---
title: "Usage"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{my-vignette}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
```{r setup}
library(SyScSelection)
```
### Example ellipsodial mesh for a normal distribution:
- Estimate the mean and covariance matrix from the data:
```mu <- colMeans(data)```
```sig <- cov(data)```
- The number of dimensions, d, is taken directly from the data:
```d <- length(data[1,])```
- Get the size parameter for a normal dist’n at a 95% threshold:
```calpha <- sizeparam_normal_distn(.95, d)```
- Create a hyperellipsoid object. Note that the constructor takes the **inverse of the disperion matrix**:
```hellip <- hyperellipsoid(mu, solve(sig), calpha)```
- Scenarios are calculated as a mesh of fineness 3. The number of scenarios is a function of the dimensionality of the hyperellipsoid and the fineness of the mesh:
```scenarios <- hypercube_mesh(3, hellip)```
### Example ellipsodial mesh for a t distribution:
- Estimate the mean, covariance, and degrees of freedom from the data:
```mu <- colMeans(data)```
```sig <- cov(data)```
```nu <- dim(data)[1] - 1```
- The number of dimensions, d, is taken directly from the data:
```d <- length(data[1,])```
- Get the size parameter for a normal dist’n at a 95% threshold:
```calpha <- sizeparam_t_distn(.95, d, nu)```
- Create a hyperellipsoid object. Note that the constructor takes the **inverse of the disperion matrix**:
```hellip <- hyperellipsoid(mu, solve(sig), calpha)```
- Scenarios are calculated as a mesh of fineness 3. The number of scenarios is a function of the dimensionality of the hyperellipsoid and the fineness of the mesh:
```scenarios <- hypercube_mesh(3, hellip)```