The TAD package provides some Graph outputs functions
weights <- TAD::AB[, 5:102]
weights_factor <- TAD::AB[, c("Year", "Plot", "Treatment", "Bloc")]
trait_data <- log(TAD::trait[["SLA"]][seq_len(ncol(weights))])
aggregation_factor_name <- c("Year", "Bloc")
statistics_factor_name <- c("Treatment")
regenerate_abundance_df <- TRUE
regenerate_weighted_moments_df <- TRUE
regenerate_stat_per_obs_df <- TRUE
regenerate_stat_per_rand_df <- TRUE
regenerate_stat_skr_df <- TRUE
randomization_number <- 100
seed <- 1312
significativity_threshold <- c(0.025, 0.975)
lin_mod <- "lm"
slope_distance <- TAD:::CONSTANTS$SKEW_UNIFORM_SLOPE_DISTANCE
intercept_distance <- TAD:::CONSTANTS$SKEW_UNIFORM_INTERCEPT_DISTANCE
future::plan(future::multisession)
results <- TAD::launch_analysis_tad(
weights = weights,
weights_factor = weights_factor,
trait_data = trait_data,
randomization_number = randomization_number,
aggregation_factor_name = aggregation_factor_name,
statistics_factor_name = statistics_factor_name,
seed = seed,
regenerate_abundance_df = TRUE,
regenerate_weighted_moments_df = TRUE,
regenerate_stat_per_obs_df = TRUE,
regenerate_stat_per_rand_df = TRUE,
regenerate_stat_skr_df = TRUE,
significativity_threshold = significativity_threshold,
lin_mod = lin_mod,
slope_distance = slope_distance,
intercept_distance = intercept_distance
)
future::plan(future::sequential)
str(results$weighted_moments)
#> 'data.frame': 9696 obs. of 10 variables:
#> $ Year : Factor w/ 12 levels "2010","2011",..: 1 1 1 1 2 2 2 2 3 3 ...
#> $ Plot : Factor w/ 8 levels "4","6","11","13",..: 2 4 6 8 2 4 6 8 2 4 ...
#> $ Treatment : Factor w/ 2 levels "Mown_NPK","Mown_Unfertilized": 1 1 1 1 1 1 1 1 1 1 ...
#> $ Bloc : Factor w/ 2 levels "1","2": 1 1 2 2 1 1 2 2 1 1 ...
#> $ number : int 0 0 0 0 0 0 0 0 0 0 ...
#> $ mean : num 3.19 3.22 3.24 3.2 3.2 ...
#> $ variance : num 0.0233 0.0362 0.0317 0.0515 0.0343 ...
#> $ skewness : num 1.082 1.157 1.911 0.116 1.108 ...
#> $ kurtosis : num 10.78 7.82 7.62 4.67 8.18 ...
#> $ distance_law: num 7.75 4.62 2.11 2.8 5.09 ...
str(results$statistics_per_observation)
#> 'data.frame': 96 obs. of 20 variables:
#> $ Year : Factor w/ 12 levels "2010","2011",..: 1 1 1 1 2 2 2 2 3 3 ...
#> $ Plot : Factor w/ 8 levels "4","6","11","13",..: 2 4 6 8 2 4 6 8 2 4 ...
#> $ Treatment : Factor w/ 2 levels "Mown_NPK","Mown_Unfertilized": 1 1 1 1 1 1 1 1 1 1 ...
#> $ Bloc : Factor w/ 2 levels "1","2": 1 1 2 2 1 1 2 2 1 1 ...
#> $ standardized_observedmean : num -0.939 -0.985 -0.632 -0.772 -0.78 ...
#> $ standardized_min_quantilemean : num -2.14 -1.92 -1.94 -1.83 -1.74 ...
#> $ standardized_max_quantilemean : num 2.23 1.94 1.71 1.95 1.74 ...
#> $ significancemean : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
#> $ standardized_observedvariance : num -0.546 -0.397 -0.937 -0.241 -0.487 ...
#> $ standardized_min_quantilevariance: num -0.939 -1.052 -1.482 -1.36 -1.302 ...
#> $ standardized_max_quantilevariance: num 2.03 2.33 2.04 2.32 2.5 ...
#> $ significancevariance : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
#> $ standardized_observedskewness : num 1.034 1.402 2.854 0.358 1.349 ...
#> $ standardized_min_quantileskewness: num -2.22 -2.39 -1.82 -2.04 -2.14 ...
#> $ standardized_max_quantileskewness: num 2 1.84 1.74 1.87 1.89 ...
#> $ significanceskewness : logi FALSE FALSE TRUE FALSE FALSE FALSE ...
#> $ standardized_observedkurtosis : num 1.723 0.966 2.092 1.052 2.439 ...
#> $ standardized_min_quantilekurtosis: num -0.928 -1.015 -0.778 -1.049 -0.99 ...
#> $ standardized_max_quantilekurtosis: num 2.53 2.35 2.6 2.88 2.33 ...
#> $ significancekurtosis : logi FALSE FALSE FALSE FALSE TRUE FALSE ...
moments_graph <- TAD::moments_graph(
moments_df = results$weighted_moments,
statistics_per_observation = results$statistics_per_observation,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159")
)
moments_graph
str(results$weighted_moments)
#> 'data.frame': 9696 obs. of 10 variables:
#> $ Year : Factor w/ 12 levels "2010","2011",..: 1 1 1 1 2 2 2 2 3 3 ...
#> $ Plot : Factor w/ 8 levels "4","6","11","13",..: 2 4 6 8 2 4 6 8 2 4 ...
#> $ Treatment : Factor w/ 2 levels "Mown_NPK","Mown_Unfertilized": 1 1 1 1 1 1 1 1 1 1 ...
#> $ Bloc : Factor w/ 2 levels "1","2": 1 1 2 2 1 1 2 2 1 1 ...
#> $ number : int 0 0 0 0 0 0 0 0 0 0 ...
#> $ mean : num 3.19 3.22 3.24 3.2 3.2 ...
#> $ variance : num 0.0233 0.0362 0.0317 0.0515 0.0343 ...
#> $ skewness : num 1.082 1.157 1.911 0.116 1.108 ...
#> $ kurtosis : num 10.78 7.82 7.62 4.67 8.18 ...
#> $ distance_law: num 7.75 4.62 2.11 2.8 5.09 ...
skr_graph <- TAD::skr_graph(
moments_df = results$weighted_moments,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159"),
slope_distance = slope_distance,
intercept_distance = intercept_distance
)
skr_graph
#> Warning: Removed 5 rows containing non-finite outside the scale range
#> (`stat_smooth()`).
#> Warning: Removed 5 rows containing missing values or values outside the scale range
#> (`geom_point()`).
str(results$ses_skr)
#> 'data.frame': 2 obs. of 13 variables:
#> $ slope_ses : num -1.71 -1.7
#> $ slope_signi : logi TRUE TRUE
#> $ intercept_ses : num 7.9253 -0.0909
#> $ intercept_signi : logi TRUE FALSE
#> $ rsquare_ses : num -1.21 -1.13
#> $ rsquare_signi : logi FALSE FALSE
#> $ tad_stab_ses : num 2.3 -2.13
#> $ tad_stab_signi : logi TRUE TRUE
#> $ tad_eve_ses : num 4.21 -2.17
#> $ tad_eve_signi : logi TRUE TRUE
#> $ cv_tad_eve_ses : num -1.03 -1.61
#> $ cv_tad_eve_signi: logi FALSE TRUE
#> $ Treatment : chr "Mown_NPK" "Mown_Unfertilized"
skr_param_graph <- TAD::skr_param_graph(
skr_param = results$ses_skr,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159"),
slope_distance = slope_distance,
intercept_distance = intercept_distance
)
skr_param_graph
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_point()`).
#> Removed 1 row containing missing values or values outside the scale range
#> (`geom_point()`).
results <- TAD::launch_analysis_tad(
weights = weights,
weights_factor = weights_factor,
trait_data = trait_data,
randomization_number = randomization_number,
aggregation_factor_name = aggregation_factor_name,
statistics_factor_name = statistics_factor_name,
seed = seed,
regenerate_abundance_df = TRUE,
regenerate_weighted_moments_df = TRUE,
regenerate_stat_per_obs_df = TRUE,
regenerate_stat_per_rand_df = TRUE,
regenerate_stat_skr_df = TRUE,
significativity_threshold = significativity_threshold,
lin_mod = lin_mod,
slope_distance = slope_distance,
intercept_distance = (intercept_distance <- 1.90)
)
str(results$ses_skr)
#> 'data.frame': 2 obs. of 13 variables:
#> $ slope_ses : num -1.71 -1.7
#> $ slope_signi : logi TRUE TRUE
#> $ intercept_ses : num 7.9253 -0.0909
#> $ intercept_signi : logi TRUE FALSE
#> $ rsquare_ses : num -1.21 -1.13
#> $ rsquare_signi : logi FALSE FALSE
#> $ tad_stab_ses : num 2.3 -2.13
#> $ tad_stab_signi : logi TRUE TRUE
#> $ distance_to_family_ses : num 4.17 -2.18
#> $ distance_to_family_signi : logi TRUE TRUE
#> $ cv_distance_to_family_ses : num -1.05 -1.6
#> $ cv_distance_to_family_signi: logi FALSE TRUE
#> $ Treatment : chr "Mown_NPK" "Mown_Unfertilized"
skr_param_graph <- TAD::skr_param_graph(
skr_param = results$ses_skr,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159"),
slope_distance = 1,
intercept_distance = intercept_distance
)
skr_param_graph
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_point()`).
#> Removed 1 row containing missing values or values outside the scale range
#> (`geom_point()`).
Here is a simple code to generate all graphs based on their name:
TAD::moments_graph(
moments_df = results$weighted_moments,
statistics_per_observation = results$statistics_per_observation,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159"),
output_path = "./moments_graph.png",
do_return = FALSE
)
TAD::skr_graph(
moments_df = results$weighted_moments,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159"),
output_path = "./skr_graph.png",
slope_distance = 1,
intercept_distance = 1.86,
do_return = FALSE
)
TAD::skr_param_graph(
skr_param = results$ses_skr,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159"),
slope_distance = 1,
intercept_distance = 1.86,
save_skr_param_graph = "./skr_param_graph.png",
do_return = FALSE
)