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2 Ultimixt-package

Ultimixt-package set of R functions for estimating the parameters of mixture distribution
with a Bayesian non-informative prior

Description

Despite a comprehensive literature on estimating mixtures of Gaussian distributions, there does
not exist a well-accepted reference Bayesian approach to such models. One reason for the diffi-
culty is the general prohibition against using improper priors (Fruhwirth-Schnatter, 2006) due to
the ill-posed nature of such statistical objects. Kamary, Lee and Robert (2017) took advantage
of a mean-variance reparametrisation of a Gaussian mixture model to propose improper but valid
reference priors in this setting. This R package implements the proposal and computes posterior
estimates of the parameters of a Gaussian mixture distribution. The approach applies with an arbi-
trary number of components. The Ultimixt R package contains an MCMC algorithm function and
further functions for summarizing and plotting posterior estimates of the model parameters for any
number of components.

Details

Package: Ultimixt
Type: Package
Version: 2.1
Date: 2017-03-07
License: GPL (>=2.0)

Beyond simulating MCMC samples from the posterior distribution of the Gaussian mixture model,
this package also produces summaries of the MCMC outputs through numerical and graphical meth-
ods.

Note: The proposed parameterisation of the Gaussian mixture distribution is given by

f(x|µ, σ,p, φ,ϖ, ξ) =

k∑
i=1

pif (x|µ+ σγi/
√
pi, σηi/

√
pi)

under the non-informative prior π(µ, σ) = 1/σ. Here, the vector of the γi = φΨi

(
ϖ,p

)
i
’s

belongs to an hypersphere of radius φ intersecting with an hyperplane. It is thus expressed in
terms of spherical coordinates within that hyperplane that depend on k− 2 angular coordinates ϖi.
Similarly, the vector of ηi =

√
1− φ2Ψi

(
ξ
)
i
’s can be turned into a spherical coordinate in a k-

dimensional Euclidean space, involving a radial coordinate
√
1− φ2 and k−1 angular coordinates

ξi. A natural prior for ϖ is made of uniforms, ϖ1, . . . , ϖk−3 ∼ U [0, π] and ϖk−2 ∼ U [0, 2π], and
for φ, we consider a beta prior Beta(α, α). A reference prior on the angles ξ is (ξ1, . . . , ξk−1) ∼
U [0, π/2]k−1 and a Dirichlet prior Dir(α0, . . . , α0) is assigned to the weights p1, . . . , pk.
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For a Poisson mixture, we consider

f(x|λ1, . . . , λk) =
1

x!

k∑
i=1

piλ
x
i e

−λi

with a reparameterisation as λ = E[X] and λi = λγi/pi. In this case, we can use the equivalent to
the Jeffreys prior for the Poisson distribution, namely, π(λ) = 1/λ, since it leads to a well-defined
posterior with a single positive observation.

Author(s)

Kaniav Kamary

Maintainer: <kamary@ceremade.dauphine.fr>

References

Fruhwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models. Springer-Verlag,
New York, New York.

Kamary, K., Lee, J.Y., and Robert, C.P. (2017) Weakly informative reparameterisation for location-
scale mixtures. arXiv.

See Also

Ultimixt

Examples

#K.MixReparametrized(faithful[,2], k=2, alpha0=.5, alpha=.5, Nsim=10000)

K.MixPois Sample from a Poisson mixture posterior associated with a noninfor-
mative prior and obtained by Metropolis-within-Gibbs sampling

Description

After having reparameterized the Poisson mixture based on the global mean of the mixture distri-
bution (Kamary et al. (2017)), a Jeffreys prior can be used since it leads a well-defined posterior
with a single positive observation. This function returns a sample from the posterior distribution of
the parameters of the Poisson mixture. To do so, a Metropolis-within-Gibbs algorithm is applied
with an adaptive calibration of the proposal distribution scales. Adaptation is driven by the formally
optimal acceptance rates of 0.44 and 0.234 in one and larger dimensions, respectively (Roberts et
al.,1997). This algorithm monitors the convergence of the MCMC sequences via Gelman’s and
Rubin’s (1992) criterion.

Usage

K.MixPois(xobs, k, alpha0, alpha, Nsim)
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Arguments

xobs vector of the observations or dataset

k number of components in the mixture model

alpha0 hyperparameter of Dirichlet prior distribution of the mixture model weights
which is .5 by default

alpha hyperparameter of beta prior distribution of the component mean hyperparame-
ter (noted by γi. See Kamary et al. (2017)) which is .5 by default

Nsim number of MCMC iterations after calibration step of proposal scales

Details

The output of this function contains a simulated sample for each parameter of the mixture distribu-
tion, the evolution of the proposal scales and acceptance rates over the number of iterations during
the calibration stage, and their final values after calibration.

Value

The output of this function contains a list of the following variables, where the dimension of the
vectors is the number of simulations:

mean global vector of simulated draws from the conditional posterior of the mixture model
mean

weights matrix of simulated draws from the conditional posterior of the mixture model
weights with a number of columns equal to the number of components k

gammas matrix of simulated draws from the conditional posterior of the component mean
hyperparameters

accept rat vector of resulting acceptance rates of the proposal distributions without cali-
bration step of the proposal scales

optimal para vector of resulting proposal scales after optimisation obtained by adaptive MCMC

adapt rat list of acceptance rates of batch of 50 iterations obtained when calibrating the
proposal scales by adaptive MCMC. The number of columns depends on the
number of proposal distributions.

adapt scale list of proposal scales calibrated by adaptive MCMC for each batch of 50 it-
erations with respect to the optimal acceptance rate. The number of columns
depends on the number of proposal distribution scales.

component means

matrix of MCMC samples of the component means of the mixture model with a
number of columns equal to k

Note

If the number of MCMC iterations specified in the input of this function exceeds 15,000, after each
1000 supplementry iterations the convergence of simulated chains is checked using the convergence
monitoring technique by Gelman and Rubin (1992).
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Author(s)

Kaniav Kamary

References

Kamary, K., Lee, J.Y., and Robert, C.P. (2017) Weakly informative reparameterisation of location-
scale mixtures. arXiv.

Robert, C. and Casella, G. (2009). Introducing Monte Carlo Methods with R. Springer-Verlag.

Roberts, G. O., Gelman, A. and Gilks, W. R. (1997). Weak convergence and optimal scaling of
random walk Metropolis algorithms. Ann. Applied Probability, 7, 110–120.

Gelman, A. and Rubin, D. (1992). Inference from iterative simulation using multiple sequences
(with discussion). Statistical Science, 457–472.

See Also

Ultimixt

Examples

#N=500
#U =runif(N)
#xobs = rep(NA,N)
#for(i in 1:N){
# if(U[i]<.6){
# xobs[i] = rpois(1,lambda=1)
# }else{
# xobs[i] = rpois(1,lambda=5)
# }
#}
#estimate=K.MixPois(xobs, k=2, alpha0=.5, alpha=.5, Nsim=10000)

K.MixReparametrized Sample from a Gaussian mixture posterior associated with a noninfor-
mative prior and obtained by Metropolis-within-Gibbs sampling

Description

This function returns a sample simulated from the posterior distribution of the parameters of a
Gaussian mixture under a non-informative prior. This prior is derived from a mean-variance repa-
rameterisation of the mixture distribution, as proposed by Kamary et al. (2017). The algorithm is
a Metropolis-within-Gibbs scheme with an adaptive calibration of the proposal distribution scales.
Adaptation is driven by the formally optimal acceptance rates of 0.44 and 0.234 in one and larger
dimensions, respectively (Roberts et al.,1997). This algorithm monitors the convergence of the
MCMC sequences via Gelman’s and Rubin’s (1992) criterion.

Usage

K.MixReparametrized(xobs, k, alpha0, alpha, Nsim)
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Arguments

xobs vector of the observations or dataset
k number of components in the mixture model
alpha0 hyperparameter of Dirichlet prior distribution of the mixture model weights

which is .5 by default
alpha hyperparameter of beta prior distribution of the radial coordinate which is .5 by

default
Nsim number of MCMC iterations after calibration step of proposal scales

Details

The output of this function contains a simulated sample for each parameter of the mixture distribu-
tion, the evolution of the proposal scales and acceptance rates over the number of iterations during
the calibration stage, and their final values after calibration.

Value

The output of this function is a list of the following variables, where the dimension of the vectors is
the number of simulations:

mean global vector of simulated draws from the conditional posterior of the mixture model
mean

sigma global vector of simulated draws from the conditional posterior of the mixture model
standard deviation

weights matrix of simulated draws from the conditional posterior of the mixture model
weights with a number of columns equal to the number of components k

angles xi matrix of simulated draws from the conditional posterior of the angular coordi-
nates of the component standard deviations with a number of columns equal to
k − 1

phi vector of simulated draws from the conditional posterior of the radian coordinate
angles varpi matrix of simulated draws from the conditional posterior of the angular coordi-

nates of the component means with a number of columns equal to k − 2

accept rat vector of resulting acceptance rates of the proposal distributions without cali-
bration step of the proposal scales

optimal para vector of resulting proposal scales after optimisation obtained by adaptive MCMC
adapt rat list of acceptance rates of batch of 50 iterations obtained when calibrating the

proposal scales by adaptive MCMC. The number of columns depends on the
number of proposal distributions.

adapt scale list of proposal scales calibrated by adaptive MCMC for each batch of 50 it-
erations with respect to the optimal acceptance rate. The number of columns
depends on the number of proposal distribution scales.

component means

matrix of MCMC samples of the component means of the mixture model with a
number of columns equal to k

component sigmas

matrix of MCMC samples of the component standard deviations of the mixture
model with a number of columns equal to k
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Note

If the number of MCMC iterations specified in the input of this function exceeds 15,000, after each
1000 supplementry iterations the convergence of simulated chains is checked using the convergence
monitoring technique by Gelman and Rubin (1992).

Author(s)

Kaniav Kamary

References

Kamary, K., Lee, J.Y., and Robert, C.P. (2017) Weakly informative reparameterisation of location-
scale mixtures. arXiv.

Robert, C. and Casella, G. (2009). Introducing Monte Carlo Methods with R. Springer-Verlag.

Roberts, G. O., Gelman, A. and Gilks, W. R. (1997). Weak convergence and optimal scaling of
random walk Metropolis algorithms. Ann. Applied Probability, 7, 110–120.

Gelman, A. and Rubin, D. (1992). Inference from iterative simulation using multiple sequences
(with discussion). Statistical Science, 457–472.

See Also

Ultimixt

Examples

#data(faithful)
#xobs=faithful[,1]
#estimate=K.MixReparametrized(xobs, k=2, alpha0=.5, alpha=.5, Nsim=10000)

Plot.MixReparametrized

plot of the MCMC output produced by K.MixReparametrized

Description

This is a generic function for a graphical rendering of the MCMC samples produced by K.MixReparametrized
function. The function draws boxplots for unimodal variables and for multimodal arguments after
clustering them by applying a k-means algorithm. It also plots line charts for other variables.

Usage

Plot.MixReparametrized(xobs, estimate)

Arguments

xobs vector of the observations

estimate output of the K. MixReparametrized function
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Details

Boxplots are produced using the boxplot.default method.

Value

The output of this function consists of

boxplot three boxplots for the radial coordinates, the mean and the standard deviation
of the mixture distribution, k boxplots for each of the mixture model weights,
component means and component standard deviations.

histogram an histogram of the observations against an overlaid curve of the density es-
timate, obtained by averaging over all mixtures corresponding to the MCMC
draws,

line chart line charts that report the evolution of the proposal scales and of the acceptance
rates over the number of batch of 50 iterations.

Note

The mixture density estimate is based on the draws simulated of the parameters obtained by K.MixReparametrized
function.

Author(s)

Kaniav Kamary

References

Kamary, K., Lee, J.Y., and Robert, C.P. (2017) Weakly informative reparameterisation of location-
scale mixtures. arXiv.

See Also

K.MixReparametrized

Examples

#data(faithful)
#xobs=faithful[,1]
#estimate=K.MixReparametrized(xobs, k=2, alpha0=.5, alpha=.5, Nsim=20000)
#plo=Plot.MixReparametrized(xobs, estimate)
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SM.MAP.MixReparametrized

summary of the output produced by K.MixReparametrized

Description

Label switching in a simulated Markov chain produced by K.MixReparametrized is removed by the
technique of Marin et al. (2004). Namely, component labels are reorded by the shortest Euclidian
distance between a posterior sample and the maximum a posteriori (MAP) estimate. Let θi be the
i-th vector of computed component means, standard deviations and weights. The MAP estimate is
derived from the MCMC sequence and denoted by θMAP . For a permutation τ ∈ ℑk the labelling
of θi is reordered by

θ̃i = τi(θi)

where τi = argminτ∈ℑk
|| τ(θi)− θMAP ||.

Angular parameters ξ(i)1 , . . . , ξ
(i)
k−1 and ϖ

(i)
1 , . . . , ϖ

(i)
k−2s are derived from θ̃i. There exists an unique

solution in ϖ
(i)
1 , . . . , ϖ

(i)
k−2 while there are multiple solutions in ξ(i) due to the symmetry of |

cos(ξ) | and | sin(ξ) |. The output of ξ(i)1 , . . . , ξ
(i)
k−1 only includes angles on [−π, π].

The label of components of θi (before the above transform) is defined by

τ∗i = arg min
τ∈ℑk

|| θi − τ(θMAP ) || .

The number of label switching occurrences is defined by the number of changes in τ∗.

Usage

SM.MAP.MixReparametrized(estimate, xobs, alpha0, alpha)

Arguments

estimate Output of K.MixReparametrized

xobs Data set

alpha0 Hyperparameter of Dirichlet prior distribution of the mixture model weights

alpha Hyperparameter of beta prior distribution of the radial coordinate

Details

Details.

Value

MU Matrix of MCMC samples of the component means of the mixture model

SIGMA Matrix of MCMC samples of the component standard deviations of the mixture
model

P Matrix of MCMC samples of the component weights of the mixture model
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Ang_SIGMA Matrix of computed ξ’s corresponding to SIGMA

Ang_MU Matrix of computed ϖ’s corresponding to MU. This output only appears when
k > 2.

Global_Mean Mean, median and 95% credible interval for the global mean parameter

Global_Std Mean, median and 95% credible interval for the global standard deviation pa-
rameter

Phi Mean, median and 95% credible interval for the radius parameter

component_mu Mean, median and 95% credible interval of MU

component_sigma

Mean, median and 95% credible interval of SIGMA

component_p Mean, median and 95% credible interval of P

l_stay Number of MCMC iterations between changes in labelling

n_switch Number of label switching occurrences

Note

Note.

Author(s)

Kate Lee

References

Marin, J.-M., Mengersen, K. and Robert, C. P. (2004) Bayesian Modelling and Inference on Mix-
tures of Distributions, Handbook of Statistics, Elsevier, Volume 25, Pages 459–507.

See Also

K.MixReparametrized

Examples

#data(faithful)
#xobs=faithful[,1]
#estimate=K.MixReparametrized(xobs,k=2,alpha0=0.5,alpha=0.5,Nsim=1e4)
#result=SM.MAP.MixReparametrized(estimate,xobs,alpha0=0.5,alpha=0.5)
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SM.MixPois summary of the output produced by K.MixPois

Description

This generic function summarizes the MCMC samples produced by K.MixPois when several esti-
mation methods have been invoked depending on the unimodality or multimodality of the argument.

Usage

SM.MixPois(estimate, xobs)

Arguments

estimate output of K.MixPois

xobs vector of observations

Details

The output of this function contains posterior point estimates for all parameters of the reparame-
terized Poisson mixture model. It summarizes unimodal MCMC samples by computing measures
of centrality, including mean and median, while multimodal outputs require a preprocessing, due
to the label switching phenomenon (Jasra et al., 2005). The summary measures are then computed
after performing a multi-dimensional k-means clustering (Hartigan and Wong, 1979) following the
suggestion of Fruhwirth-Schnatter (2006).

Value

lambda vector of mean and median of simulated draws from the conditional posterior of
the mixture model mean

gamma.i vector of mean and median of simulated draws from the conditional posterior of
the component mean hyperparameters; i = 1, . . . , k

weight.i vector of mean and median of simulated draws from the conditional posterior of
the component weights of the mixture distribution; i = 1, . . . , k

lambda.i vector of mean and median of simulated draws from the conditional posterior of
the component means of the mixture distribution; i = 1, . . . , k

Acc rat vector of final acceptance rate of the proposal distributions of the algorithm with
no calibration stage for the proposal scales

Opt scale vector of optimal proposal scales obtained the by calibration stage
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Note

For multimodal outputs such as the mixture model weights, component means, and component
mean hyperparameters, for each MCMC draw, first the labels of the weights pi, i = 1, . . . , k and
corresponding component means are permuted in such a way that p1 ≤ . . . ≤ pk. Then the posterior
component means are partitioned into k clusters by applying a standard k-means algorithm with k
clusters, following Fruhwirth-Schnatter (2006) method. The obtained classification sequence was
then used to reorder and identify the other component-specific parameters, namely component mean
hyperparameters and weights. For each group, cluster centers are considered as parameter estimates.

Author(s)

Kaniav Kamary

References

Jasra, A., Holmes, C. and Stephens, D. (2005). Markov Chain Monte Carlo methods and the label
switching problem in Bayesian mixture modeling. Statistical Science, 20, 50–67.

Hartigan, J. A. and Wong, M. A. (1979). A K-means clustering algorithm. Applied Statistics 28,
100–108.

Fruhwirth-Schnatter, S. (2006). Finite mixture and Markov switching models. Springer-Verlag.

See Also

K.MixPois

Examples

N=500
U =runif(N)
xobs = rep(NA,N)
for(i in 1:N){

if(U[i]<.6){
xobs[i] = rpois(1,lambda=1)

}else{
xobs[i] = rpois(1,lambda=5)

}
}
#estimate=K.MixPois(xobs, k=2, alpha0=.5, alpha=.5, Nsim=10000)
#SM.MixPois(estimate, xobs)
#plot(estimate[[8]][,1],estimate[[2]][,1],pch=19,col="skyblue",cex=0.5,xlab="lambda",ylab="p")
#points(estimate[[8]][,2], estimate[[2]][,2], pch=19, col="gold", cex=0.5)
#points(c(1,5), c(0.6,0.4), pch=19, cex=1)
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SM.MixReparametrized summary of the output produced by K.MixReparametrized

Description

This is a generic function that summarizes the MCMC samples produced by K.MixReparametrized.
The function invokes several estimation methods which choice depends on the unimodality or mul-
timodality of the argument.

Usage

SM.MixReparametrized(xobs, estimate)

Arguments

xobs vector of observations

estimate output of K.MixReparametrized

Details

This function outputs posterior point estimates for all parameters of the mixture model. They mostly
differ from the generaly useless posterior means. The output summarizes unimodal MCMC sam-
ples by computing measures of centrality, including mean and median, while multimodal outputs
require a pre-processing, due to the label switching phenomenon (Jasra et al., 2005). The summary
measures are then computed after performing a multi-dimensional k-means clustering (Hartigan
and Wong, 1979) following the suggestion of Fruhwirth-Schnatter (2006).

Value

Mean vector of mean and median of simulated draws from the conditional posterior of
the mixture model mean

Sd vector of mean and median of simulated draws from the conditional posterior of
the mixture model standard deviation

Phi vector of mean and median of simulated draws from the conditional posterior of
the radial coordinate

Angles. 1. vector of means of the angular coordinates used for the component means in the
mixture distribution

Angles. 2. vector of means of the angular coordinates used for the component standard
deviations in the mixture distribution

weight.i vector of mean and median of simulated draws from the conditional posterior of
the component weights of the mixture distribution; i = 1, . . . , k

mean.i vector of mean and median of simulated draws from the conditional posterior of
the component means of the mixture distribution; i = 1, . . . , k

sd.i vector of mean and median of simulated draws from the conditional posterior of
the component standard deviations of the mixture distribution; i = 1, . . . , k
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Acc rat vector of final acceptance rate of the proposal distributions of the algorithm with
no calibration stage for the proposal scales

Opt scale vector of optimal proposal scales obtained the by calibration stage

Note

For multimodal outputs such as the mixture model weights, component means, and component
variances, for each MCMC draw, first the labels of the weights pi, i = 1, . . . , k and corresponding
component means and standard deviations are permuted in such a way that p1 ≤ . . . ≤ pk. Then
the component means and standard deviations are jointly partitioned into k clusters by applying a
standard k-means algorithm with k clusters, following Fruhwirth-Schnatter (2006) method. The
obtained classification sequence was then used to reorder and identify the other component-specific
parameters, namely component mean hyperparameters and weights. For each group, cluster centers
are considered as parameter estimates.

Author(s)

Kaniav Kamary

References

Jasra, A., Holmes, C. and Stephens, D. (2005). Markov Chain Monte Carlo methods and the label
switching problem in Bayesian mixture modeling. Statistical Science, 20, 50–67.

Hartigan, J. A. and Wong, M. A. (1979). A K-means clustering algorithm. Applied Statistics 28,
100–108.

Fruhwirth-Schnatter, S. (2006). Finite mixture and Markov switching models. Springer-Verlag.

See Also

K.MixReparametrized

Examples

#data(faithful)
#xobs=faithful[,1]
#estimate=K.MixReparametrized(xobs, k=2, alpha0=.5, alpha=.5, Nsim=20000)
#summari=SM.MixReparametrized(xobs,estimate)
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