--- title: "Usage" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{my-vignette} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup} library(SyScSelection) ``` ### Example ellipsodial mesh for a normal distribution: - Estimate the mean and covariance matrix from the data:
```mu <- colMeans(data)```
```sig <- cov(data)``` - The number of dimensions, d, is taken directly from the data:
```d <- length(data[1,])``` - Get the size parameter for a normal dist’n at a 95% threshold:
```calpha <- sizeparam_normal_distn(.95, d)``` - Create a hyperellipsoid object. Note that the constructor takes the **inverse of the disperion matrix**:
```hellip <- hyperellipsoid(mu, solve(sig), calpha)``` - Scenarios are calculated as a mesh of fineness 3. The number of scenarios is a function of the dimensionality of the hyperellipsoid and the fineness of the mesh:
```scenarios <- hypercube_mesh(3, hellip)``` ### Example ellipsodial mesh for a t distribution: - Estimate the mean, covariance, and degrees of freedom from the data:
```mu <- colMeans(data)```
```sig <- cov(data)```
```nu <- dim(data)[1] - 1``` - The number of dimensions, d, is taken directly from the data:
```d <- length(data[1,])``` - Get the size parameter for a normal dist’n at a 95% threshold:
```calpha <- sizeparam_t_distn(.95, d, nu)``` - Create a hyperellipsoid object. Note that the constructor takes the **inverse of the disperion matrix**:
```hellip <- hyperellipsoid(mu, solve(sig), calpha)``` - Scenarios are calculated as a mesh of fineness 3. The number of scenarios is a function of the dimensionality of the hyperellipsoid and the fineness of the mesh:
```scenarios <- hypercube_mesh(3, hellip)```