Title: | Analyzes Real-World Treatment Patterns of a Study Population of Interest |
---|---|
Description: | Computes treatment patterns within a given cohort using the Observational Medical Outcomes Partnership (OMOP) common data model (CDM). As described in Markus, Verhamme, Kors, and Rijnbeek (2022) <doi:10.1016/j.cmpb.2022.107081>. |
Authors: | Aniek Markus [aut] |
Maintainer: | Maarten van Kessel <[email protected]> |
License: | Apache License (>= 2) |
Version: | 3.0.1 |
Built: | 2025-03-10 17:21:40 UTC |
Source: | CRAN |
Compute treatment patterns according to the specified parameters within specified cohorts.
computePathways( cohorts, cohortTableName, cdm = NULL, connectionDetails = NULL, cdmSchema = NULL, resultSchema = NULL, analysisId = 1, description = "", tempEmulationSchema = NULL, includeTreatments = "startDate", indexDateOffset = 0, minEraDuration = 0, splitEventCohorts = NULL, splitTime = NULL, eraCollapseSize = 30, combinationWindow = 30, minPostCombinationDuration = 30, filterTreatments = "First", maxPathLength = 5 )
computePathways( cohorts, cohortTableName, cdm = NULL, connectionDetails = NULL, cdmSchema = NULL, resultSchema = NULL, analysisId = 1, description = "", tempEmulationSchema = NULL, includeTreatments = "startDate", indexDateOffset = 0, minEraDuration = 0, splitEventCohorts = NULL, splitTime = NULL, eraCollapseSize = 30, combinationWindow = 30, minPostCombinationDuration = 30, filterTreatments = "First", maxPathLength = 5 )
cohorts |
(
|
cohortTableName |
( |
cdm |
( |
connectionDetails |
( |
cdmSchema |
( |
resultSchema |
( |
analysisId |
( |
description |
( |
tempEmulationSchema |
Schema used to emulate temp tables |
includeTreatments |
(
|
indexDateOffset |
( |
minEraDuration |
( |
splitEventCohorts |
( |
splitTime |
( |
eraCollapseSize |
( |
combinationWindow |
( |
minPostCombinationDuration |
( |
filterTreatments |
( |
maxPathLength |
( |
(Andromeda::andromeda()
)
andromeda object containing non-sharable patient level
data outcomes.
ableToRun <- all( require("CirceR", character.only = TRUE, quietly = TRUE), require("CDMConnector", character.only = TRUE, quietly = TRUE), require("TreatmentPatterns", character.only = TRUE, quietly = TRUE), require("dplyr", character.only = TRUE, quietly = TRUE) ) if (ableToRun) { library(TreatmentPatterns) library(CDMConnector) library(dplyr) withr::local_envvar( R_USER_CACHE_DIR = tempfile(), EUNOMIA_DATA_FOLDER = Sys.getenv("EUNOMIA_DATA_FOLDER", unset = tempfile()) ) tryCatch({ if (Sys.getenv("skip_eunomia_download_test") != "TRUE") { CDMConnector::downloadEunomiaData(overwrite = TRUE) } }, error = function(e) NA) con <- DBI::dbConnect(duckdb::duckdb(), dbdir = eunomiaDir()) cdm <- cdmFromCon(con, cdmSchema = "main", writeSchema = "main") cohortSet <- readCohortSet( path = system.file(package = "TreatmentPatterns", "exampleCohorts") ) cdm <- generateCohortSet( cdm = cdm, cohortSet = cohortSet, name = "cohort_table" ) cohorts <- cohortSet %>% # Remove 'cohort' and 'json' columns select(-"cohort", -"json") %>% mutate(type = c("event", "event", "event", "event", "exit", "event", "event", "target")) %>% rename( cohortId = "cohort_definition_id", cohortName = "cohort_name", ) %>% select("cohortId", "cohortName", "type") outputEnv <- computePathways( cohorts = cohorts, cohortTableName = "cohort_table", cdm = cdm ) Andromeda::close(outputEnv) DBI::dbDisconnect(con, shutdown = TRUE) }
ableToRun <- all( require("CirceR", character.only = TRUE, quietly = TRUE), require("CDMConnector", character.only = TRUE, quietly = TRUE), require("TreatmentPatterns", character.only = TRUE, quietly = TRUE), require("dplyr", character.only = TRUE, quietly = TRUE) ) if (ableToRun) { library(TreatmentPatterns) library(CDMConnector) library(dplyr) withr::local_envvar( R_USER_CACHE_DIR = tempfile(), EUNOMIA_DATA_FOLDER = Sys.getenv("EUNOMIA_DATA_FOLDER", unset = tempfile()) ) tryCatch({ if (Sys.getenv("skip_eunomia_download_test") != "TRUE") { CDMConnector::downloadEunomiaData(overwrite = TRUE) } }, error = function(e) NA) con <- DBI::dbConnect(duckdb::duckdb(), dbdir = eunomiaDir()) cdm <- cdmFromCon(con, cdmSchema = "main", writeSchema = "main") cohortSet <- readCohortSet( path = system.file(package = "TreatmentPatterns", "exampleCohorts") ) cdm <- generateCohortSet( cdm = cdm, cohortSet = cohortSet, name = "cohort_table" ) cohorts <- cohortSet %>% # Remove 'cohort' and 'json' columns select(-"cohort", -"json") %>% mutate(type = c("event", "event", "event", "event", "exit", "event", "event", "target")) %>% rename( cohortId = "cohort_definition_id", cohortName = "cohort_name", ) %>% select("cohortId", "cohortName", "type") outputEnv <- computePathways( cohorts = cohorts, cohortTableName = "cohort_table", cdm = cdm ) Andromeda::close(outputEnv) DBI::dbDisconnect(con, shutdown = TRUE) }
Create sankey diagram.
createSankeyDiagram( treatmentPathways, groupCombinations = FALSE, colors = NULL, ... )
createSankeyDiagram( treatmentPathways, groupCombinations = FALSE, colors = NULL, ... )
treatmentPathways |
( |
groupCombinations |
(
|
colors |
( |
... |
Paramaters for sankeyNetwork. |
(htmlwidget
)
# Dummy data, typically read from treatmentPathways.csv treatmentPathways <- data.frame( pathway = c("Acetaminophen", "Acetaminophen-Amoxicillin+Clavulanate", "Acetaminophen-Aspirin", "Amoxicillin+Clavulanate", "Aspirin"), freq = c(206, 6, 14, 48, 221), sex = rep("all", 5), age = rep("all", 5), index_year = rep("all", 5) ) createSankeyDiagram(treatmentPathways)
# Dummy data, typically read from treatmentPathways.csv treatmentPathways <- data.frame( pathway = c("Acetaminophen", "Acetaminophen-Amoxicillin+Clavulanate", "Acetaminophen-Aspirin", "Amoxicillin+Clavulanate", "Aspirin"), freq = c(206, 6, 14, 48, 221), sex = rep("all", 5), age = rep("all", 5), index_year = rep("all", 5) ) createSankeyDiagram(treatmentPathways)
New sunburstPlot function
createSunburstPlot(treatmentPathways, groupCombinations = FALSE, ...)
createSunburstPlot(treatmentPathways, groupCombinations = FALSE, ...)
treatmentPathways |
( |
groupCombinations |
(
|
... |
Paramaters for sunburst. |
(htmlwidget
)
# Dummy data, typically read from treatmentPathways.csv treatmentPatwhays <- data.frame( pathway = c("Acetaminophen", "Acetaminophen-Amoxicillin+Clavulanate", "Acetaminophen-Aspirin", "Amoxicillin+Clavulanate", "Aspirin"), freq = c(206, 6, 14, 48, 221), sex = rep("all", 5), age = rep("all", 5), index_year = rep("all", 5) ) createSunburstPlot(treatmentPatwhays)
# Dummy data, typically read from treatmentPathways.csv treatmentPatwhays <- data.frame( pathway = c("Acetaminophen", "Acetaminophen-Amoxicillin+Clavulanate", "Acetaminophen-Aspirin", "Amoxicillin+Clavulanate", "Aspirin"), freq = c(206, 6, 14, 48, 221), sex = rep("all", 5), age = rep("all", 5), index_year = rep("all", 5) ) createSunburstPlot(treatmentPatwhays)
Compute treatment patterns according to the specified parameters within specified cohorts. For more customization, or investigation of patient level outcomes, you can run computePathways and export separately.
executeTreatmentPatterns( cohorts, cohortTableName, cdm = NULL, connectionDetails = NULL, cdmSchema = NULL, resultSchema = NULL, tempEmulationSchema = NULL, minEraDuration = 0, eraCollapseSize = 30, combinationWindow = 30, minCellCount = 5 )
executeTreatmentPatterns( cohorts, cohortTableName, cdm = NULL, connectionDetails = NULL, cdmSchema = NULL, resultSchema = NULL, tempEmulationSchema = NULL, minEraDuration = 0, eraCollapseSize = 30, combinationWindow = 30, minCellCount = 5 )
cohorts |
(
|
cohortTableName |
( |
cdm |
( |
connectionDetails |
( |
cdmSchema |
( |
resultSchema |
( |
tempEmulationSchema |
( |
minEraDuration |
( |
eraCollapseSize |
( |
combinationWindow |
( |
minCellCount |
( |
TreatmentPatternsResults
ableToRun <- all( require("CirceR", character.only = TRUE, quietly = TRUE), require("CDMConnector", character.only = TRUE, quietly = TRUE), require("TreatmentPatterns", character.only = TRUE, quietly = TRUE), require("dplyr", character.only = TRUE, quietly = TRUE) ) if (require("CirceR", character.only = TRUE, quietly = TRUE)) { library(TreatmentPatterns) library(CDMConnector) library(dplyr) withr::local_envvar( R_USER_CACHE_DIR = tempfile(), EUNOMIA_DATA_FOLDER = Sys.getenv("EUNOMIA_DATA_FOLDER", unset = tempfile()) ) tryCatch({ if (Sys.getenv("skip_eunomia_download_test") != "TRUE") { CDMConnector::downloadEunomiaData(overwrite = TRUE) } }, error = function(e) NA) con <- DBI::dbConnect(duckdb::duckdb(), dbdir = eunomiaDir()) cdm <- cdmFromCon(con, cdmSchema = "main", writeSchema = "main") cohortSet <- readCohortSet( path = system.file(package = "TreatmentPatterns", "exampleCohorts") ) cdm <- generateCohortSet( cdm = cdm, cohortSet = cohortSet, name = "cohort_table" ) cohorts <- cohortSet %>% # Remove 'cohort' and 'json' columns select(-"cohort", -"json") %>% mutate(type = c("event", "event", "event", "event", "exit", "event", "event", "target")) %>% rename( cohortId = "cohort_definition_id", cohortName = "cohort_name", ) %>% select("cohortId", "cohortName", "type") executeTreatmentPatterns( cohorts = cohorts, cohortTableName = "cohort_table", cdm = cdm ) DBI::dbDisconnect(con, shutdown = TRUE) }
ableToRun <- all( require("CirceR", character.only = TRUE, quietly = TRUE), require("CDMConnector", character.only = TRUE, quietly = TRUE), require("TreatmentPatterns", character.only = TRUE, quietly = TRUE), require("dplyr", character.only = TRUE, quietly = TRUE) ) if (require("CirceR", character.only = TRUE, quietly = TRUE)) { library(TreatmentPatterns) library(CDMConnector) library(dplyr) withr::local_envvar( R_USER_CACHE_DIR = tempfile(), EUNOMIA_DATA_FOLDER = Sys.getenv("EUNOMIA_DATA_FOLDER", unset = tempfile()) ) tryCatch({ if (Sys.getenv("skip_eunomia_download_test") != "TRUE") { CDMConnector::downloadEunomiaData(overwrite = TRUE) } }, error = function(e) NA) con <- DBI::dbConnect(duckdb::duckdb(), dbdir = eunomiaDir()) cdm <- cdmFromCon(con, cdmSchema = "main", writeSchema = "main") cohortSet <- readCohortSet( path = system.file(package = "TreatmentPatterns", "exampleCohorts") ) cdm <- generateCohortSet( cdm = cdm, cohortSet = cohortSet, name = "cohort_table" ) cohorts <- cohortSet %>% # Remove 'cohort' and 'json' columns select(-"cohort", -"json") %>% mutate(type = c("event", "event", "event", "event", "exit", "event", "event", "target")) %>% rename( cohortId = "cohort_definition_id", cohortName = "cohort_name", ) %>% select("cohortId", "cohortName", "type") executeTreatmentPatterns( cohorts = cohorts, cohortTableName = "cohort_table", cdm = cdm ) DBI::dbDisconnect(con, shutdown = TRUE) }
Export andromeda generated by computePathways object to sharable csv-files and/or a zip archive.
export( andromeda, outputPath = NULL, ageWindow = 10, minCellCount = 5, censorType = "minCellCount", archiveName = NULL, nonePaths = FALSE, stratify = FALSE )
export( andromeda, outputPath = NULL, ageWindow = 10, minCellCount = 5, censorType = "minCellCount", archiveName = NULL, nonePaths = FALSE, stratify = FALSE )
andromeda |
( |
outputPath |
( |
ageWindow |
( |
minCellCount |
( |
censorType |
(
|
archiveName |
( |
nonePaths |
( |
stratify |
( |
TreatmentPatternsResults
object
ableToRun <- all( require("CirceR", character.only = TRUE, quietly = TRUE), require("CDMConnector", character.only = TRUE, quietly = TRUE), require("TreatmentPatterns", character.only = TRUE, quietly = TRUE), require("dplyr", character.only = TRUE, quietly = TRUE) ) if (ableToRun) { library(TreatmentPatterns) library(CDMConnector) library(dplyr) withr::local_envvar( R_USER_CACHE_DIR = tempfile(), EUNOMIA_DATA_FOLDER = Sys.getenv("EUNOMIA_DATA_FOLDER", unset = tempfile()) ) tryCatch({ if (Sys.getenv("skip_eunomia_download_test") != "TRUE") { CDMConnector::downloadEunomiaData(overwrite = TRUE) } }, error = function(e) NA) con <- DBI::dbConnect(duckdb::duckdb(), dbdir = eunomiaDir()) cdm <- cdmFromCon(con, cdmSchema = "main", writeSchema = "main") cohortSet <- readCohortSet( path = system.file(package = "TreatmentPatterns", "exampleCohorts") ) cdm <- generateCohortSet( cdm = cdm, cohortSet = cohortSet, name = "cohort_table" ) cohorts <- cohortSet %>% # Remove 'cohort' and 'json' columns select(-"cohort", -"json") %>% mutate(type = c("event", "event", "event", "event", "exit", "event", "event", "target")) %>% rename( cohortId = "cohort_definition_id", cohortName = "cohort_name", ) %>% select("cohortId", "cohortName", "type") outputEnv <- computePathways( cohorts = cohorts, cohortTableName = "cohort_table", cdm = cdm ) results <- export( andromeda = outputEnv ) Andromeda::close(outputEnv) DBI::dbDisconnect(con, shutdown = TRUE) }
ableToRun <- all( require("CirceR", character.only = TRUE, quietly = TRUE), require("CDMConnector", character.only = TRUE, quietly = TRUE), require("TreatmentPatterns", character.only = TRUE, quietly = TRUE), require("dplyr", character.only = TRUE, quietly = TRUE) ) if (ableToRun) { library(TreatmentPatterns) library(CDMConnector) library(dplyr) withr::local_envvar( R_USER_CACHE_DIR = tempfile(), EUNOMIA_DATA_FOLDER = Sys.getenv("EUNOMIA_DATA_FOLDER", unset = tempfile()) ) tryCatch({ if (Sys.getenv("skip_eunomia_download_test") != "TRUE") { CDMConnector::downloadEunomiaData(overwrite = TRUE) } }, error = function(e) NA) con <- DBI::dbConnect(duckdb::duckdb(), dbdir = eunomiaDir()) cdm <- cdmFromCon(con, cdmSchema = "main", writeSchema = "main") cohortSet <- readCohortSet( path = system.file(package = "TreatmentPatterns", "exampleCohorts") ) cdm <- generateCohortSet( cdm = cdm, cohortSet = cohortSet, name = "cohort_table" ) cohorts <- cohortSet %>% # Remove 'cohort' and 'json' columns select(-"cohort", -"json") %>% mutate(type = c("event", "event", "event", "event", "exit", "event", "event", "target")) %>% rename( cohortId = "cohort_definition_id", cohortName = "cohort_name", ) %>% select("cohortId", "cohortName", "type") outputEnv <- computePathways( cohorts = cohorts, cohortTableName = "cohort_table", cdm = cdm ) results <- export( andromeda = outputEnv ) Andromeda::close(outputEnv) DBI::dbDisconnect(con, shutdown = TRUE) }
Gets the results data model specifications of TreatmentPatterns
.
getResultsDataModelSpecifications()
getResultsDataModelSpecifications()
data.frame
{ getResultsDataModelSpecifications() }
{ getResultsDataModelSpecifications() }
ggSunburst
ggSunburst(treatmentPathways, groupCombinations = FALSE, unit = "percent")
ggSunburst(treatmentPathways, groupCombinations = FALSE, unit = "percent")
treatmentPathways |
( |
groupCombinations |
(
|
unit |
( |
(gg
, ggplot
)
# Dummy data, typically read from treatmentPathways.csv treatmentPatwhays <- data.frame( pathway = c("Acetaminophen", "Acetaminophen-Amoxicillin+Clavulanate", "Acetaminophen-Aspirin", "Amoxicillin+Clavulanate", "Aspirin"), freq = c(206, 6, 14, 48, 221), sex = rep("all", 5), age = rep("all", 5), index_year = rep("all", 5) ) ggSunburst(treatmentPatwhays)
# Dummy data, typically read from treatmentPathways.csv treatmentPatwhays <- data.frame( pathway = c("Acetaminophen", "Acetaminophen-Amoxicillin+Clavulanate", "Acetaminophen-Aspirin", "Amoxicillin+Clavulanate", "Aspirin"), freq = c(206, 6, 14, 48, 221), sex = rep("all", 5), age = rep("all", 5), index_year = rep("all", 5) ) ggSunburst(treatmentPatwhays)
plotEventDuration
plotEventDuration( eventDurations, minCellCount = 0, treatmentGroups = "both", eventLines = NULL, includeOverall = TRUE )
plotEventDuration( eventDurations, minCellCount = 0, treatmentGroups = "both", eventLines = NULL, includeOverall = TRUE )
eventDurations |
( |
minCellCount |
( |
treatmentGroups |
( |
eventLines |
( |
includeOverall |
( |
ggplot
ableToRun <- all( require("CirceR", character.only = TRUE, quietly = TRUE), require("CDMConnector", character.only = TRUE, quietly = TRUE), require("TreatmentPatterns", character.only = TRUE, quietly = TRUE), require("dplyr", character.only = TRUE, quietly = TRUE) ) if (ableToRun) { withr::local_envvar( R_USER_CACHE_DIR = tempfile(), EUNOMIA_DATA_FOLDER = Sys.getenv("EUNOMIA_DATA_FOLDER", unset = tempfile()) ) tryCatch({ if (Sys.getenv("skip_eunomia_download_test") != "TRUE") { CDMConnector::downloadEunomiaData(overwrite = TRUE) } }, error = function(e) NA) con <- DBI::dbConnect(duckdb::duckdb(), dbdir = eunomiaDir()) cdm <- cdmFromCon(con, cdmSchema = "main", writeSchema = "main") cohortSet <- readCohortSet( path = system.file(package = "TreatmentPatterns", "exampleCohorts") ) cdm <- generateCohortSet( cdm = cdm, cohortSet = cohortSet, name = "cohort_table" ) cohorts <- cohortSet %>% # Remove 'cohort' and 'json' columns select(-"cohort", -"json") %>% mutate(type = c("event", "event", "event", "event", "exit", "event", "event", "target")) %>% rename( cohortId = "cohort_definition_id", cohortName = "cohort_name", ) %>% select("cohortId", "cohortName", "type") outputEnv <- computePathways( cohorts = cohorts, cohortTableName = "cohort_table", cdm = cdm ) results <- export(outputEnv) plotEventDuration( eventDurations = results$summary_event_duration, minCellCount = 5, treatmentGroups = "group", eventLines = 1:4, includeOverall = FALSE ) Andromeda::close(outputEnv) DBI::dbDisconnect(con, shutdown = TRUE) }
ableToRun <- all( require("CirceR", character.only = TRUE, quietly = TRUE), require("CDMConnector", character.only = TRUE, quietly = TRUE), require("TreatmentPatterns", character.only = TRUE, quietly = TRUE), require("dplyr", character.only = TRUE, quietly = TRUE) ) if (ableToRun) { withr::local_envvar( R_USER_CACHE_DIR = tempfile(), EUNOMIA_DATA_FOLDER = Sys.getenv("EUNOMIA_DATA_FOLDER", unset = tempfile()) ) tryCatch({ if (Sys.getenv("skip_eunomia_download_test") != "TRUE") { CDMConnector::downloadEunomiaData(overwrite = TRUE) } }, error = function(e) NA) con <- DBI::dbConnect(duckdb::duckdb(), dbdir = eunomiaDir()) cdm <- cdmFromCon(con, cdmSchema = "main", writeSchema = "main") cohortSet <- readCohortSet( path = system.file(package = "TreatmentPatterns", "exampleCohorts") ) cdm <- generateCohortSet( cdm = cdm, cohortSet = cohortSet, name = "cohort_table" ) cohorts <- cohortSet %>% # Remove 'cohort' and 'json' columns select(-"cohort", -"json") %>% mutate(type = c("event", "event", "event", "event", "exit", "event", "event", "target")) %>% rename( cohortId = "cohort_definition_id", cohortName = "cohort_name", ) %>% select("cohortId", "cohortName", "type") outputEnv <- computePathways( cohorts = cohorts, cohortTableName = "cohort_table", cdm = cdm ) results <- export(outputEnv) plotEventDuration( eventDurations = results$summary_event_duration, minCellCount = 5, treatmentGroups = "group", eventLines = 1:4, includeOverall = FALSE ) Andromeda::close(outputEnv) DBI::dbDisconnect(con, shutdown = TRUE) }
Houses the results of a TreatmentPatterns
analysis. Each field corresponds
to a file. Plotting methods are provided.
attrition
(data.frame
)
metadata
(data.frame
)
treatment_pathways
(data.frame
)
summary_event_duration
(data.frame
)
counts_age
(data.frame
)
counts_sex
(data.frame
)
counts_year
(data.frame
)
cdm_source_info
(data.frame
)
analyses
(data.frame
)
arguments
(list
)
new()
Initializer method
TreatmentPatternsResults$new( attrition = NULL, metadata = NULL, treatmentPathways = NULL, summaryEventDuration = NULL, countsAge = NULL, countsSex = NULL, countsYear = NULL, cdmSourceInfo = NULL, analyses = NULL, arguments = NULL, filePath = NULL )
attrition
(data.frame
) attrition result.
metadata
(data.frame)
) metadata result.
treatmentPathways
(data.frame)
) treatmentPathways result.
summaryEventDuration
(data.frame)
) summaryEventDuration result.
countsAge
(data.frame)
) countsAge result.
countsSex
(data.frame)
) countsSex result.
countsYear
(data.frame)
) countsYear result.
cdmSourceInfo
(data.frame
) cdmSourceInfo result.
analyses
(data.frame
) Analyses result.
arguments
(list
) Named list of arguments used.
filePath
(character
) File path to either a directory or zip-file, containing the csv-files.
saveAsZip()
Save the results as a zip-file.
TreatmentPatternsResults$saveAsZip(path, name, verbose = TRUE)
path
(character(1)
) Path to write to.
name
(character(1)
) File name.
verbose
(logical
: TRUE
) Verbose messaging.
self
saveAsCsv()
Save the results as csv-files.
TreatmentPatternsResults$saveAsCsv(path, verbose = TRUE)
path
(character(1)
) Path to write to.
verbose
(logical
: TRUE
) Verbose messaging.
self
uploadResultsToDb()
Upload results to a resultsDatabase using ResultModelManager
.
TreatmentPatternsResults$uploadResultsToDb( connectionDetails, schema, prefix = "tp_", overwrite = TRUE, purgeSiteDataBeforeUploading = FALSE )
connectionDetails
(ConnectionDetails
) ConnectionDetails object from DatabaseConnector
.
schema
(character(1)
) Schema to write tables to.
prefix
(character(1)
: "tp_"
) Table prefix.
overwrite
(logical(1)
: TRUE
) Should tables be overwritten?
purgeSiteDataBeforeUploading
(logical
: FALSE
) Should site data be purged before uploading?
self
load()
Load data from files.
TreatmentPatternsResults$load(filePath)
filePath
(character(1)
) Path to a directory or zip-file containing the result csv-files.
self
plotSunburst()
Wrapper for TreatmentPatterns::createSunburstPlot()
, but with data filtering step.
TreatmentPatternsResults$plotSunburst( age = "all", sex = "all", indexYear = "all", nonePaths = FALSE, ... )
age
(character(1)
) Age group.
sex
(character(1)
) Sex group.
indexYear
(character(1)
) Index year group.
nonePaths
(logical(1)
) Should None
paths be included?
...
Parameters for TreatmentPatterns::createSunburstPlot()
htmlwidget
plotSankey()
Wrapper for TreatmentPatterns::createSankeyDiagram()
, but with data filtering step.
TreatmentPatternsResults$plotSankey( age = "all", sex = "all", indexYear = "all", nonePaths = FALSE, ... )
age
(character(1)
) Age group.
sex
(character(1)
) Sex group.
indexYear
(character(1)
) Index year group.
nonePaths
(logical(1)
) Should None
paths be included?
...
Parameters for TreatmentPatterns::createSankeyDiagram()
htmlwidget
plotEventDuration()
Wrapper for TreatmentPatterns::plotEventDuration()
.
TreatmentPatternsResults$plotEventDuration(...)
...
Parameters for TreatmentPatterns::plotEventDuration()
ggplot
clone()
The objects of this class are cloneable with this method.
TreatmentPatternsResults$clone(deep = FALSE)
deep
Whether to make a deep clone.