
Package: Umpire (via r-universe)
July 12, 2024

Version 2.0.10

Date 2020-11-10

Title Simulating Realistic Gene Expression and Clinical Data

Author Kevin R. Coombes, Jiexin Zhang, Caitlin E. Coombes

Maintainer Kevin R. Coombes <krc@silicovore.com>

Description The Ultimate Microrray Prediction, Reality and Inference
Engine (UMPIRE) is a package to facilitate the simulation of
realistic microarray data sets with links to associated
outcomes. See Zhang and Coombes (2012)
<doi:10.1186/1471-2105-13-S13-S1>. Version 2.0 adds the ability
to simulate realistic mixed-typed clinical data.

Depends R (>= 3.0)

Imports methods, stats, mc2d, BimodalIndex

Suggests mclust, survival, knitr, rmarkdown

License Apache License (== 2.0)

URL http://oompa.r-forge.r-project.org/

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2020-11-10 21:10:06 UTC

Contents
addControl-method . 2
alterMean-method . 3
BlockHyperParameters-class . 3
blur-method . 6
CancerEngine-class . 7
CancerModel-class . 10
ClinicalNoiseModel . 13
Engine-class . 14

1

https://doi.org/10.1186/1471-2105-13-S13-S1
http://oompa.r-forge.r-project.org/

2 addControl-method

EngineWithActivity-class . 16
IndependentLogNormal-class . 19
IndependentNormal-class . 21
makeDataTypes . 23
MixedTypeEngine-class . 25
MVN-class . 27
nComponents-method . 30
NoiseModel-class . 31
NormalVsCancer . 32
rand-method . 33
SurvivalModel-class . 34
transforms . 35

Index 38

addControl-method Method "addControl"

Description

addControl is a generic function used to add a control group to a simulated patient cohort. Imple-
mentations exists for a CancerModel and for a CancerEngine.

Usage

S4 method for signature 'ANY'
addControl(object, fraction = 0.5, ...)
S4 method for signature 'CancerModel'
addControl(object, fraction = 0.5, ...)
S4 method for signature 'CancerEngine'
addControl(object, fraction = 0.5, ...)

Arguments

object an object to which adding a contrl group is desired

fraction a real number between zero oand one; the fraction of the final cohort that shoudl
consist of controls

... additional arguments; not yet used

Value

Returns a new object of the same class as its first argument.

Author(s)

Kevin R. Coombes <krc@silicovore.com>,

alterMean-method 3

alterMean-method Methods "alterMean" and "alterSD"

Description

alterMean and alterSD are generic functions used to alter means or standard deviations, respec-
tively, based on the input object. Each generic functions invokes different methods which depend
on the class of the first argument.

Usage

S4 method for signature 'ANY'
alterMean(object, TRANSFORM, ...)
S4 method for signature 'ANY'
alterSD(object, TRANSFORM, ...)

Arguments

object an object for which altering mean or standard deviation is desired

TRANSFORM function that returns its transformed input

... additional arguments affecting the specific transformation performed

Value

The form of the value returned by alterMean or alterSD depends on the class of its argument. See
the documentation of the particular methods for details of what is produced by that method.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, Jiexin Zhang <jiexinzhang@mdanderson.org>,

BlockHyperParameters-class

The "BlockHyperParameters" Class

Description

Provides tools to create a CancerEngine with block correlation structure. Also makes it possible to
simulate paired clinical and gene expression data with this block structure.

4 BlockHyperParameters-class

Usage

BlockHyperParameters(nExtraBlocks = 100,
meanBlockSize = 100,
sigmaBlockSize = 30,
minBlockSize = 5,
mu0 = 6,
sigma0 = 1.5,
rate = 28.11,
shape = 44.25,
p.cor = 0.6,
wt.cor = 5)

makeBlockStructure(cm, hyperp, xform = normalOffset, ...)

Arguments

cm object of class CancerModel

hyperp object of class BlockHypeParameters

nExtraBlocks integer scalar specifying number of blocks not involved in the "hit" structure
defined by the CancerModel

meanBlockSize numeric scalar specifying mean number of genes in a correlated block

sigmaBlockSize numeric scalar specifying standard deviation of the number of genes in a corre-
lated block

minBlockSize integer scalar specifying minimal number of genes in a correlated block

mu0 numeric scalar specifying expected mean expression level of a gene on the log
scale

sigma0 numeric scalar specifying standard deviation of the mean expression level of a
gene on the log scale

rate numeric scalar specifying one of the gamma parameters

shape numeric scalar specifying one of the gamma parameters

p.cor numeric scalar specifying expected correlation within each block

wt.cor numeric scalar specifying weight given to the expected block correlation

xform A function that will be passed to the alterMean method

... extra arguments that wil be passed back to the xform function

Details

Our standard model for gene expression in a homogeneous sample assumes that the overall cor-
relation matrix is block diagonal. Correlation between genes in different blocks is assumed to be
zero. Correlation for genes in the same block is assumed to be a constant, but different correla-
tion constants can be used in different blocks. The actual correlations are assumed to arise from
a beta distribution of the form Beta(pw, (1-p)w), where p=p.cor and w=wt.cor are two of the
hyperparameters.

The number of blocks is determined jointly by the CancerModel, cm, and the hyperparameter
nExtraBlocks. The size of a block is assumed to arise from a normal distribution with mean

BlockHyperParameters-class 5

given by meanBlockSize and standard deviaion given by sigmaBlockSize. To avoid accidentally
assigning non-postive block sizes, this distribution is truncated below by minBlockSize.

The expression of each gene is assumed to come from a log-normal distribution with parameters
describing the per-gene mean (µg) and standard deviation (σg) n the log scale. These parameters, in
turn, are assumed to come from hyperdistributions. Specifically, we assume that µg comes from a
normal distribution with mean mu0 and standard deviation sigma0. We also assume that σg comes
from an inverse gamma distribution with parameters rate and shape.

The BlockHyperParameters class simply bundles the parameters for this model into a single struc-
ture. The default values are consistent with data we have seen from several Affymetrix microarray
studies.

The makeBlockStructure function takes a CancerModel and a BlockHyperParameters object as
arguments and produces a CancerEngine object. The rand method for this class can be used to
generate matched clinical data (with the structure defined by the CancerModel object) and gene
expression data with the specified block correlation structure.

Value

The BlockHyperParameters generator returns an object of class BlockHyperParameters.

The function makeBlockStructure returns an object of the CancerEngine class.

Objects from the Class

Although objects of the class can be created by a direct call to new, the preferred method is to use
the BlockHyperParameters generator function.

Slots

nExtraBlocks: An integer; the number of blocks not involved in the "hit" structure defined by the
CancerModel.

meanBlockSize: A real number; the mean number of genes in a correlated block.

sigmaBlockSize: A real number; standard deviation of the number of genes in a correlated block.

minBlockSize: An integer; the minimal number of genes in a correlated block.

mu0: A real number; the expected mean expression level of a gene on the log scale.

sigma0: A real number; the standard deviation of the mean expression level of a gene on the log
scale.

rate: Gamma parameter; see details.

shape: Gamma parameter; see details.

p.cor: A real number; the expected correlation within each block.

wt.cor: A real number; the weight given to the expected block correlation.

Methods

There are no special methods defind for this class.

6 blur-method

Author(s)

Kevin R. Coombes <krc@silicovore.com>,

See Also

CancerModel, CancerEngine

Examples

showClass("BlockHyperParameters")
sm <- SurvivalModel(baseHazard = 1/3, units = 52, unitName = "weeks")
cm <- CancerModel("myModel", nPossible = 10, nPattern = 5,

survivalModel = sm)
hyper <- BlockHyperParameters()
engine <- makeBlockStructure(cm, hyper)
outcome <- rand(engine, 100)
summary(outcome$clinical)
dim(outcome$data)

blur-method Method "blur"

Description

blur is a generic function used to add noise to a signal as defined by various objects. The generic
function invokes different methods which depend on the class of the first argument.

Usage

S4 method for signature 'ANY'
blur(object, x, ...)

Arguments

object an object from which adding noise to its signal is desired

x matrix containing signal to be affected

... additional arguments affecting the noise addition

Value

The form of the value returned by blur depends on the class of its argument. See the documentation
of the particular methods for details of what is produced by that method.

Author(s)

Kevin R. Coombes <krc@silicovore.com>,

CancerEngine-class 7

CancerEngine-class The "CancerEngine" Class

Description

A CancerEngine combines a CancerModel (which defines the combinatorics of hits that produce
cancer subtypes) with a pair of gene expression Engines that can be used to simulate microarray
data depending on the presence or absence of different hits.

Usage

CancerEngine(cm, base, altered)
S4 method for signature 'CancerEngine'
summary(object, ...)
S4 method for signature 'CancerEngine'
nrow(x)
S4 method for signature 'CancerEngine'
nComponents(object, ...)
S4 method for signature 'CancerEngine'
rand(object, n, ...)
ClinicalEngine(nFeatures, nClusters, isWeighted,

bHyp = NULL, survivalModel = NULL,
SURV = function(n) rnorm(n, 0, 0.3),
OUT = function(n) rnorm(n, 0, 0.3))

Arguments

cm object of class CancerModel

base character string giving the name of an Engine or EngineWithActivity, or an
object of class Engine. Represents the expected gene expression in the absence
of any hits.

altered character string giving the name of an Engine or EngineWithActivity, or an
object of class Engine. Represents the expected gene expression in the presence
of hits.

object object of class CancerEngine

x object of class CancerEngine

n numeric scalar representing number of samples to be simulated

... extra arguments for generic routines

nFeatures an integer; the number of simulated clinical features

nClusters an integer; the number of simulated clusters or subtypes

isWeighted a logical value; used to determine whether the prevalence of subtypes is equal
(unweighted) or unequal (weighted).

bHyp an object of the class BlockHyperParameters. If NULL, then it is constructed
using the default clinical parameters. See the Values section below.

8 CancerEngine-class

survivalModel an object of the SurvivalModel class. If NULL, then it is constructed using the
default parameters.

SURV a function; the same as used in a CancerModel.
OUT a function; the same as used in a CancerModel.

Objects from the Class

Although objects of the class can be created by a direct call to new, the preferred method is to use
the CancerEngine or ClinicalEngine generator functions.

Slots

cm: A CancerModel object.
base: Object of class "character" giving the name of an Engine or EngineWithActivity. Repre-

sents the expected gene expression in the absence of any hits.
altered: Object of class "character" giving the name of an Engine or EngineWithActivity. Rep-

resents the expected gene expression in the presence of hits.
localenv: Object of class "environment"; used in the internal implementation.

Methods

rand signature(object = "CancerEngine"): returns a list containing two named components,
clinical and data, The clinical element is a data frame generated from the underlying
CancerModel, and the data element is a matrix generated by the gene expression engines,
altered by the appropriate "hits" present in each simulated individual.

summary signature(object = "CancerEngine"): print summaries of the underlying cancer mod-
els and gene expression engines in the cancer engine.

Values

Both the CancerEngine and ClinicalEngine constructors return objects of the CancerEngine
class. The only practical differences are the default parameters set by the constructors. The pri-
mary change is in the CancerModel slot. The CancerEngine expects you to construct your own
CancerModel explicitly before producing a CancerEngine.

By contrast, the ClinicalEngine expects to use many fewer features, so gives a simpler interface
and uses its parameters to construct the CancerModel for you. The "HIT" function will use 2 hits
per subtype when there are fewer than 15 features, 3 hits between 15 and 45 features, and the older
default of 5 hits when there are more than 45 features. The total number of possible hits is set equal
to the number of features (N) when there are fewer than 12 features, approximately N/3 up to 50
features, approximately N/5 up to 100, and is then locked at 20. If isWeighted is TRUE, subtype
prevalences are chosen from a Dirichlet distribution. Otherwise, each subtype is equally likely.

The nrow and nComponents methods both return non-negative integer values describing the number
of rows (features) and the number of components of the underlying gene expression or clinical data
Engines. The rand method returns a matrix with n columns of smiulated data.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, Caitlin E. Coombes <caitlin.coombes@osumc.edu>

CancerEngine-class 9

References

Zhang J, Coombes KR.
Sources of variation in false discovery rate estimation include sample size, correlation, and inherent
differences between groups.
BMC Bioinformatics. 2012; 13 Suppl 13:S1.

See Also

CancerModel

Examples

showClass("CancerEngine")
set.seed(391629)
Set up survival outcome; baseline is exponential
sm <- SurvivalModel(baseHazard=1/5, accrual=5, followUp=1)
Build a CancerModel with 6 subtypes
nBlocks <- 20 # number of possible hits
cm <- CancerModel(name="cansim",

nPossible=nBlocks,
nPattern=6,
OUT = function(n) rnorm(n, 0, 1),
SURV= function(n) rnorm(n, 0, 1),
survivalModel=sm)

Include 100 blocks/pathways that are not hit by cancer
nTotalBlocks <- nBlocks + 100
Assign values to hyperparameters
block size
blockSize <- round(rnorm(nTotalBlocks, 100, 30))
log normal mean hypers
mu0 <- 6
sigma0 <- 1.5
log normal sigma hypers
rate <- 28.11
shape <- 44.25
block corr
p <- 0.6
w <- 5
Set up the baseline Engine
rho <- rbeta(nTotalBlocks, p*w, (1-p)*w)
base <- lapply(1:nTotalBlocks,

function(i) {
bs <- blockSize[i]
co <- matrix(rho[i], nrow=bs, ncol=bs)
diag(co) <- 1
mu <- rnorm(bs, mu0, sigma0)
sigma <- matrix(1/rgamma(bs, rate=rate, shape=shape), nrow=1)
covo <- co *(t(sigma) %*% sigma)
MVN(mu, covo)

})
eng <- Engine(base)
Alter the means if there is a hit

10 CancerModel-class

altered <- alterMean(eng, normalOffset, delta=0, sigma=1)
Build the CancerEngine using character strings
object <- CancerEngine(cm, "eng", "altered")
Or build it using the actual Engine components
ob <- CancerEngine(cm, eng, altered)
summary(object)
summary(ob)
Simulate the data
dset <- rand(object, 20)
summary(dset$clinical)
summary(dset$data[, 1:3])

CancerModel-class The "CancerModel" Class

Description

A CancerModel object contains a number of pieces of information representing an abstract, hetero-
geneous collection of cancer patients. It can be used to simulate patient outcome data linked to hit
classes.

Usage

CancerModel(name,
nPossible,
nPattern,
HIT = function(n) 5,
SURV = function(n) rnorm(n, 0, 0.3),
OUT = function(n) rnorm(n, 0, 0.3),
survivalModel=NULL,
prevalence=NULL)

nPatterns(object)
nPossibleHits(object)
nHitsPerPattern(object)
outcomeCoefficients(object)
survivalCoefficients(object)
S4 method for signature 'CancerModel'
ncol(x)
S4 method for signature 'CancerModel'
nrow(x)
S4 method for signature 'CancerModel'
rand(object, n, balance = FALSE, ...)
S4 method for signature 'CancerModel'
summary(object, ...)

Arguments

name character string specifying name given to this model

CancerModel-class 11

object, x object of class CancerModel
nPossible integer scalar specifying number of potential hits relevant to the kind of cancer

being modeled
nPattern integer scalar specifying number of different cancer subtypes
HIT function that generates non-negative integers from a discrete distribution. Used

to determine the number of hits actually present in each cancer subtype.
SURV function that generates real numbers from a continuous distributions. Used in

simulations to select the coefficients associated with each hit in Cox proportional
hazards models.

OUT function that generates real numbers from a continuous distributions. Used in
simulations to select the coefficients associated with each hit in logistic models
of a binary outcome.

survivalModel object of class SurvivalModel used to simulate survival times for each simu-
lated patient

prevalence optional numeric vector of relative prevalences of cancer subtypes
n numeric scalar specifying quantity of random numbers
balance logical scalar specifying how patients should be simulated
... extra arguments for generic routines

Details

The rand method is the most important method for objects of this class. It returns a data frame
with four columns: the CancerSubType (as an integer that indexes into the hitPattern slot of
the object), a binary Outcome that takes on values "Bad" or "Good", an LFU column with censored
survival times, and a logical Event column that describes whether the simulated survival event has
occurred.

The rand method for the CancerModel class adds an extra logical parameter, balance, to the signa-
ture specified by the default method. If balance = FALSE (the default), then patients are simulated
based on the prevalence defined as part of the model. If balance = TRUE, then patients are simu-
lated with equal numbers in each hit pattern class, ordered by the hit pattern class.

Value

The CancerModel function is used to contruct and return an object of the CancerModel class.

The ncol and nrow functions return integers with the size of the matrix of hit patterns.

The rand method returns data frame with four columns:

CancerSubType integer index into object’s ’hitPattern’ slot
Outcome outcomes with values "Bad" or "Good"
LFU censored survival times
Event has simulated survival event has occurred?

Objects from the Class

Although objects of the class can be created by a direct call to new, the preferred method is to use
the CancerModel generator function.

12 CancerModel-class

Slots

name: Object of class "character"

hitPattern: Object of class "matrix"

survivalBeta: Object of class "numeric" containing the coeffieicents associated with each hit in
a Cox proportional hazards model of survival.

outcomeBeta: Object of class "numeric" containing the coefficients associated with each hit in a
logistic model to predict a binary outcome.

prevalence: Object of class "numeric" containing the prevalence of each cancer subtype.

survivalModel: Object of class "survivalModel" containing parameters used to simualte sur-
vival times.

call: object of class "call" recording the function call used to initialize the object.

Methods

ncol signature(x = "CancerModel"): ...

nrow signature(x = "CancerModel"): ...

rand signature(object = "CancerModel"): ...

summary signature(object = "CancerModel"): ...

Author(s)

Kevin R. Coombes <krc@silicovore.com>,

References

Zhang J, Coombes KR.
Sources of variation in false discovery rate estimation include sample size, correlation, and inherent
differences between groups.
BMC Bioinformatics. 2012; 13 Suppl 13:S1.

See Also

SurvivalModel

Examples

showClass("CancerModel")
set.seed(391629)
set up survival outcome; baseline is exponential
sm <- SurvivalModel(baseHazard=1/5, accrual=5, followUp=1)
now build a CancerModel with 6 subtypes
cm <- CancerModel(name="cansim",

nPossible=20,
nPattern=6,
OUT = function(n) rnorm(n, 0, 1),
SURV= function(n) rnorm(n, 0, 1),
survivalModel=sm)

ClinicalNoiseModel 13

simulate 100 patients
clinical <- rand(cm, 100)
summary(clinical)

ClinicalNoiseModel A Noise Model for Clinical Data

Description

A ClinicalNoiseModel represents the additional human and measurement noise that is layered on
top of any biological variabilty when measuring clinical variables.

Usage

ClinicalNoiseModel(nFeatures, shape = 1.02, scale = 0.05/shape)

Arguments

nFeatures An integer; the number of additive scale parameters to sample from the gamma
distribution.

shape The shape gamma hyperparameter describing the standard deviation of additive
noise.

scale The scale gamma hyperparameter describing the standard deviation of additive
noise.

Details

We model both additive and multiplicative noise, so that the observed expression of clinical variable
c in sample i is given by: Yci = Sci+Eci, where Y_ci = observed expression, S_ci = true biologi-
cal signal. In the ClinicalNoiseModel (as opposed to the NoiseModel), we model the additive noise
as Eci N(0, tau), without multiplicative noise or an additive bias/offset in the clinical model. The
standard deviation hyperparameters of the additive noise tau is modeled by the gamma distribution
tau Gamma(shape, scale)

Value

An object of class NoiseModel.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, Caitlin E. Coombes <caitlin.coombes@osumc.edu>

See Also

NoiseModel-class,

14 Engine-class

Examples

showClass("NoiseModel")

generate a ClinicalEngine with 20 features and 4 clusters
ce <- ClinicalEngine(20, 4, TRUE)
generate 300 simulated patients
set.seed(194718)
dset <- rand(ce, 300)

cnm <- ClinicalNoiseModel(nrow(ce@localenv$eng), shape=2, scale=0.1)
cnm

noisy <- blur(cnm, dset$data)
hist(noisy)

Engine-class The "Engine" Class

Description

The Engine class is a tool (i.e., an algorithm) used to simulate vectors of gene expression from
some underlying distribution.

Usage

Engine(components)
S4 method for signature 'Engine'
nComponents(object, ...)
S4 method for signature 'Engine'
alterMean(object, TRANSFORM, ...)
S4 method for signature 'Engine'
alterSD(object, TRANSFORM, ...)
S4 method for signature 'Engine'
nrow(x)
S4 method for signature 'Engine'
rand(object, n, ...)
S4 method for signature 'Engine'
summary(object, ...)

Arguments

components object of class list, each element of which contains the parameters for the
underlying distribution that the gene expression follows. A component can be
viewed as a special case of an engine that only has one component.

object, x object of class Engine

TRANSFORM function takes as its input a vector of mean expression or standard deviation and
returns a transformed vector that can be used to alter the appropriate slot of the
object.

Engine-class 15

n numeric scalar representing number of samples to be simulated
... extra arguments for generic or plotting routines

Details

In most cases, an engine object is an instantiation of a more general family or class that we call an
ABSTRACT ENGINE. Every abstract engine is an ordered list of components, which can also be
thought of as an engine with parameters. We instantiate an engine by binding all the free parameters
of an abstract engine to actual values. Note that partial binding (of a subset of the free parameters)
produces another abstract engine.

For all practical purposes, a COMPONENT should be viewed as an irreducible abstract engine.
Every component must have an IDENTIFIER that is unique within the context of its enclosing
abstract engine. The identifer may be implicitly taken to be the position of the component in the
ordered list.

We interpret an Engine as the gene expression generator for a homogenous population; effects of
cancer on gene expression are modeled at a higher level.

Value

The Engine generator returns an object of class Engine.

The alterMean method returns an object of class Engine with altered mean.

The alterSD method returns an object of class Engine with altered standard deviation.

The nrow method returns the number of genes (i.e, the length of the vector) the Engine object will
generate.

The rand method returns nrow(Engine)∗n matrix representing the expressions of nrow(Engine)
genes and n samples.

The summary method prints out the number of components included in the Engine object.

The nComponents method returns the number of components in the Engine object.

Objects from the Class

Objects can be created by calls of the form new("Engine", components=components), or use
the Engine generator function. Every engine is an ordered list of components, which generates a
contiguous subvector of the total vector of gene expression.

Methods

alterMean(object, TRANSFORM, . . .) Takes an object of class Engine, loops over the compo-
nents in the Engine, alters the mean as defined by TRANSFORM function, and returns a modified
object of class Engine.

alterSD(object, TRANSFORM, . . .) Takes an object of class Engine, loops over the components
in the Engine, alters the standard deviation as defined by TRANSFORM function, and returns a
modified object of class Engine.

nrow(x) Counts the total number of genes (i.e, the length of the vector the Engine will generate).
rand(object, n, . . .) Generates nrow(Engine)∗n matrix representing gene expressions of n sam-

ples following the underlying distribution captured in the object of Engine.
summary(object, . . .) Prints out the number of components included in the object of Engine.

16 EngineWithActivity-class

Author(s)

Kevin R. Coombes <krc@silicovore.com>, Jiexin Zhang <jiexinzhang@mdanderson.org>,

References

Zhang J, Coombes KR.
Sources of variation in false discovery rate estimation include sample size, correlation, and inherent
differences between groups.
BMC Bioinformatics. 2012; 13 Suppl 13:S1.

See Also

EngineWithActivity

Examples

showClass("Engine")
nComp <- 10
nGenes <- 100
comp <- list()
for (i in 1:nComp) {

comp[[i]] <- IndependentNormal(rnorm(nGenes/nComp, 6, 1.5),
1/rgamma(nGenes/nComp, 44, 28))

}
myEngine <- Engine(comp)
nrow(myEngine)
nComponents(myEngine)
summary(myEngine)
myData <- rand(myEngine, 5)
dim(myData)
summary(myData)
OFFSET <- 2
myEngine.alterMean <- alterMean(myEngine, function(x){x+OFFSET})
myData.alterMean <- rand(myEngine.alterMean, 5)
summary(myData.alterMean)
SCALE <- 2
myEngine.alterSD <- alterSD(myEngine, function(x){x*SCALE})
myData.alterSD <- rand(myEngine.alterSD, 5)
summary(myData.alterSD)

EngineWithActivity-class

The "EngineWithActivity" Class

Description

The EngineWithActivity is used to set some components in the object of class Engine to be
transcriptionally inactive and transform the expression data to appropriate logarithmic scale.

EngineWithActivity-class 17

Usage

EngineWithActivity(active, components, base=2)
S4 method for signature 'EngineWithActivity'
rand(object, n, ...)
S4 method for signature 'EngineWithActivity'
summary(object, ...)

Arguments

active logical vector with length equal to number of components specifying whether
each component should be transcriptionally active, or a numeric scalar specify-
ing the probability for a component to be active

components list where each element contains the parameters for the underlying distribution
that the gene expression follows

base numeric scalar specifying the logarithmic scale to which the data should be
transformed

object object of class EngineWithActivity

n number of samples to be simulated

... extra arguments for generic routines

Details

An ENGINE WITH ACTIVITY allows for the possibility that some components (or genes) in an
expression engine (or tissue) might be transcriptionally inactive. Thus, the true biological signal
S_gi should really be viewed as a mixture:

Sgi = zg ∗ delta0 + (1− zg) ∗ Tgi

where delta_0 = a point mass at zero; T_gi = a random variable supported on the positive real line;
z_g ~ Binom(pi) defines the activity state (1 = on, 0 = off)

The rand method for an EngineWithActivity is a little bit tricky, since we do two things at once.
First, we use the base slot to exponentiate the random variables generated by the underlying Engine
on the log scale. We treat base = 0 as a special case, which means that we should continue to work
on the scale of the Engine. Second, we mask any inactive component by replacing the generated
values with 0.

Note that this is terribly inefficient if we only have a single homogeneous population, since we
generate a certain amount of data only to throw it away. The power comes when we allow cancer
disregulation to turn a block on or off, when the underlying data reappears.

Value

The EngineWithActivity generator returns an object of class EngineWithActivity.

The rand method returns nrow(EngineWithActivity) ∗ n gene expression matrix with the inac-
tive components being masked by 0.

The summary method prints out the total number of components and the number of active compo-
nents in the object of EngineWithActivity.

18 EngineWithActivity-class

Objects from the Class

Although objects of the class can be created by a direct call to new, the preferred method is to use
the EngineWithActivity generator function.

Slots

active: logical vector specifying whether each component should be transcriptionally active or
not

base: numeric scalar specifying the logarithmic scale

components: list specifying the parameters of the underlying distribution

Extends

Class Engine, directly.

Methods

rand(object, n, . . .) Generates nrow(EngineWithActivity)*n matrix representing gene expressions
of n samples, and the transcriptionally inactive components are masked by 0.

summary(object, . . .) Prints out the total number of components and the number of active com-
ponents in the object of EngineWithActivity.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, Jiexin Zhang <jiexinzhang@mdanderson.org>,

Examples

showClass("EngineWithActivity")
nComponents <- 10
nGenes <- 100
active <- 0.7
comp <- list()
for (i in 1:nComponents) {

comp[[i]] <- IndependentNormal(rnorm(nGenes/nComponents, 6, 1.5),
1/rgamma(nGenes/nComponents, 44, 28))

}
myEngine <- EngineWithActivity(active, comp, 2)
summary(myEngine)
myData <- rand(myEngine, 5)
dim(myData)

IndependentLogNormal-class 19

IndependentLogNormal-class

The "IndependentLogNormal" Class

Description

The IndependentLogNormal class is a tool used to generate gene expressions that follow log nor-
mal distribution, because the true expression value follows log normal in our model.

Usage

IndependentLogNormal(logmu,logsigma)
S4 method for signature 'IndependentLogNormal'
alterMean(object, TRANSFORM, ...)
S4 method for signature 'IndependentLogNormal'
alterSD(object, TRANSFORM, ...)
S4 method for signature 'IndependentLogNormal'
nrow(x)
S4 method for signature 'IndependentLogNormal'
rand(object, n, ...)
S4 method for signature 'IndependentLogNormal'
summary(object, ...)

Arguments

logmu numeric vector specifying the mean expression values on the logarithmic scale.

logsigma numeric vector specifying the standard deviation of the gene expression values
on the logarithmic scale

object, x object of class IndependentLogNormal

TRANSFORM function that takes a vector of mean expression or standard deviation and returns
a transformed vector that can be used to alter the appropriate slot of the object.

n numeric scalar specifying number of samples to be simulated

... extra arguments for generic or plotting routines

Objects from the Class

Although objects of the class can be created by a direct call to new, the preferred method is to use
the IndependentLogNormal generator function.

Slots

logmu: numeric vector containing the mean expression values on the logarithmic scale

logsigma: numeric vector containing the standard deviation of the gene expression values on the
logarithmic scale

20 IndependentLogNormal-class

Methods

nrow(x) Returns the number of genes (i.e, the length of the logmu vector).

rand(object, n, . . .) Generates nrow(IndependentLogNormal)*n matrix representing gene expres-
sions of n samples following log normal distribution captured in the object of IndependentLogNormal.

summary(object, . . .) Prints out the number of independent log normal random variables in the
object of IndependentLogNormal.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, Jiexin Zhang <jiexinzhang@mdanderson.org>,

See Also

Engine, IndependentNormal, MVN

Examples

showClass("IndependentLogNormal")
nGenes <- 20
logmu <- rnorm(nGenes, 6, 1)
logsigma <- 1/rgamma(nGenes, rate=14, shape=6)
ln <- IndependentLogNormal(logmu, logsigma)
nrow(ln)
summary(ln)
if (any(logmu - ln@logmu)) {

print('means do not match')
} else {

print('means verified')
}
if (any(logsigma - ln@logsigma)) {

print('standard deviations do not match')
} else {

print('sd verified')
}
x <- rand(ln, 1000)
print(dim(x))

print(paste("'ln' should be valid:", validObject(ln)))
ln@logsigma <- 1:3 # now we break it
print(paste("'ln' should not be valid:", validObject(ln, test=TRUE)))
tmp.sd <- sqrt(apply(log(x), 1, var))
plot(tmp.sd, logsigma)
tmp.mu <- apply(log(x), 1, mean)
plot(tmp.mu, logmu)
rm(nGenes, logmu, logsigma, ln, x, tmp.mu, tmp.sd)

IndependentNormal-class 21

IndependentNormal-class

The "IndependentNormal" Class

Description

The IndependentNormal class is a tool used to generate gene expressions that follow independent
normal distribution.

Usage

IndependentNormal(mu,sigma)
S4 method for signature 'IndependentNormal'
alterMean(object, TRANSFORM, ...)
S4 method for signature 'IndependentNormal'
alterSD(object, TRANSFORM, ...)
S4 method for signature 'IndependentNormal'
nrow(x)
S4 method for signature 'IndependentNormal'
rand(object, n, ...)
S4 method for signature 'IndependentNormal'
summary(object, ...)

Arguments

mu numeric vector specifying the mean expression values
sigma numeric vector specifying the standard deviation of the gene expression values
object, x object of class IndependentNormal
TRANSFORM function that takes a vector of mean expression or standard deviation and returns

a transformed vector that can be used to alter the appropriate slot of the object.
n numeric scalar specifying number of samples to be simulated
... extra arguments for generic or plotting routines

Details

Note that we typically work on expression value with its logarithm to some appropriate base. That
is, the independent normal should be used on the logarithmic scale in order to construct the engine.

Objects from the Class

Objects can be created by using the IndependentNormal generator function. The object of class
IndependentNormal contains the mean and standard deviation for the normal distribution

Slots

mu: see corresponding argument above
sigma: see corresponding argument above

22 IndependentNormal-class

Methods

alterMean(object, TRANSFORM, . . .) Takes an object of class IndependentNormal, loops over
the mu slot, alters the mean as defined by TRANSFORM function, and returns an object of class
IndependentNormal with altered mu.

alterSD(object, TRANSFORM, . . .) Takes an object of class IndependentNormal, loops over
the sigma slot, alters the standard deviation as defined by TRANSFORM function, and returns an
object of class IndependentNormal with altered sigma.

nrow(x) Returns the number of genes (i.e, the length of the mu vector).

rand(object, n, . . .) Generates nrow(IndependentNormal)∗n matrix representing gene expres-
sions of n samples following the normal distribution captured in the object of IndependentNormal.

summary(object, . . .) Prints out the number of independent normal random variables in the object
of IndependentNormal.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, Jiexin Zhang <jiexinzhang@mdanderson.org>,

See Also

Engine, IndependentLogNormal, MVN

Examples

showClass("IndependentNormal")
nGenes <- 20
mu <- rnorm(nGenes, 6, 1)
sigma <- 1/rgamma(nGenes, rate=14, shape=6)
ind <- IndependentNormal(mu, sigma)
nrow(ind)
summary(ind)
if (any(mu - ind@mu)) {

print('means do not match')
} else {

print('means verified')
}
if (any(sigma - ind@sigma)) {

print('standard deviations do not match')
} else {

print('sd verified')
}
x <- rand(ind, 3)
print(dim(x))
print(summary(x))
print(paste("'ind' should be valid:", validObject(ind)))
ind@sigma <- 1:3 # now we break it
print(paste("'ind' should not be valid:", validObject(ind, test=TRUE)))
rm(nGenes, mu, sigma, ind, x)

makeDataTypes 23

makeDataTypes Discretize a Continuous Data Set to Mixed Types

Description

The makeDataTypes function allows the user to discretize a continuous data set generated from an
engine of any type into binary, nominal, ordinal, or mixed-type data.

Usage

makeDataTypes(dataset, pCont, pBin, pCat, pNominal = 0.5,
range = c(3, 9), exact = FALSE, inputRowsAreFeatures = TRUE)

getDataTypes(object)
getDaisyTypes(object)

Arguments

dataset A matrix or dataframe of continuous data.

pCont Non-negative, numeric probability equal to or between 0 and 1 describing de-
sired percent frequency of continuous features.

pBin Non-negative, numeric probability equal to or between 0 and 1 describing de-
sired percent frequency of binary features.

pCat Non-negative, numeric probability equal to or between 0 and 1 describing de-
sired percent frequency of categorical features.

pNominal Non-negative, numeric probability equal to or between 0 and 1 describing de-
sired percent frequency of categorical features to be simulated as nominal.

range A set of integers whose minimum and maximum determine the range of the
number of levels to be associated with simulated categorical factors.

exact A logical value; should the parameters pCont, pBin and pCat be treated as exact
fractions to achieve or as probabilities.

inputRowsAreFeatures

Logical value indicating if features are to be simulated as rows (TRUE) or
columns (FALSE).

object An object of the MixedTypeEngine class.

Details

The makeDataTypes function is a critical step in the construction of a MixedTypeEngine, which
is an object that is used to simulate clinical mixed-type data instead of gene expression data. The
standard process, as illustrated in the example, involves (1) creating a ClinicalEngine, (2) gener-
ating a random data set from that engine, (3) adding noise, (4) setting the data types, and finally (5)
creating the MixedTypeEngine.

The main types of data (continuous, binary, or categorical) are randomly assigned using the proba-
bility parameters pCont, pBin, and pCat. To choose the splitting point for the binary features, we

24 makeDataTypes

compute the bimodality index (Wang et al.). If that is significant, we split the data halfway between
the two modes. Otherwise, we choose a random split point between 5% and 35%. Categorical data
is also randomly assigned to ordinal or nominal based on the pNominal parameter. The number of
levels is uniformly selected in the specified range, and the fraction of data points assigned to each
level is selected from a Dirichlet distribution with alpha = c(20, 20, ..., 20).

Value

A list containing:

binned An object of class data.frame of simulated, mixed-type data.

cutpoints An object of class "list". For each feature, data type, labels (if data are binary
or categorical), and break points (if data are binary or categorical) are stored.
Cutpoints can be passed to a MixedTypeEngine for storage and downstream
use.

The getDataTypes function returns a character vector listing the type of data for each feature in a
MixedTypeEngine. the getDaisyTypes function converts this vector to a list suitable for input to
the daisy function in the cluster package.

Note

If pCont, pBin, and pCat do not sum to 1, they will be rescaled.

By default, categorical variables are simulated as a mixture of nominal and ordinal data. The re-
maining categorical features described by pNominal are simulated as ordinal.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, Caitlin E. Coombes <caitlin.coombes@osumc.edu>

References

Wang J, Wen S, Symmans WF, Pusztai L, Coombes KR.
The bimodality index: A criterion for discovering and ranking bimodal signatures from cancer gene
expression profiling data.
Cancer Inform 2009; 7:199-216.

See Also

MixedTypeEngine

Examples

Create a ClinicalEngine with 4 clusters
ce <- ClinicalEngine(20, 4, TRUE)

Generate continuous data
set.seed(194718)
dset <- rand(ce, 300)

Add noise before binning mixed type data

MixedTypeEngine-class 25

cnm <- ClinicalNoiseModel(nrow(ce@localenv$eng)) # default
noisy <- blur(cnm, dset$data)

Set the data mixture
dt <- makeDataTypes(dset$data, 1/3, 1/3, 1/3, 0.3)
cp <- dt$cutpoints
type <- sapply(cp, function(X) { X$Type })
table(type)
summary(dt$binned)

Use the pieces from above to create an MTE.
mte <- MixedTypeEngine(ce,

noise = cnm,
cutpoints = dt$cutpoints)

and generate some data with the same data types and cutpoints
R <- rand(mte, 20)
summary(R)

MixedTypeEngine-class The "MixedTypeEngine" Class

Description

A MixedTypeEngine combines a ClinicalEngine (which defines the combinatorics of hits and block
hyperparameters that determine cluster identities and behavior), a stored ClinicalNoiseModel,
and cutpoints for generating mixed type data generated by makeDataTypes into an object that can
be used to re-generate downstream datasets with shared parameters.

Usage

MixedTypeEngine(ce, noise, cutpoints)
S4 method for signature 'MixedTypeEngine'
rand(object, n, keepall = FALSE, ...)
S4 method for signature 'MixedTypeEngine'
summary(object, ...)

Arguments

ce Object of class ClinicalEngine (or a list; see Details).

noise Object of class NoiseModel, preferably constructed using the function ClinicalNoiseModel.
Alternatively, a list; see Details.

cutpoints a list with the properties of the cutpoints element produced by the function
makeDataTypes. Alternatively, a list; see Details.

object object of class MixedTypeEngine

n a non-negative integer

keepall a logical value

... additional arguments for generic functions.

26 MixedTypeEngine-class

Details

The MixedTypeEngine is a device for a parameter set used to generate a simulated set of clinical data
which can be used to store these parameters and to generate related datasets downstream. Building
a MixedTypeEngine requires many parameters. You can supply these parameters in mutliple steps:

1. Construct a ClinicalEngine.

2. Contruct a ClinicalNoiseModel.

3. Use randrand to generate a "raw" data set from the ClinicalEngine.

4. Use blur to add noise to the raw data.

5. Feed the noisy data into makeDataTypes to generate a mixed-type dataset, with cut points.

6. Pass the ClinicalEngine, ClinicalNoiseModel, and cutpoints into the MixedTypeEngine
constructor.

The alternative method is to pass the parameters for Steps 1, 2, and 5 directly into the MixedTypeEngine
directly, as lists, and it will carry out steps 3-5 automatically. Note, however, that instead of passing
a dataset to be used by the makeDataTypes function, you instead set the value of N to the desired
number of patients used during construction. Also, if you use the explicit steps, you can save the
intermediate data sets that are generated. If you simply pass all of the parameters to the constructor,
those intermediate data sets are discarded, and you must generate a new data set using rand.

Objects from the Class

Objects can be created by a direct call to new, though using the constructor MixedTypeEngine is
preferred.

Methods

rand(object, n, keepall, . . .) Generates nrow(Engine)∗n matrix representing clinical features of
n patients following the underlying distribution, noise, and data discretization pattern captured
in the object of MixedTypeEngine. If keepall == TRUE, it reurns a list containing a data
frame named clinical and three data matrices called raw, noisy, and binned. If keepall
== FALSE, then noly the clinical and binned components are returned.

summary(object, . . .) Prints a summary of the object.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, Caitlin E. Coombes <caitlin.coombes@osumc.edu>

See Also

Engine CancerModel CancerEngine ClinicalNoiseModel makeDataTypes

Examples

Generate a Clinical Engine of continuous data
with clusters generated from variation on the base CancerEngine
ce <- ClinicalEngine(20, 4, TRUE)
summary(ce)

MVN-class 27

Generate an initial data set
set.seed(194718)
dset <- rand(ce, 300)
class(dset)
names(dset)
summary(dset$clinical)
dim(dset$data)

Add noise before binning mixed type data
cnm <- ClinicalNoiseModel(nrow(ce@localenv$eng)) # default
noisy <- blur(cnm, dset$data)

Set the data mixture
dt <- makeDataTypes(dset$data, 1/3, 1/3, 1/3, 0.3)
Store the cutpoints
cp <- dt$cutpoints

Use the pieces from above to create an MTE.
mte <- MixedTypeEngine(ce,

noise = cnm,
cutpoints = dt$cutpoints)

Use the MTE rand method to generate
multiple data sets with the same parameters
R <- rand(mte, 20)
summary(R)

S <- rand(mte, 20)
summary(S)

MVN-class The "MVN" Class

Description

The MVN class is a tool used to generate gene expressions that follow multivariate normal distribu-
tion.

Usage

MVN(mu, Sigma, tol = 1e-06)
covar(object)
correl(object)
S4 method for signature 'MVN'
alterMean(object, TRANSFORM, ...)
S4 method for signature 'MVN'
alterSD(object, TRANSFORM, ...)
S4 method for signature 'MVN'
nrow(x)

28 MVN-class

S4 method for signature 'MVN'
rand(object, n, ...)
S4 method for signature 'MVN'
summary(object, ...)

Arguments

mu numeric vector representing k -dimensional means

Sigma numeric k -by-k covariance matrix containing the measurement of the linear
coupling between every pair of random vectors

tol numeric scalar roundoff error that will be tolerated when assessing the singular-
ity of the covariance matrix

object, x object of class MVN

TRANSFORM function that takes a vector of mean expression or standard deviation and returns
a transformed vector that can be used to alter the appropriate slot of the object.

n numeric scalar representing number of samples to be simulated

... extra arguments for generic or plotting routines

Details

The implementation of MVN class is designed for efficiency when generating new samples, since we
expect to do this several times. Basically, this class separates the mvrnorm function from the MASS
package into several steps. The computationally expensive step (when the dimension is large) is the
eigenvector decomposition of the covariance matrix. This step is performed at construction and the
pieces are stored in the object. The rand method for MVN objects contains the second half of the
mvrnorm function.

Note that we typically work on expression values after taking the logarithm to some appropriate
base. That is, the multivariate normal should be used on the logarithmic scale in order to contruct
an engine.

The alterMean method for an MVN simply replaces the appropriate slot by the transformed vector.
The alterSD method for an MVN is trickier, because of the way the data is stored. In order to have
some hope of getting this correct, we work in the space of the covariance matrix, Sigma . If we let R
denote the correlation matrix and let Delta be the diagonal matrix whose entries are the individual
standard deviations, then Sigma = Delta% ∗ %R% ∗ %Delta. So, we can change the standard
deviations by replacing Delta in this product. We then construct a new MVN object with the old mean
vector and the new covariance matrix.

The covar and correl functions, respectively, calculate the covariance matrix and correlation ma-
trix that underly the covariance matrix for the objects of class MVN. We have four assertions as shown
below, which are tested in the examples section:

1. covar should return the same matrix that was used in the function call to construct the MVN
object.

2. After applying an alterMean method, the covariance matrix is unchanged.

3. The diagonal of the correlation matrix consists of all ones.

4. After applying an alterMean or an alterSD method, the correlation matrix is unchanged.

MVN-class 29

Objects from the Class

Although objects of the class can be created by a direct call to new, the preferred method is to use
the MVN generator function.

Slots

mu: numeric vector containing the k-dimensional means

lambda: numeric vector containing the square roots of the eigenvalues of the covariance matrix

half: numeric matrix with k ∗k dimensions whose columns contain the eigenvectors of the covari-
ance matrix

Methods

alterMean(object, TRANSFORM, . . .) Takes an object of class MVN, loops over the mu slot, alters
the mean as defined by TRANSFORM function, and returns an object of class MVN with altered
mu.

alterSD(object, TRANSFORM, . . .) Takes an object of class MVN, works on the diagonal matrix
of the covariance matrix, alters the standard deviation as defined by TRANSFORM function,
and reconstructs an object of class MVN with the old mu and reconstructed covariance matrix.

nrow(x) Returns the number of genes (i.e, the length of the mu vector).

rand(object, n, . . .) Generates nrow(MVN) ∗ n matrix representing gene expressions of n sam-
ples following the multivariate normal distribution captured in the object of MVN.

summary(object, . . .) Prints out the number of multivariate normal random variables in the object
of MVN.

covar(object) Returns the covariance matrix of the object of class MVN.

correl(object) Returns the correlation matrix of the object of class MVN.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, Jiexin Zhang <jiexinzhang@mdanderson.org>,

See Also

Engine, IndependentNormal

Examples

showClass("MVN")
Not run:

tolerance <- 1e-10
Create a random orthogonal 2x2 matrix
a <- runif(1)
b <- sqrt(1-a^2)
X <- matrix(c(a, b, -b, a), 2, 2)
Now choose random positive squared-eigenvalues
Lambda2 <- diag(rev(sort(rexp(2))), 2)
Construct a covariance matrix

30 nComponents-method

Y <- t(X)
Use the MVN constructor
marvin <- MVN(c(0,0), Y)
Check the four assertions
print(paste('Tolerance for assertion checking:', tolerance))
print(paste('Covar assertion 1:',

all(abs(covar(marvin) - Y) < tolerance)))
mar2 <- alterMean(marvin, normalOffset, delta=3)
print(paste('Covar assertion 2:',

all(abs(covar(marvin) - covar(mar2)) < tolerance)))
print(paste('Correl assertion 1:',

all(abs(diag(correl(marvin)) - 1) < tolerance)))
mar3 <- alterSD(marvin, function(x) 2*x)
print(paste('Correl assertion 1:',

all(abs(correl(marvin) - correl(mar2)) < tolerance)))
rm(a, b, X, Lambda2, Y, marvin, mar2, mar3)

End(Not run)

nComponents-method Method "nComponents"

Description

nComponents is a generic function, analogous to ’nrow’ or ’ncol’, that reports the number of com-
ponents of an “engine“.

Usage

S4 method for signature 'ANY'
nComponents(object, ...)

Arguments

object an object from which the number of components is desired

... additional arguments affecting the number of components produced

Value

Returns a nonnegative integer (scalar).

Author(s)

Kevin R. Coombes <krc@silicovore.com>, Caitlin E. Coombes <caitlin.coombes@osumc.edu>

NoiseModel-class 31

NoiseModel-class The "NoiseModel" Class

Description

A NoiseModel represents the additional machine noise that is layered on top of any biological
variabilty when measuring the gene expression in a set of samples.

Usage

NoiseModel(nu, tau, phi)
S4 method for signature 'NoiseModel'
blur(object, x, ...)
S4 method for signature 'NoiseModel'
summary(object, ...)

Arguments

nu The mean value for the additive noise

tau The standard deviation for the additive noise

phi The standard deviation for the multiplicative noise. Note that the mean of the
multiplicative noise is set to 0.

object object of class NoiseModel

x The data matrix containing true signal from the gene expression

... extra arguments affecting the blur method applied

Details

We model both additive and multiplicative noise, so that the observed expression of gene g in
sample i is given by: Ygi = Sgiexp(Hgi) + Egi, where Y_gi = observed expression, S_gi = true
biological signal, H_gi ~ N(0, phi) defines the multiplicative noise, and E_gi ~ N(nu,tau) defines
the additive noise. Note that we allow a systematic offset/bias in the additive noise model.

Methods

blur(object, x, . . .) Adds and multiplies random noise to the data matrix x containing the true
signal from the gene expression.

summary(object, . . .) Prints a summary of the object.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, Jiexin Zhang <jiexinzhang@mdanderson.org>,

32 NormalVsCancer

References

Zhang J, Coombes KR.
Sources of variation in false discovery rate estimation include sample size, correlation, and inherent
differences between groups.
BMC Bioinformatics. 2012; 13 Suppl 13:S1.

Examples

showClass("NoiseModel")
nComp <- 10
nGenes <- 100
comp <- list()
for (i in 1:nComp){

comp[[i]] <- IndependentLogNormal(rnorm(nGenes/nComp, 6, 1.5),
1/rgamma(nGenes/nComp, 44, 28))

}
myEngine <- Engine(comp)
myData <- rand(myEngine, 5)
summary(myData)

nu <- 10
tau <- 20
phi <- 0.1
nm <- NoiseModel(nu, tau, phi)
realData <- blur(nm, myData)
summary(realData)

NormalVsCancer Simulating Cancer Versus Normal Datasets

Description

These functions are useful for simulating data that compares a homogeneous "cancer" group to a
homogeneous "normal" group of samples.

Usage

NormalVsCancerModel(nBlocks, survivalModel=NULL, name="NormalVsCancer")
NormalVsCancerEngine(nBlocks, hyperp)

Arguments

nBlocks scalar integer representing number of correlated blocks that are differentially
expressed between cancer and normal

survivalModel a SurvivalModel object

name character string specifying name of the object being created

hyperp object of class BlockHyperParameters that describes the block correlation struc-
ture.

rand-method 33

Details

The simplest simulation model assumes that we are comparing two homogeneous groups.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, Jiexin Zhang <jiexinzhang@mdanderson.org>,

See Also

BlockHyperParameters, CancerEngine, CancerModel

Examples

nvc <- NormalVsCancerModel(10)
summary(nvc)
rand(nvc, 10)
rand(nvc, 10, balance=TRUE)
engine <- NormalVsCancerEngine(10)
dset <- rand(engine, 10, balance=TRUE)

rand-method Method "rand"

Description

rand is a generic function used to produce random vectors from the distribution defined by various
objects. The generic function invokes particular methods which depend on the class of the first
argument.

Usage

S4 method for signature 'ANY'
rand(object, n, ...)

Arguments

object an object from which random numbers from a distribution is desired

n numeric scalar specifying quantity of random numbers

... additional arguments affecting the random numbers produced

Value

The form of the value returned by rand depends on the class of its argument. See the documentation
of the particular methods for details of what is produced by that method.

Author(s)

Kevin R. Coombes <krc@silicovore.com>,

34 SurvivalModel-class

SurvivalModel-class The "SurvivalModel" Class

Description

A SurvivalModel class represents the information for simulating survival times for each patient.

Usage

SurvivalModel(baseHazard = 1/5,
accrual = 5,
followUp = 1,
units = 12,
unitName = "months")

S4 method for signature 'SurvivalModel'
rand(object, n, beta = NULL, ...)

Arguments

baseHazard numeric scalar describing the underlying hazard rate at baseline levels of covari-
ates

accrual numeric scalar representing number of patient accrual years

followUp numeric scalar representing length of follow up, in years

units numeric scalar representing number of units per year where units are specified
by unitName

unitName character string representing the unit argument type

object object of class SurvivalModel

n numeric scalar specifying quantity of random numbers

beta numeric vector specifying beta parameters for patients

... extra arguments for generic routines

Value

The SurvivalModel generator returns an object of class SurvivalModel.

The rand method returns a data.frame with components:

LFU time to event

Event whether the data is censored

Objects from the Class

Although objects of the class can be created by a direct call to new, the preferred method is to use
the SurvivalModel generator function.

transforms 35

Slots

baseHazard: see corresponding argument above
accrual: see corresponding argument above
followUp: see corresponding argument above
units: see corresponding argument above
unitName: see corresponding argument above

Methods

rand(object, n, beta, . . .) Simulate survival data for n patients given beta.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, Jiexin Zhang <jiexinzhang@mdanderson.org>,

References

Zhang J, Coombes KR.
Sources of variation in false discovery rate estimation include sample size, correlation, and inherent
differences between groups.
BMC Bioinformatics. 2012; 13 Suppl 13:S1.

See Also

CancerModel

Examples

showClass("SurvivalModel")
sm <- SurvivalModel()
Generate data from base model
outcome <- rand(sm, 100)
summary(outcome)
Generate data from five classes with different beta parameters
beta <- rep(rnorm(5, 0, 2), each = 20)
outcome <- rand(sm, 100, beta = beta)
summary(outcome)

transforms Transform functions

Description

normalOffset is a function that can be used as the TRANSFORM argument in an alterMean operation,
which adds an offset to each value in the mean where the offset is chosen from a normal distribution.

invGammaMultiple is a function that can be used as the TRANSFORM argument in an alterSD oper-
ation, which multiplies each standard deviation by a positive value chosen from an inverse gamma
distribution with parameters shape and scale.

36 transforms

Usage

normalOffset(x, delta, sigma)
invGammaMultiple(x, shape, rate)

Arguments

x numeric vector of mean expression or standard deviation defined in the object

delta, sigma numeric vector used as mean and/or sd parameters specifying the normal distri-
bution

shape, rate numeric vector used as shape and/or rate parameters specifying the gamma
distribution. Must be positive.

Value

normalOffset returns a new vector, TO each element of which is added aN offset chosen from a
normal distribution with parameters mean and sd.

invGammaMultiple returns a new vector, each element of which is multiplied by a positive value
chosen from an inverse gamma distribution with parameters shape and scale.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, Jiexin Zhang <jiexinzhang@mdanderson.org>,

See Also

alterMean, alterSD, RNGkind

Examples

nComp <- 10
nGenes <- 100
comp <- list()
for (i in 1:nComp) {

comp[[i]] <- IndependentNormal(rnorm(nGenes/nComp, 6, 1.5),
1/rgamma(nGenes/nComp, 44, 28))

}
myEngine <- Engine(comp)
nrow(myEngine)
nComponents(myEngine)
summary(myEngine)
myData <- rand(myEngine, 5)
dim(myData)
summary(myData)
MEAN <- 2
SD <- 2
myEngine.alterMean <- alterMean(myEngine,

function(x) normalOffset(x, MEAN, SD))
myData.alterMean <- rand(myEngine.alterMean, 5)
summary(myData.alterMean)
RATE <- 1

transforms 37

SHAPE <- 2
myEngine.alterSD <- alterSD(myEngine,

function(x) invGammaMultiple(x, SHAPE, RATE))
myData.alterSD <- rand(myEngine.alterSD, 5)
summary(myData.alterSD)

Index

∗ classes
BlockHyperParameters-class, 3
CancerEngine-class, 7
CancerModel-class, 10
ClinicalNoiseModel, 13
Engine-class, 14
EngineWithActivity-class, 16
IndependentLogNormal-class, 19
IndependentNormal-class, 21
makeDataTypes, 23
MixedTypeEngine-class, 25
MVN-class, 27
NoiseModel-class, 31
SurvivalModel-class, 34

∗ datagen
BlockHyperParameters-class, 3
CancerEngine-class, 7
CancerModel-class, 10
ClinicalNoiseModel, 13
Engine-class, 14
EngineWithActivity-class, 16
IndependentLogNormal-class, 19
IndependentNormal-class, 21
makeDataTypes, 23
MixedTypeEngine-class, 25
MVN-class, 27
NoiseModel-class, 31
SurvivalModel-class, 34
transforms, 35

∗ distribution
IndependentLogNormal-class, 19
IndependentNormal-class, 21
MVN-class, 27
transforms, 35

∗ methods
addControl-method, 2
alterMean-method, 3
blur-method, 6
nComponents-method, 30

rand-method, 33

addControl (addControl-method), 2
addControl,ANY-method

(addControl-method), 2
addControl,CancerEngine-method

(addControl-method), 2
addControl,CancerModel-method

(addControl-method), 2
addControl-method, 2
alterMean, 36
alterMean (alterMean-method), 3
alterMean,ANY-method

(alterMean-method), 3
alterMean,Engine-method (Engine-class),

14
alterMean,IndependentLogNormal-method

(IndependentLogNormal-class),
19

alterMean,IndependentNormal-method
(IndependentNormal-class), 21

alterMean,MVN-method (MVN-class), 27
alterMean-method, 3
alterSD, 36
alterSD (alterMean-method), 3
alterSD,ANY-method (alterMean-method), 3
alterSD,Engine-method (Engine-class), 14
alterSD,IndependentLogNormal-method

(IndependentLogNormal-class),
19

alterSD,IndependentNormal-method
(IndependentNormal-class), 21

alterSD,MVN-method (MVN-class), 27
alterSD-method (alterMean-method), 3

BlockHyperParameters, 33
BlockHyperParameters

(BlockHyperParameters-class), 3
BlockHyperParameters-class, 3
blur (blur-method), 6

38

INDEX 39

blur,ANY-method (blur-method), 6
blur,NoiseModel-method

(NoiseModel-class), 31
blur-method, 6

CancerEngine, 5, 6, 26, 33
CancerEngine (CancerEngine-class), 7
CancerEngine-class, 7
CancerModel, 4, 6, 8, 9, 26, 33, 35
CancerModel (CancerModel-class), 10
CancerModel-class, 10
class, 3, 6, 33
ClinicalEngine, 23
ClinicalEngine (CancerEngine-class), 7
ClinicalNoiseModel, 13, 25, 26
correl (MVN-class), 27
covar (MVN-class), 27

daisy, 24

Engine, 7, 8, 18, 20, 22, 26, 29
Engine (Engine-class), 14
Engine-class, 14
EngineWithActivity, 7, 8, 16
EngineWithActivity

(EngineWithActivity-class), 16
EngineWithActivity-class, 16

getDaisyTypes (makeDataTypes), 23
getDataTypes (makeDataTypes), 23

IndependentLogNormal, 22
IndependentLogNormal

(IndependentLogNormal-class),
19

IndependentLogNormal-class, 19
IndependentNormal, 20, 29
IndependentNormal

(IndependentNormal-class), 21
IndependentNormal-class, 21
invGammaMultiple (transforms), 35

makeBlockStructure
(BlockHyperParameters-class), 3

makeDataTypes, 23, 25, 26
methods, 3, 6, 33
MixedTypeEngine, 23, 24
MixedTypeEngine

(MixedTypeEngine-class), 25
MixedTypeEngine-class, 25

MVN, 20, 22
MVN (MVN-class), 27
MVN-class, 27

ncol,CancerModel-method
(CancerModel-class), 10

nComponents (nComponents-method), 30
nComponents,ANY-method

(nComponents-method), 30
nComponents,CancerEngine-method

(CancerEngine-class), 7
nComponents,Engine-method

(Engine-class), 14
nComponents-method, 30
new, 5, 8, 11, 18, 19, 26, 29, 34
nHitsPerPattern (CancerModel-class), 10
NoiseModel, 13
NoiseModel (NoiseModel-class), 31
NoiseModel-class, 31
normalOffset (transforms), 35
NormalVsCancer, 32
NormalVsCancerEngine (NormalVsCancer),

32
NormalVsCancerModel (NormalVsCancer), 32
nPatterns (CancerModel-class), 10
nPossibleHits (CancerModel-class), 10
nrow,CancerEngine-method

(CancerEngine-class), 7
nrow,CancerModel-method

(CancerModel-class), 10
nrow,Engine-method (Engine-class), 14
nrow,IndependentLogNormal-method

(IndependentLogNormal-class),
19

nrow,IndependentNormal-method
(IndependentNormal-class), 21

nrow,MVN-method (MVN-class), 27

outcomeCoefficients
(CancerModel-class), 10

rand, 5
rand (rand-method), 33
rand,ANY-method (rand-method), 33
rand,CancerEngine-method

(CancerEngine-class), 7
rand,CancerModel-method

(CancerModel-class), 10
rand,Engine-method (Engine-class), 14

40 INDEX

rand,EngineWithActivity-method
(EngineWithActivity-class), 16

rand,IndependentLogNormal-method
(IndependentLogNormal-class),
19

rand,IndependentNormal-method
(IndependentNormal-class), 21

rand,MixedTypeEngine-method
(MixedTypeEngine-class), 25

rand,MVN-method (MVN-class), 27
rand,SurvivalModel-method

(SurvivalModel-class), 34
rand-method, 33
RNGkind, 36

summary,CancerEngine-method
(CancerEngine-class), 7

summary,CancerModel-method
(CancerModel-class), 10

summary,Engine-method (Engine-class), 14
summary,EngineWithActivity-method

(EngineWithActivity-class), 16
summary,IndependentLogNormal-method

(IndependentLogNormal-class),
19

summary,IndependentNormal-method
(IndependentNormal-class), 21

summary,MixedTypeEngine-method
(MixedTypeEngine-class), 25

summary,MVN-method (MVN-class), 27
summary,NoiseModel-method

(NoiseModel-class), 31
survivalCoefficients

(CancerModel-class), 10
SurvivalModel, 8, 12
SurvivalModel (SurvivalModel-class), 34
SurvivalModel-class, 34

transforms, 35

	addControl-method
	alterMean-method
	BlockHyperParameters-class
	blur-method
	CancerEngine-class
	CancerModel-class
	ClinicalNoiseModel
	Engine-class
	EngineWithActivity-class
	IndependentLogNormal-class
	IndependentNormal-class
	makeDataTypes
	MixedTypeEngine-class
	MVN-class
	nComponents-method
	NoiseModel-class
	NormalVsCancer
	rand-method
	SurvivalModel-class
	transforms
	Index

