUE,
constraints = list(x2 = rbind(1, 0)))

coef(fit2, matrix = TRUE)
vcov(fit2)
summary(fit2)
constraints(fit2)

invweibullDist The Inverse Weibull Distribution

Description

Density, distribution function, quantile function and random numbers generator for the Inverse
Weibull Distribution.

Usage

dinvweibull(x, scale = 1, shape, log = FALSE)
pinvweibull(q, scale = 1, shape, lower.tail = TRUE, log.p = FALSE)
qinvweibull(p, scale = 1, shape, lower.tail = TRUE, log.p = FALSE)
rinvweibull(n, scale = 1, shape)

Arguments

x, q, p, n Same as Weibull.

scale, shape Scale and shape parameters, same as Weibull. Both must be positive.
log, log.p, lower.tail

Same as Weibull.

Details

The Inverse Weibull density with parameters scale = b and shape = s, is

f(y) = sbsy−s−1 exp [−(y/b)−s],

for y > 0, b > 0, and s > 0.

The Weibull distribution and the Inverse Weibull distributions are related as follows:

Let X be a Weibull random variable with paramaters scale =b and shape =s. Then, the random
variable Y = 1/X has the Inverse Weibull density with parameters scale = 1/b and shape = s.
Thus, algorithms of [dpqr]-Inverse Weibull underlie on Weibull.
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Let Y be a r.v. distributed as Inverse Weibull (b, s). The kth moment exists for −∞ < k < s and is
given by

E[Y k] = bk Γ(1− k/s).

The mean (if s > 1) and variance (if s > 2) are

E[Y ] = b Γ(1− 1/s); V ar[Y ] = b2 [Γ(1− 2/s)− (Γ(1− 1/s))2].

Here, Γ(·) is the gamma function as in gamma.

Value

dinvweibull() returns the density, pinvweibull() computes the distribution function, qinvweibull()
gives the quantiles, and rinvweibull() generates random numbers from the Inverse Weibull dis-
tribution.

Warning

The order of the arguments of [dpqr]-Inverse Weibull does not match those in Weibull.

Note

Small values of scale or shape will provide Inverse Weibull values too close to zero. Then, func-
tion rinvweibull() with such characteristics will return either values too close to zero or values
represented as zero in computer arithmetic.

The Inverse Weibull distribution, which is that of X where 1/X has the Weibull density, is known
as the log-Gompertz distribution. Thus, in order to emphazise the continuity concept of the Inverse
Weibull density, if x = 0, then dinvweibull returns zero, which is the limit of such a density when
′x′ tends to zero.

Author(s)

V. Miranda and T. W. Yee.

References

Kleiber, C. and Kotz, S. (2003) Statistical Size Distributions in Economics and Actuarial Sciences.
Wiley Series in Probability and Statistics. Hoboken, New Jersey, USA.

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. ch.6, p.255. Dover, New York, USA.

See Also

Weibull, gamma.
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Examples

#(1) ______________
n <- 20
scale <- exp(2)
shape <- exp(1)
data.1 <- runif(n, 0, 1)
data.q <- qinvweibull(-data.1, scale = scale, shape = shape, log.p = TRUE)
data.p <- -log(pinvweibull(data.q, scale = scale, shape = shape))
arg.max <- max(abs(data.p - data.1)) # Should be zero

#(2)_________________
scale <- exp(1.0)
shape <- exp(1.2)
xx <- seq(0, 10.0, len = 201)
yy <- dinvweibull(xx, scale = scale, shape = shape)
qtl <- seq(0.1, 0.9, by =0.1)
d.qtl <- qinvweibull(qtl, scale = scale, shape = shape)
plot(xx, yy, type = "l", col = "red",

main = "Red is density, blue is cumulative distribution function",
sub = "Brown dashed lines represent the 10th, ... 90th percentiles",
las = 1, xlab = "x", ylab = "", ylim = c(0,1))

abline(h = 0, col= "navy", lty = 2)
lines(xx, pinvweibull(xx, scale = scale, shape = shape), col= "blue")
lines(d.qtl, dinvweibull(d.qtl, scale = scale, shape = shape),

type ="h", col = "brown", lty = 3)

KPSS.test KPSS tests for stationarity

Description

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for the null hypothesis that the series x is
level or trend stationary

Usage

KPSS.test(x, type.H0 = c("level", "trend")[1],
trunc.l = c("short", "large")[1],
show.output = TRUE)

Arguments

x Numeric. A univariate series.

type.H0 The null hypothesis to be tested: either level or trend stationarity.

trunc.l The lag truncation parameter. See below for more details.

show.output Logical. Should the results be displyed? Default is TRUE.
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Details

To test the null hypothesis that a univariate time series is level–stationary or stationary around a
deterministic trend. The alternative states the existence of a unit root.

Under this methodology, the series, say {yt; t = 1, . . . , T} is assumed to be decomposed as

yt = ρt+ ξt + εt,

that is, as the sum of a deterministic trend, a random walk (ξt), and a stationary error (εt ∼
N(0, σ2

z). Hence, this test reduces to simply test the hypothesis that {ξt} is stationary, that is,
H0 : σ2

z = 0.

The test statistic combines the one–sided Lagrange multiplier (LM) statistic and the locally best
invariant (LBI) test statistic (Nabeya and Tanaka, (1988)). Its asymptotic distribution is discussed
in Kwiatkowski et al. (1992), and depends on the ‘long–run’ variance σ2. The test statistic is given
by

η = T−2
∑
i

S2
i /σ̂

2 = T−2
∑
i

S2
i /s

2(l).

where s2(l) is a consistent estimate of σ2, given by

s2(l) = (1/T )

T∑
t=1

ε2t + (2/T )

l∑
s=1

w(s, l)

T∑
t=s+1

εtεt−s.

Here, w(s, l) = 1 − s/(l + 1), where l is taken from trunc.l, the lag–truncation parameter. The
choice "short" gives the smallest integer not less than 3

√
T/11, or else, 9

√
T/11, if trunc.l =

"large".

Note, here the errors, εt, are estimated from the regression x 1 (level) or x 1 + t (trend), depending
upon the argument type.H0.

Unlike other software using linear interpolates, here the p–values for both, trend and level station-
arity, are interpolated by cubic spline interpolations from the tail critical values given in Table 1 in
Kwiatkowski et al. (1992). The interpolation takes place on η.

Value

A list with the following:

1) Test statistic and P-value,

2) Critical values,

3) Residuals, εt.

Note

There is no standard methodology to select an appropriate value for trunc.l, however, satisfactory
results have been found for trunc.l proportional to T 1/2. See Andrews, D.W.K. (1991) for a
discussion on this. Empirically, this parameter may be suggested by the problem in turn, and should
be large enough to approximate the true dynamic behaviour of the series.

Author(s)

Victor Miranda.
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References

Andrews, D.W.K. (1991) Heteroskedasticiy and autocorrelation consistent covariance matrix esti-
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See Also

checkTS.VGAMextra.

Examples

set.seed(2802)
test <- KPSS.test(rnorm(20), type.H0 = "trend")
class(test)

test$crit.value

logffMlink Link functions for the mean of 1–parameter discrete distributions: The
Logarithmic Distribuion.

Description

Computes the logffMlink transformation, including its inverse and the first two derivatives.

Usage

logffMlink(theta, bvalue = NULL,
alg.roots = c("Newton-Raphson", "bisection")[1],
inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. This is θ by default although could be η depending on
other parameters. See below for details.

bvalue This is a boundary value. See below. Also refer to Links for additional details.
alg.roots Character. The iterative algorithm to find the inverse of this link function. De-

fault is the first (Newton–Raphson). Optionally, the bisection method is also
available. See below for more details.

inverse, deriv, short, tag
Details at Links



logffMlink 81

Details

This link function arises as a natural link function for the mean, µ, of the logarithmic (or log-
series) distribution, logff. It is defined for any value of the shape parameter s (i.e. theta in the
VGLM/VGAM context), 0 < s < 1, as the logarithm of µ = µ(s). It can be easily shown that
logffMlink is the difference of two common link functions: logitlink and clogloglink.

It is particularly usefull for event–rate data where the expected number of events can be modelled
as

µ = µ(s) = λt.

Here λ is the standardized mean (or event-rate) per unit time, t is the timeframe observed, whereas
µ and s are the mean and the shape parameter of the logarithmic distribution respectively. The
logarithm is then applied to both sides so that t can be incorporated in the analysis as an offset.

While logffMlink is not the canonical link function of the logarithmic distribution, it is certainly
part of the canonical link, given by the composite

log ◦ (g−1) ◦ log,

where g−1 denotes the inverse of logffMlink.

The domain set of this link function is (0, 1). Therefore, values of theta (that is s) too close to 0 or
to 1 or out of range will result in Inf, -Inf, NA or NaN. Use argument bvalue to adequately replace
them before computing the link function.

Particularly, if inverse = TRUE and deriv = 0, then s becomes η, and therefore the domain set turns
to (0,∞).

If theta is a character, then arguments inverse and deriv are disregarded.

Value

For deriv = 0, the logffMlink transformation of theta, i.e., logitlink(theta) - clogloglink(theta),
if inverse = FALSE.

When inverse = TRUE the vector entered at theta becomes η and, then, this link function returns
a unique vector θη such that

logffMlink(θη) = η,

i.e., the inverse image of η. Specifically, the inverse of logffMlink cannot be written in closed–
form, then the latter is equivalent to search for the roots of the function

logff.func(θ) = logffMlink(θ)− η

as a function of θ. To do this, the auxiliary function logff.func is internally generated. Then,
with the method established at alg.roots, either Newton–Raphson or bisection, this link function
approximates and returns the inverse image θη (of given η), which plays the role of the inverse of
logffMlink. In particular, for η = 0 and η =Inf, it returns 0 and 1 respectively.

For deriv = 1, d eta / d theta as a function of theta if inverse = FALSE, else the reciprocal d
theta / d eta.

Similarly, when deriv = 2 the second order derivatives are correspondingly returned.

Both, first and second derivatives, can be written in closed–form.
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Warning

logffMlink is a monotonically increasing, convex, and strictly positive function in (0, 1) such that
the horizontal axis is an asymptote. Therefore, when the inverse image of η is required, each entry
of η (via argument theta) must be non-negative so that logff.func(θ; η) = logffMlink(θ) −
η is shifted down. This fact allows this function to uniquely intersect the horizontal axis which
guarantees to iteratively find the corresponding root θη , i.e., the inverse image of η. Else, NaN will
be returned.

See example 3. It is the plot of logffMlink in (0, 1) for η = 1.5.

Besides, the vertical straight line theta= 1 is also an asymptote. Hence, this link function may
grow sharply for values of theta too close to 1. See Example 4 for further details.

Note

To find the inverse image θη of η, either newtonRaphson.basic or bisection.basic is called.

This link function can be used for modelling any parameter lying between 0.0 and 1.0. Conse-
quently, when there are covariates, some problems may occur. For example, the method entered at
alg.roots to approximate the inverse image may converge at a slow rate. Similarly if the sample
size is small, less than 20 say. Try another link function, as logitlink, in such cases.

Author(s)

V. Miranda and T. W. Yee

See Also

logff, newtonRaphson.basic, bisection.basic, Links, clogloglink, logitlink.

Examples

## Example 1 ##
set.seed(0906)
Shapes <- sort(runif(10))
logffMlink(theta = Shapes, deriv = 1) ## d eta/d theta, as function of theta

logldata.inv <-
logffMlink(theta = logffMlink(theta = Shapes), inverse = TRUE) - Shapes

summary(logldata.inv) ## Should be zero

## Example 2 Some probability link funtions ##
s.shapes <- ppoints(100)

par(lwd = 2)
plot(s.shapes, logitlink(s.shapes), xlim = c(-0.1, 1.1), type = "l", col = "limegreen",

ylab = "transformation", las = 1, main = "Some probability link functions")
lines(s.shapes, logffMlink(s.shapes), col = "blue")
lines(s.shapes, probitlink(s.shapes), col = "purple")
lines(s.shapes, clogloglink(s.shapes), col = "chocolate")
lines(s.shapes, cauchitlink(s.shapes), col = "tan")
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abline(v = c(0.5, 1), lty = "dashed")
abline(v = 0, h = 0, lty = "dashed")
legend(0.1, 4.5, c("logffMlink","logitlink", "probitlink", "clogloglink",
"cauchitlink"),

col = c("blue", "limegreen", "purple", "chocolate", "tan"), lwd = 1)
par(lwd = 1)

## Example 3. Plot of 'logffMlink()' with eta = 1.5. ##
m.eta1.5 <- logffMlink(theta = s.shapes, deriv = 0) - 1.5

plot(m.eta1.5 ~ s.shapes, type = "l", col = "limegreen",
las = 1, lty = 2, lwd = 3, xlim = c(-0.1, 1.0), ylim = c(-2, 3),
xlab = "shape parameter, s, in (0, 1).",
ylab = "logffMlink(s) - 1.5",
main = "logff.func(s; 1.5) = logffMlink(s) - 1.5, in (0, 1)")

abline(h = 0, v = 0)
abline(v = 1.0, lty = 2)

## Example 4. Special values of theta, inverse = FALSE ##
s.shapes <- c(-Inf, -2, -1, 0.0, 0.25, 0.5, 1, 10, 100, Inf, NaN, NA)
rbind(s.shapes, logffMlink(theta = s.shapes))

MAXff VGLTSMs Family Functions: Order–q Moving Average Model with
covariates

Description

Estimates the intercept, standard deviation (or variance) of the random noise (not necessarily con-
stant), and the conditional–mean model coefficients of an order–q moving average (MA) process
with covariates (MAX(q)) by maximum likelihood estimation using Fisher scoring.

Usage

MAXff(order = 1,
zero = c(if (nomean) NULL else "Mean", "MAcoeff"),
xLag = 0,
type.EIM = c("exact", "approximate")[1],
var.arg = TRUE,
nomean = FALSE,
noChecks = FALSE,
lmean = "identitylink",
lsd = "loglink",
lvar = "loglink",
lMAcoeff = "identitylink",
imean = NULL,
isd = NULL,
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ivar = NULL,
iMAcoeff = NULL)

Arguments

order The order ’q’ of the MA model, recycled if needed. By default q = 1.

zero Integer or character–string vector. Same as ARIMAXff. Details at zero.

xLag Same as ARIMAXff.
type.EIM, var.arg

Same as ARIMAXff.

nomean Logical. nomean = TRUE supresses estimation of the mean (intercept of the conditional–
mean model).

noChecks Logical. Same as ARIMAXff.

lmean, lsd, lvar, lMAcoeff
Link functions applied to the mean (intercept), the standard deviation or variance
of the random noise, and the MA coefficients (conditional–mean model). Note,
lmean plays the role of ldrift.

imean, isd, ivar, iMAcoeff
Same as ARIMAXff. Note, imean plays the role of idrift.

Details

Similar to ARXff, this family function fits an order–q moving average model with covariates (MAX(q)),
another special case of the class VGLM–ARIMA (Miranda and Yee, 2018). Observations, Yt, are
modelled as

Yt|Φt−1 = µt + ϕ1εt−1 + . . .+ ϕqεt−q + εt,

where µt is the (possibly time–dependent) intercept, modelled as µt = µ+βTxt, and the errors are
mean–zero Gaussian: εt|Φt−1 ∼ N(0, σ2

εt|Φt−1
). The symbol Φt denotes the history of the joint

process
(
Yt,X

T
t+1

)
, at time t for a time–varying covariate vector xt.

At each step of Fisher scoring, the exact log-likelihood based on model above is computed through
dMAq.

The linear predictor by default is

η =
(
µt, log σ

2
εt|Φt−1

, ϕ1, . . . , ϕq

)T

.

The unconditional mean of the process is simply E(Yt) = µ, provided no covariates added.

This family function is not restricted to the noise to be strictly white noise (in the sense of constant
variance). That is, covariates may be incorporated in the linear predictor log σ2

εt|Φt−1
. Also, it

handles multiple responses so that a matrix can be used as the response. For further details on
VGLM/VGAM–link functions, such as logitlink, refer to Links.
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Value

An object of class "vglmff" (see vglmff-class) to be used by VGLM/VGAM modelling func-
tions, e.g., vglm or vgam.

Warning

By default, a moving-average model of order-1 is fitted.

If different, the order is recycled up to the number of responses entered in the vglm \ vgam call has
been matched.

Successful convergence depends on reasonably setting initial values. If initial values computed by
the algorithm are not adequate, make use of the the optional initial values (imean, isd, etc.)

For constraints on the paramaters see cm.ARMA.

Note

Further choices for the random noise, besides Gaussian, will be implemented over time.

zero can be either an integer vector or a vector of character strings specifying either the posi-
tion(s) or name(s) (partially or not) of the parameter(s) modeled as intercept-only. For MAXff, the
parameters are placed and named as follows (by convention):

c("Mean", "noiseVar" or "noiseSD", "MAcoeff").

Users can modify the zero argument accordingly. For simplicity, the second choice recommended.
See CommonVGAMffArguments for further details on zero.

If no constraints are entered in the fitting process, (e.g., via cm.ARMA) this family function internally
verifies by default whether the estimated series is invertible (since noChecks = FALSE). To ignore
this step, set noChecks = TRUE. If the estimated MA process is non-invertible, MLE coefficients will
conform with the corresponding invertible MA model.

Further details about these checks are shown within the summary() output.

Author(s)

Victor Miranda and Thomas W. Yee.

References

Miranda, V. and Yee, T.W. (2018) Vector Generalized Linear Time Series Models. In preparation.

Madsen, H. (2008) Time Series Analysis Florida, USA: Chapman & Hall. (Sections 5.3 to 5.5).

Tsay, R. (2013) An Introduction to Analysis of Financial data with R. New Jersey, USA: Wiley
Sections 2.2 to 2.4.

See Also

ARIMAXff, ARXff, checkTS.VGAMextra, CommonVGAMffArguments, Links, vglm, vgam.
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Examples

set.seed(2)
nn <- 130
### Coefficients
phi1 <- 0.34; phi2 <- -1.19; phi3 <- 0.26
### Intercept
mu <- c(-1.4, 2.3)
### Noise standar deviations (Two responses)
sdMA <- c(sqrt(6.5), sqrt(4.0))
### A single covariate.
Xcov <- runif(nn)

# Generating two MA processes, TS1 and TS2, Gaussian noise.
# Note, the SD noise for TS2 is function of Xcov.

y1 <- mu[1] + arima.sim(nn,
model = list( ma = c(phi1, phi1^2)),
rand.gen = rnorm, sd = exp(sdMA[1]) )

y2 <- mu[2] + arima.sim(nn,
model = list( ma = c(phi1, phi2, phi3) ),
rand.gen = rnorm, sd = exp(Xcov + sdMA[2]) )

# OUR DATA
tsdata <- data.frame(x2 = Xcov , TS1 = y1, TS2 = y2)

#------------------------------------------------------------------------#
# 1. A simple MA(3) to compare with 'arima()'.

myfit0 <- vglm(TS1 ~ 1,
MAXff(order = 3, type.EIM = "exact",

var.arg = FALSE),
#constraints = cm.ARMA(Model = ~ 1,
# lags.cm = 2,
# Resp = 1),
data = tsdata, trace = TRUE)

Coef(myfit0)[c(3, 4, 1)]
fitArima <- arima(tsdata$TS1, order = c(0, 0, 2))
coef(fitArima)

AIC(myfit0); BIC(myfit0)

# ------------------------------------------------------------------------#
# 2. Estimate an MA(3), intercept-only, using initial values.

myfit <- vglm(TS2 ~ 1,
MAXff(order = 3, type.EIM = c("exact", "approx")[1],

# Optional initial values.
imean = 3,
iMAcoeff = c(0.3, -0.2, 0.25),
var.arg = TRUE),

data = tsdata, trace = TRUE)
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Coef(myfit)
summary(myfit)
constraints(myfit)

#----------------------------------------#
# Same model fitted using arima()
#----------------------------------------#

fitArima <- arima(tsdata$TS2, order = c(0, 0, 3))
coef(fitArima)

#------------------------------------------------------------------------#
# 3. An MAX(3) with one covariate, testing its effect over the
# standard deviation of the Gaussian noise. Note the 'zero' argument.

myfit1 <- vglm(TS2 ~ x2,
# Or Multiple responses!
# cbind(TS1, TS2) ~ 1,
MAXff(order = 3, type.EIM = "exact", xLag = 1,

# Optional initial values:
# idev.mean = 1.4,
# iMAcoeff = c(2.3, -1.2, 0.25), isd = 1.6,

# NOTE THE ZERO ARGUMENT:
zero = c("Mean", "MAcoeff"),

var.arg = TRUE),
data = tsdata, trace = TRUE)

coef(myfit1, matrix = TRUE)
summary(myfit1)
vcov(myfit1)

constraints(myfit1)

#------------------------------------------------------------------------#
# Model above CANNOT be fitted using arima()
#------------------------------------------------------------------------#

maxwellQlink Link functions for the quantiles of several 1–parameter continuous dis-
tributions

Description

Computes the maxwellQlink transformation, its inverse and the first two derivatives.
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Usage

maxwellQlink(theta, p = stop("Argument 'p' must be specified."),
bvalue = NULL, inverse = FALSE,
deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. See below for further details.

p Numeric. A single value between 0 and 1. It is the p–quantile to be modeled by
this link function.

bvalue, inverse, deriv, short, tag
See Links.

Details

In the VGLM/VGAM quantile regression context, this link function can be used to model any p–
quantile of the Maxwell distribition. It is the maxwellQlink transformation given by√

2 qgamma(p, 1.5) / a.

Here, a is positive parameter as in maxwell whereas qgamma is the quantile function of the gamma
distribution.

Numerical values of a or p out of range will result in Inf, -Inf, NA or NaN correspondingly.

In particular, arguments inverse and deriv are disregarded if theta is character. Also, if inverse
= TRUE and deriv = 0, then argument theta becomes η. See Links for further details about this.

Value

For deriv = 0, the maxwellQlink transformation of theta, when inverse = FALSE. If inverse =
TRUE, then the inverse given by 2*qgamma(p, 1.5) / theta^2 is returned.

For deriv = 1, this function returns the derivative d eta / d theta, if inverse = FALSE. Else, the
reciprocal d theta / d eta as a function of theta.

If deriv = 2, then the second order derivatives in terms of theta are accordingly returned.

Note

Numerical instability may occur for values theta too close to zero. Use argument bvalue to replace
them before computing the link.

Author(s)

V. Miranda and Thomas W. Yee.

See Also

maxwell, Links.
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Examples

## E1. maxwellQlink() and its inverse ##
p <- 0.25 ## Modeling the first quartile
my.a <- seq(0, 5, by = 0.1)[-1]
max(my.a - maxwellQlink(maxwellQlink(my.a, p = p), p = p, inverse =TRUE)) ## Zero

## E2. The first two values are negative, NaN is returned ##
maxwellQlink(theta = c(-0.15, -0.10, 0.25, 0.35) , p = p, inverse = FALSE)
maxwellQlink(theta = c(-0.15, -0.10, 0.25, 0.35) , p = p, inverse = TRUE)

## E3. Plot of the maxwellQlink() and its inverse ##
## Note, inverse = TRUE implies that argument 'theta' becomes 'eta'. ##

#--- THE LINK

plot(maxwellQlink(theta = my.a, p = p) ~ my.a,
type = "l", col = "blue", lty = "dotted", lwd = 3,
xlim = c(-0.1, 10), ylim = c(-0.1, 5), las = 1,
main = c("Blue is maxwellQlink(), green is the inverse"),
ylab = "eta = maxwellQlink", xlab = "theta")

abline(h = 0, v = 0, lwd = 2)

#--- THE INVERSE
lines(my.a, maxwellQlink(theta = my.a, p = p,inv = TRUE),

col = "green", lwd = 2, lty = "dashed")
lines(my.a, my.a) # Tracing the identity function for double--check

MVNcov Multivariate Normal Distribution Family Function

Description

Maximum likelihood estimation of the Multivariate Normal distribution. The covariances (not cor-
relation coefficients) are included in the parameter vector.

Usage

MVNcov(zero = c("var", "cov"),
lmean = "identitylink",
lvar = "loglink",
lcov = "identitylink")
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Arguments

zero Integer or character–string vector. Which linear predictors are intercept–only.
Details at zero or CommonVGAMffArguments.

lmean, lvar, lcov
VGLM–link functions applied to the means, variances and covariances.

Details

For theK–dimensional normal distribution, this fits a linear model to theK means µj j = 1, . . . ,K,
which are the first entries in the linear predictor. The variances σ2

j j = 1, . . . ,K and then the co-
variances covij i = 1, . . . ,K, j = i+ 1, . . . ,K, are next aligned. The fitted means are returned as
the fitted values.

The log–likelihood is computed via dmultinorm, an implementation of the multivariate Normal
density.

The score and expected information matrices are internally computed at each Fisher scoring step,
using its vectorized form.

The response should be an K–column matrix. The covariances may be any real number so that the
identitylink is a reasonable choice. For further details on VGLM/VGAM–link functions, see
Links.

Value

An object of class "vglmff" (see vglmff-class) to be used by VGLM/VGAM modelling func-
tions, e.g., vglm or vgam.

Note

Unlike other implementations, e.g., binormal from VGAM in terms of ρ and standard deviations,
MVNcov estimates the variances and covariances, modeled as intercept–only. See argument zero,
whose default is c("var", "cov"), to change this.

Thus far, there is no guarantee that the estimated var–cov matrix will be positive–definite. Proper
procedures to validate this will be incorporated shortly, such as the @validparams slot.

Although the function has been tested on K ≤ 5 data sets, it is recommended that K ≤ 3, unless
the data are nice and n is sufficiently large.

Author(s)

Victor Miranda.

See Also

dmultinorm, binormal, CommonVGAMffArguments, vglm.
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Examples

# K = 3.
set.seed(180227)
nn <- 85
mvndata <- data.frame(x2 = runif(nn), x3 = runif(nn))
mvndata <- transform(mvndata,

y = rbinorm(nn, mean1 = 2 - 2 * x2 + 1 * x3,
mean2 = 2 - 1.5 * x3,
var1 = exp(1.0), var2 = exp(-0.75),
cov12 = 0.5 * exp(1.0) * exp(-0.75)))

mvndata <- transform(mvndata, y3 = rnorm(nn, mean = 2 + x2, sd = exp(1.5)))
colnames(mvndata) <- c("x2", "x3", "y1", "y2", "y3")

mvnfit <- vglm(cbind(y1, y2, y3) ~ x2 + x3, MVNcov, data = mvndata, trace = TRUE)
(mvncoef <- coef(mvnfit, mat = TRUE))

## Check variances and covariances: var1, var2 and var3.
exp(mvncoef[c(10, 13, 16)]) # True are var1 = exp(1.0) = 2.718,

# var2 = exp(-0.75) = 0.472
# and var3 = exp(1.5)^2 = 20.08554

vcov(mvnfit)
constraints(mvnfit)
summary(mvnfit)

newtonRaphson.basic Newton–Raphson algorithm

Description

Newton–Raphson algorithm to approximate the roots of univariate real–valued functions.

This function is vectorized.

Usage

newtonRaphson.basic(f, fprime, a, b,
tol = 1e-8, n.Seq = 20,
nmax = 15, ...)

Arguments

f A univariate function whose root(s) are approximated. This is the target func-
tion. Must return a vector.

fprime A function. The first derivative of f. Must return a vector.
a, b Numeric vectors. Upper and lower real limits of the open interval (a, b) where

the root(s) of f will be searched. Notice, entries Inf, -Inf, NA and NaN are not
handled.
These vectors are subject to be recycled if a and b lenghts differ.
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tol Numeric. A number close to zero to test whether the approximate roots from
iterations k and (k + 1) are close enough to stop the algorithm.

n.Seq Numeric. The number of equally spaced initial points within the interval (a, b)
to internally set up initial values for the algorithm.

nmax Maximum number of iterations. Default is 15.

... Any other argument passed down to functions f and fprime.

Details

This is an implementation of the well–known Newton–Raphson algorithm to find a real root, r,
a < r < b, of the function f .

Initial values, r0 say, for the algorithm are internally computed by drawing ‘n.Seq’ equally spaced
points in (a, b). Then, the function f is evaluated at this sequence. Finally, r0 results from the
closest image to the horizontal axis.

At iteration k, the (k + 1)th approximation given by

r(k+1) = r(k) − f(r(k),...)/fprime(r(k), ...)

is computed, unless the approximate root from step k is the desired one.

newtonRaphson.basic approximates this root up to a relative error less than tol. That is, at each
iteration, the relative error between the estimated roots from iterations k and k+1 is calculated and
then compared to tol. The algorithm stops when this condition is met.

Instead of being single real values, arguments a and b can be entered as vectors of length n, say
a = c(a1, a2, . . . , an) and b = c(b1, b2, . . . , bn). In such cases, this function approaches the
(supposed) root(s) at each interval (aj , bj), j = 1, . . . , n. Here, initial values are searched for each
interval (aj , bj).

Value

The approximate roots in the intervals (aj , bj). When j = 1, then a single estimated root is returned,
if any.

Note

The explicit forms of the target function f and its first derivative fprime must be available for the
algorithm.

newtonRaphson.basic does not handle yet numerically approximated derivatives.

A warning is displayed if no roots are found, or if more than one root might be lying in (aj , bj), for
any j = 1, . . . , n.

If a and b lengths differ, then the recyling rule is applied. Specifically, the vector with minimum
length will be extended up to match the maximum length by repeating its values.

Author(s)

V. Miranda.
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See Also

bisection.basic

Examples

# Find the roots in c(-0.5, 0.8), c(0.6, 1.2) and c(1.3, 4.1) for the
# f(x) = x * (x - 1) * (x - 2). Roots: r1 = 0, and r2 = 1, r3 = 2.

f <- function(x) x * (x - 1) * (x - 2)
fprime <- function(x) 3 * x^2 - 6 * x + 2

# Three roots.
newtonRaphson.basic(f = f, fprime = fprime,

a = c(-0.5, 0.6, 1.3),
b = c(0.8, 1.2, 4.1)) ## 0.0, 1.0 and 2.0

# Recycling rule. Intervals analysed are (-0.5, 1.2) and (0.6, 1.2)
newtonRaphson.basic(f = f, fprime = fprime,

a = c(-0.5, 0.6), b = c(1.2))

## Warning: There is more than one root in (-0.5, 1.2)!

normal1sdff Estimation and Inference for Conditional Quantiles of a 1–parameter
Univariate Normal Distribution.

Description

Maximum likelihood estimation of the standard deviation, including inference for conditional quan-
tiles, of a univariate normal distribution.

Usage

normal1sdff(zero = NULL, link = "loglink",
fixed.mean = 0, p.quant = NULL,
var.arg = FALSE)

Arguments

zero Allows to model the single linear predictor in this family function as intercept–
only. See below for important details about this.

link This is the link function applied to the standard deviation. If var.arg is TRUE,
then link is applied to the variance. The default is loglink. For inference on
conditional quantiles entered at p.quant, however, it must be manually changed
to normal1sdQlink. See below for further details.

fixed.mean Numeric, a vector or a matrix. It allocates the (fixed) mean of the response in
the fitting process. See below for further details.
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p.quant Numeric. A prototype vector of probabilities indicating the quantiles of interest,
when quantile regression is to be performed.

var.arg If TRUE, then the variance is estimated, else the standard deviation is used.

Details

This family function is a variant of uninormal to estimate the standard deviation of a Normal
distribution with known mean. The estimated values are returned as the fitted values, unlike some
other family functions where the mean is returned as fitted values. However, here the mean is
assumed to be known.

By default, the response is supposedly centered on its mean, that is, fixed.mean= 0. Change this
accordingly: For a single response or multiple responses, fixed.mean must be a numeric vector
where each entry is the mean of each response, only if the mean is fixed. When the mean is
not constant, fixed.mean must be matrix with the number of columns matching the number of
responses.

Quantile regression: The (single) linear/additive predictor by default is the log of the standard
deviation. However, if quantile regression is of primary interest, then the response must be entered
using the function Q.reg, and the corresponding p–quantiles through p.quant in the vglm or vgam
call. Additionally, set normalsdQlink as the link function via the argument link.

This family VGAM function handles multiple responses.

Value

An object of class "vglmff". See vglmff-class for further details.

Warning

Be aware of the argument zero: by default, the single linear/additive predictor in this family func-
tion, say η, can be modeled in terms of covariates, i.e., zero = NULL. To model η as intercept–only,
set zero = "sd".

See zero for more details about this.

Author(s)

V. Miranda.

See Also

normal1sdQlink, loglink, uninormal, CommonVGAMffArguments, zero, vgam, vglm.

Examples

set.seed(121216)
my.mean <- -1 # Mean (CONSTANT)
my.sd <- 2.5
y <- rnorm(100, mean = my.mean, sd = 2.0) # Generate some data.
normdat <- data.frame(y = y) # Setting up our data.
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# Plotting the data
plot(y, main = c("Y ~ Normal ( mean(known), sd = 2.5 ). "),

ylab = "The data", pch = 20,
xlim = c(0, 100), ylim = c(-7, 7), col = "blue")

abline(h = 0, v = 0, lwd = 2, col = "black")

### EXAMPLE 1. Estimate the SD with two responses. The mean is fixed. ###

fit1 <- vglm(cbind(y, y) ~ 1, family = normal1sdff(fixed.mean = my.mean),
data = normdat, trace = TRUE, crit = "coef")

Coef(fit1)
summary(fit1)

### EXAMPLE 2. Quantile regression. The link normal1sdQlink() is used. ###

my.p <- c(25, 50, 75) / 100 # Quantiles 25%, 50% and 75% are of interest.

fit2 <- vglm(Q.reg(y, length.arg = 3) ~ 1,
family = normal1sdff(fixed.mean = my.mean, p.quant = my.p,

link = normal1sdQlink),
data = normdat, trace = TRUE, crit = "coef")

summary(fit2)
head(predict(fit2))
constraints(fit2)

### EXAMPLE 3. Complete the plot. Quantiles matching. ###

( my.c3Q <- coef(fit2, matrix = TRUE) )
with(normdat, lines(rep(my.c3Q[1], 100), col = "tan" , lty = "dotted", lwd = 2))
with(normdat, lines(rep(my.c3Q[2], 100), col = "orange", lty = "dotted", lwd = 2))
with(normdat, lines(rep(my.c3Q[3], 100), col = "brown1", lty = "dotted", lwd = 2))
legend(20, 7.0, c("Percentil 75", "Percentil 50", "Percentil 25"),

col = c("brown1", "orange", "tan"),
lty = rep("dotted", 3), lwd = rep(2, 3), cex = 0.75)

normal1sdQlink Link functions for the quantiles of several 1–parameter continuous dis-
tributions.

Description

Computes the normal1sdQlink transformation for the Univariate Normal Distribution, its inverse
and the first two derivatives.
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Usage

normal1sdQlink(theta, mean = stop("Please, enter the fixed 'mean'."),
p = stop(" Please, enter argument 'p'."),
bvalue = NULL, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. This is θ by default although it could be η depending upon
other arguments. See below for further details.

mean A numeric vector or a matrix. It is the (known) fixed mean of the Normal distri-
bution of interest. See below for further details.

p Numeric vector of p–quantiles to be modelled by this link function.
bvalue, inverse, deriv, short, tag

Details at Links.

Details

This link function is necessarily required by normal1sd if quantile regression is to be performed. It
computes the normal1sdQlink transformation, defined as

mean+
√
2σ · erf−1(2p− 1).

Here, erf−1 denotes the inverse of the error function erf, and σ is the standard deviation (theta)
as in normal1sd. Technically, normal1sdQlink can be used for quantile regression over any vector
of p–quantiles of Normally distributed data with known mean.

See normal1sd for further details about the latter.

Values of p out of the open interval (0, 1) or non–positive values of theta will result in Inf, -Inf,
NA or NaN.

Value

When deriv = 0, the normal1sdQlink transformation of theta, if inverse = FALSE. Conversely,
if inverse = TRUE, theta becomes η and the inverse transformation given by (theta - mean)/

√
2

erf−1(2p−1) is returned.

For deriv = 1, d eta / d theta if inverse = FALSE. Else, this function returns d theta / d eta as a
function of theta.

For deriv = 2, the second order derivatives are accordingly returned.

Warning

If p is a vector, then the recycling rule applies only if theta is entered as a matrix. Else, only the
first entry in p is considered.

Note

When inverse = TRUE, the reciprocal of the error function, erf, evaluated at 2p−1 is required.
However, the result is Inf for p= 0.5. Here, in consequence, the limit of erf when p tends to 0.5 is
returned to avoid numerical issues.
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Author(s)

V. Miranda

See Also

normal1sd, erf, Links.

Examples

### Example 1 ###
theta <- seq(0, 3, by = 0.1)[-1] # This is sigma, then must be positive.
mean <- -2.5 # Intentionally, a negative value for mu.
p <- 0.25 # Modelling the first quartile.

eta <- normal1sdQlink(theta = theta, p = p, mean = mean)
inv.eta <- normal1sdQlink(theta = eta, p = p, mean = mean, inverse = TRUE)
summary(inv.eta - theta) ## Should be 0

### Example 2. Special values of theta, using argument 'bvalue'. ###

theta <- c(-Inf, -5, -2.5, 0, 2.5, 5, Inf, NA, NaN)
my.matrix <- rbind(theta, normal1sdQlink(theta = theta, p = p, mean = mean),

normal1sdQlink(theta = theta, p = p, mean = mean, bvalue = 1e-5))
rownames(my.matrix) <- c("theta", "No 'bvalue'", "With 'bvalue'")
colnames(my.matrix) <- rep("", 9)

my.matrix # Second row has NAs, whilst third row has NO NAs except for theta = NA

notDocumentedYetVGAMextra

Not-documented functions and classes in VGAMextra

Description

Those functions not documented yet in VGAMextra are aliased to this file.

Details

These functions are still under review or being tested, and will be documented over time.

Value

Overall, these functions returns objects required by time series family functions in VGAMextra.

Further details will be given shortly.

Author(s)

V. Miranda
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posPoiMlink Link functions for the mean of 1–parameter discrete distributions: The
Positive Poisson Distribution.

Description

Computes the posPoiMlink transformation, its inverse and the first two derivatives.

Usage

posPoiMlink(theta, bvalue = NULL,
alg.roots = c("Newton-Raphson", "bisection")[1],
inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. This is θ by default, although it becomes η sometimes,
depending on the other parameters. See below for further details.

bvalue Details at Links.

alg.roots Character. The iterative method to find the inverse of this link function. Same
as zetaffMlink.

inverse, deriv, short, tag
Details at Links

Details

This is a link function for the mean of the positive Poisson distribution. It is defined as

η = posPoiMlink(λ) = − log(λ−1 − λ−1e−λ),

where λ > 0 stands for the single parameter of pospoisson, i.e. theta in the VGLM/VGAM
context.

Notice, the mean of the positive Poisson is given by

λ

1− e−λ
.

This link function comes up by taking the logarithm on both sides of this equation.

The domain set for λ is (0,∞). Hence, non–positive values of λ will result in NaN or NA. Use
argument bvalue to properly replace them before computing the link function.

posPoiMlink tends to infinity as λ increases. Specially, its inverse grows at a higher rate. Therefore,
large values of λ will result in Inf accordingly. See example 2 below.

If theta is a character, arguments inverse and deriv are disregarded.
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Value

For deriv = 0, the posPoiMlink transformation of theta, if inverse = FALSE. When inverse =
TRUE, theta becomes η and the inverse of posPoiMlink is needed but cannot be written in closed–
form. Instead this link function returns the approximated inverse image of η, say θη , such that

posPoiMlink(θη) = η.

Here, θη is iteratively computed as the unique root of the auxiliary function

f(θ; η) = posPoiMlink(θ)− η,

as a function of θ. This work is performed via Newton–Raphson or bisection, as per argument
alg.roots.

For deriv = 1, d eta / d theta as a function of theta if inverse = FALSE, else the reciprocal d
theta / d eta.

Similarly, when deriv = 2 the second order derivatives are returned in terms of theta.

Warning

This link function is monotonic increasing in (0,∞) so that the horizontal axis is an asymptote.
Then, in order to assure the root of the auxiliary

f(θ; η) = posPoiMlink(θ)− η

to be real, η must be positive. As a result, posPoiMlink is shited–down and hence intersecting the
horizontal axis uniquely.

Note

This link function is useful to model any parameter in (0,∞). Some numerical issues may arise if
there are covariates causing negative values the parameter. Try identitylink alternatively.

Author(s)

V. Miranda and T. W. Yee.

See Also

pospoisson, newtonRaphson.basic, bisection.basic, Links, identitylink.

Examples

## Example 1. Special values for theta (or eta, accordingly) ##
m.lambda <- c(0, 0.5, 1, 10, 20, 25, 1e2, 1e3, Inf, -Inf, NaN, NA)

# The 'posPoiMlink' transformation and the first two derivatives.
print(rbind(m.lambda,
deriv1 = posPoiMlink(theta = m.lambda, inverse = FALSE, deriv = 1),
deriv2 = posPoiMlink(theta = m.lambda, inverse = FALSE, deriv = 2)),
digits = 2)
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# The inverse of 'posPoiMlink' and the first two derivatives.
print(rbind(m.lambda,

Invderiv1 = posPoiMlink(theta = m.lambda, inverse = TRUE, deriv = 1),
Invderiv2 = posPoiMlink(theta = m.lambda, inverse = TRUE, deriv = 2)),
digits = 2)

## Example 2. The inverse of 'posPoiMlink' ##
m.lambda <- c(0, 1, 5, 10, 1e2, 1e3)
posPoiMlink(theta = posPoiMlink(m.lambda, inverse = TRUE))
pospoi.inv <- posPoiMlink(posPoiMlink(m.lambda, inverse = TRUE)) - m.lambda

summary(pospoi.inv) ## Should be zero.

## Example 3. Plot of 'posPoiMlink' and its first two derivatives ##
## inverse = FALSE, deriv = 0, 1, 2. ##

m.lambda <- seq(0, 35, by = 0.01)[-1]
y.lambda <- posPoiMlink(theta = m.lambda, deriv = 0)
der.1 <- posPoiMlink(theta = m.lambda, deriv = 1)
der.2 <- posPoiMlink(theta = m.lambda, deriv = 2)

plot(y.lambda ~ m.lambda, col = "black",
main = "log(mu), mu = E[Y], Y ~ pospoisson(lambda).",
ylim = c(-1, 10), xlim = c(-1, 26),
lty = 1, type = "l", lwd = 3)

abline(v = 0, h = 0, col = "gray50", lty = "dashed")

lines(m.lambda, der.1, col = "blue", lty = 5, lwd = 3)
lines(m.lambda, der.2, col = "chocolate", lty = 4, lwd = 3)
legend(5, 9, legend = c("posPoiMlink", "deriv = 1", "deriv = 2"),

col = c("black", "blue", "chocolate"), lty = c(1, 5, 4), lwd = c(3, 3, 3))

Q.reg Conditional quantile regression with VGAM

Description

Use this function to adequately confer the formula in VGAM when fitting quantile regression
models.

Usage

Q.reg(y, pvector = NULL, length.arg = NULL)
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Arguments

y Numeric, a vector or a matrix. It is the response or dependent variable in the
formula of the model to be fit, as in vglm or vgam. See below for further details.

pvector A prototype vector. Entries are the conditional p–quantiles in the fitting process.

length.arg A length–1 positive integer. It is the number of p–quantiles to be modelled.

Details

Conditional quantile regression can be carried out using family functions in VGAM and VGAMex-
tra. The formula must be set up using this function, Q.reg. Here, the p–quantiles of interest may
be entered via pvector. Alternatively, use argument length.arg by establishing the length of
pvector.

Besides, the corresponding link must be entered. For example, gamma1Qlink is the proper link to
fit models of conditional quantiles for data distributed as Gamma via the family function gamma1.

See examples for further details.

Value

A matrix, each column adequately arranged for regression on conditional quantiles, conforming
with VGAM.

Indeed, this is equivalent to cbind(y, y, ...), where the total number of columns is, either the
length of pvector, or length.arg.

Note

Link functions for quantile regression in VGAM require the vector of p–quantiles of interest via the
argument p. See normal1sdQlink or maxwellQlink for instance.

Therefore, the integer entered at length.arg in this function, if utilized, must match the length of
the vector p. Else, it will be recycled.

Author(s)

V. Miranda and T. W. Yee.

See Also

normal1sdQlink, maxwellQlink, gamma1Qlink, gamma1, vglm, vgam

Examples

### Quantile regression with data distributed as Maxwell(s) ###
set.seed(12073)
x2 <- seq(0, 100,length.out = 100) # independent variable
b0 <- 0.5 # true intercept
b1 <- 0.25 # true slope
b2 <- 0.02 # true second order coef.
alpha <- b0 + b1 * x2 + b2 * x2^2 # Quadratically modelling the parameters
nn <- 100 # Sample size
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# The data as a data frame. #
mdata <- data.frame(y = rmaxwell(n = nn, rate = alpha), x2 = x2, x3 = x2^2)

# Quantile regression using our link function maxwellQlink(). #
# Quantiles 25%, 50%, 75% are of interest #
my.p <- c(0.25, 0.50, 0.75)

fit <- vglm(Q.reg(y, pvector = my.p) ~ x2 + x3,

# OPTIONALLY Q.reg(y, length = length(my.p)) ~ x2 + x3

maxwell(link = maxwellQlink(p = my.p)),
data = mdata, trace = TRUE, crit = "coef")

coef(fit, matrix = TRUE)
summary(fit)
head(predict(fit))
constraints(fit)

rayleighMlink Link functions for the mean of 1–parameter continuous distributions:
The Rayleigh and the Maxwell distributions.

Description

The rayleighMlink and the maxwellMlink transformations, their inverse and the first two deriva-
tives.

Usage

rayleighMlink(theta, bvalue = NULL, inverse = FALSE,
deriv = 0, short = TRUE, tag = FALSE)

maxwellMlink(theta, bvalue = NULL, inverse = FALSE,
deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. It is θ by default, but it may be η depending upon other
parameters. See Links for further details.

bvalue, inverse, deriv, short, tag
See Links.

Details

rayleighMlink and maxwellMlink are link functions to model the mean of the Rayleigh distirbu-
tion, (rayleigh), and the mean of the Maxwell distribution, (maxwell), respectively.
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Both links are somehow defined as the log theta plus an offset. Specifcally,

rayleighMlink(b) = log(b ∗ γ(0.5)/sqrt2),

where b > 0 is a scale parameter as in rayleigh; and

maxwellhMlink(b) = log(a−1/2 ∗ sqrt8/π).

Here, a is positive as in maxwell.

Non–positive values of a and/or b will result in NaN, whereas values too close to zero will return
Inf or -Inf.

Value

For deriv = 0, the corresponding transformation of theta when inverse = FALSE. If inverse =
TRUE, then theta becomes η, and the inverse transformations

I) exp(theta) * sqrt(2) / gamma(0.5) for rayleighMlink, and

II) 8 * exp(-2 * theta) / gamma(0.5)2 for maxwellMlink,

are returned.

For deriv = 1, d eta / d theta when inverse = FALSE. If inverse = TRUE, then d theta / d eta
as a function of theta.

When deriv = 2, the second derivatives in terms of theta are returned.

Note

Values of a or b out of range, e.g. when covariates involved, may cause numerical instability. Use
argument bvalue to replace them before computing any link.

If theta is character, then arguments inverse and deriv are ignored. See Links for further details.

Author(s)

V. Miranda and Thomas W. Yee.

See Also

maxwell, rayleigh Links.

Examples

## The link and its inverse ##
theta <- 0.1 + 1:10
eta <- maxwellMlink(maxwellMlink(theta = theta), inverse =TRUE)
summary(eta - theta) # Zero

eta <- rayleighMlink(rayleighMlink(theta = theta), inverse =TRUE)
summary(eta - theta) # Zero

## Modelling the mean of the Maxwell distribution ##
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set.seed(17010401)

rate <- maxwellMlink(theta = 2, inverse = TRUE) # ~ 0.046
mdata <- data.frame(y = rmaxwell(1000, rate = rate ))

fit <- vglm(y ~ 1, maxwell(link = "maxwellMlink"),
data = mdata, trace = TRUE, crit = "coef")

coef(fit, matrix = TRUE)
Coef(fit)

rayleighQlink Link functions for the quantiles of several 1–parameter continuous dis-
tributions

Description

Computes the rayleighQlink transformation, its inverse and the first two derivatives.

Usage

rayleighQlink(theta, p = stop("Argument 'p' must be specified."),
bvalue = NULL, inverse = FALSE,
deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. It is θ by default, although it may be η. See Links for
additional details about this.

p Numeric. A single value between 0.0 and 1.0. It is the p–quantile to be modeled
by this link function.

bvalue, inverse, deriv, short, tag
See Links.

Details

This link function directly models any p–quantile of the Rayleigh distribution specified by the ar-
gument p. It is called the rayleighQlink transformation defined as

b
√
−2 log(1− p),

where b > 0 is a scale parameter as in rayleigh.

Numerical values of b or p out of range may result in Inf, -Inf, NA or NaN.

If theta is character, then arguments inverse and deriv are discarded.
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Value

For deriv = 0, the rayleighQlink transformation of theta, when inverse = FALSE. If inverse =
TRUE, then this function returns theta / sqrt(-2 log(1 - p)).

For deriv = 1, then the function returns d eta / d theta, if inverse = FALSE. If inverse = TRUE,
then d theta / d eta as a function of theta.

If deriv = 2, then the second order derivatives in terms of theta.

Note

Numerical instability may occur for values theta too close to zero. Use argument bvalue to replace
them before computing the link.

Author(s)

V. Miranda and Thomas W. Yee.

See Also

rayleigh, Links.

Examples

## E1. rayleighQlink() and its inverse ##
p <- 0.50 ## Modeling the median
my.b <- seq(0, 5, by = 0.1)[-1]
max(my.b - rayleighQlink(rayleighQlink(my.b, p = p), p = p, inverse =TRUE)) ## Zero

## E2. Special values ##
rayleighQlink(theta = c(Inf, -Inf, NA, NaN), p = p)

## E3. Use of argument 'bvalue' ##
rayleighQlink(theta = seq(-0.2, 1.0, by = 0.1), p = p) # WARNING: NaNs if theta <= 0
rayleighQlink(theta = seq(-0.2, 1.0, by = 0.1), p = p, bvalue = .Machine$double.xmin)

summaryS4VGAMextra-methods

Summary methods for Vector Generalized Time Series Models

Description

S4 summary methods for models fitted with time series family functions from VGAMextra.

These function are all methods for objects of class vglm with signature vgltsmff-class.
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Details

Implementation of vector generalized time series (TS) family functions (vgltsmff ) in VGAMextra
is entirely based on the structure of family functions of class vglmff-class from VGAM. More
precisely, vgltsmff family functions can be created by calls of the form new("vgltsmff",...),
following the structure vglmff-class. See vglmff-class for additional details.

In this line, specific S4 dispatching methods are currently implemented at VGAM to show (or plot)
essential statistical information about the model fitted.

For the generic summary, specifically, S4 methods for objects with signature vgtsff are incorpo-
rated in VGAMextra to display supplementary analyses commonly required by TS practicioners.
That is, additional information to the default output shown by summaryvglm for family functions at
VGAM, as follows:

a) The standard errors, which are computed from the asymptotic distribution of the MLE estimates,
unlike the asymptotic approach (z-value) from VGAM.

b) Checks on stationarity and/or invertibility for autoregressive (AR), moving average (MA), and
autoregressive moving-average (ARMA) models via the polynomial roots.

c) The AIC, AICC and BIC criteria for model identification.

Notice that, for intercept-only models in the ’vglm’ context, the asypmtotic distribution of the es-
timates, either conditional or unconditional, will coincide with the theoretical distributions as long
as n increases. In particular, for the AR(p) process, the MLEs and the Yule-Walker estimates will
concur asymptotically.

Where covariates or parameter constraints are involved, the standard errors for the estimates from
time series family functions at VGAMextra are calculated from the predicted values allocated in
the slot @predictors, when summary(...) is called. In this case, the conditional mean, E[ηj |x] x
], is considered as the estimate, where:

ηj =

p∑
k=1

β(j)k × xk,

for j = 1, . . . ,M .

Value

An object of class summary.vglm printed by specific methods defined at VGAMextra for objects
with signature vgltsff-class.

Note

As for the intercept, notice that this is called drift-term at ARXff and ARMAXff, whilst it is refered
as intercept in MAXff. This parameter is also estimated by TS family functions in VGAMextra. In
the MA model, particularly, it is the mean of the process.

The drift-term, denoted as µ∗, is linearly linked to the mean, µ, of the AR and ARMA processes in
turn, as follows:

µ→ µ∗

1−
∑
θi
.

Here, θi are the AR coefficients. Hence, the standard error for the drift-term is accordingly com-
puted based on the asymptotic distribution of the mean. More precisely, the relation
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V (µ∗) = (1−
∑

θi)
−2 × σ2

ε

n
,

is considered, where σ2
ε is the variance of the random errors.

Finally, the AIC, AICC and BIC criteria are computed of the well-known expressions

AIC = (−2)× Log − likelihood+ 2× k

AICC = AIC +
2 k (k + 1)

n− k − 1

and
BIC = (−2)× Log − likelihood+ k × ln(n)

with k denoting the number of parameters.

Author(s)

V. Miranda and T.W. Yee.

References

Woodward, H., Gray, H. and Elliot A. (2012) Applied Time Series Analysis. Taylor & Francis/CRC,
Florida, USA.

See Also

vgtsff-class, summaryvlgm, ARXff, MAXff, ARMAXff, vglm.

Examples

#------------------------------------------------------------------------#
# Fitting a simple Moving Average model to compare with arima().
#------------------------------------------------------------------------#
set.seed(0628)
nn <- 300
theta <- c(0.2, -0.37) # Autoregressive coefficients
phi <- c(0.25) # MA coefficients.
mu <- c(1.5, 0.85) # Mean (not drift) of the MA process.
x2 <- runif(nn)

tsd1 <- mu[1]/(1 - sum(theta)) +
arima.sim(n = nn,

model = list(order = c(2, 0, 0),
ar = theta),

sd = exp(1.5))
tsd2 <- mu[2]/(1 - sum(theta)) +

arima.sim(n = nn,
model = list(order = c(2, 0, 1),

ar = theta, ma = phi),
sd = exp(1 + 2 * x2))



108 toppleMlink

tsdata <- data.frame(TS1 = tsd1, TS2 = tsd2, x2 = x2)
head(tsdata)

### An ARIMA(2, 0, 0) model, that is an AR(2) model ###

#fit1 <- vglm(TS1 ~ 1,
# ARIMAXff(order = c(2, 0, 0), var.arg = FALSE, type.EIM = "exact"),
# data = tsdata, crit = "log", trace = TRUE)

fit1 <- vglm(TS1 ~ 1,
ARXff(order = 2, var.arg = FALSE, type.EIM = "exact"),
data = tsdata, crit = "log", trace = TRUE)

m.coe <- Coef(fit1)

## Using arima to compare to summary(vgtsff)
summary(fit1)
arima(tsdata$TS1, order = c(2, 0, 0)) ## Similar SE's than VGAMextra.

m.coe[1] / (1 - sum(m.coe[-(1:2)])) # THIS IS SIMILAR TO THE INTERCEPT
# ESTIMATED BY arima(): 1.1898

### An ARIMA(2, 0, 1) models, that is an ARMA(2, 1) ###
### The errors standard deviation is a function of 'x2' ###

### NOTICE: ARIMA and ARMA use the "identitylink" for coefficients ###
#fit2 <- vglm(TS2 ~ x2,
# ARMAXff(order = c(2, 1), var.arg = FALSE, type.EIM = "exact",
# zero = NULL),
# # constraints = list('x2' = rbind(0, 1, 0, 0, 0)),
# data = tsdata, crit = "loglikelihood", trace = TRUE)

#m.coe <- coef(fit2)
#coef(fit2, matrix = TRUE)

## Compare summary(vglm) to arima().
#summary(fit2)
#arima(tsdata$TS2, order = c(2, 0, 1))

toppleMlink Link functions for the mean of 1–parameter continuous distribution:
The Topp–Leone distribution.

Description

Computes the toppleMlink transformation, its inverse and the first two derivatives.
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Usage

toppleMlink(theta, bvalue = NULL, inverse = FALSE,
deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. See Links and below for further details.
bvalue, inverse, deriv, short, tag

See Links.

Details

The toppleMlink transformation arises as a link function to model the mean of the Topp–Leone
distribution, topple. It is defined as

η = logit

((
1− 4sΓ(1 + s)2

Γ(2 + 2s)

)
/sup.tp

)
.

Here, 0 < s < 1 is a shape parameter as in topple, whereas sup.tp is the supremum of

1− 4sΓ(1 + s)2

Γ(2 + 2s)
,

in (0, 1), as a function of s.

For numerical values of s out of (0, 1), this link may result in Inf, -Inf, NA or NaN.

Value

For deriv = 0, the toppleMlink transformation of theta when inverse = FALSE. If inverse =
TRUE, then theta becomes η, and the inverse transformation is required. However, it can’t be
expressed in close form. Therefore, the approximate inverse image of entered theta computed by
newtonRaphson.basic is returned.

For deriv = 1, d eta / d theta when inverse = FALSE. If inverse = TRUE, then d theta / d eta
as a function of theta.

Note

Values of s too close to zero or 1.0 may cause numerical instability. Use argument bvalue to replace
them before computing the link.

If theta is character, then arguments inverse and deriv are ignored. See Links for further details.

Author(s)

V. Miranda and Thomas W. Yee.

See Also

topple, Links, newtonRaphson.basic.
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Examples

## E1. The toppleMlink() and its inverse ##
theta <- ppoints(10)
eta <- toppleMlink(toppleMlink(theta = theta), inverse =TRUE)
summary(eta - theta) # Zero

## E2. Some probability link functions ##

my.probs <- ppoints(100)

par(lwd = 2)
plot(my.probs, logitlink(my.probs), xlim = c(-0.1, 1.1), ylim = c(-5, 8),

type = "l", col = "limegreen",
ylab = "transformation", las = 1, main = "Some probability link functions")

lines(my.probs, geometricffMlink(my.probs), col = "gray50")
lines(my.probs, logffMlink(my.probs), col = "blue")
lines(my.probs, probitlink(my.probs), col = "purple")
lines(my.probs, clogloglink(my.probs), col = "chocolate")
lines(my.probs, cauchitlink(my.probs), col = "tan")
lines(my.probs, toppleMlink(my.probs), col = "black")
abline(v = c(0.5, 1), lty = "dashed")
abline(v = 0, h = 0, lty = "dashed")
legend(0.1, 8,

c( "toppleMlink", "geometricffMlink", "logffMlink",
"logitlink", "probitlink",
"clogloglink", "cauchitlink"),
col = c("black", "gray50", "blue", "limegreen", "purple", "chocolate", "tan"),
lwd = 1, cex = 0.5)

par(lwd = 1)

toppleQlink Link functions for the quantiles of several 1–parameter continuous dis-
tributions

Description

Computes the toppleQlink transformation, its inverse and the first two derivatives.

Usage

toppleQlink(theta, p = stop("Argument 'p' must be specified."),
bvalue = NULL, inverse = FALSE,
deriv = 0, short = TRUE, tag = FALSE)
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Arguments

theta Numeric or character. It is θ by default although it could be η depending upon
other arguments. See Links for further details about this.

p Numeric. A single value between 0 and 1. It is the p–quantile to be modeled by
this link function.

bvalue, inverse, deriv, short, tag
See Links.

Details

This link function comforms with requirements of VGAM in order to be compatible within the
VGLM/VGAM framework. That is, monotonic, onto, among other features. In this line, the
toppleQlink transformation arises as the proper link to model any quantile of the Topp–Leone
distribution topple. It is defined as

1−
√
1− p1/s

m.max
.

Here, s is a shape parameter lying in (0, 1) as in topple, whereas m.max stands for the maximum
in (0, 1) of

1−
√
1− p1/s

as a function of s. Note, p is prespecified (fixed) between 0 and 1.

Numerical values of s or p out of range will result in Inf, -Inf, NA or NaN correspondingly.

Arguments inverse and deriv will be ignored if theta is character.

Value

For deriv = 0, the toppleQlink transformation of theta, when inverse = FALSE. If inverse =
TRUE, then the inverse transformation log(p)/log(1 - (1 - theta *m.max)^2) is returned.

For deriv = 1, this function returns d eta / d theta, if inverse = FALSE. If inverse = TRUE, then
the reciprocal d theta / d eta as a function of theta.

If deriv = 2, then the second order derivatives as a function of theta.

Warning

The expression p1/s tends rapidly to zero specially for values of s less than 0.005. Therefore, in
such cases numerical values represented as zero may be returned when computing this link function,
regardless the value of argument inverse.

Note

Numerical instability may occur for values theta too close to 0.0 or 1.0. Use argument bvalue to
replace them before computing the link.

Author(s)

V. Miranda and Thomas W. Yee.
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See Also

topple, Links.

Examples

## E1. toppleQLink() and its inverse. ##
my.s <- ppoints(50); p <- 0.75
max(my.s - toppleQlink(toppleQlink(my.s, p = p), p = p, inverse =TRUE)) ## Zero
toppleQlink(theta = c(-0.15, -0.10, 0.25, 0.35) , p = p, inverse = FALSE) ## NaNs
toppleQlink(theta = c(-0.15, -0.10, 0.25, 0.35) , p = p, inverse = TRUE) ## NaNs

## E2. toppleQLink() for different avlues of 'p'. ##

plot(toppleQlink(theta = my.s, p = 0.05) ~ my.s,
type = "l", col = "blue", lty = "dotted", lwd = 3,
xlim = c(-0.1, 1.65), ylim = c(-0.1, 1.1), las = 1,
main = c("The toppleQlink() transformation"),
ylab = "eta = toppleQlink", xlab = "theta")

abline(h = 0, v = 0, lwd = 2)
abline(h = 1, v = 1, lty = "dotted", col = "green")
lines(toppleQlink(theta = my.s, p = 0.25) ~ my.s, lwd = 2, lty = "dashed", col = "gray")
lines(toppleQlink(theta = my.s, p = 0.50) ~ my.s, lwd = 2, lty = "dashed", col = "brown")
lines(toppleQlink(theta = my.s, p = 0.75) ~ my.s, lwd = 2, lty = "dashed", col = "orange")
lines(toppleQlink(theta = my.s, p = 0.95) ~ my.s, lwd = 2, lty = "dashed", col = "gray50")
legend(1.1, 1.0, c("p = 0.05", "p = 0.25", "p = 0.50", "p = 0.75", "p = 0.95"),

lwd = rep(2, 5), lty = rep("dashed", 5),
col = c("blue", "gray", "brown", "orange", "gray50"))

trinormalCovff Trivariate Normal Distribution Family Function

Description

Estimates the means and the upper-half of the (symmetric) covariance matrix of a trivariate normal
distribution by maximum likelihood.

Usage

trinormalCovff(zero = c("var", "cov"),
lmean = "identitylink",
lvar = "loglink",
lcov = "identitylink")
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Arguments

zero The linear predictors modelled as intercept–only. See zero for further details.
lmean, lvar, lcov

Link functions applied to the means, variances (diagonal elements of the co-
variance matrix), and covariances (off-diagonal elements). See Links for more
choices.

Details

This family function is similar to trinormal. The only difference is that the variances and co-
variances, instead of the standard deviations and correlation coefficients, are directly modelled and
estimated. Similarly, trinormalCovff also fits linear models to the means of a trivariate normal
distribution.

The fitted means are returned as the fitted values in the form of a three–column matrix. By default,
the variances and covariances are modelled as intercept–only, where a loglink link is applied to
the variances and an identitylink over the covariances.

Value

An object of class "vglmff" (see vglmff-class) to be used by VGLM/VGAM modelling func-
tions, e.g., vglm or vgam.

Author(s)

Victor Miranda and Thomas Yee.

See Also

trinormal, zero, Links, vglm.

Examples

set.seed(123); nn <- 350
var1 <- exp(1.5); var2 <- exp(0.75); var3 <- exp(1.0)

### Artificial data, with two covariates.
tdata <- data.frame(x2 = runif(nn), x3 = runif(nn))
tdata <- transform(tdata,

y1 = rnorm(nn, 1 + 2 * x2, sd = sqrt(var1)),
y2 = rnorm(nn, 3 + 1 * x2, sd = sqrt(var2)),
y3 = rnorm(nn, 3 - 1 * x3, sd = sqrt(var2 * var3)))

### Fit the model using VGAMextra::trinormalCovff().
fit.trinormCovff <- vglm(cbind(y1, y2, y3) ~ x2 + x3,

trinormalCovff,
data = tdata, trace = TRUE)

summary(fit.trinormCovff)
vcov(fit.trinormCovff)
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### Fitting the model using VGAM::trinormal()
fit.trinormVGAM <- vglm(cbind(y1, y2, y3) ~ x2 + x3,

trinormal,
data = tdata, trace = TRUE)

summary(fit.trinormVGAM)
vcov(fit.trinormVGAM)

#### Compare the estimated coefficients. Note that
#### trinormal() estimates the sd's and correlation coeffs.
coef(fit.trinormCovff, matrix = TRUE)
coef(fit.trinormVGAM, matrix = TRUE)

truncLognormal The Truncated Log-Normal Distribution

Description

Density, distribution function, quantile function and random generation for the truncated log-normal
distribution

Usage

dtrunclnorm(x, meanlog = 0, sdlog = 1, min.support = 0, max.support = Inf, log = FALSE)
ptrunclnorm(q, meanlog = 0, sdlog = 1, min.support = 0, max.support = Inf)
qtrunclnorm(p, meanlog = 0, sdlog = 1, min.support = 0, max.support = Inf, log.p = FALSE)
rtrunclnorm(n, meanlog = 0, sdlog = 1, min.support = 0, max.support = Inf)

Arguments

x, q, p, n, meanlog, sdlog
Same as Lognormal.

min.support, max.support
Lower and upper truncation limits.

log, log.p Same as Lognormal.

Details

Consider Y ∼ Lognormal(µY , σY ) restricted to (A,B), that is, 0 < A = min.support < X <
B = max.support. The (conditional) random variable Y = X · I(A,B) has a log–truncated normal
distribution. Its p.d.f. is given by

f(y;µ, σ,A,B) = (y−1/σ) · ϕ(y∗)/[Φ(B∗)− Φ(A∗)],
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where y∗ = [log(y)− µY ]/σY , A∗ = [log(A)− µY ]/σY , and B∗ = [log(B)− µY ]/σY .

Its mean is:

exp(µ+σ2/2)·{Φ[(log(B)−µ)/σ−σ]−Φ[(log(A)−µ)/σ−σ]}/{Φ[(log(B)−µ)/σ]−Φ[(log(A)−µ)/σ]}.

Here, Φ is the standard normal c.d.f and ϕ is the standard normal p.d.f.

Value

dtrunclnorm() returns the density, ptrunclnorm() gives the distribution function, qtrunclnorm()
gives the quantiles, and rtrunclnorm() generates random deviates.

Author(s)

Victor Miranda and Thomas W. Yee.

References

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, Second
Edition, (Chapter 13) Wiley, New York.

See Also

Lognormal, truncnormal.

Examples

###############
## Example 1 ##

mymeanlog <- exp(0.5) # meanlog
mysdlog <- exp(-1.5) # sdlog
LL <- 3.5 # Lower bound
UL <- 8.0 # Upper bound

## Quantiles:
pp <- 1:10 / 10
(quants <- qtrunclnorm(p = pp , min.support = LL, max.support = UL,

mymeanlog, mysdlog))
sum(pp - ptrunclnorm(quants, min.support = LL, max.support = UL,

mymeanlog, mysdlog)) # Should be zero

###############
## Example 2 ##

set.seed(230723)
nn <- 3000

## Truncated log-normal data
trunc_data <- rtrunclnorm(nn, mymeanlog, mysdlog, LL, UL)
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## non-truncated data - reference
nontrunc_data <- rtrunclnorm(nn, mymeanlog, mysdlog, 0, Inf)

## Not run:
## Densities
plot.new()
par(mfrow = c(1, 2))
plot(density(nontrunc_data), main = "Non-truncated Log--normal",

col = "green", xlim = c(0, 15), ylim = c(0, 0.40))
abline(v = c(LL, UL), col = "black", lwd = 2, lty = 2)
plot(density(trunc_data), main = "Truncated Log--normal",

col = "red", xlim = c(0, 15), ylim = c(0, 0.40))

## Histograms
plot.new()
par(mfrow = c(1, 2))
hist(nontrunc_data, main = "Non-truncated Log--normal", col = "green",

xlim = c(0, 15), ylim = c(0, 0.40), freq = FALSE, breaks = 22,
xlab = "mu = exp(0.5), sd = exp(-1.5), LL = 3.5, UL = 8")

abline(v = c(LL, UL), col = "black", lwd = 4, lty = 2)

hist(trunc_data, main = "Truncated Log--normal", col = "red",
xlim = c(0, 15), ylim = c(0, 0.40), freq = FALSE,
xlab = "mu = exp(0.5), sd = exp(-1.5), LL = 3.5, UL = 8")

## End(Not run)

## Area under the estimated densities
# (a) truncated data
integrate(approxfun(density(trunc_data)),

lower = min(trunc_data) - 0.1,
upper = max(trunc_data) + 0.1)

# (b) non-truncated data
integrate(approxfun(density(nontrunc_data)),

lower = min(nontrunc_data),
upper = max(nontrunc_data))

trunclognormal Truncated Log-normal Distribution Family Function

Description

Maximum likelihood estimate of the two–parameter lognormal distribution with lower/upper trun-
cation.
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Usage

trunclognormal(lmeanlog = "identitylink", lsdlog = "loglink",
min.support = 1e-6, max.support = Inf, zero = "sdlog")

Arguments

lmeanlog, lsdlog, zero
Same as lognormal.

min.support, max.support
Positive lower and upper truncation limits (recycled). min.support enables
LHS truncation; max.support enables RHS truncation (default is none).

Details

MLE of the two–parameter (univariate) lognormal distribution subject to lower/upper truncation.
All response values are greater than min.support and lower than max.support.

Default values of min.support, max.suppport should effectively reproduce lognormal.

The truncated–lognormal density for a response Y is

f(y;µ, σ) = fN (y;µ, σ)/[Φ(max.support, µ, σ)− Φ(min.support, µ, σ)],

where fN is the ordinary lognormal density (see lognormal) and Φ is the standard normal CDF.

The mean of Y, given by

exp (µ+ σ2/2)·[Φ(((log(max.support)−µ)/σ)−σ)−Φ(((log(min.support)−µ)/σ)−σ)]/∆Φ(µ, σ),

with ∆Φ(µ, σ) = Φ((log(max.support)− µ)/σ)− Φ((log(min.support)− µ)/σ), are returned
as the fitted values.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Author(s)

Victor Miranda, Siqi (Vicky) Liu and Thomas W. Yee.

References

Nadarajah, S. and Kotz, S. (2003). R Programs for Computing Truncated Distributions. Journal of
Statistical Software, Code Snippets, 16(2), 1–8.

Cohen, A.C. (1991) Truncated and Censored Samples: Theory and Applications, New York, USA.
Marcel Dekker.

See Also

lognormal, uninormal, CommonVGAMffArguments, Lognormal.
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Examples

##########
set.seed(10470923)
nn <- 3000

## Parameters
mysdlog <- exp(-1.5) # sdlog
LL <- 3.5 # Lower bound
UL <- 8.0 # Upper bound

## Truncated data
ldata2 <- data.frame(x2 = runif(nn))
ldata2 <- transform(ldata2, y1 = rtrunclnorm(nn, 1 + 1.5 * x2, mysdlog,

min.support = LL, max.support = UL))
# head(ldata2)
# hist(ldata2$y1, breaks = 22, col = "blue", xlim = c(0, 10))

##############################################################
# Fitting a truncated lognormal distribution - sd is intercept only
fit1 <- vglm(y1 ~ x2, trunclognormal(zero = "sdlog", min.support = LL, max.support = UL),

data = ldata2, trace = TRUE)
coef(fit1, matrix = TRUE)
vcov(fit1)

##############################################################
# Fitting a truncated lognormal distribution - zero = NULL
fit2 <- vglm(y1 ~ x2, trunclognormal(zero = NULL, min.support = LL, max.support = UL),

data = ldata2, trace = TRUE)
coef(fit2, matrix = TRUE)
vcov(fit2)

##############################################################
# Mimicking lognormal()
fit3 <- vglm(y1 ~ x2, trunclognormal(zero = "sdlog"),

data = ldata2, trace = TRUE)
coef(fit3, mat = TRUE)

# Same as
fit3bis <- vglm(y1 ~ x2, lognormal(zero = "sdlog"),

data = ldata2, trace = TRUE)
coef(fit3bis, mat = TRUE)

truncNormal The Truncated Normal Distribution

Description

Density, distribution function, quantile function and random numbers generator for the truncated
normal distribution
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Usage

dtruncnorm(x, mean = 0, sd = 1, min.support = -Inf, max.support = Inf, log = FALSE)
ptruncnorm(q, mean = 0, sd = 1, min.support = -Inf, max.support = Inf)
qtruncnorm(p, mean = 0, sd = 1, min.support = -Inf, max.support = Inf, log.p = FALSE)
rtruncnorm(n, mean = 0, sd = 1, min.support = -Inf, max.support = Inf)

Arguments

x, q, p, n, mean, sd
Same as Normal.

min.support, max.support
Lower and upper truncation limits.

log, log.p Same as Normal.

Details

Consider X ∼ N(µ, σ2), with A < X < B, i.e., X restricted to (A,B). We denote A =
min.support and B = max.support.

Then the conditional random variable Y = X · I(A,B) has a truncated normal distribution. Its p.d.f.
is given by

f(y;µ, σ,A,B) = (1/σ) · ϕ(y∗)/[Φ(B∗)− Φ(A∗)],

where y∗ = (y − µ)/σ, A∗ = (A− µ)/σ, and B∗ = (B − µ)/σ.

Its mean is
µ+ σ · [ϕ(A)− ϕ(B)]/[Φ(B)− Φ(A)].

Here, Φ is the standard normal c.d.f and ϕ is the standard normal p.d.f.

Value

dtruncnorm() returns the density, ptruncnorm() gives the distribution function, qtruncnorm()
gives the quantiles, and rtruncnorm() generates random deviates.

dtruncnorm is computed from the definition, as in ’Details’. [pqr]truncnormal are computed based
on their relationship to the normal distribution.

Author(s)

Victor Miranda and Thomas W. Yee.

References

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, Second
Edition (Chapter 13). Wiley, New York.

See Also

Normal, truncweibull.
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Examples

###############
## Example 1 ##

mymu <- 2.1 # mu
mysd <- 1.0 # sigma
LL <- -1.0 # Lower bound
UL <- 3.0 # Upper bound

## Quantiles:
pp <- 1:10 / 10
(quants <- qtruncnorm(p = pp , min.support = LL, max.support = UL,

mean = mymu, sd = mysd))
sum(pp - ptruncnorm(quants, min.support = LL, max.support = UL,

mean = mymu, sd = mysd)) # Should be zero

###############
## Example 2 ##

## Parameters
set.seed(230723)
nn <- 3000
mymu <- 12.7 # mu
mysigma <- 3.5 # sigma
LL <- 6 # Lower bound
UL <- 17 # Upper bound

## Truncated-normal data
trunc_data <- rtruncnorm(nn, mymu, mysigma, LL, UL)

## non-truncated data - reference
nontrunc_data <- rnorm(nn, mymu, mysigma)

## Not run:
## Densities
par(mfrow = c(1, 2))
plot(density(nontrunc_data), main = "Non-truncated ND",

col = "green", xlim = c(0, 25), ylim = c(0, 0.15))
abline(v = c(LL, UL), col = "black", lwd = 2, lty = 2)
plot(density(trunc_data), main = "Truncated ND",

col = "red", xlim = c(0, 25), ylim = c(0, 0.15))

## Histograms
plot.new()
par(mfrow = c(1, 2))
hist(nontrunc_data, main = "Non-truncated ND", col = "green",

xlim = c(0, 25), ylim = c(0, 0.15), freq = FALSE, breaks = 22,
xlab = "mu = 12.7, sd = 3.5, LL = 6, UL = 17")

abline(v = c(LL, UL), col = "black", lwd = 4, lty = 2)
hist(trunc_data, main = "Truncated ND", col = "red",
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xlim = c(0, 25), ylim = c(0, 0.15), freq = FALSE,
xlab = "mu = 12.7, sd = 3.5, LL = 6, UL = 17")

## End(Not run)

## Area under the estimated densities
# (a) truncated data
integrate(approxfun(density(trunc_data)),

lower = min(trunc_data) - 1,
upper = max(trunc_data) + 1)

# (b) non-truncated data
integrate(approxfun(density(nontrunc_data)),

lower = min(nontrunc_data),
upper = max(nontrunc_data))

truncnormal Truncated normal Distribution Family Function

Description

Maximum likelihood estimate of the two–parameter normal distribution with lower/upper trunca-
tion.

Usage

truncnormal(lmean = "identitylink", lsd = "loglink",
min.support = -Inf, max.support = Inf, zero = "sd")

Arguments

lmean, lsd Link functions applied to mean and standard deviation/variance.
min.support, max.support

Vector of lower and upper truncation limits (recycled). min.support enables
LHS truncation and max.support enables RHS truncation. The default imply
no truncation (mimicks uninormal).

zero See CommonVGAMffArguments for more information.

Details

MLE of the two–parameter (univariate) normal distribution subject to lower/upper truncation. All
response values are greater then min.support and/or lower than max.support.

The truncated–normal density for a response Y is
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f(y;µ, σ) = f(y;µ, σ)/[Φ(max.support, µ, σ)− Φ(min.support, µ, σ)],

where f is the probability density function of standard normal distribution and Φ is the standard
normal CDF.

The mean of Y, given by

µ+ [φ(min.support) + φ(max.support)/∆Φ(µ, σ)] · σ,

with ∆Φ(µ, σ) = Φ((max.support−µ)/σ)−Φ((min.support−µ)/σ), are returned as the fitted
values.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Author(s)

Siqi (Vicky) Liu, Victor Miranda, and Thomas W. Yee.

References

Nadarajah, S. and Kotz, S. (2003). R Programs for Computing Truncated Distributions. Journal of
Statistical Software, Code Snippets, 16(2), 1–8.

Cohen, A.C. (1991) Truncated and Censored Samples: Theory and Applications, New York, USA.
Marcel Dekker.

See Also

uninormal, CommonVGAMffArguments.

Examples

nn <- 2000
set.seed(14290909)

## Parameters
mysd <- exp(1.0) # sd
LL <- -0.5 # Lower bound
UL <- 8.0 # Upper bound

## Truncated data
ldata2 <- data.frame(x2 = runif(nn))
ldata2 <- transform(ldata2, y1 = rtruncnorm(nn, 1 + 1.5 * x2, mysd,

min.support = LL, max.support = UL))
# head(ldata2)
# hist(ldata2$y1, breaks = 22, col = "blue", xlim = c(-5, 10))

##############################################################
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# Fitting a truncated normal distribution - sd is intercept only
fit1 <- vglm(y1 ~ x2, truncnormal(zero = "sd", min.support = LL, max.support = UL),

data = ldata2, trace = TRUE)
coef(fit1, matrix = TRUE)
vcov(fit1)

##############################################################
# Fitting a truncated lognormal distribution - zero = NULL
fit2 <- vglm(y1 ~ x2, truncnormal(zero = NULL, min.support = LL, max.support = UL),

data = ldata2, trace = TRUE)
coef(fit2, matrix = TRUE)
vcov(fit2)

##############################################################
# Mimicking uninormal()
fit3 <- vglm(y1 ~ x2, truncnormal(zero = "sd"),

data = ldata2, trace = TRUE)
coef(fit3, mat = TRUE)

# Same as
fit3bis <- vglm(y1 ~ x2, uninormal(zero = "sd"),

data = ldata2, trace = TRUE)
coef(fit3bis, mat = TRUE)

uninormalff Normal (distribution–specified) quantile regression

Description

Distribution–specified quantile regression. An extension of uninormal from VGAM. It handles
effectively uninormalQlink via the first linear predictor.

Usage

uninormalff(link1 = "identitylink", lsd = "loglink",
percentile = 50,
imethod = 1, isd = NULL, parallel = FALSE,
smallno = 1.0e-5, zero = "sd")

Arguments

link1 Link function for the first linear predictor. By default link1 = "identitylink",
same as lmean from uninormal. Set link1 = "uninormalQlink" for normal
quantile regression. See details below.
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percentile Numeric. A vector with the percentiles of interest, between 0 and 100. Used
only when link1 = "uninormalQlink".

lsd, imethod, isd, parallel, smallno, zero
Same as in uninormal, except that "sd" is the only accepted value for zero.

Details

An extension of uninormal adapted to handle uninormalQlink, for normal quantile regression
(QR) via the first linear predictor.

The standard deviation only can be estimated. The second linear predictor is fixed to η2 = log σ,
and var.arg is set internally to FALSE.

Unlike usual QR where the distribution of Y |X is unspecified, uninormalff() estimates normal
distributions at different quantiles (as entered in percentile) of the Y |X . For this, set link1 =
uninormaQlink. To mimic uninormal set link1 = "identitylink" (default).

Initial developments of this work are in Miranda & Yee (2019). See, e.g., weibullRff, for another
example on distribution specified quantile regression with the two–parameter Weibull distribution.

Value

An object of class "vglm". See vglm-class for full details.

Note

Q.reg must be used in the vglm() or vgam() to enter the response. See example below.

This VGAM family function does not handle censored data.

Author(s)

V. Miranda and Thomas W. Yee.

References

Miranda & Yee (2019) New Link Functions for Distribution–Specific Quantile Regression Based on
Vector Generalized Linear and Additive Models. Journal of Probability and Statistics, Article ID
3493628.

Miranda & Yee (2021) Two–Parameter Link Functions, With Application to Negative Binomial,
Weibull and Quantile Regression. In preparation.

See Also

uninormalQlink, uninormal, Q.reg, weibullQlink, weibullRff, CommonVGAMffArguments.

Examples

## Not run:

x2 <- seq(0,10,length.out = 100) # independent variable
sig <- exp(0.5 + 0.15*x2) # non-constant variance
b_0 <- 10 # true intercept
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b_1 <- 0.15 # true slope
set.seed(17221) # make the next line reproducible
e <- rnorm(100,mean = 0, sd = sig) # normal random error with non-constant variance
y <- b_0 + b_1*x2 + e # dependent variable

## Data
ndata <- data.frame(y = y, x2 = x2)

## Some percentiles of interest
percentile <- c(10, 25, 50, 90)

## Normal quantile regression, zero = NULL
fit1 <- vglm(Q.reg(y, length.arg = 4) ~ x2,

uninormalff(link1 = "uninormalQlink", percentile = percentile, zero = NULL),
data = ndata, trace = TRUE)

#summary(fit1)
( my.coef3Q <- coef(fit1, mat = TRUE) )

## Plots - percentile curves.
plot(y ~ x2, pch = 19, ylim = c(-1, 25),
main =" Normal quantile regression")
abline(h = -3:25, v = 0, col = "gray", lty = "dashed")
with(ndata, lines(x2, my.coef3Q[1, 1] + my.coef3Q[2, 1] * x2,

col = "red", lty = "dotted", lwd = 4))
with(ndata, lines(x2, my.coef3Q[1, 3] + my.coef3Q[2, 3] * x2,

col = "orange", lty = "dotted", lwd = 4))
with(ndata, lines(x2, my.coef3Q[1, 5] + my.coef3Q[2, 5] * x2,

col = "blue", lty = "dotted", lwd = 4))
with(ndata, lines(x2, my.coef3Q[1, 7] + my.coef3Q[2, 7] * x2,

col = "brown", lty = "dotted", lwd = 4))
legend("topleft", c("90th", "50th", "25th", "10th"),
col = c("brown", "blue", "orange", "red"), lty = rep("dotted", 4), lwd = rep(4, 4))

## Mimicking 'VGAM:uninormal'
fit2 <- vglm(y ~ x2, uninormalff(link1 = "identitylink", percentile = NULL, zero = NULL),

data = ndata, trace = TRUE)

## End(Not run)

uninormalQlink Quantile regression: Link function for the quantiles of the normal dis-
tribution.

Description

Computes the uninormalQlink transformation, its inverse and the first two derivatives.
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Usage

uninormalQlink(theta, percentile = stop("Enter percentiles."),
sd = NULL, wrt.param = NULL,
bvalue = NULL, inverse = FALSE,
deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. This is θ (’mean’ parameter) but iy may be η depending
on the other parameters. See below for further details.

percentile Numeric. A vector of percentiles of interest, denoted as perc.
sd Numeric, positive. The ’standard deviation’ parameter (required), denoted as σ.
wrt.param Positive integer, either 1 or 2. The partial derivatives are computed with respect

to one of the two linear predictors involved with this link. Further details listed
below.

bvalue, inverse, deriv, short, tag
See Links.

Details

A 2-parameter link for the quantiles of the normal distribution. It can only be used within uninormalff
as the first linear predictor. It is defined as

uninormalQlink(µ;σ) = η1(µ;σ) = µ+ σ · Φ−1(perc),

where Φ is the error function (see, e.g., erf), µin(−∞,∞), and σ > 0. This link is expressly a
function of θ = µ, therefore sigma must be entered at every call. Numerical values of σ out of
range may result in Inf, -Inf, NA or NaN.

Value

For deriv = 0, the uninormalQlink transformation of theta, i.e. µ, when inverse = FALSE. If
inverse = TRUE, then θ becomes η, and the inverse, η − σΦ−1(perc), for given σ, is returned.

When deriv = 1 theta becomes θ = (µ, σ) = (θ1, θ2), and η = (η1, η2) with η2 = log σ, and the
argument wrt.param must be considered:

A) If inverse = FALSE, then d eta1 / d µ is returned when wrt.param = 1, and d eta1 / d σ if
wrt.param = 2.

B) For inverse = TRUE, this link returns d µ / d eta1 and d σ / d eta1 conformably arranged in a
matrix, if wrt.param = 1, as a function of θi, i = 1, 2. When wrt.param = 2, then dµ / d eta2 and
dσ / d eta2 is returned.

For deriv = 2, the second derivatives in terms of theta are similarly returned.

Note

Numerical instability may occur for values of sigma too close to zero. Use argument bvalue to
replace the former only before computing the link.

If theta is character, then arguments inverse and deriv are ignored. See Links for further details.
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Author(s)

V. Miranda and Thomas W. Yee.

See Also

uninormalff, uninormal, Links.

Examples

eta <- seq(-3, 3, by = 0.1) # this is eta = log(Normal - Quantiles).
sigma <- exp(1) # 'sigma' argument.
percentile <- c(25, 50, 75, 95) # some percentiles of interest.

## E1. Get 'mean' values.
theta <- uninormalQlink(theta = eta, percentile = percentile,

sd = sigma, inverse = TRUE) # Mu

## Not run:
## E2. Plot theta vs. eta, 'shape' fixed, for different percentiles.

plot(theta[, 1], eta, type = "l", las = 1, lty = 2, lwd = 3,
ylim = c(-10, 10), xlim = c(-10, 10),
main = "uninormalQlink(theta; shape), fixed 'shape'.",
xlab = "Theta (scale)", ylab = "uninormalQlink")

abline(v = 0, h = 0, col = "red")
lines(theta[, 2], eta, lty = 2, lwd = 3, col = "blue")
lines(theta[, 3], eta, lty = 2, lwd = 3, col = "orange")
lines(theta[, 4], eta, lty = 2, lwd = 3, col = "red")
legend("bottomright", c("25th Perc", "50th Perc", "75th Perc", "95th Perc"),

col = c("black", "blue", "orange", "red"), lty = c(2, 2, 2, 2),
lwd = rep(3, 4))

## End(Not run)

## E3. uninormalQlink() and its inverse ##
etabis <- uninormalQlink(theta = theta, percentile = percentile,

sd = sigma, inverse = FALSE)
my.diff <- eta - etabis
summary(my.diff) # Zero

UtilitiesVGAMextra Utility Functions for the VGAMextra Package

Description

A set of common utility functions required by time series family functions at ’VGAMextra’.
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Usage

Is.Numeric(x, isInteger = FALSE, length.arg = NULL, Nnegative = NULL)
is.FormulaAR(Model = ~ 1, Resp = 1)
cross.gammas(x, y = NULL, lags = 1)
WN.lags(y, lags, to.complete = NULL)
extract.Residuals(object, TSprocess,...)
fittedVGAMextra(object,...)
weightsVGAMextra(object, type.w = "prior",...)
XLMmat(object,...)

Arguments

x A vector of quantiles. Particularly, for Is.Numeric it is a single number (or
vector) to be tested: Whether is numeric or not.

y Vector of quantiles to be lagged. Then, the cross - covariances are computed
from x and yt, x and yt−1, etcetera.

isInteger Logical. If TRUE, it verifies that quantiles x are integers. Default is FALSE.

lags Integer indicating the number of lags or delays to be applied to vector y. Then,
calculate the cross-covariance between the pair of signals x and delayed samples
computed from y.

length.arg Integer. If length.arg > 0, it verifies that the length of x matches length.arg.

Model Formula. A symbolic form of the models fitted by the vglm call. See formula
for further details.

Nnegative Logical. If TRUE, it verifies that x (all entries) are positive.

Resp Integer. The number of responses in the Model. It must macth the number of
respones entered in the vglm call.

object An object of class 'vglm'. See vglm-class for details.

TSprocess Logical, what time series model is being fitted. Choices are 'AR', 'MA', 'ARMA'
and 'ARIMA'.

type.w Character. What type of weights are to be used. Default is "prior". These are
extracted from the slot @prior.weights of object.

to.complete Use this argument to fill in the first ’p’ observations when computing the lagged
vectors in time series.

... Additional parameters required by function extract.Residuals.

Details

A set of utility functions in VGAMextra for different purposes.

Specially for time series family functions in VGAMextra which involve specific checks on the
majority of arguments entered by the user.
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Value

Is.Numeric() returns a logical vector (or value) (TRUE or FALSE), after verifying whether quantiles
x satisfies all conditions entered.

For is.FormulaAR(), this function returns a logical value, after verifying whether the expression
entered for the Model argument in cm.ARMA is an object of class ‘formula’.

Particularly, cross.gammas() computes either the single lagged covariance(s) from quantiles given
in x or the lagged cross-covariance(s) from values given in x and y.

extract.Residuals() extracts the residuals of the process from slot @residuals, whilst

fittedVGAMextra and weightsVGAMextra return the fitted values and the weights from the vglm
object, correspondingly.

isNA and inspectVGAMextra are essentially required when implementing link functions in VGAMex-
tra.

Author(s)

V. Miranda and T. W. Yee.

See Also

cm.ARMA.

Examples

# Example 1.
myModel1 <- ~ x1 + x2
is.FormulaAR(myModel1) # TRUE

test <- list( cbind(y1, y2) ~ x1, ~ x2 - 1)
is.FormulaAR(test) # FALSE
is.FormulaAR(test[[1]], 2) # TRUE

# Example 2.

x1 <- c(1:3, 4.5, -Inf)
Is.Numeric(x1) # TRUE
Is.Numeric(x1, length.arg = 5) # TRUE
Is.Numeric(x1, length.arg = 5, isInteger = TRUE) # FALSE
Is.Numeric(x1, length.arg = 5, Nnegative = TRUE) # FALSE

# Example 3.
# Here, 'cross.gammas' computes Cov(x, y_{t - 1}), Cov(x, y_{t - 2}) and
# Cov(x, y_{t - 3}).

x <- runif(50)
y <- runif(50)
cross.gammas(x, y, lags = 3)
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VARff VGLTSM family function for the Order–p Vector Auto(R)egressive
Model

Description

Estimates an Order(p) Vector Autoregressive Models (VAR(p)) with white noise random errors by
maximum likelihood estimation using Fisher scoring.

Usage

VARff(VAR.order = 1,
zero = c("var", "cov"),
lmean = "identitylink",
lvar = "loglink",
lcov = "identitylink")

Arguments

VAR.order Length–1 (positive) integer vector. The order of the VAR to be fitted.

zero Integer or character - string vector. Same as MVNcov. Details at zero.
lmean, lvar, lcov

Same as MVNcov.

Details

Let xt = (x1,t, . . . , xK,t)
T be a time dependent vector of responses, with index t = 1, . . . , T , and

εt = (ε1,t, . . . , εK,t) white noise with covariance matrix V.

VARff fits a linear model to the means of aK–variate normal distribution, where each variable, xi,t,
i = 1, . . . ,K, is a linear function of p–past lags of itself and past p–lags of the other variables. The
model has the form

xt = Φ1xt−1 + · · ·+Φpxt−p + εt,

where Φj are K ×K matrices of coefficients, j = 1, . . . ,K, to be estimated.

The elements of the covariance matrix are intercept–only by default.

Value

An object of class "vglmff" (see vglmff-class) to be used by VGLM/VGAM modelling func-
tions, e.g., vglm or vgam.

Author(s)

Victor Miranda.
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See Also

MVNcov, zero, Links, ECM.EngleGran, vglm.

Examples

set.seed(20170227)
nn <- 60
var.data <- data.frame(x2 = runif(nn, -2.5, 2.5))
var.data <- transform(var.data, y1 = rnorm(nn, 1.5 - 2 * x2, sqrt(exp(1.5))),

y2 = rnorm(nn, 1.0 - 1 * x2, sqrt(exp(0.75))),
y3 = rnorm(nn, 0.5 + 1 * x2, sqrt(exp(1.0))))

fit.var <- vglm(cbind(y1, y2, y3) ~ x2, VARff(VAR.order = 2),
trace = TRUE, data = var.data)

coef(fit.var, matrix = TRUE)

summary(fit.var)
vcov(fit.var)

vgltsmff Class of Vector Generalized Linear Time Series Models

Description

Time series family functions for the VGAMextra package

Objects from the Class

Objects can be created by calling new("vgltsmff"...)

slots

Implementation of vector generalized linear time series (TS) family functions (vgltsff ) at VGAMex-
tra is entirely based on the structure of family functions of the class vglmff-class.

Hence, refer to vglmff-class for a thourugh description of slots and features involved when objects
of class "vgtsff" are being created.

Methods

Thus far, the following methods for objects of class "vgltsff-class" are implemented:

summary Additional information to that displayed by the summary methods from VGAM. That is:
a) Standard errors based on the MLEs asymptotic distributions, and
b) Checks on stationarity and/or invertibility via the polynomial roots.
Currently, summary methods at VGAMextra have been implemented for:
signature(VGAMff = "ARff"): For ARX–types family functions.
signature(VGAMff = "MAff"): For MAX–types family functions.
signature(VGAMff = "ARMAff"): For ARMAX–like family functions.
See summaryS4VGAMextra for further details.
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Note

Programmers to write VGAM/VGLM time series family functions are also allowed to write methods
functions either for specific purposes, or to extend those current methods to print some extra output
required.

In such cases, notice that the class vgltsff-class is labeled by an object of class "character" (a
character vector) specified at the slot @vfamily within the family function. This is, in fact, one of
the required slots by the class vglmff-class.

Additionally, practitioners are encouraged to mantain all previous conventions for naming the argu-
ments in Ts family functions as specified at vglmff-class, e.g., link is the argument for parameter
link functions, etc.

Author(s)

V. Miranda and T.W. Yee.

weibullMlink Link functions for the mean of 2–parameter continuous distributions:
The Weibull distribution.

Description

Computes the weibullMlink transformation, its inverse and the first two derivatives.

Usage

weibullMlink(theta, shape = NULL, wrt.param = NULL,
bvalue = NULL, inverse = FALSE,
deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. This is θ (’scale’ parameter) but it may be η depending
on the other parameters. See below for further details.

shape The shape parameter. Required for this link to work. See weibullRff.

wrt.param Positive integer, either 1 or 2. The partial derivatives are computed with respect
to one of the two linear predictors involved with this link. Further details listed
below.

bvalue, inverse, deriv, short, tag
See Links.
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Details

This is the link for the mean of the 2–parameter Weibull distribution, also known as the weibullMlink
transformation. It can only be used within weibullRff and is defined as

weibullMlink(β;α) = η(β;α) = log[β · Γ(1+ 1/α)],

for given α (’shape’ parameter) where β > 0 is the scale parameter. weibullMlink is expressly a
function of β, i.e. θ, therefore α (shape) must be entered at every call.

Numerical values of α or β out of range may result in Inf, -Inf, NA or NaN.

Value

For deriv = 0, the weibmeanlnik transformation of theta, i.e., β, when inverse = FALSE. If
inverse = TRUE, then θ becomes η, and the inverse, exp (theta− log Γ(1 + 1/α)) , for given α,
is returned.

When deriv = 1 theta becomes θ = (β, α) = (θ1, θ2), and η = (η1, η2) with η2 = log α, and the
argument wrt.param must be considered:

A) If inverse = FALSE, then d eta1 / d β is returned when wrt.param = 1, and d eta1 / d α if
wrt.param = 2.

B) For inverse = TRUE, this function returns d β / d eta1 and d α / d eta1 conformably arranged
in a matrix, if wrt.param = 1, as a function of θi, i = 1, 2. When wrt.param = 2, a matrix with
columns dβ / d eta2 and dα / d eta2 is returned.

For deriv = 2, the second derivatives in terms of theta are likewise returned.

Note

Numerical instability may occur for values theta too close to zero. Use argument bvalue to replace
them before computing the link.

If theta is character, then arguments inverse and deriv are ignored. See Links for further details.

Author(s)

V. Miranda and Thomas W. Yee.

See Also

weibullQlink, weibullRff, weibullR, lgamma, Links.

Examples

eta <- seq(-3, 3, by = 0.1) # this is eta = log(mu(b, a)).
shape <- exp(1) # 'shape' argument.

## E1. Get 'scale' values with A WARNING (not the same length)!
theta <- weibullMlink(theta = eta, shape = shape, inverse = TRUE) # Scale

## Not run:
## E2. Plot theta vs. eta, 'shape' fixed.
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plot(theta, eta, type = "l", ylab = "", col = "blue",
main = paste0("weibullMlink(theta; shape = ",

round(shape, 3), ")"))
abline(h = -3:3, v = 0, col = "gray", lty = "dashed")

## End(Not run)

## E3. weibullMlink() and its inverse ##
etabis <- weibullMlink(theta = theta, shape = shape, inverse = FALSE)
summary(eta - etabis) # Should be 0

weibullQlink Weibull Quantile regression: Link function for the quantiles of the
Weibull distribution.

Description

Computes the weibullQlink transformation, its inverse and the first two derivatives.

Usage

weibullQlink(theta, percentile = stop("Enter percentiles."),
shape = NULL, wrt.param = NULL,
bvalue = NULL, inverse = FALSE,
deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. Same as uninormalQlink

percentile Same as uninormalQlink. Denoted below as perc.

shape Numeric, positive. The shape parameter, required.

wrt.param Same as in uninormalQlink

bvalue, inverse, deriv, short, tag
See Links.

Details

The ordinary scale–shape Weibull quantiles are directly modelled by this link, aka weibullQlink
transformation. It can only be used within weibullRff as the first linear predictor, η1, and is defined
as

weibullQlink(β;α) = η1(β;α) = log{β · [(− log(1− perc))(1/α)]},

for given α (’shape’ parameter) where β > 0 is the scale parameter. weibullQlink is expressly a
function of β, i.e. θ, therefore α (shape) must be entered at every call.

Numerical values of α or β out of range may result in Inf, -Inf, NA or NaN.
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Value

For deriv = 0, the weibullQlink transformation of theta, i.e. β, when inverse = FALSE. If
inverse = TRUE, then θ becomes η, and the inverse, exp[theta - (1/α)log(−log(1 − perc))],
for given α, is returned.

When deriv = 1 theta becomes θ = (β, α) = (θ1, θ2), and η = (η1, η2) with η2 = log α, and the
argument wrt.param must be considered:

A) If inverse = FALSE, then d eta1 / d β is returned when wrt.param = 1, and d eta1 / d α if
wrt.param = 2.

B) For inverse = TRUE, this link returns d β / d eta1 and d α / d eta1 conformably arranged in a
matrix, if wrt.param = 1, as a function of θi, i = 1, 2. When wrt.param = 2, a matrix with columns
dβ / d eta2 and dα / d eta2 is returned.

For deriv = 2, the second derivatives in terms of theta are similarly returned.

Note

See weibullMlink.

Author(s)

V. Miranda and Thomas W. Yee.

References

Miranda & Yee (2021) Two–Parameter Link Functions, With Application to Negative Binomial,
Weibull and Quantile Regression. In preparation.

See Also

weibullRff, Q.reg, weibullR, weibmeanlink, Links.

Examples

eta <- seq(-3, 3, by = 0.1) # this is eta = log(Weibull-quantiles).
shape <- exp(1) # 'shape' argument.
percentile <- c(25, 50, 75, 95) # some percentiles of interest.

## E1. Get 'scale' values. Gives a warning (not of the same length) !
theta <- weibullQlink(theta = eta, percentile = percentile,

shape = shape, inverse = TRUE) # Scale

## Not run:
## E2. Plot theta vs. eta, 'shape' fixed, for different percentiles.
plot(theta[, 1], eta, type = "l", lwd = 3,

ylim = c(-4, 4),
main = paste0("weibullQlink(theta; shape = ", round(shape, 3), ")"),
xlab = "Theta (scale)", ylab = "weibullQlink")

abline(h = -3:3, v = 0, col = "gray", lty = "dashed")
lines(theta[, 2], eta, lwd = 3, col = "blue")
lines(theta[, 3], eta, lwd = 3, col = "orange")
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lines(theta[, 4], eta, lwd = 3, col = "red")
legend("bottomright", c("25th Perc", "50th Perc", "75th Perc", "95th Perc"),

col = c("black", "blue", "orange", "red"),
lwd = rep(3, 4))

## End(Not run)

## E3. weibullQlink() and its inverse ##
etabis <- weibullQlink(theta = theta, percentile = percentile,

shape = shape, inverse = FALSE)
summary(eta - etabis) # Should be 0 for each colum (percentile)

weibullRff Distribution–specified quantile regression: 2–parameter Weibull Dis-
tribution

Description

Estimates the 2–parameter Weibull distribution by maximum likelihood. An extension of weibullR
from VGAM. Weibull quantile regression and Weibull–mean modelling are also handled via the
first linear predictor.

Usage

weibullRff(link1 = c("loglink", "weibullMlink", "weibullQlink")[1],
lshape = "loglink", percentile = 50,
imu = NULL, iscale = NULL, ishape = NULL,
lss = TRUE, nrfs = 1, probs.y = c(0.2, 0.5, 0.8),
imethod = 1, zero = "shape")

Arguments

link1 Link function for the first linear predictor. Default is link1 = "loglink", mim-
icking weibullR. The other options are the 2–parameter weibullQlink, applied
to the Weibull quantile function, and the 2–parameter weibullMlink, applied to
the Weibull mean function. See below for more details.

percentile Numeric. A vector with the percentiles of interest, between 0 and 100. Used
only in Weibull quantile regression, that is, when link1 = "weibullQlink".

lshape, imu, iscale, ishape, lss, nrfs, probs.y, imethod
Same as weibullR.

zero Specifies the parameters to be modelled as intercept–only. Further details below.
See CommonVGAMffArguments.
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Details

weibullRff is a modified version of weibullR adapted to handle weibullQlink and weibullMlink,
two 2-parameter linear predictors that model the Weibull mean and quantiles respectively. The un-
derlying density is the ordinary scale(β) & shape(α) Weibull density (see weibullR).

The second linear predictor is always η2 = log α. The argument link1 handles the first linear
predictor.

** Mimicking weibullR **

The default is link1 = "loglink", i.e., η1 = log β = log scale, and η2 = log α = log shape, as
with weibullR. The mean (µ) is returned as the fitted value.

** Weibull quantile regression **

For Weibull quantile regression set link1 = "weibullQlink" and enter a numeric vector of per-
centiles of interest via percentile. See examples.

NOTE: Enter the response using Q.reg. See example below. The Weibull quantiles are returned as
the fitted values.

** Weibull-mean modelling **

For Weibull-mean modelling (viz. mean time to failure) set link1 = "weibullMlink". The mean
(µ) is returned as the fitted value.

Value

An object of class "vglm". See vglm-class for full details.

Note

The parameters α and β match the arguments shape and scale from rweibull.

Multiple responses are handled.

This VGAM family function does not handle censored data.

Author(s)

V. Miranda and Thomas W. Yee.

References

Miranda & Yee (2021) Two–Parameter Link Functions, With Application to Negative Binomial,
Weibull and Quantile Regression. In preparation.

See Also

Q.reg, weibullQlink, weibullMlink, weibullR, gamma, CommonVGAMffArguments.
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Examples

## Not run:
set.seed(18121)
nn <- 300
x2 <- sort(runif(nn, 0, 3)) # Predictor/covariate.
bb <- exp(1.1 + 0.2 * x2) # Scale parameter as function of x2.
aa <- exp(1.0 - 0.35 * x2) # Shape parameter as function of x2.
mymu <- bb * gamma(1 + 1/aa) # The Weibull mean.

## Use weibullMlink to generate appropriate scale parameter.
newbb <- weibullMlink(theta = log(mymu), shape = aa, inverse = TRUE, deriv = 0)

## A single random response
wdata <- data.frame(y1 = rweibull(nn, shape = aa, scale = newbb), x2 = x2)

# Plotting the data / Histogram
plot(y1 ~ x2, xlim = c(0, 3.1), ylim = c(-1, 35),

pch = 20, data = wdata, col = "black",
main = "Weibull Quantile regression~ x2")

abline(h = 0, v = 0, col = "grey", lty = "dashed")
with(wdata, hist(y1, col = "red", breaks = 15))

## Weibull regression - percentile = c(25, 50, 75)
## Note the use of Q.reg.
fit1 <- vglm(Q.reg(y1, length.arg = 3) ~ x2,

weibullRff(link1 = "weibullQlink", zero = NULL,
percentile = c(25, 50, 75)),

trace = TRUE, data = wdata)
head(fitted(fit1))
summary(fit1)
my.coef3Q <- coef(fit1, mat = TRUE)

### Proportion of data below the estimated 25% Quantile line.
100 * (1 - (sum(wdat$y1 >= fitted(fit2)[, 1]) / nn)) # Around 25%
### Proportion of data below the estimated 50% Quantile line.
100 * (1 - (sum(wdat$y1 >= fitted(fit2)[, 2]) / nn)) # Around 50%
### Proportion of data below the estimated 75% Quantile line.
100 * (1 - ( sum(wdat$y1 >= fitted(fit2)[, 3]) / nn )) # Around 75%

## The quantile plots ##
my.coef3Q <- coef(fit2, matrix = TRUE)
with(wdat, lines(x2, exp(my.coef3Q[1, 1] + my.coef3Q[2, 1] * x2),

col = "red", lty = "dotted", lwd = 4))
with(wdat, lines(x2, exp(my.coef3Q[1, 3] + my.coef3Q[2, 3] * x2),

col = "orange", lty = "dotted", lwd = 4))
with(wdat, lines(x2, exp(my.coef3Q[1, 5] + my.coef3Q[2, 5] * x2),

col = "blue", lty = "dotted", lwd = 4))

## Adding the 'mean' or expected Weibull regression line.
fit2 <- vglm(y1 ~ x2,

weibullRff(link1 = "weibullMlink", zero = NULL),
trace = TRUE, data= wdat)
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my.coef3Q <- coef(fit2, mat = TRUE)
with(wdat, lines(x2, exp(my.coef3Q[1, 1] + my.coef3Q[2, 1] * x2),

col = "yellow", lty = "dashed", lwd = 3))

legend("topleft", c("25h Perc", "50th Perc", "Mean", "75th Perc"),
col = c("red", "orange", "cyan", "blue"),
lty = c("dashed", "dashed", "dashed", "dashed"), lwd = rep(4, 4))

## End(Not run)

WN.InitARMA Estimated White Noise (WN) from the autoregressive moving-average
model of order-(p, q) [ARMA(p, q)].

Description

Estimates the unobserved white noise of the ARMA(p, q) model via the corresponding inverted
process.

Also, provides the initial values of ARXff, MAXff, and ARMAXff family functions.

Usage

WN.InitARMA(tsData = NULL,
order = c(1, 0, 1),
whiteN = FALSE,
moreOrder = 0,
updateWN = FALSE)

Arguments

tsData A univariate data frame containing the time series to be fitted according to an
ARMA(p, q) process. Data must be of class "ts".

order A vector with three integer components. It is order of the ARMA model to be
inverted. These entries, c(p, d, q), are the AR order, the degree of differencing,
and the MA order, respectively.

whiteN Logical. If TRUE, then the estimated white noise computed from the inverted
ARMA model is returned. This option is enabled only for MAXff, ARMAXff fam-
ily functions.

moreOrder A non-negative integer (might be zero) used to increment the order of the AR
model initially fitted to estimate the residuals, i.e., an AR(p + moreOrder) model.
Empirically, values of moreOrder > 2 do NOT improve accuracy of estimates.
This assert, however, may vary for different time series family functions.

updateWN Logical. if TRUE, the white noise is updated through a second regression of Yt
on Yt−1, . . . , Yt−p, ε̂t−1, . . . , ε̂t−q .
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Details

Overall, the autoregressive moving average process of order c(p, q), shortly denoted as ARMA(p,
q), with intercept µ can be expressed as

yt = µ+ θ1yt−1 + . . .+ θpyt−p + ϕ1εt−1 + . . .+ ϕqεt−q + εt.

It is well known that it can be expressed in terms of an autoregressive process of infinite order,
AR(∞), by recursive substitutions. For instance, given a mean-zero ARMA(1, 1),

yt = θ1yt−1 + ϕ1εt−1 + εt, (1)

one may express
εt−1 = Yt−1 − (θ1yt−2 + ϕ1εt−2

Substituting this equation in (1) yields the initial inverted process, as follows:

yt = ψ1yt−1 + ψ2yt−2 + f(εt−2, εt).

where f is a function of εt−2 and εt.

Repeated substitutions as above produces the so-called inverted process,

yt =

∞∑
k=1

ψkyt−k + εt. (2)

k = 1, . . . ,∞. Hence, setting an acceptable order (via the moreOrder argument, 1 or 2 for in-
stance), an AR(p + moreOrd) inverted model is internally fitted within WN.InitARMA. Consequently,
the unobserved white noise, {εt}, is estimated by computing the residuals in (2), after regression.
whiteN = TRUE enables this option.

Finally, initial values of the MAXff, and ARMAXff family functions can be computed by least squares
from the estimated white noise above, {εt} and the given data, {tt}.

Initial values of ARXff are also internally computed using {tt} only.

Value

A list with the following components:

Coeff The initial values of the VGLM/VGAM family function in turn: ARXff, MAXff,
or ARMAXff.

whiteN (Optional) Estimated white noise enabled only for MAXff, ARMAXff . That se-
quence is returned if whiteN = TRUE.

Warning

For some time series family functions, MAXff for instance, values of moreOrder > 3 do NOT
improve the accuracy of estimates, and may lead the algorithm to failure to converge.

Author(s)

Victor Miranda and T. W. Yee.
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References
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See Also

MAXff, ARMAXff.

Examples

# Generating some data -> an MA(3)
set.seed(1004)
mydata <- arima.sim( n = 200, list(ma = c(0.3, 0.56 , 0.11)) )

# Computing initial values to be passed to MAXff()
WN.InitARMA(tsData = data.frame(y = mydata),

order = c(0, 0, 3),
moreOrder = 1)

# Returning initial values and white noise.
initMA <- WN.InitARMA(tsData = data.frame(y = mydata),

order = c(0, 0, 3),
moreOrder = 1,
whiteN = TRUE)

# Initial values passed to MAXff()
initMA$Coeff

# Estimated white noise
head(initMA$WhiteNoise)

yulesimonMlink Link functions for the mean of 1–parameter discrete distributions: The
Yule–Simon Distribution.

Description

Computes the yulesimonMlink transformation, its inverse and the first two derivatives.

Usage

yulesimonMlink(theta, bvalue = NULL, inverse = FALSE,
deriv = 0, short = TRUE, tag = FALSE)
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Arguments

theta Numeric or character. This is θ by default, or η depending upon other arguments.
See Links.

bvalue, inverse, deriv, short, tag
Details at Links

Details

Assume Y ∼ Yule− Simon(ρ), where ρ is a shape parameter as in yulesimon. Then, the mean of
Y is given by

µ =
ρ

ρ− 1
= (1− ρ−1)−1,

provided ρ > 1.

This link function may be conceived as a natural link function for the mean of the Yule–Simon
distribution which comes up by taking the logarithm on both sides of this equation. More precisely,
the yulesimonMlink tranformation for ρ > 1 is given by

yulesimonMlink(ρ) = − log(1− ρ−1).

While this link function can be used to model any parameter lying in (1,∞), it is particularly useful
for event-rate data where the mean, µ, can be written in terms of some rate of events, say λ, and the
timeframe observed t. Specifically,

µ = λt.

Assuming that additional covariates might be available to linearly model λ (or log λ), this model
can be treated as a VGLM with one parameter where the time t (as log t) can be easily incorporated
in the analysis as an offset.

Under this link function the domain set for ρ is (1,∞). Hence, values of ρ too close to 1 from
the right, or out of range will result in Inf, -Inf, NA or NaN. Use argument bvalue to adequately
replace them before computing the link function.

Unlike logffMlink or zetaffMlink, the inverse of this link function can be written in close form.

If theta is a character, arguments inverse and deriv are disregarded.

Value

For deriv = 0, the yulesimonMlink transformation of theta when inverse = FALSE, and if inverse
= TRUE then exp(theta) / (exp(theta) - 1).

For deriv = 1, d eta / d theta as a function of theta if inverse = FALSE, else the reciprocal d
theta / d eta.

For deriv = 2 the second order derivatives are correspondingly returned.

Warning

Conforming with yulesimon, the domain set for rho is (0,∞). However, in order for yulesimonMlink
to be a real number, rho must be greater then 1.0. Then, when a VGLM is fitted via yulesimon
using this link function, numerical instability will occur if the estimated or the true value of rho
lies between 0 and 1, or if the initial values for rho generated by yulesimon fail to meet rho > 1.
Alternatively, try posPoiMlink or loglink if this happens.
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Note

If the underlying assumption ρ > 1 is not met, then this function returns NaN. This is equivalent to
claim that the mean is infinite or negative and, consequently, its logarithm will not be real.

The vertical line theta = 1 is an asymptote for this link function. As a result, it may return Inf for
values of ρ too close to 1 from the right.

Author(s)

V. Miranda and T. W. Yee

See Also

yulesimon, Links, posPoiMlink, loglink.

Examples

## Example 1 ##
Shapes <- 1:10
yulesimonMlink(theta = Shapes, deriv = 1) ## d eta/d theta, as function of theta

yulesl.inv <-
# The inverse minus actual values
yulesimonMlink(theta = yulesimonMlink(theta = Shapes), inverse = TRUE) - Shapes

summary(yulesl.inv) ## zero

## Example 2. Special values of theta (rho) ##
rhos <- c(-Inf, -2, -1, 0.0, 0.5, 1, 5, 10, 100, Inf, NaN, NA)
rbind(rho = rhos,

yuleslink = yulesimonMlink(theta = rhos),
inv.yulesl =yulesimonMlink(theta = rhos, inverse = TRUE))

## Example 3 The yulesimonMlink transformation and the first two derivatives ##

rhos <- seq(1, 20, by = 0.01)[-1]
y.rhos <- yulesimonMlink(theta = rhos, deriv = 0)
der.1 <- yulesimonMlink(theta = rhos, deriv = 1)
der.2 <- yulesimonMlink(theta = rhos, deriv = 2)

plot(y.rhos ~ rhos, col = "black",
main = "log(mu), mu = E[Y], Y ~ Yule-Simon(rho).",
ylim = c(-5, 10), xlim = c(-1, 5), lty = 1, type = "l", lwd = 3)

abline(v = 1.0, col = "orange", lty = 2, lwd = 3)
abline(v = 0, h = 0, col = "gray50", lty = "dashed")

lines(rhos, der.1, col = "blue", lty = 5)
lines(rhos, der.2, col = "chocolate", lty = 4)
legend(2, 7, legend = c("yulesimonMlink", "deriv = 1", "deriv = 2"),

col = c("black", "blue", "chocolate"), lty = c(1, 5, 4))
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zetaffMlink Link functions for the mean of 1–parameter discrete distributions: The
Zeta Distribution.

Description

Computes the zetaffMlink transformation, including its inverse and the first two derivatives.

Usage

zetaffMlink(theta, bvalue = NULL,
alg.roots = c("Newton-Raphson", "bisection")[1],
inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta Numeric or character. This is θ by default, although it can be η sometimes,
depending on the other parameters. See below for further details.

bvalue Details at Links.

alg.roots Character. The iterative method to find the inverse of this link function. Default
is Newton–Raphson. Optionally, the bisection method is also available.

inverse, deriv, short, tag
Details at Links

Details

This is a link function for the zeta distribution, zetaff, which emerges by applying the logarithm
transformation to its mean. Specifically, assume Y follows a zeta distribution with shape parameter
s (this is theta in the VGLM/VGAM framework). Then, the mean of Y is

µ =
ζ(s)

ζ(s+ 1)
,

provided s > 1, where ζ is the Riemann‘s zeta function computed by zeta. The notation adopted
here conforms with zetaff in terms of the density of the zeta distribution.

The zetaffMlink transformation is given by

η = zetaffMlink(s) = log
ζ(s)

ζ(s+ 1)
.

It is particularly useful when modelling event–rate data where the expected number of events, µ,
can be modelled as

µ = λt.

Specifically, λ is a standardized mean per unit–time, and t is the observed timeframe.
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The domain set for s, i.e. θ, is (1,∞). Hence, either large values of s, or those too close to 1 from
the right, or out of range will result in Inf, -Inf, NA or NaN. Use argument bvalue to adequately
replace them before computing the link function.

WARNING: While in zetaff the parameter s lies in (1,∞), zetaffMlink will be real when s > 1.
Consequently, for any VGLM fitted via zetaff using this link function, numerical problems will
take place if any s value lies between 0.0 and 1.0 at any iteration. Use optional link functions like
loglink.

When inverse = TRUE and deriv = 0, s changes into η, and therefore the domain set (only in this
case) turns into (0,∞). See below for further details.

If theta is a character, arguments inverse and deriv are disregarded.

Value

For deriv = 0, the zetaffMlink transformation of theta, if inverse = FALSE. When inverse =
TRUE, theta becomes η, and then the inverse of zetaffMlink is required. However, it cannot be
written in closed–form. Instead, the inverse image of η, say θη , is returned. That is, a unique vector
θη such that

zetaffMlink(θη) = η.

This process is equivalent to find the root, θη , of the function zetaffMlink(θ)− η, which is inter-
nally carried out via the method entered at alg.roots. Options available are “Newton-Raphson”
and “bisection”.

For deriv = 1, d eta / d theta as a function of theta if inverse = FALSE, else the reciprocal d
theta / d eta.

Similarly, when deriv = 2 the second order derivatives are returned accordingly.

The first two derivatives of the Riemman’s zeta function are computed by zeta.

Besides, the zetaffMlink function as well as its derivatives are graphically delimited for specific
asymptotes. Consequently, the mathematical limit of this link function is returned for special values
of theta, e.g. for theta = ∞. See example 2 below.

Warning

Where the inverse image of η, θη , is required, values entered at theta (becoming η) must be
non-negative. The reason is that the zetaffMlink transformation is decreasing but strictly pos-
itive in (1,∞) asymptotically approaching to the horizontal axis. In this way, the shifted–down
zetaffMlink function

zetaff.func(θ|η) = zetaffMlink(θ)− η

uniquely intersects the horizontal axis and hence the inverse image computed by “Newton-Raphson”
or “bisection” will be a real number.

Note

Overall, this link function is useful to model any parameter lying in (1,∞), specially if the theoret-
ical mean can be written as µ = λt, as stated above. As a result, some problems may arise if there
are covariates. Try another link function if any issue, such as logloglink.
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Author(s)

V. Miranda and T. W. Yee

See Also

zetaff, newtonRaphson.basic, bisection.basic, zeta, loglink, Links.

Examples

## Example 1 ##
Shapes <- 1:10 + 0.1
zetaffMlink(theta = Shapes, deriv = 1) ## d eta/d theta, as function of theta

zetafflk.inv <- zetaffMlink(theta = zetaffMlink(theta = Shapes), inverse = TRUE) - Shapes

summary(zetafflk.inv) ## Should be zero

## Example 2. Special values of theta, inverse = FALSE ##
Shapes <- c(-Inf, -1, 0.5, 1, 1.5, 10, 100, Inf, NaN, NA)
print(rbind(Shapes, zetaffMlink = zetaffMlink(theta = Shapes),

inv.zfflink = zetaffMlink(theta = Shapes, inverse = TRUE)), digits = 3)

## Example 3. Plot of 'zetaffMlink()' and its first two derivatives ##
## inverse = FALSE, deriv = 0, 1, 2 ##

Shapes <- seq(1, 20, by = 0.01)[-1]
y.shapes <- zetaffMlink(theta = Shapes, deriv = 0)
der.1 <- zetaffMlink(theta = Shapes, deriv = 1)
der.2 <- zetaffMlink(theta = Shapes, deriv = 2)

plot(y.shapes ~ Shapes,
col = "black", main = "log(mu), mu = E[Y], Y ~ Zeta(s).",
ylim = c(-5, 10), xlim = c(-0.1, 5), lty = 1, type = "l", lwd = 3)

abline(v = 1.0, col = "orange", lty = 2, lwd = 3)
abline(v = 0, h = 0, col = "gray50", lty = "dashed")

lines(Shapes, der.1, col = "blue", lty = 5)
lines(Shapes, der.2, col = "chocolate", lty = 4)
legend(2, 7, legend = c("zetaffMlink", "deriv = 1", "deriv = 2"),

col = c("black", "blue", "chocolate"), lty = c(1, 5, 4), lwd = c(3, 1, 1))
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