
Package: TSCS (via r-universe)
September 14, 2024

Version 0.1.1

Title Time Series Cointegrated System

Maintainer Tianjian Yang <yangtj5@mail2.sysu.edu.cn>

Description A set of functions to implement Time Series Cointegrated
System (TSCS) spatial interpolation and relevant data
visualization.

Depends R (>= 3.4.2)

Imports stats, ggplot2 (>= 2.2.1), tseries (>= 0.10-42), rgl (>=
0.98.1), grDevices

License GPL (>= 2.0)

RoxygenNote 6.0.1

Encoding UTF-8

LazyData true

Suggests knitr, rmarkdown, R.rsp

VignetteBuilder knitr, R.rsp

NeedsCompilation no

Author Tianjian Yang [aut, cre]

Repository CRAN

Date/Publication 2017-10-02 11:19:48 UTC

Contents
appraisal_index . 2
plot3D_dif . 3
plot3D_map . 4
plot3D_NA . 6
plot_compare . 7
plot_dif . 9
plot_map . 10
plot_NA . 11
TSCS . 13

1

2 appraisal_index

tscsEstimate . 14
tscsEstimate3D . 15
tscsRegression . 17
tscsRegression3D . 18

Index 21

appraisal_index Compute Appraisal Index of Interpolation/Prediction Result

Description

Two appraisal indexes used for evaluating the result of interpolation/prediction - RMSE and stan-
dard deviation of error.

Usage

appraisal_index(est, true)

Arguments

est a numeric vector; estimations.

true a numeric vector; true values.

Details

• The first appraisal index is RMSE, abbr. of root-mean-square error. It is used for measuring the
differences between estimated values by a method and the values actually observed. Smaller
RMSE means more accurate interpolation/prediction.

• The second appraisal index is standard deviation of error, which is used for measuring how
far the errors are spread out from their mean, namely, stability of errors. Smaller value means
greater stability of errors, suggesting that errors would not fluctuate heavily due to difference
of data.

Value

A list of 2 is returned, including:

RMSE numeric; RMSE.

std numeric; standard deviation of error.

See Also

plot_compare

plot3D_dif 3

Examples

Not run:

TSCS spatial interpolation procedure:

basis <- tscsRegression(data = data, h = 1, v = 1, alpha = 0.01); # regression
basis$percentage # see the percentage of cointegrated relationships
est <- tscsEstimate(matrix = basis$coef_matrix, newdata = newdata, h = 1, v = 1); # estimation
str(est)

comparison of estimates and true values:

plot_compare(est = est$estimate[,3], true = true) # graphic comparison
index <- appraisal_index(est = est$estimate[,3], true = true); # RMSE & std
index

data visualization:

plot_dif(data = data[,1:2], h = 1, v = 1) # differentiate boundary and interior spatial locations
plot_NA(newdata = newdata) # show spatial locations with missing value, for a cross-section data
plot_map(newdata = newdata) # plot the 2D spatial map, for a cross-section data

End(Not run)

plot3D_dif Plot Interior Spatial Locations and System Boundary - 3D Map

Description

plot3D_dif differentiates boundary and interior spatial locations in a spatial domain (a collection
of spatial locations with their coordinates). Since TSCS method is only capable of interpolation but
not extrapolation, it is necessary to highlight the difference between interior spatial locations and
system boundary.

Usage

plot3D_dif(coords, h1, h2, v, xlab = NULL, ylab = NULL, zlab = NULL,
title = NULL, cex = 3)

Arguments

coords data frame; should only contain the three variables: X coordinate, Y coordinate
and Z coordinate. Each row uniquely denotes a spatial location. (coordinates
must be numeric)

h1 numeric; side length of the unit cubic grid in X coordinate direction (horizontal).

h2 numeric; side length of the unit cubic grid in Y coordinate direction (horizontal).

v numeric; side length of the unit cubic grid in Z coordinate direction (vertical).

4 plot3D_map

xlab a label for the x axis, defaults to the name of X coordinate.
ylab a label for the y axis, defaults to the name of Y coordinate.
zlab a label for the z axis, defaults to the name of Z coordinate.
title a main title for the plot.
cex numeric; size of point to be plotted for each spatial location. (default: 3)

Details

• The resulting plot is interactive, where the red points are interior spatial locations while the
black points denote system boundary.

• plot3D_dif is exclusive to 3D rectangular grid system. Similarly, if you want to fathom how
this package handles 2D rectangular grid system, please refer to plot_dif.

See Also

plot_dif, plot3D_NA, plot3D_map

Examples

Not run:

TSCS spatial interpolation procedure:

basis <- tscsRegression3D(data = data, h1 = 3.75, h2 = 2.5, v = 5, alpha = 0.01);
basis$percentage
est <- tscsEstimate3D(matrix = basis$coef_matrix, newdata = newdata, h1 = 3.75, h2 = 2.5, v = 5);
str(est)

comparison of estimates and true values:

plot_compare(est = est$estimate[,4], true = true)
index <- appraisal_index(est = est$estimate[,4], true = true);
index

data visualization:

plot3D_dif(data = data[,1:3], h1 = 3.75, h2 = 2.5, v = 5)
plot3D_NA(newdata = newdata)
plot3D_map(newdata = newdata)

End(Not run)

plot3D_map Visualize Spatial(Cross-Section) Data of a Given Time Point - 3D Map

Description

plot_map draws a three-dimensional spatial map. It is plotted based on the cross-section data of a
given time point, which is also often extracted from spatio-temporal data.

plot3D_map 5

Usage

plot3D_map(newdata, xlab = NULL, ylab = NULL, zlab = NULL, title = NULL,
cex = 9, colorNA = "white")

Arguments

newdata data frame; should only contain the four variables in order: X coordinate, Y
coordinate, Z coordinate and observation. This is the cross-section data or pure
spatial data of a particular time point you have selected, with missing observa-
tions that you want to predict. (coordinates must be numeric)

xlab a label for the x axis, defaults to the name of X coordinate.

ylab a label for the y axis, defaults to the name of Y coordinate.

zlab a label for the z axis, defaults to the name of Z coordinate.

title a main title for the plot.

cex numeric; size of plotting point for each spatial locations. (default: 9)

colorNA colour for missing values/observations. (default: "white")

Details

• The resulting plot is interactive.

• plot3D_map is exclusive to 3D rectangular grid system. Similarly, if you want to fathom how
this package handles 2D rectangular grid system, please refer to plot_map.

See Also

plot_map, plot3D_NA, plot3D_dif

Examples

Not run:

TSCS spatial interpolation procedure:

basis <- tscsRegression3D(data = data, h1 = 3.75, h2 = 2.5, v = 5, alpha = 0.01);
basis$percentage
est <- tscsEstimate3D(matrix = basis$coef_matrix, newdata = newdata, h1 = 3.75, h2 = 2.5, v = 5);
str(est)

comparison of estimates and true values:

plot_compare(est = est$estimate[,4], true = true)
index <- appraisal_index(est = est$estimate[,4], true = true);
index

data visualization:

plot3D_dif(data = data[,1:3], h1 = 3.75, h2 = 2.5, v = 5)
plot3D_NA(newdata = newdata)

6 plot3D_NA

plot3D_map(newdata = newdata)

End(Not run)

plot3D_NA Visualize the Spatial Distribution of Missing Observations - 3D Map

Description

plot3D_NA shows spatial locations with or without missing observation. It is plotted based on the
cross-section data of a given time point, which is also often extracted from spatio-temporal data.

Usage

plot3D_NA(newdata, xlab = NULL, ylab = NULL, zlab = NULL, title = NULL,
cex = 3, color = "orange", colorNA = "blue")

Arguments

newdata data frame; should only contain the four variables in order: X coordinate, Y
coordinate, Z coordinate and observation. This is the cross-section data or pure
spatial data of a particular time point you have selected, with missing observa-
tions that you want to predict. (coordinates must be numeric)

xlab a label for the x axis, defaults to the name of X coordinate.

ylab a label for the y axis, defaults to the name of Y coordinate.

zlab a label for the z axis, defaults to the name of Z coordinate.

title a main title for the plot.

cex numeric; size of plotting point for each spatial location. (default: 3)

color colour to be used to fill the spatial locations. (default: "orange")

colorNA colour for denoting missing values/observations. (default: "blue")

Details

• The resulting plot is interactive.

• plot3D_NA is exclusive to 3D rectangular grid system. Similarly, if you want to fathom how
this package handles 2D rectangular grid system, please refer to plot_NA.

See Also

plot_NA, plot3D_map, plot3D_dif

plot_compare 7

Examples

Not run:

TSCS spatial interpolation procedure:

basis <- tscsRegression3D(data = data, h1 = 3.75, h2 = 2.5, v = 5, alpha = 0.01);
basis$percentage
est <- tscsEstimate3D(matrix = basis$coef_matrix, newdata = newdata, h1 = 3.75, h2 = 2.5, v = 5);
str(est)

comparison of estimates and true values:

plot_compare(est = est$estimate[,4], true = true)
index <- appraisal_index(est = est$estimate[,4], true = true);
index

data visualization:

plot3D_dif(data = data[,1:3], h1 = 3.75, h2 = 2.5, v = 5)
plot3D_NA(newdata = newdata)
plot3D_map(newdata = newdata)

End(Not run)

plot_compare Graphic Comparison Between Estimates and True Values

Description

Provided that you have the true values of missing observations, you can compare them with the
results of interpolation. plot_compare visualizes the comparison between estimates and true val-
ues. (NB: this plotting function can also be used in other similar situations involving comparison
between estimates and true values.)

Usage

plot_compare(est, true, cex = 1, width = 1, P = 6/7, AI = TRUE)

Arguments

est a numeric vector; estimations.

true a numeric vector; true values.

cex numeric; size of point to be plotted. (default: 1)

width numeric; width of fitted straight line. (default: 1)

P numeric, between 0 and 1; position for superimposing values of appraisal in-
dexes. (default: 6/7)

AI logical; TRUE for presenting appraisal indexes while FALSE for not. (default:
TRUE)

8 plot_compare

Details

Attentions:

• The values in est and true vectors should be arranged in the same order, in correspondence
with the sequence of observations.

• If the maximum value of either est or true is greater than 1000, or the minimum is smaller
than -1000, please make appropriate transformation that limits your data to bound [-1000,1000].

In the plot:

• The big red point is the origin.

• The red line stands for straight line y = x.

• The blue line stands for fitted straight line.

See Also

appraisal_index

Examples

Not run:

TSCS spatial interpolation procedure:

basis <- tscsRegression(data = data, h = 1, v = 1, alpha = 0.01) # regression
basis$percentage # see the percentage of cointegrated relationships
est <- tscsEstimate(matrix = basis$coef_matrix, newdata = newdata, h = 1, v = 1) # estimation
str(est)

comparison of estimates and true values:

plot_compare(est = est$estimate[,3], true = true) # graphic comparison
index <- appraisal_index(est = est$estimate[,3], true = true); # RMSE & std
index

data visualization:

plot_dif(data = data[,1:2], h = 1, v = 1) # differentiate boundary and interior spatial locations
plot_NA(newdata = newdata) # show spatial locations with missing value, for a cross-section data
plot_map(newdata = newdata) # plot the 2D spatial map, for a cross-section data

End(Not run)

plot_dif 9

plot_dif Plot Interior Spatial Locations and System Boundary - 2D Map

Description

plot_dif differentiates boundary and interior spatial locations in a spatial domain (a collection of
spatial locations with their coordinates). Since TSCS method is only capable of interpolation but
not extrapolation, it is necessary to highlight the difference between interior spatial locations and
system boundary.

Usage

plot_dif(coords, h, v, xlab = NULL, ylab = NULL, title = NULL, cex = 1)

Arguments

coords data frame; should only contain the two variables: X coordinate and Y coor-
dinate. Each row uniquely denotes a spatial location. (coordinates must be
numeric)

h numeric; side length of the unit grid in X coordinate direction.

v numeric; side length of the unit grid in Y coordinate direction.

xlab a label for the x axis, defaults to the name of X coordinate.

ylab a label for the y axis, defaults to the name of Y coordinate.

title a main title for the plot.

cex numeric; size of plotting point for each spatial location. (default: 1)

Details

plot_dif is exclusive to 2D rectangular grid system. Similarly, if you want to fathom how this
package handles 3D rectangular grid system, please refer to plot3D_dif.

See Also

plot3D_dif, plot_NA, plot_map

Examples

Not run:

TSCS spatial interpolation procedure:

basis <- tscsRegression(data = data, h = 1, v = 1, alpha = 0.01); # regression
basis$percentage # see the percentage of cointegrated relationships
est <- tscsEstimate(matrix = basis$coef_matrix, newdata = newdata, h = 1, v = 1); # estimation
str(est)

10 plot_map

comparison of estimates and true values:

plot_compare(est = est$estimate[,3], true = true) # graphic comparison
index <- appraisal_index(est = est$estimate[,3], true = true); # RMSE & std
index

data visualization:

plot_dif(data = data[,1:2], h = 1, v = 1) # differentiate boundary and interior spatial locations
plot_NA(newdata = newdata) # show spatial locations with missing value, for a cross-section data
plot_map(newdata = newdata) # plot the 2D spatial map, for a cross-section data

End(Not run)

plot_map Visualize Spatial(Cross-Section) Data of a Given Time Point - 2D Map

Description

plot_map draws a two-dimensional spatial map. It is plotted based on the cross-section data of a
given time point, which is also often extracted from spatio-temporal data.

Usage

plot_map(newdata, xlab = NULL, ylab = NULL, title = NULL, cex = 2,
shape = 15, low = "blue", mid = "yellow", high = "red",
na.value = "white", midpoint = NULL)

Arguments

newdata data frame; should only contain the three variables in order: X coordinate, Y
coordinate and observation. This is the cross-section data or pure spatial data
of a particular time point you have selected, with missing observations that you
want to predict. (coordinates must be numeric)

xlab a label for the x axis, defaults to the name of X coordinate.

ylab a label for the y axis, defaults to the name of Y coordinate.

title a main title for the plot.

cex numeric; size of plotting point for each spatial locations. (default: 2)

shape either an integer specifying a symbol or a single character to be used as the
default in plotting points. (default: 15)

low, high colours for low and high ends of the gradient. (default: "blue","red")

mid colour for midpoint of the gradient. (default: "yellow")

na.value colour for missing values/observations. (default: "white")

midpoint numeric; the midpoint of the gradient scale, defaults to the midpoint value of
index presented.

plot_NA 11

Details

plot_map is exclusive to 2D rectangular grid system. Similarly, if you want to fathom how this
package handles 3D rectangular grid system, please refer to plot3D_map.

See Also

plot3D_map, plot_NA, plot_dif

Examples

Not run:

TSCS spatial interpolation procedure:

basis <- tscsRegression(data = data, h = 1, v = 1, alpha = 0.01); # regression
basis$percentage # see the percentage of cointegrated relationships
est <- tscsEstimate(matrix = basis$coef_matrix, newdata = newdata, h = 1, v = 1); # estimation
str(est)

comparison of estimates and true values:

plot_compare(est = est$estimate[,3], true = true) # graphic comparison
index <- appraisal_index(est = est$estimate[,3], true = true); # RMSE & std
index

data visualization:

plot_dif(data = data[,1:2], h = 1, v = 1) # differentiate boundary and interior spatial locations
plot_NA(newdata = newdata) # show spatial locations with missing value, for a cross-section data
plot_map(newdata = newdata) # plot the 2D spatial map, for a cross-section data

End(Not run)

plot_NA Visualize the Spatial Distribution of Missing Observations - 2D Map

Description

plot_NA shows spatial locations with or without missing observation. It is plotted based on the
cross-section data of a given time point, which is also often extracted from spatio-temporal data.

Usage

plot_NA(newdata, xlab = NULL, ylab = NULL, title = NULL, cex = 1)

12 plot_NA

Arguments

newdata data frame; should only contain the three variables in order: X coordinate, Y
coordinate and observation. This is the cross-section data or pure spatial data
of a particular time point you have selected, with missing observations that you
want to predict. (coordinates must be numeric)

xlab a label for the x axis, defaults to the name of X coordinate.

ylab a label for the y axis, defaults to the name of Y coordinate.

title a main title for the plot.

cex numeric; size of plotting point for each spatial location. (default: 1)

Details

plot_NA is exclusive to 2D rectangular grid system. Similarly, if you want to fathom how this
package handles 3D rectangular grid system, please refer to plot3D_NA.

See Also

plot3D_NA, plot_map, plot_dif

Examples

Not run:

TSCS spatial interpolation procedure:

basis <- tscsRegression(data = data, h = 1, v = 1, alpha = 0.01); # regression
basis$percentage # see the percentage of cointegrated relationships
est <- tscsEstimate(matrix = basis$coef_matrix, newdata = newdata, h = 1, v = 1); # estimation
str(est)

comparison of estimates and true values:

plot_compare(est = est$estimate[,3], true = true) # graphic comparison
index <- appraisal_index(est = est$estimate[,3], true = true); # RMSE & std
index

data visualization:

plot_dif(data = data[,1:2], h = 1, v = 1) # differentiate boundary and interior spatial locations
plot_NA(newdata = newdata) # show spatial locations with missing value, for a cross-section data
plot_map(newdata = newdata) # plot the 2D spatial map, for a cross-section data

End(Not run)

TSCS 13

TSCS A Package for TSCS Spatial Interpolation Method

Description

This package provides functions to implement TSCS spatial interpolation and relevant data visu-
alization. For TSCS method, the current version is only able to make use of spatio-temporal data
whose spatial domain is a 2D or 3D rectangular grid system.

Details

1. TSCS (abbr. of Time Series Cointegrated System) method is a spatial interpolation method
based on analysis of historical spatio-temporal data. It can be regarded as a desirable alter-
native to spatio-temporal interpolation in some cases where we merely intend to interpolate a
series of cross-section data at each observed time point for a given spatial domain.

2. The basic assumption of TSCS method is that, for any spatial location within the spatial do-
main of spatio-temporal data, its time series and the time series of its adjacent spatial locations
are cointegrated (long-term equilibrium relationships).

3. As to TSCS method, package of the current version is only able to make use of spatio-temporal
data whose spatial domain is a 2D or 3D rectangular grid system.

Package Functions

• tscsRegression, tscsRegression3D : obtains regression coefficient matrix, the first step of
TSCS for 2D and 3D rectangular grid system respectively.

• tscsEstimate, tscsEstimate3D : estimates the missing observations within a cross-section
data (pure spatial data) of a particular time point you have selected, the second step of TSCS
for 2D and 3D rectangular grid system respectively.

• plot_dif, plot3D_dif : differentiates boundary and interior spatial locations in a spatial
domain.

• plot_NA, plot3D_NA : shows spatial locations with or without missing observation in a spatial
domain.

• plot_map, plot3D_map : draws the spatial map for a cross-section data.

• plot_compare : visualizes the comparison between estimates and true values (if you have).

• appraisal_index : computes the two appraisal indexes used for evaluating the result of
interpolation/prediction - RMSE and standard deviation of error. (if you have the true values)

Author(s)

Tianjian Yang <yangtj5@mail2.sysu.edu.cn>

14 tscsEstimate

tscsEstimate The Second Step of TSCS for 2D Rectangular Grid System - Estimation

Description

tscsEstimate estimates the missing observations within the cross-section data (pure spatial data)
of a particular time point you have selected, namely, the interpolation process.

Usage

tscsEstimate(matrix, newdata, h, v)

Arguments

matrix data frame; the first return value coef_matrix of function tscsRegression in
the first step of TSCS.

newdata data frame; should only contain the three variables in order: X coordinate, Y
coordinate and observation. This is the cross-section data or pure spatial data
of a particular time point you have selected, with missing observations that you
want to predict. (coordinates must be numeric)

h numeric; side length of the unit grid in X coordinate direction.
v numeric; side length of the unit grid in Y coordinate direction.

Details

• The first step of TSCS spatial interpolation should be carried out by function tscsRegression,
which is the prerequisite of tscsEstimate.

• For 3D rectangular grid system, the procedure of TSCS stays the same. Please see tscsRegression3D
and tscsEstimate3D.

• Attentions: Since TSCS is only capable of interpolation but not extrapolation, please make
sure that the missing observations in a given spatial domain are all located at interior spatial
locations. Otherwise, extrapolation would occur with an error following.

Value

A list of 3 is returned, including:

estimate data frame; estimate of missing observations which contains the 3 variables in order: X
coordinate, Y coordinate and estimation.

complete data frame; an updated version of the cross-section data (pure spatial data) newdata,
with all of its missing observations interpolated.

NA_id an integer vector; reveals the instance ID, in data frame newdata, of spatial locations with
missing observation.

See Also

tscsRegression, tscsEstimate3D, plot_NA, plot_map

tscsEstimate3D 15

Examples

Not run:

TSCS spatial interpolation procedure:

basis <- tscsRegression(data = data, h = 1, v = 1, alpha = 0.01); # regression
basis$percentage # see the percentage of cointegrated relationships
est <- tscsEstimate(matrix = basis$coef_matrix, newdata = newdata, h = 1, v = 1); # estimation
str(est)

comparison of estimates and true values:

plot_compare(est = est$estimate[,3], true = true) # graphic comparison
index <- appraisal_index(est = est$estimate[,3], true = true); # RMSE & std
index

data visualization:

plot_dif(data = data[,1:2], h = 1, v = 1) # differentiate boundary and interior spatial locations
plot_NA(newdata = newdata) # show spatial locations with missing value, for a cross-section data
plot_map(newdata = newdata) # plot the 2D spatial map, for a cross-section data

End(Not run)

tscsEstimate3D The Second Step of TSCS for 3D Rectangular Grid System - Estimation

Description

tscsEstimate estimates the missing observations within the cross-section data (pure spatial data)
of a particular time point you have selected, namely, the interpolation process.

Usage

tscsEstimate3D(matrix, newdata, h1, h2, v)

Arguments

matrix data frame; the first return value coef_matrix of function tscsRegression3D
in the first step of TSCS.

newdata data frame; should only contain the four variables in order: X coordinate, Y
coordinate, Z coordinate and observation. This is the cross-section data or pure
spatial data of a particular time point you have selected, with missing observa-
tions that you want to predict. (coordinates must be numeric)

h1 numeric; side length of the unit cubic grid in X coordinate direction (horizontal).

h2 numeric; side length of the unit cubic grid in Y coordinate direction (horizontal).

v numeric; side length of the unit cubic grid in Z coordinate direction (vertical).

16 tscsEstimate3D

Details

• The first step of TSCS spatial interpolation should be carried out by function tscsRegression3D,
which is the prerequisite of tscsEstimate3D.

• For 2D rectangular grid system, the procedure of TSCS stays the same. Please see tscsRegression
and tscsEstimate.

• Attentions: Since TSCS is only capable of interpolation but not extrapolation, please make
sure that the missing observations in a given spatial domain are all located at interior spatial
locations. Otherwise, extrapolation would occur with an error following.

Value

A list of 3 is returned, including:

estimate data frame; estimate of missing observations which contains the 4 variables in order: X
coordinate, Y coordinate, Z coordinate and estimation.

complete data frame; an updated version of the cross-section data (pure spatial data) newdata,
with all of its missing observations interpolated.

NA_id an integer vector; reveals the instance ID, in data frame newdata, of spatial locations with
missing observation.

See Also

tscsRegression3D, tscsEstimate, plot3D_NA, plot3D_map

Examples

Not run:

TSCS spatial interpolation procedure:

basis <- tscsRegression3D(data = data, h1 = 3.75, h2 = 2.5, v = 5, alpha = 0.01);
basis$percentage
est <- tscsEstimate3D(matrix = basis$coef_matrix, newdata = newdata, h1 = 3.75, h2 = 2.5, v = 5);
str(est)

comparison of estimates and true values:

plot_compare(est = est$estimate[,4], true = true)
index <- appraisal_index(est = est$estimate[,4], true = true);
index

data visualization:

plot3D_dif(data = data[,1:3], h1 = 3.75, h2 = 2.5, v = 5)
plot3D_NA(newdata = newdata)
plot3D_map(newdata = newdata)

End(Not run)

tscsRegression 17

tscsRegression The First Step of TSCS for 2D Rectangular Grid System - Regression

Description

To implement TSCS spatial interpolation for a spatial domain that is a 2D rectangular grid system,
the first step is obtaining regression coefficient matrix, which can be done by function tscsRegression.
It is the prerequisite of TSCS interpolation process because the ’matrix’ derived from historical
spatio-temporal data is the initial value of the second step - estimating missing observations.

Usage

tscsRegression(data, h, v, alpha = 0.05)

Arguments

data data frame; should contain these variables in order: X coordinate, Y coordinate
and observations as time goes on. That is to say, each row should include X
and Y coordinate first, and then a time series. This is the historical spatio-
temporal data that you intend to analyze as the basis for interpolation later on in
tscsEstimate.

h numeric; side length of the unit grid in X coordinate direction.
v numeric; side length of the unit grid in Y coordinate direction.
alpha numeric; specify the significance level for ADF test, to test if the time series of

a group of spatial locations are cointegrated. (default: 0.05)

Details

• The second step of TSCS spatial interpolation should be carried out by function tscsEstimate,
where you have to input the cross-section data or pure spatial data of a particular time point
you have selected, with missing observations that you want to predict.

• For 3D rectangular grid system, the procedure of TSCS stays the same. Please see tscsRegression3D
and tscsEstimate3D.

• Attentions: (1) Since TSCS is only capable of interpolation but not extrapolation, it is neces-
sary to highlight the difference between interior spatial locations and system boundary. Func-
tion plot_dif can help. (2) NA value in historical spatio-temporal data data is not allowed.
Please handle them beforehand (such as filling these NA values through spatio-temporal krig-
ing).

Value

A list of 2 is returned, including:

coef_matrix data frame; regression coefficient matrix to be used as input parameter of function
tscsEstimate in the second step of TSCS interpolation.

percentage numeric; percentage of cointegrated relationships, a measurement of the degree it
satisfies the assumption of cointegrated system. It is highly affected by parameter alpha, the
significance level you have set. Explicitly, smaller alpha results in smaller percentage.

18 tscsRegression3D

See Also

tscsEstimate, tscsRegression3D, plot_dif

Examples

Not run:

TSCS spatial interpolation procedure:

basis <- tscsRegression(data = data, h = 1, v = 1, alpha = 0.01); # regression
basis$percentage # see the percentage of cointegrated relationships
est <- tscsEstimate(matrix = basis$coef_matrix, newdata = newdata, h = 1, v = 1); # estimation
str(est)

comparison of estimates and true values:

plot_compare(est = est$estimate[,3], true = true) # graphic comparison
index <- appraisal_index(est = est$estimate[,3], true = true); # RMSE & std
index

data visualization:

plot_dif(data = data[,1:2], h = 1, v = 1) # differentiate boundary and interior spatial locations
plot_NA(newdata = newdata) # show spatial locations with missing value, for a cross-section data
plot_map(newdata = newdata) # plot the 2D spatial map, for a cross-section data

End(Not run)

tscsRegression3D The First Step of TSCS for 3D Rectangular Grid System - Regression

Description

To implement TSCS spatial interpolation for a spatial domain that is a 3D rectangular grid system,
the first step is obtaining regression coefficient matrix, which can be done by function tscsRegression3D.
It is the prerequisite of TSCS interpolation process because the ’matrix’ derived from historical
spatio-temporal data is the initial value of the second step - estimating missing observations.

Usage

tscsRegression3D(data, h1, h2, v, alpha = 0.05)

Arguments

data data frame; should contain these variables in order: X coordinate, Y coordinate,
Z coordinate and observations as time goes on. That is to say, each row should
include X, Y and Z coordinate first, and then a time series. This is the historical
spatio-temporal data that you intend to analyze as the basis for interpolation later
on in tscsEstimate3D.

tscsRegression3D 19

h1 numeric; side length of the unit cubic grid in X coordinate direction (horizontal).

h2 numeric; side length of the unit cubic grid in Y coordinate direction (horizontal).

v numeric; side length of the unit cubic grid in Z coordinate direction (vertical).

alpha numeric; specify the significance level for ADF test, to test if the time series of
a group of spatial locations are cointegrated. (default: 0.05)

Details

• The second step of TSCS spatial interpolation should be carried out by function tscsEstimate3D,
where you have to input the cross-section data or pure spatial data of a particular time point
you have selected, with missing observations that you want to predict.

• For 2D rectangular grid system, the procedure of TSCS stays the same. Please see tscsRegression
and tscsEstimate.

• Attentions: (1) Since TSCS is only capable of interpolation but not extrapolation, it is neces-
sary to highlight the difference between interior spatial locations and system boundary. Func-
tion plot3D_dif can help. (2) NA value in historical spatio-temporal data data is not allowed.
Please handle them beforehand (such as filling these NA values through spatio-temporal krig-
ing).

Value

A list of 2 is returned, including:

coef_matrix data frame; regression coefficient matrix to be used as input parameter of function
tscsEstimate in the second step of TSCS interpolation.

percentage numeric; percentage of cointegrated relationships, a measurement of the degree it
satisfies the assumption of cointegrated system. It is highly affected by parameter alpha, the
significance level you have set. Explicitly, smaller alpha results in smaller percentage.

See Also

tscsEstimate3D, tscsRegression, plot3D_dif

Examples

Not run:

TSCS spatial interpolation procedure:

basis <- tscsRegression3D(data = data, h1 = 3.75, h2 = 2.5, v = 5, alpha = 0.01);
basis$percentage
est <- tscsEstimate3D(matrix = basis$coef_matrix, newdata = newdata, h1 = 3.75, h2 = 2.5, v = 5);
str(est)

comparison of estimates and true values:

plot_compare(est = est$estimate[,4], true = true)
index <- appraisal_index(est = est$estimate[,4], true = true);
index

20 tscsRegression3D

data visualization:

plot3D_dif(data = data[,1:3], h1 = 3.75, h2 = 2.5, v = 5)
plot3D_NA(newdata = newdata)
plot3D_map(newdata = newdata)

End(Not run)

Index

appraisal_index, 2, 8

plot3D_dif, 3, 5, 6, 9, 19
plot3D_map, 4, 4, 6, 11, 16
plot3D_NA, 4, 5, 6, 12, 16
plot_compare, 2, 7
plot_dif, 4, 9, 11, 12, 18
plot_map, 5, 9, 10, 12, 14
plot_NA, 6, 9, 11, 11, 14

TSCS, 13
TSCS-package (TSCS), 13
tscsEstimate, 14, 16, 18
tscsEstimate3D, 14, 15, 19
tscsRegression, 14, 17, 19
tscsRegression3D, 16, 18, 18

21

	appraisal_index
	plot3D_dif
	plot3D_map
	plot3D_NA
	plot_compare
	plot_dif
	plot_map
	plot_NA
	TSCS
	tscsEstimate
	tscsEstimate3D
	tscsRegression
	tscsRegression3D
	Index

