Title: | Transformed Additive Gaussian Processes |
---|---|
Description: | Implement the transformed additive Gaussian (TAG) process and the transformed approximately additive Gaussian (TAAG) process proposed in Lin and Joseph (2020) <DOI:10.1080/00401706.2019.1665592>. These functions can be used to model deterministic computer experiments, obtain predictions at new inputs, and quantify the uncertainty of the predictions. This research is supported by a U.S. National Science Foundation grant DMS-1712642 and a U.S. Army Research Office grant W911NF-17-1-0007. |
Authors: | Li-Hsiang Lin and V. Roshan Joseph |
Maintainer: | Li-Hsiang Lin <[email protected]> |
License: | GPL-2 |
Version: | 0.5.1 |
Built: | 2024-12-30 08:36:38 UTC |
Source: | CRAN |
This function provides a table for checking whther the TAAG process fits the data well better than an ordinary kriging model.
check.TAAG(object)
check.TAAG(object)
object |
object of class inheriting from "TAAG". |
A table of the fitted negative likelihood values and cross validation errors obtained from TAAG and the ordinary kriging models from dicekriging and mlegp is returned. Note that, for both criteria, the model with a smaller value are a better model.
Lin, L.-H. and Joseph, V. R. (2020) "Transformation and Additivity in Gaussian Processes",Technometrics, 62, 525-535. DOI:10.1080/00401706.2019.1665592.
TAAG
for the estimates of the parameters in the TAG and TAAG, respectively.
n <- 20 p <- 2 library(randtoolbox) X <- sobol(n, dim = p, init = TRUE, scrambling = 2, seed = 20, normal = FALSE) y <- exp(2*sin(0.5*pi*X[,1]) + 0.5*cos(2.5*pi*X[,2])) ini.TAG <- initial.TAG(y, X) par.TAG <- TAG(ini.TAG) N <- 1000 X.test <- sobol(N, dim = p, init = TRUE, scrambling = 2, seed = 5, normal = FALSE) ytrue <- exp(2*sin(0.5*pi*X.test[,1]) + 0.5*cos(2.5*pi*X.test[,2])) pre.TAG <- pred.TAG(par.TAG, X.test) library(DiceKriging) set.seed(2) temp.m <- km(formula=~1, design=X, response=par.TAG$ty, covtype="gauss",nugget = (10^-15), multistart = 4, control = list(trace = FALSE)) nu.est <- sqrt(2*(coef(temp.m)$range^2)) par.TAAG <- TAAG(par.TAG, nu.est) check.table <- check.TAAG(par.TAAG) check.table
n <- 20 p <- 2 library(randtoolbox) X <- sobol(n, dim = p, init = TRUE, scrambling = 2, seed = 20, normal = FALSE) y <- exp(2*sin(0.5*pi*X[,1]) + 0.5*cos(2.5*pi*X[,2])) ini.TAG <- initial.TAG(y, X) par.TAG <- TAG(ini.TAG) N <- 1000 X.test <- sobol(N, dim = p, init = TRUE, scrambling = 2, seed = 5, normal = FALSE) ytrue <- exp(2*sin(0.5*pi*X.test[,1]) + 0.5*cos(2.5*pi*X.test[,2])) pre.TAG <- pred.TAG(par.TAG, X.test) library(DiceKriging) set.seed(2) temp.m <- km(formula=~1, design=X, response=par.TAG$ty, covtype="gauss",nugget = (10^-15), multistart = 4, control = list(trace = FALSE)) nu.est <- sqrt(2*(coef(temp.m)$range^2)) par.TAAG <- TAAG(par.TAG, nu.est) check.table <- check.TAAG(par.TAAG) check.table
This function evaluates the leave-one-out cross validation errors of a TAG or TAAG process.
cv.TAAG(object, TAAG.indicator = FALSE)
cv.TAAG(object, TAAG.indicator = FALSE)
object |
object of class inheriting from "TAG" or "TAAG". |
TAAG.indicator |
logical. If TRUE, the object is from TAAG; otherwise, from TAG. |
The values returned from the function is a list containing:
CV |
Leave-one-out cross validation errors in the original scale of y. |
TCV |
Leave-one-out cross validation errors in the transformed scale. |
Lin, L.-H. and Joseph, V. R. (2020) "Transformation and Additivity in Gaussian Processes",Technometrics, 62, 525-535. DOI:10.1080/00401706.2019.1665592.
TAG
and TAAG
for the estimates of the parameters in the TAG and TAAG, respectively.
n <- 20 p <- 2 library(randtoolbox) X <- sobol(n, dim = p, init = TRUE, scrambling = 2, seed = 20, normal = FALSE) y <- exp(2*sin(0.5*pi*X[,1]) + 0.5*cos(2.5*pi*X[,2])) ini.TAG <- initial.TAG(y, X) par.TAG <- TAG(ini.TAG) cv.scores <- cv.TAAG(par.TAG) (CV.TAG <- cv.scores$CV) (TCV.TAG <- cv.scores$TCV)
n <- 20 p <- 2 library(randtoolbox) X <- sobol(n, dim = p, init = TRUE, scrambling = 2, seed = 20, normal = FALSE) y <- exp(2*sin(0.5*pi*X[,1]) + 0.5*cos(2.5*pi*X[,2])) ini.TAG <- initial.TAG(y, X) par.TAG <- TAG(ini.TAG) cv.scores <- cv.TAAG(par.TAG) (CV.TAG <- cv.scores$CV) (TCV.TAG <- cv.scores$TCV)
This function generates good initial values for the parameters in a TAG process.
initial.TAG(y, X, Candi.lambda = seq(from=-2, to=2,by=0.5), Adj.omega = TRUE, nug=0.001, nbasis=10, rannum=20, big=FALSE, nsub=31, method.1d = "DiceKriging")
initial.TAG(y, X, Candi.lambda = seq(from=-2, to=2,by=0.5), Adj.omega = TRUE, nug=0.001, nbasis=10, rannum=20, big=FALSE, nsub=31, method.1d = "DiceKriging")
y |
a response vector of size n, where n is the sample size. |
X |
an n by p design matrix, where n is the sample size, and p is the number of input variables. |
Candi.lambda |
a vector containing the candidate values of the Box-Cox transformation parameter. Default is seq(from=-2, to=2,by=0.5). |
Adj.omega |
logical. If TRUE, the initial estimates for weight parameters are adjusted to avoid 0. Default is TRUE. |
nug |
a nonnegative value used as the nugget term for fitting the 1-dim GP models. Default is 0.001. |
nbasis |
a positive integer specifying the basis dimension used in mgcv. Default is 10. |
rannum |
a positive integer specifying the number of starting values in DiceKriging. Default is 2. |
big |
logical. If TRUE, the bam function in the mgcv package is used; otherwise, the gam function is used. Default is FALSE. |
nsub |
a positive integer specifying the number of design points used for obtaining the initial estimates of the length scale parameters. Default is 31. |
method.1d |
the method used for fitting the 1-dimensional GPs. Currently, the method can be DiceKriging or mlegp. |
The values returned from the function is a list containing the following components:
omega |
The initial estimates of the weight parameters. |
s |
The initial estimates of the length scale parameters. |
lambda |
The initial estimate of the Box-Cox transformation parameter. |
delta |
The initial estimate of the nugget parameter. |
nbases |
The number of bases used in each dimension. |
y |
The response vector. |
X |
The n by p input design matrix. |
Lin, L.-H. and Joseph, V. R. (2020) "Transformation and Additivity in Gaussian Processes",Technometrics, 62, 525-535. DOI:10.1080/00401706.2019.1665592.
Olivier Roustant, David Ginsbourger, Yves Deville (2012). DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization. Journal of Statistical Software, 51, 1-55.
Dancik, GM and Dorman, KS (2008). mlegp: Statistical analysis for computer models of biological systems using R. Bioinformatics 24, 1966-1967
Wood, S.N. (2017) Generalized Additive Models: An Introduction with R (2nd edition). New York: CRC press.
n <- 20 p <- 2 library(randtoolbox) X <- sobol(n, dim = p, init = TRUE, scrambling = 2, seed = 20, normal = FALSE) y <- exp(2*sin(0.5*pi*X[,1]) + 0.5*cos(2.5*pi*X[,2])) ini.TAG <- initial.TAG(y, X) #An example for some inputs with fewer levels n <- 18 p <- 2 X1 <- rep(c(0,1,2)/3, 6) # A factor with fewer levels library(randtoolbox) X2 <- sobol(n, dim = 1, init = TRUE, scrambling = 2, seed = 20, normal = FALSE) X <- cbind(X1, X2) y <- exp(2*sin(0.5*pi*X[,1]) + 0.5*cos(2.5*pi*X[,2])) ini.TAG <- initial.TAG(y, X)
n <- 20 p <- 2 library(randtoolbox) X <- sobol(n, dim = p, init = TRUE, scrambling = 2, seed = 20, normal = FALSE) y <- exp(2*sin(0.5*pi*X[,1]) + 0.5*cos(2.5*pi*X[,2])) ini.TAG <- initial.TAG(y, X) #An example for some inputs with fewer levels n <- 18 p <- 2 X1 <- rep(c(0,1,2)/3, 6) # A factor with fewer levels library(randtoolbox) X2 <- sobol(n, dim = 1, init = TRUE, scrambling = 2, seed = 20, normal = FALSE) X <- cbind(X1, X2) y <- exp(2*sin(0.5*pi*X[,1]) + 0.5*cos(2.5*pi*X[,2])) ini.TAG <- initial.TAG(y, X)
This function produces the main effects plot from a TAG process.
plotTAG(object, include.legend = TRUE, legend.position = "bottomright")
plotTAG(object, include.legend = TRUE, legend.position = "bottomright")
object |
object of class inheriting from "TAG". |
include.legend |
logical value indicating if the legend of the main effects plot is required. |
legend.position |
a character indicating the position of the legend. |
The location of the legend is "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right", or "center".
A main effects plot in the transformed scale of the response is returned.
Lin, L.-H. and Joseph, V. R. (2020) "Transformation and Additivity in Gaussian Processes",Technometrics, 62, 525-535. DOI:10.1080/00401706.2019.1665592.
TAG
for finding estimates for the parameters in a TAG process.
n <- 20 p <- 2 library(randtoolbox) X <- sobol(n, dim = p, init = TRUE, scrambling = 2, seed = 20, normal = FALSE) y <- exp(2*sin(0.5*pi*X[,1]) + 0.5*cos(2.5*pi*X[,2])) ini.TAG <- initial.TAG(y, X) par.TAG <- TAG(ini.TAG) plotTAG(par.TAG)
n <- 20 p <- 2 library(randtoolbox) X <- sobol(n, dim = p, init = TRUE, scrambling = 2, seed = 20, normal = FALSE) y <- exp(2*sin(0.5*pi*X[,1]) + 0.5*cos(2.5*pi*X[,2])) ini.TAG <- initial.TAG(y, X) par.TAG <- TAG(ini.TAG) plotTAG(par.TAG)
This function provides predictions from a TAAG process.
pred.TAAG(object, newX, predict.CI = FALSE, zalpha = 1.96)
pred.TAAG(object, newX, predict.CI = FALSE, zalpha = 1.96)
object |
object of class inheriting from "TAAG". |
newX |
matrix of new values of x at which predictions are needed. |
predict.CI |
logical value indicating if the confidence interval at each prediction point is required. |
zalpha |
normal critical value for the confidence interval. Default is 1.96 for 95 % confidence intervals. The zalpha works only when predict.CI is TRUE. |
The function returns predictions at newX and the confidence intervals (if predict.CI is TRUE). If predict.CI is TRUE, the values returned from the function is a list containing:
Prediction |
the prediction at newX. |
ConfidenceLB |
the lower bound of the prediction confidence interval at newX.(Note that the default is 95 %.) |
ConfidenceUB |
the upper bound of the prediction confidence interval at newX. |
Lin, L.-H. and Joseph, V. R. (2020) "Transformation and Additivity in Gaussian Processes",Technometrics, 62, 525-535. DOI:10.1080/00401706.2019.1665592.
TAAG
for the estimates of the parameters in the TAAG.
n <- 20 p <- 2 library(randtoolbox) X <- sobol(n, dim = p, init = TRUE, scrambling = 2, seed = 20, normal = FALSE) y <- exp(2*sin(0.5*pi*X[,1]) + 0.5*cos(2.5*pi*X[,2])) ini.TAG <- initial.TAG(y, X) par.TAG <- TAG(ini.TAG) N <- 1000 # size of testing samples X.test <- sobol(N, dim = p, init = TRUE, scrambling = 2, seed = 5, normal = FALSE) ytrue <- exp(2*sin(0.5*pi*X.test[,1]) + 0.5*cos(2.5*pi*X.test[,2])) pre.TAG <- pred.TAG(par.TAG, X.test) library(DiceKriging) set.seed(2) temp.m <- km(formula=~1, design=X, response=par.TAG$ty, covtype="gauss",nugget = (10^-15), multistart = 4, control = list(trace = FALSE, verbose = FALSE)) nu.est <- sqrt(2*(coef(temp.m)$range^2)) par.TAAG <- TAAG(par.TAG, nu.est) pre.TAAG <- pred.TAAG(par.TAAG, X.test) mean((pre.TAAG$Prediction-ytrue)^2)
n <- 20 p <- 2 library(randtoolbox) X <- sobol(n, dim = p, init = TRUE, scrambling = 2, seed = 20, normal = FALSE) y <- exp(2*sin(0.5*pi*X[,1]) + 0.5*cos(2.5*pi*X[,2])) ini.TAG <- initial.TAG(y, X) par.TAG <- TAG(ini.TAG) N <- 1000 # size of testing samples X.test <- sobol(N, dim = p, init = TRUE, scrambling = 2, seed = 5, normal = FALSE) ytrue <- exp(2*sin(0.5*pi*X.test[,1]) + 0.5*cos(2.5*pi*X.test[,2])) pre.TAG <- pred.TAG(par.TAG, X.test) library(DiceKriging) set.seed(2) temp.m <- km(formula=~1, design=X, response=par.TAG$ty, covtype="gauss",nugget = (10^-15), multistart = 4, control = list(trace = FALSE, verbose = FALSE)) nu.est <- sqrt(2*(coef(temp.m)$range^2)) par.TAAG <- TAAG(par.TAG, nu.est) pre.TAAG <- pred.TAAG(par.TAAG, X.test) mean((pre.TAAG$Prediction-ytrue)^2)
This function provides predictions from a TAG process.
pred.TAG(object, newX)
pred.TAG(object, newX)
object |
object of class inheriting from "TAG". |
newX |
matrix of new x values at which predictions are needed. |
The values returned from the function are the predictions at newX.
Lin, L.-H. and Joseph, V. R. (2020) "Transformation and Additivity in Gaussian Processes",Technometrics, 62, 525-535. DOI:10.1080/00401706.2019.1665592.
TAG
for the estimates of the parameters in the TAG.
n <- 20 p <- 2 library(randtoolbox) X <- sobol(n, dim = p, init = TRUE, scrambling = 2, seed = 20, normal = FALSE) y <- exp(2*sin(0.5*pi*X[,1]) + 0.5*cos(2.5*pi*X[,2])) ini.TAG <- initial.TAG(y, X) par.TAG <- TAG(ini.TAG) N <- 1000 X.test <- sobol(N, dim = p, init = TRUE, scrambling = 2, seed = 5, normal = FALSE) ytrue <- exp(2*sin(0.5*pi*X.test[,1]) + 0.5*cos(2.5*pi*X.test[,2])) pre.TAG <- pred.TAG(par.TAG, X.test)
n <- 20 p <- 2 library(randtoolbox) X <- sobol(n, dim = p, init = TRUE, scrambling = 2, seed = 20, normal = FALSE) y <- exp(2*sin(0.5*pi*X[,1]) + 0.5*cos(2.5*pi*X[,2])) ini.TAG <- initial.TAG(y, X) par.TAG <- TAG(ini.TAG) N <- 1000 X.test <- sobol(N, dim = p, init = TRUE, scrambling = 2, seed = 5, normal = FALSE) ytrue <- exp(2*sin(0.5*pi*X.test[,1]) + 0.5*cos(2.5*pi*X.test[,2])) pre.TAG <- pred.TAG(par.TAG, X.test)
This function fits the Transformed Approximately Additive Gaussian (TAAG) process.
TAAG(parTAG, nu.est, adj.nu = FALSE)
TAAG(parTAG, nu.est, adj.nu = FALSE)
parTAG |
object of class inheriting from "TAG". |
nu.est |
the estimates of the length scale parameters from a standard GP. |
adj.nu |
logical. If FALSE, the proportional parameter |
The details of TAAG process can be found in Lin and Joseph (2019).
When the input dimension is high, set adj.nu = TRUE and nu.est = s0, where s0 is the initial values of the length scale parameters from the function initial.TAG. Then, the length scale parameter is set to
s0, and
is estimated through function TAAG.. This is useful especially when the input dimension is high.
The values returned from the function is a list containing the following components:
omega |
The estimates of the weight parameters. |
s |
The estimates of the length scale parameters. |
nu |
The estimates of the length scale parameter |
lambda |
The estimate of the Box-Cox transformation parameter. |
eta |
The estimate of the proportion parameter. |
phi |
The estimate of the multiplication factor for |
obj.fun |
The negative of log-unnormalized posterior value (value of the objective function) |
ty |
The transformed response vector. |
X |
The n by p input design matrix. |
Lin, L.-H. and Joseph, V. R. (2020) "Transformation and Additivity in Gaussian Processes",Technometrics, 62, 525-535. DOI:10.1080/00401706.2019.1665592.
TAG
for the estimates of the TAG parameters, and pred.TAAG
for predictions.
n <- 20 p <- 2 library(randtoolbox) X <- sobol(n, dim = p, init = TRUE, scrambling = 2, seed = 20, normal = FALSE) y <- exp(2*sin(0.5*pi*X[,1]) + 0.5*cos(2.5*pi*X[,2])) ini.TAG <- initial.TAG(y, X) par.TAG <- TAG(ini.TAG) N <- 1000 X.test <- sobol(N, dim = p, init = TRUE, scrambling = 2, seed = 5, normal = FALSE) ytrue <- exp(2*sin(0.5*pi*X.test[,1]) + 0.5*cos(2.5*pi*X.test[,2])) pre.TAG <- pred.TAG(par.TAG, X.test) library(DiceKriging) set.seed(2) temp.m <- km(formula=~1, design=X, response=par.TAG$ty, covtype="gauss",nugget = (10^-15), multistart = 4, control = list(trace = FALSE, verbose = FALSE)) nu.est <- sqrt(2*(coef(temp.m)$range^2)) par.TAAG <- TAAG(par.TAG, nu.est)
n <- 20 p <- 2 library(randtoolbox) X <- sobol(n, dim = p, init = TRUE, scrambling = 2, seed = 20, normal = FALSE) y <- exp(2*sin(0.5*pi*X[,1]) + 0.5*cos(2.5*pi*X[,2])) ini.TAG <- initial.TAG(y, X) par.TAG <- TAG(ini.TAG) N <- 1000 X.test <- sobol(N, dim = p, init = TRUE, scrambling = 2, seed = 5, normal = FALSE) ytrue <- exp(2*sin(0.5*pi*X.test[,1]) + 0.5*cos(2.5*pi*X.test[,2])) pre.TAG <- pred.TAG(par.TAG, X.test) library(DiceKriging) set.seed(2) temp.m <- km(formula=~1, design=X, response=par.TAG$ty, covtype="gauss",nugget = (10^-15), multistart = 4, control = list(trace = FALSE, verbose = FALSE)) nu.est <- sqrt(2*(coef(temp.m)$range^2)) par.TAAG <- TAAG(par.TAG, nu.est)
This function fits the Transformed Additive Gaussian (TAG) process.
TAG(iniTAG, HighD = FALSE, delta.threshold = -6)
TAG(iniTAG, HighD = FALSE, delta.threshold = -6)
iniTAG |
object of class inheriting from "initial.TAG". |
HighD |
logical. If TRUE, only |
delta.threshold |
the minimum value of log10(delta). Default is -6. |
The details of the TAG process can be found in Lin and Joseph (2019).
When HighD = FALSE, the weight parameters, the length scale parameters, the nugget parameter, and the Box-Cox transformation parameter are estimated. When HighD = TRUE, the length scale parameters for TAG is *s0, where s0 is the initial estimate of the length scale parameters. Only
and the nugget parameter are estimated.
The values returned from the function is a list containing the following components:
omega |
The estimates of the weight parameters. |
s |
The estimates of the length scale parameters. |
lambda |
The estimate of the Box-Cox transformation parameter. |
delta |
The estimate of the nugget parameter in log10 scale. For example, delta |
kappa |
If HighD is true, an estimate of kappa will be returned, which is a multiplication factor for the initial estimates of the length scale parameters. |
ty |
The transformed response vector. |
X |
The n by p input design matrix. |
Lin, L.-H. and Joseph, V. R. (2020) "Transformation and Additivity in Gaussian Processes",Technometrics, 62, 525-535. DOI:10.1080/00401706.2019.1665592.
initial.TAG
for finding the initial values for the parameters in a TAG process, and pred.TAG
for prediction.
n <- 20 p <- 2 library(randtoolbox) X <- sobol(n, dim = p, init = TRUE, scrambling = 2, seed = 20, normal = FALSE) y <- exp(2*sin(0.5*pi*X[,1]) + 0.5*cos(2.5*pi*X[,2])) ini.TAG <- initial.TAG(y, X) par.TAG <- TAG(ini.TAG)
n <- 20 p <- 2 library(randtoolbox) X <- sobol(n, dim = p, init = TRUE, scrambling = 2, seed = 20, normal = FALSE) y <- exp(2*sin(0.5*pi*X[,1]) + 0.5*cos(2.5*pi*X[,2])) ini.TAG <- initial.TAG(y, X) par.TAG <- TAG(ini.TAG)
This function combines functions initial.TAG, TAG, and TAAG together, so it generates the estimated parameters from a completed TAG process. The returned object from TAG1step is in the same format as the one returned from TAAG, so the returned object can be passed to function pred.TAAG for predictions.
TAG1step(y, X, set.initial = list(Candi.lambda= seq(from=-2, to=2,by=0.5)), set.TAG = list(delta.threshold = -6), set.TAAG = list(adj.nu = FALSE))
TAG1step(y, X, set.initial = list(Candi.lambda= seq(from=-2, to=2,by=0.5)), set.TAG = list(delta.threshold = -6), set.TAAG = list(adj.nu = FALSE))
y |
a response vector of size n, where n is the sample size. |
X |
an n by p design matrix, where n is the sample size, and p is the number of input variables. |
set.initial |
a list for controling other arguments in function Initial.TAG. See Initial.TAG for more detials. |
set.TAG |
a list for controling other arguments in function TAG. See TAG for more detials. |
set.TAAG |
a list for controling other arguments in function TAAG. See TAAG for more detials. |
The values returned from the function is a list containing the following components:
omega |
The estimates of the weight parameters. |
s |
The estimates of the length scale parameters. |
nu |
The estimates of the length scale parameter |
lambda |
The estimate of the Box-Cox transformation parameter. |
eta |
The estimate of the proportion parameter. |
phi |
The estimate of the multiplication factor for |
obj.fun |
The negative of log-unnormalized posterior value (value of the objective function) |
ty |
The transformed response vector. |
X |
The n by p input design matrix. |
Lin, L.-H. and Joseph, V. R. (2020) "Transformation and Additivity in Gaussian Processes",Technometrics, 62, 525-535. DOI:10.1080/00401706.2019.1665592.
Olivier Roustant, David Ginsbourger, Yves Deville (2012). DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization. Journal of Statistical Software, 51, 1-55.
Dancik, GM and Dorman, KS (2008). mlegp: Statistical analysis for computer models of biological systems using R. Bioinformatics 24, 1966-1967
Wood, S.N. (2017) Generalized Additive Models: An Introduction with R (2nd edition). New York: CRC press.
initial.TAG
for other arguments that can be listed in set.initial for controling function Initial.TAG.
TAG
for other arguments that can be listed in set.TAG for controling function TAG.
TAAG
for other arguments that can be listed in set.TAAG for controling function TAAG.
pred.TAAG
for predictions.
n <- 20 p <- 2 library(randtoolbox) X <- sobol(n, dim = p, init = TRUE, scrambling = 2, seed = 20, normal = FALSE) y <- exp(2*sin(0.5*pi*X[,1]) + 0.5*cos(2.5*pi*X[,2])) par.TAAG <- TAG1step(y, X) #Predictions From TAG1step N <- 1000 # size of testing samples X.test <- sobol(N, dim = p, init = TRUE, scrambling = 2, seed = 5, normal = FALSE) ytrue <- exp(2*sin(0.5*pi*X.test[,1]) + 0.5*cos(2.5*pi*X.test[,2])) pre.TAAG <- pred.TAAG(par.TAAG, X.test) mean((pre.TAAG$Prediction-ytrue)^2)
n <- 20 p <- 2 library(randtoolbox) X <- sobol(n, dim = p, init = TRUE, scrambling = 2, seed = 20, normal = FALSE) y <- exp(2*sin(0.5*pi*X[,1]) + 0.5*cos(2.5*pi*X[,2])) par.TAAG <- TAG1step(y, X) #Predictions From TAG1step N <- 1000 # size of testing samples X.test <- sobol(N, dim = p, init = TRUE, scrambling = 2, seed = 5, normal = FALSE) ytrue <- exp(2*sin(0.5*pi*X.test[,1]) + 0.5*cos(2.5*pi*X.test[,2])) pre.TAAG <- pred.TAAG(par.TAAG, X.test) mean((pre.TAAG$Prediction-ytrue)^2)