Title: | Embedded JavaScript and WebAssembly Engine for R |
---|---|
Description: | An R interface to V8 <https://v8.dev>: Google's open source JavaScript and WebAssembly engine. This package can be compiled either with V8 version 6 and up or NodeJS when built as a shared library. |
Authors: | Jeroen Ooms [aut, cre] , Jan Marvin Garbuszus [ctb] |
Maintainer: | Jeroen Ooms <[email protected]> |
License: | MIT + file LICENSE |
Version: | 6.0.0 |
Built: | 2024-12-12 06:45:35 UTC |
Source: | CRAN |
This function JS()
marks character vectors with a special class, so
that it will be treated as literal JavaScript code. It was copied from the
htmlwidgets package, and does exactly the same thing.
JS(...)
JS(...)
... |
character vectors as the JavaScript source code (all arguments will be pasted into one character string) |
Yihui Xie
ct <- v8() ct$eval("1+1") ct$eval(JS("1+1")) ct$assign("test", JS("2+3")) ct$get("test")
ct <- v8() ct$eval("1+1") ct$eval(JS("1+1")) ct$assign("test", JS("2+3")) ct$get("test")
The v8()
function (formerly called new_context
) creates a
new V8 context. A context provides an execution environment that allows
separate, unrelated, JavaScript code to run in a single instance of V8, like a
tab in a browser.
v8(global = "global", console = TRUE, ...) engine_info()
v8(global = "global", console = TRUE, ...) engine_info()
global |
character vector indicating name(s) of the global environment. Use NULL for no name. |
console |
expose |
... |
ignored parameters for past/future versions. |
A V8 context cannot be saved or duplicated, but creating a new context and sourcing code is very cheap. You can run as many parallel v8 contexts as you want. R packages that use V8 can use a separate V8 context for each object or function call.
The name of the global object (i.e. global
in node and window
in browsers) can be set with the global argument. A context always have a global
scope, even when no name is set. When a context is initiated with global = NULL
,
the global environment can be reached by evaluating this
in the global scope,
for example: ct$eval("Object.keys(this)")
.
## ctx <- v8() <V8 engine 10.2.154.26-node.28> $assign(name, value, auto_unbox = TRUE, ...) $call(fun, ..., auto_unbox = TRUE, await = FALSE) $console() $eval(src, serialize = FALSE, await = FALSE) $get(name, ..., await = FALSE) $reset() $source(file) $validate(src)
The ct$eval
method evaluates a string of JavaScript code in the same way
as eval
in JavaScript. By default eval()
returns a string with
console output; but when the serialize
parameter is set to TRUE
it
serializes the JavaScript return object to a JSON string or a raw buffer.
The ct$get
, ct$assign
and ct$call
functions automatically
convert arguments and return value between R and JavaScript (using JSON). To pass
literal JavaScript arguments that should not be converted to JSON, wrap them in
JS()
, see examples.
If a call to ct$eval()
,ct$get()
, or ct$call()
returns a JavaScript promise,
you can set await = TRUE
to wait for the promise to be resolved. It will then
return the result of the promise, or an error in case the promise is rejected.
The ct$validate
function is used to test
if a piece of code is valid JavaScript syntax within the context, and always
returns TRUE or FALSE.
In an interactive R session you can use ct$console()
to switch to an
interactive JavaScript console. Here you can use console.log
to print
objects, and there is some support for JS tab-completion. This is mostly for
testing and debugging, it may not work perfectly in every IDE or R-frontend.
JSON is used for data interchange between R and JavaScript. Therefore you can
(and should) only exchange data types that have a sensible JSON representation.
One exception is raw vectors which are converted to/from Uint8Array buffers, see
below. All other arguments and objects are automatically converted according to the mapping
described in Ooms (2014), and implemented
by the jsonlite package in jsonlite::fromJSON()
and jsonlite::toJSON()
.
As for version 3.0 of this R package, Raw vectors are converted to Uint8Array
typed arrays, and vice versa. This makes it possible to efficiently copy large chunks
binary data between R and JavaScript, which is useful for running wasm
or emscripten.
This R package can be compiled against modern (V8 version 6+) libv8 API, or the legacy
libv8 API (V8 version 3.15 and below). You can check V8::engine_info()
to see the version
that is running. The legacy version does not support modern JS (ES6) or WASM, but it is
still the default on older versions of Ubuntu and CentOS. The latest versions of all major
Linux distributions now provide a modern version of V8. For Ubuntu 16.04 and 18.04
we provide backports of libv8 (via libnode-dev), see the
readme for details.
A Mapping Between JSON Data and R Objects (Ooms, 2014): https://arxiv.org/abs/1403.2805
# Create a new context ctx <- v8(); # Evaluate some code ctx$eval("var foo = 123") ctx$eval("var bar = 456") ctx$eval("foo+bar") # Functions and closures ctx$eval("JSON.stringify({x:Math.random()})") ctx$eval("(function(x){return x+1;})(123)") # Objects (via JSON only) ctx$assign("mydata", mtcars) ctx$get("mydata") outlist <- ctx$get("mydata", simplifyVector = FALSE) outlist[1] # Assign JavaScript ctx$assign("foo", JS("function(x){return x*x}")) ctx$assign("bar", JS("foo(9)")) ctx$get("bar") # Validate script without evaluating ctx$validate("function foo(x){2*x}") #TRUE ctx$validate("foo = function(x){2*x}") #TRUE ctx$validate("function(x){2*x}") #FALSE # Use a JavaScript library ctx$source("https://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.13.6/underscore-min.js") ctx$call("_.filter", mtcars, JS("function(x){return x.mpg < 15}")) # Example from underscore manual ctx$eval("_.templateSettings = {interpolate: /\\{\\{(.+?)\\}\\}/g}") ctx$eval("var template = _.template('Hello {{ name }}!')") ctx$call("template", list(name = "Mustache")) # Call anonymous function ctx$call("function(x, y){return x * y}", 123, 3) ## Not run: #CoffeeScript ct2 <- v8() ct2$source("http://coffeescript.org/v1/browser-compiler/coffee-script.js") jscode <- ct2$call("CoffeeScript.compile", "square = (x) -> x * x", list(bare = TRUE)) ct2$eval(jscode) ct2$call("square", 9) # Interactive console ct3 <- v8() ct3$console() # //this is JavaScript # var test = [1,2,3] # JSON.stringify(test) # exit ## End(Not run)
# Create a new context ctx <- v8(); # Evaluate some code ctx$eval("var foo = 123") ctx$eval("var bar = 456") ctx$eval("foo+bar") # Functions and closures ctx$eval("JSON.stringify({x:Math.random()})") ctx$eval("(function(x){return x+1;})(123)") # Objects (via JSON only) ctx$assign("mydata", mtcars) ctx$get("mydata") outlist <- ctx$get("mydata", simplifyVector = FALSE) outlist[1] # Assign JavaScript ctx$assign("foo", JS("function(x){return x*x}")) ctx$assign("bar", JS("foo(9)")) ctx$get("bar") # Validate script without evaluating ctx$validate("function foo(x){2*x}") #TRUE ctx$validate("foo = function(x){2*x}") #TRUE ctx$validate("function(x){2*x}") #FALSE # Use a JavaScript library ctx$source("https://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.13.6/underscore-min.js") ctx$call("_.filter", mtcars, JS("function(x){return x.mpg < 15}")) # Example from underscore manual ctx$eval("_.templateSettings = {interpolate: /\\{\\{(.+?)\\}\\}/g}") ctx$eval("var template = _.template('Hello {{ name }}!')") ctx$call("template", list(name = "Mustache")) # Call anonymous function ctx$call("function(x, y){return x * y}", 123, 3) ## Not run: #CoffeeScript ct2 <- v8() ct2$source("http://coffeescript.org/v1/browser-compiler/coffee-script.js") jscode <- ct2$call("CoffeeScript.compile", "square = (x) -> x * x", list(bare = TRUE)) ct2$eval(jscode) ct2$call("square", 9) # Interactive console ct3 <- v8() ct3$console() # //this is JavaScript # var test = [1,2,3] # JSON.stringify(test) # exit ## End(Not run)
Experimental wrapper to load a WebAssembly program. Returns a list of exported functions. This will probably be moved into it's own package once WebAssembly matures.
wasm(data) wasm_features()
wasm(data) wasm_features()
data |
either raw vector or file path with the binary wasm program |
The wasm_features()
function uses the wasm-feature-detect
JavaScript library to test which WASM capabilities are supported in the
current version of libv8.
# Load example wasm program instance <- wasm(system.file('wasm/add.wasm', package = 'V8')) instance$exports$add(12, 30) wasm_features()
# Load example wasm program instance <- wasm(system.file('wasm/add.wasm', package = 'V8')) instance$exports$add(12, 30) wasm_features()