Package 'SurrogateRegression'

Title: Surrogate Outcome Regression Analysis
Description: Performs estimation and inference on a partially missing target outcome (e.g. gene expression in an inaccessible tissue) while borrowing information from a correlated surrogate outcome (e.g. gene expression in an accessible tissue). Rather than regarding the surrogate outcome as a proxy for the target outcome, this package jointly models the target and surrogate outcomes within a bivariate regression framework. Unobserved values of either outcome are treated as missing data. In contrast to imputation-based inference, no assumptions are required regarding the relationship between the target and surrogate outcomes. Estimation in the presence of bilateral outcome missingness is performed via an expectation conditional maximization either algorithm. In the case of unilateral target missingness, estimation is performed using an accelerated least squares procedure. A flexible association test is provided for evaluating hypotheses about the target regression parameters. For additional details, see: McCaw ZR, Gaynor SM, Sun R, Lin X: "Leveraging a surrogate outcome to improve inference on a partially missing target outcome" <doi:10.1111/biom.13629>.
Authors: Zachary McCaw [aut, cre]
Maintainer: Zachary McCaw <[email protected]>
License: GPL-3
Version: 0.6.0.1
Built: 2024-12-24 06:40:44 UTC
Source: CRAN

Help Index


Bivariate Regression Model

Description

Bivariate Regression Model

Slots

Covariance

Residual covariance matrix.

Covariance.info

Information for covariance parameters.

Covariance.tab

Table of covariance parameters.

Method

Method used for estimation.

Regression.info

Information for regression coefficients.

Regression.tab

Table of regression coefficients.

Residuals

Outcome residuals.


Check Initiation

Description

Check Initiation

Usage

CheckInit(init)

Arguments

init

Optional list of initial parameters for fitting the null model.


Check Test Specification

Description

Check Test Specification

Usage

CheckTestSpec(is_zero, p)

Arguments

is_zero

Logical vector, with as many entires as columns in the target model matrix, indicating which columns have coefficient zero under the null.

p

Number of columns for the target model matrix.


Extract Coefficients from Bivariate Regression Model

Description

Extract Coefficients from Bivariate Regression Model

Usage

## S3 method for class 'bnr'
coef(object, ..., type = NULL)

Arguments

object

bnr object.

...

Unused.

type

Either Target or Surrogate.


Covariance Information Matrix

Description

Covariance Information Matrix

Usage

CovInfo(data_part, sigma)

Arguments

data_part

List of partitioned data. See PartitionData.

sigma

Target-surrogate covariance matrix.

Value

3x3 Numeric information matrix for the target variance, target-surrogate covariance, and surrogate variance.


Tabulate Covariance Parameters

Description

Tabulate Covariance Parameters

Usage

CovTab(point, info, sig = 0.05)

Arguments

point

Point estimates.

info

Information matrix.

sig

Significance level.

Value

Data.table containing the point estimate, standard error, and confidence interval.


Covariate Update

Description

Covariate Update

Usage

CovUpdate(data_part, b0, a0, b1, a1, sigma0)

Arguments

data_part

List of partitioned data. See PartitionData.

b0

Previous target regression coefficient.

a0

Previous surrogate regression coefficient.

b1

Current target regression coefficient.

a1

Current surrogate regression coefficient.

sigma0

Initial target-surrogate covariance matrix.

Value

ECM update of the target-surrogate covariance matrix.


Fit Bivariate Normal Regression Model via Expectation Maximization.

Description

Estimation procedure for bivariate normal regression models in which the target and surrogate outcomes are both subject to missingness.

Usage

FitBNEM(
  t,
  s,
  X,
  Z,
  sig = 0.05,
  b0 = NULL,
  a0 = NULL,
  sigma0 = NULL,
  maxit = 100,
  eps = 1e-06,
  report = TRUE
)

Arguments

t

Target outcome vector.

s

Surrogate outcome vector.

X

Target model matrix.

Z

Surrogate model matrix.

sig

Type I error level.

b0

Initial target regression coefficient.

a0

Initial surrogate regression coefficient.

sigma0

Initial covariance matrix.

maxit

Maximum number of parameter updates.

eps

Minimum acceptable improvement in log likelihood.

report

Report fitting progress?

Details

The target and surrogate model matrices are expected in numeric format. Include an intercept if required. Expand factors and interactions in advance. Initial values may be specified for any of the target coefficient b0, the surrogate coefficient a0, or the target-surrogate covariance matrix sigma0.

Value

An object of class 'bnr' with slots containing the estimated regression coefficients, the target-surrogate covariance matrix, the information matrices for the regression and covariance parameters, and the residuals.


Fit Bivariate Normal Regression Model via Least Squares

Description

Estimation procedure for bivariate normal regression models in which only the target outcome is subject to missingness.

Usage

FitBNLS(t, s, X, sig = 0.05)

Arguments

t

Target outcome vector.

s

Surrogate outcome vector.

X

Model matrix.

sig

Type I error level.

Details

The model matrix is expected in numeric format. Include an intercept if required. Expand factors and interactions in advance.

Value

An object of class 'bnr' with slots containing the estimated regression coefficients, the target-surrogate covariance matrix, the information matrices for the regression and covariance parameters, and the residuals.


Fit Bivariate Normal Regression Model

Description

Estimation procedure for bivariate normal regression models. The EM algorithm is applied if s contains missing values, or if X differs from Z. Otherwise, an accelerated least squares procedure is applied.

Usage

FitBNR(t, s, X, Z = NULL, sig = 0.05, ...)

Arguments

t

Target outcome vector.

s

Surrogate outcome vector.

X

Target model matrix.

Z

Surrogate model matrix. Defaults to X.

sig

Significance level.

...

Additional arguments accepted if fitting via EM. See FitBNEM.

Details

The target and surrogate model matrices are expected in numeric format. Include an intercept if required. Expand factors and interactions in advance.

Value

An object of class 'mnr' with slots containing the estimated regression coefficients, the target-surrogate covariance matrix, the information matrices for regression parameters, and the residuals.

Examples

# Case 1: No surrogate missingness.
set.seed(100)
n <- 1e3
X <- stats::rnorm(n)
data <- rBNR(
  X = X,
  Z = X,
  b = 1,
  a = -1,
  t_miss = 0.1,
  s_miss = 0.0
)
t <- data[, 1]
s <- data[, 2]

# Model fit.
fit_bnls <- FitBNR(
  t = t,
  s = s,
  X = X
)

# Case 2: Target and surrogate missingness.
set.seed(100)
n <- 1e3
X <- stats::rnorm(n)
Z <- stats::rnorm(n)
data <- rBNR(
  X = X,
  Z = Z,
  b = 1,
  a = -1,
  t_miss = 0.1,
  s_miss = 0.1
)

# Log likelihood.
fit_bnem <- FitBNR(
  t = data[, 1],
  s = data[, 2],
  X = X,
  Z = Z
)

Ordinary Least Squares

Description

Fits the standard OLS model.

Usage

fitOLS(y, X)

Arguments

y

Nx1 Numeric vector.

X

NxP Numeric matrix.

Value

List containing the following:

Beta

Regression coefficient.

V

Outcome variance.

Ibb

Information matrix for beta.

Resid

Outcome residuals.


Format Output

Description

Format Output

Usage

FormatOutput(data_part, method, b, a, sigma, sig)

Arguments

data_part

List of partitioned data. See PartitionData.

method

Estimation method.

b

Final target regression parameter.

a

Final surrogate regression parameter.

sigma

Final target-surrogate covariance matrix.

sig

Significance level.

Value

Object of class 'bnr'.


Update Iteration

Description

Update Iteration

Usage

IterUpdate(theta0, update, maxit, eps, report)

Arguments

theta0

List containing the initial parameter values.

update

Function to iterate. Should accept and return a list similar parameter values.

maxit

Maximum number of parameter updates.

eps

Minimum acceptable improvement in log likelihood.

report

Report fitting progress?


Matrix Determinant

Description

Calculates the determinant of AA.

Usage

matDet(A, logDet = FALSE)

Arguments

A

Numeric matrix.

logDet

Return the logarithm of the determinant?

Value

Scalar.


Matrix Inverse

Description

Calcualtes A1A^{-1}.

Usage

matInv(A)

Arguments

A

Numeric matrix.

Value

Numeric matrix.


Matrix Inner Product

Description

Calculates the product ABA'B.

Usage

matIP(A, B)

Arguments

A

Numeric matrix.

B

Numeric matrix.

Value

Numeric matrix.


Matrix Outer Product

Description

Calculates the outer product ABAB'.

Usage

matOP(A, B)

Arguments

A

Numeric matrix.

B

Numeric matrix.

Value

Numeric matrix.


Quadratic Form

Description

Calculates the quadratic form XAXX'AX.

Usage

matQF(X, A)

Arguments

X

Numeric matrix.

A

Numeric matrix.

Value

Numeric matrix.


Matrix Matrix Product

Description

Calculates the product ABAB.

Usage

MMP(A, B)

Arguments

A

Numeric matrix.

B

Numeric matrix.

Value

Numeric matrix.


Observed Data Log Likelihood

Description

Observed Data Log Likelihood

Usage

ObsLogLik(data_part, b, a, sigma)

Arguments

data_part

List of partitioned data. See PartitionData.

b

Target regression coefficient.

a

Surrogate regression coefficient.

sigma

Target-surrogate covariance matrix.

Value

Observed data log likelihood.


Parameter Initialization

Description

Parameter Initialization

Usage

ParamInit(data_part, b0, a0, sigma0)

Arguments

data_part

List of partitioned data. See PartitionData.

b0

Initial target regression coefficient.

a0

Initial surrogate regression coefficient.

sigma0

Initial covariance matrix.

Value

List containing initial values of beta, alpha, sigma.


Partition Data by Outcome Missingness Pattern.

Description

Partition Data by Outcome Missingness Pattern.

Usage

PartitionData(t, s, X, Z = NULL)

Arguments

t

Target outcome vector.

s

Surrogate outcome vector.

X

Target model matrix.

Z

Surrogate model matrix.

Value

List containing these components:

  • 'Orig' original data.

  • 'Dims' dimensions and names.

  • 'Complete', data for complete cases.

  • 'TMiss', data for subjects with target missingness.

  • 'SMiss', data for subjects with surrogate missingness.

  • 'IPs', inner products.

Examples

# Generate data.
n <- 1e3
X <- rnorm(n)
Z <- rnorm(n)
data <- rBNR(X = X, Z = Z, b = 1, a = -1)
data_part <- PartitionData(
  t = data[, 1], 
  s = data[, 2], 
  X = X, 
  Z = Z
)

Print for Bivariate Regression Model

Description

Print for Bivariate Regression Model

Usage

## S3 method for class 'bnr'
print(x, ..., type = "Regression")

Arguments

x

bnr object.

...

Unused.

type

Either Regression or Covariance.


Simulate Bivariate Normal Data with Missingness

Description

Function to simulate from a bivariate normal regression model with outcomes missing completely at random.

Usage

rBNR(
  X,
  Z,
  b,
  a,
  t_miss = 0,
  s_miss = 0,
  sigma = NULL,
  include_residuals = TRUE
)

Arguments

X

Target design matrix.

Z

Surrogate design matrix.

b

Target regression coefficient.

a

Surrogate regression coefficient.

t_miss

Target missingness in [0,1].

s_miss

Surrogate missingness in [0,1].

sigma

2x2 target-surrogate covariance matrix.

include_residuals

Include the residual? Default: TRUE.

Value

Numeric Nx2 matrix. The first column contains the target outcome, the second contains the surrogate outcome.

Examples

set.seed(100)
# Observations.
n <- 1e3
# Target design.
X <- cbind(1, matrix(rnorm(3 * n), nrow = n))
# Surrogate design.
Z <- cbind(1, matrix(rnorm(3 * n), nrow = n))
# Target coefficient.
b <- c(-1, 0.1, -0.1, 0.1)
# Surrogate coefficient.
a <- c(1, -0.1, 0.1, -0.1)
# Covariance structure.
sigma <- matrix(c(1, 0.5, 0.5, 1), nrow = 2)
# Data generation, target and surrogate subject to 10% missingness.
y <- rBNR(X, Z, b, a, t_miss = 0.1, s_miss = 0.1, sigma = sigma)

Regression Information

Description

Regression Information

Usage

RegInfo(data_part, sigma, as_matrix = FALSE)

Arguments

data_part

List of partitioned data. See PartitionData.

sigma

Target-surrogate covariance matrix.

as_matrix

Return as an information matrix? If FALSE, returns a list.

Value

List containing the information matrix for beta (Ibb), the information matrix for alpha (Iaa), and the cross information (Iba).


Tabulate Regression Coefficients

Description

Tabulate Regression Coefficients

Usage

RegTab(point, info, sig = 0.05)

Arguments

point

Point estimates.

info

Information matrix.

sig

Significance level.

Value

Data.table containing the point estimate, standard error, confidence interval, and Wald p-value.


Regression Update

Description

Regression Update

Usage

RegUpdate(data_part, sigma)

Arguments

data_part

List of partitioned data. See PartitionData.

sigma

Target-surrogate covariance matrix.

Value

List containing the generalized least squares estimates of beta and alpha.


Extract Residuals from Bivariate Regression Model

Description

Extract Residuals from Bivariate Regression Model

Usage

## S3 method for class 'bnr'
residuals(object, ..., type = NULL)

Arguments

object

A bnr object.

...

Unused.

type

Either Target or Surrogate.


Schur complement

Description

Calculates the efficient information IbbIbaIaa1IabI_{bb}-I_{ba}I_{aa}^{-1}I_{ab}.

Usage

SchurC(Ibb, Iaa, Iba)

Arguments

Ibb

Information of target parameter

Iaa

Information of nuisance parameter

Iba

Cross information between target and nuisance parameters

Value

Numeric matrix.


Score Test via Expectation Maximization.

Description

Performs a Score test of the null hypothesis that a subset of the regression parameters for the target outcome are zero.

Usage

ScoreBNEM(
  t,
  s,
  X,
  Z,
  is_zero,
  init = NULL,
  maxit = 100,
  eps = 1e-08,
  report = FALSE
)

Arguments

t

Target outcome vector.

s

Surrogate outcome vector.

X

Target model matrix.

Z

Surrogate model matrix.

is_zero

Logical vector, with as many entires as columns in the target model matrix, indicating which columns have coefficient zero under the null.

init

Optional list of initial parameters for fitting the null model.

maxit

Maximum number of parameter updates.

eps

Minimum acceptable improvement in log likelihood.

report

Report model fitting progress? Default is FALSE.

Value

A numeric vector containing the score statistic, the degrees of freedom, and a p-value.


Show for Bivariate Regression Model

Description

Show for Bivariate Regression Model

Usage

## S4 method for signature 'bnr'
show(object)

Arguments

object

bnr object.


SurrogateRegression: Surrogate Outcome Regression Analysis

Description

This package performs estimation and inference on a partially missing target outcome while borrowing information from a correlated surrogate outcome. Rather than regarding the surrogate outcome as a proxy for the target outcome, this package jointly models the target and surrogate outcomes within a bivariate regression framework. Unobserved values of either outcome are treated as missing data. In contrast to imputation-based inference, no assumptions are required regarding the relationship between the target and surrogate outcomes. However, in order for surrogate inference to improve power, the target and surrogate outcomes must be correlated, and the target outcome must be partially missing. The primary estimation function is FitBNR. In the case of bilateral missingness, i.e. missingness in both the target and surrogate outcomes, estimation is performed via an expectation conditional maximization either (ECME) algorithm. In the case of unilateral target missingness, estimation is performed using an accelerated least squares procedure. Inference on regression parameters for the target outcome is performed using TestBNR.

Author(s)

Zachary R. McCaw


Test Bivariate Normal Regression Model.

Description

Performs a test of the null hypothesis that a subset of the regression parameters for the target outcome are zero in the bivariate normal regression model.

Usage

TestBNR(t, s, X, Z = NULL, is_zero, test = "Wald", ...)

Arguments

t

Target outcome vector.

s

Surrogate outcome vector.

X

Target model matrix.

Z

Surrogate model matrix.

is_zero

Logical vector, with as many entires as columns in the target model matrix, indicating which columns have coefficient zero under the null.

test

Either Score or Wald. Only Wald is available for LS.

...

Additional arguments accepted if fitting via EM. See FitBNEM.

Value

A numeric vector containing the test statistic, the degrees of freedom, and a p-value.

Examples

# Generate data.
set.seed(100)
n <- 1e3
X <- cbind(1, rnorm(n))
Z <- cbind(1, rnorm(n))
data <- rBNR(X = X, Z = Z, b = c(1, 0), a = c(-1, 0), t_miss = 0.1, s_miss = 0.1)

# Test 1st coefficient.
wald_test1 <- TestBNR(
  t = data[, 1], 
  s = data[, 2], 
  X = X, 
  Z = Z,
  is_zero = c(TRUE, FALSE),
  test = "Wald"
)

score_test1 <- TestBNR(
  t = data[, 1], 
  s = data[, 2], 
  X = X, 
  Z = Z,
  is_zero = c(TRUE, FALSE),
  test = "Score"
)

# Test 2nd coefficient.
wald_test2 <- TestBNR(
  t = data[, 1], 
  s = data[, 2], 
  X = X, 
  Z = Z,
  is_zero = c(FALSE, TRUE),
  test = "Wald"
)

score_test2 <- TestBNR(
  t = data[, 1], 
  s = data[, 2], 
  X = X, 
  Z = Z,
  is_zero = c(FALSE, TRUE),
  test = "Score"
)

Matrix Trace

Description

Calculates the trace of a matrix AA.

Usage

tr(A)

Arguments

A

Numeric matrix.

Value

Scalar.


EM Update

Description

EM Update

Usage

UpdateEM(data_part, b0, a0, sigma0)

Arguments

data_part

List of partitioned data. See PartitionData.

b0

Initial target regression coefficient.

a0

Initial surrogate regression coefficient.

sigma0

Initial covariance matrix.

Value

List containing updated values for beta 'b', alpha 'a', 'sigma', the log likelihood 'loglik', and the change in log likelihood 'delta'.


Extract Covariance Matrix from Bivariate Normal Regression Model

Description

Returns the either the estimated covariance matrix of the outcome, the information matrix for regression coefficients, or the information matrix for covariance parameters.

Usage

## S3 method for class 'bnr'
vcov(object, ..., type = "Regression", inv = FALSE)

Arguments

object

bnr object.

...

Unused.

type

Select "Covariance","Outcome",or "Regression". Default is "Regression".

inv

Invert the covariance matrix? Default is FALSE.


Wald Test via Expectation Maximization.

Description

Performs a Wald test of the null hypothesis that a subset of the regression parameters for the target outcome are zero.

Usage

WaldBNEM(
  t,
  s,
  X,
  Z,
  is_zero,
  init = NULL,
  maxit = 100,
  eps = 1e-08,
  report = FALSE
)

Arguments

t

Target outcome vector.

s

Surrogate outcome vector.

X

Target model matrix.

Z

Surrogate model matrix.

is_zero

Logical vector, with as many entries as columns in the target model matrix, indicating which columns have coefficient zero under the null.

init

Optional list of initial parameters for fitting the null model, with one or more of the components: a0, b0, S0.

maxit

Maximum number of parameter updates.

eps

Minimum acceptable improvement in log likelihood.

report

Report model fitting progress? Default is FALSE.

Value

A numeric vector containing the Wald statistic, the degrees of freedom, and a p-value.


Wald Test via Least Squares.

Description

Performs a Wald test of the null hypothesis that a subset of the regression parameters for the target outcome are zero.

Usage

WaldBNLS(t, s, X, is_zero)

Arguments

t

Target outcome vector.

s

Surrogate outcome vector.

X

Model matrix.

is_zero

Logical vector, with as many entires as columns in the target model matrix, indicating which columns have coefficient zero under the null.

Value

A numeric vector containing the Wald statistic, the degrees of freedom, and a p-value.