Title: | Modelling Spatial Extremes |
---|---|
Description: | Tools for the statistical modelling of spatial extremes using max-stable processes, copula or Bayesian hierarchical models. More precisely, this package allows (conditional) simulations from various parametric max-stable models, analysis of the extremal spatial dependence, the fitting of such processes using composite likelihoods or least square (simple max-stable processes only), model checking and selection and prediction. Other approaches (although not completely in agreement with the extreme value theory) are available such as the use of (spatial) copula and Bayesian hierarchical models assuming the so-called conditional assumptions. The latter approaches is handled through an (efficient) Gibbs sampler. Some key references: Davison et al. (2012) <doi:10.1214/11-STS376>, Padoan et al. (2010) <doi:10.1198/jasa.2009.tm08577>, Dombry et al. (2013) <doi:10.1093/biomet/ass067>. |
Authors: | Mathieu Ribatet [aut, cre], Richard Singleton [ctb], R Core team [ctb] |
Maintainer: | Mathieu Ribatet <[email protected]> |
License: | GPL (>= 2) |
Version: | 2.1-0 |
Built: | 2025-01-01 06:45:23 UTC |
Source: | CRAN |
Computes analysis of deviance for objects of class 'maxstab' or 'spatgev'.
## S3 method for class 'maxstab' anova(object, object2, method = "RJ", square = "chol", ...) ## S3 method for class 'spatgev' anova(object, object2, method = "RJ", square = "chol", ...)
## S3 method for class 'maxstab' anova(object, object2, method = "RJ", square = "chol", ...) ## S3 method for class 'spatgev' anova(object, object2, method = "RJ", square = "chol", ...)
object , object2
|
Two objects of class 'maxstab' or 'spatgev'. |
method |
Character string. Must be one of "CB" or "RJ" for the
Chandler and Bate or the Rotnitzky and Jewell approaches
respectively. See function
|
square |
The choice for the matrix square root. This is only useful for the 'CB' method. Must be one of 'chol' (Cholesky) or 'svd' (Singular Value Decomposition). |
... |
Other options to be passed to the |
As ”maxstab” objects are fitted using pairwise likelihood, the model
is misspecified. As a consequence, the likelihood ratio statistic is
no longer distributed. To compute the anova
table, we use the methodology proposed by Rotnitzky and Jewell to
adjust the distribution of the likelihood ratio statistic.
This function returns an object of class anova. These objects represent analysis-of-deviance tables.
Mathieu Ribatet
Chandler, R. E. and Bate, S. (2007) Inference for clustered data using the independence loglikelihood Biometrika, 94, 167–183.
Rotnitzky, A. and Jewell, N. (1990) Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data. Biometrika 77, 485–497.
fitmaxstab
, fitspatgev
,
profile
, TIC
##Define the coordinates of each location n.site <- 30 locations <- matrix(rnorm(2*n.site, sd = sqrt(.2)), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(50, locations, cov.mod = "gauss", cov11 = 100, cov12 = 25, cov22 = 220) ##Now define the spatial model for the GEV parameters param.loc <- -10 + 2 * locations[,2] param.scale <- 5 + 2 * locations[,1] + locations[,2]^2 param.shape <- rep(0.2, n.site) ##Transform the unit Frechet margins to GEV for (i in 1:n.site) data[,i] <- frech2gev(data[,i], param.loc[i], param.scale[i], param.shape[i]) ##Define three models for the GEV margins to be fitted loc.form <- loc ~ lat scale.form <- scale ~ lon + I(lat^2) shape.form <- shape ~ lon M0 <- fitspatgev(data, locations, loc.form, scale.form, shape.form) M1 <- fitspatgev(data, locations, loc.form, scale.form, shape.form, shapeCoeff2 = 0) ##Model selection anova(M0, M1) anova(M0, M1, method = "CB", square = "svd")
##Define the coordinates of each location n.site <- 30 locations <- matrix(rnorm(2*n.site, sd = sqrt(.2)), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(50, locations, cov.mod = "gauss", cov11 = 100, cov12 = 25, cov22 = 220) ##Now define the spatial model for the GEV parameters param.loc <- -10 + 2 * locations[,2] param.scale <- 5 + 2 * locations[,1] + locations[,2]^2 param.shape <- rep(0.2, n.site) ##Transform the unit Frechet margins to GEV for (i in 1:n.site) data[,i] <- frech2gev(data[,i], param.loc[i], param.scale[i], param.shape[i]) ##Define three models for the GEV margins to be fitted loc.form <- loc ~ lat scale.form <- scale ~ lon + I(lat^2) shape.form <- shape ~ lon M0 <- fitspatgev(data, locations, loc.form, scale.form, shape.form) M1 <- fitspatgev(data, locations, loc.form, scale.form, shape.form, shapeCoeff2 = 0) ##Model selection anova(M0, M1) anova(M0, M1, method = "CB", square = "svd")
This function computes the pairwise empirical or the pairwise extremal concurrence probability estimates.
concprob(data, coord, fitted, n.bins, add = FALSE, xlim = c(0, max(dist)), ylim = c(min(0, concProb), max(1, concProb)), col = 1:2, which = "kendall", xlab, ylab, block.size = floor(nrow(data)^(1/3)), plot = TRUE, compute.std.err = FALSE, ...)
concprob(data, coord, fitted, n.bins, add = FALSE, xlim = c(0, max(dist)), ylim = c(min(0, concProb), max(1, concProb)), col = 1:2, which = "kendall", xlab, ylab, block.size = floor(nrow(data)^(1/3)), plot = TRUE, compute.std.err = FALSE, ...)
data |
A matrix representing the data. Each column corresponds to one location. |
coord |
A matrix that gives the coordinates of each location. Each row corresponds to one location. |
fitted |
An object of class maxstab - usually the output of the
|
n.bins |
The number of bins to be used. If missing, pairwise F-madogram estimates will be computed. |
xlim , ylim
|
A numeric vector of length 2 specifying the x/y coordinate ranges. |
col |
The colors used for the points and optionnaly the fitted curve. |
which |
A character string specifying which estimator should be used. Should be one of "emp" (empirical), "boot" (bootstrap version) and "kendall" (kendall based). |
xlab , ylab
|
The labels for the x/y-axis (may be missing). |
add |
Logical. If |
block.size |
Integer specifying the block size for the empirical and bootstrap estimator. |
plot |
Logical. If |
compute.std.err |
Logical. If |
... |
Additional options to be passed to the |
This function returns invisibly a matrix containing the pairwise distances and the concurrence probability estimates.
Mathieu Ribatet
Dombry, C., Ribatet, M. and Stoev, S. (2017) Probabilities of concurrent extremes. To appear in JASA
n.site <- 25 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins n.obs <- 100 data <- rmaxstab(n.obs, locations, cov.mod = "whitmat", nugget = 0, range = 1, smooth = 1.75) ##Compute the F-madogram concprob(data, locations) ##Compare the F-madogram with a fitted max-stable process fitted <- fitmaxstab(data, locations, "whitmat", nugget = 0) concprob(fitted = fitted)
n.site <- 25 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins n.obs <- 100 data <- rmaxstab(n.obs, locations, cov.mod = "whitmat", nugget = 0, range = 1, smooth = 1.75) ##Compute the F-madogram concprob(data, locations) ##Compare the F-madogram with a fitted max-stable process fitted <- fitmaxstab(data, locations, "whitmat", nugget = 0) concprob(fitted = fitted)
This function produces maps for concurrence probabilities or expected concurrence cell areas.
concurrencemap(data, coord, which = "kendall", type = "cell", n.grid = 100, col = cm.colors(64), plot = TRUE, plot.border = NULL, compute.std.err = FALSE, ...)
concurrencemap(data, coord, which = "kendall", type = "cell", n.grid = 100, col = cm.colors(64), plot = TRUE, plot.border = NULL, compute.std.err = FALSE, ...)
data |
A matrix representing the data. Each column corresponds to one location. |
coord |
A matrix that gives the coordinates of each location. Each row corresponds to one location. |
which |
A character string specifying which estimator should be used. Should be one of "emp" (empirical), "boot" (bootstrap version) and "kendall" (kendall based). |
type |
Either "cell" for cell areas or a integer between 1 and the number of locations specifying which site should be used as reference location—see Details. |
n.grid |
Integer specifying the size of the prediction grid. |
col |
The colors used to produce the map. |
plot |
Logical. If |
plot.border |
The name of an R function that can be used to plot
the border of the study region. If |
compute.std.err |
Logical. If |
... |
Additional options to be passed to the
|
This function returns invisibly a list with the x and y coordinates and the corresponding values for the estimated concurrence probabilities or expected concurrence cell area.
Mathieu Ribatet
Dombry, C., Ribatet, M. and Stoev, S. (2015) Probabilities of concurrent extremes. Submitted
##require(maps) ## <<-- to plot US borders data(USHCNTemp) coord <- as.matrix(metadata[,2:3]) ## Subset the station to have a fast example n.site <- 30 chosen.site <- sample(nrow(coord), n.site) coord <- coord[chosen.site,] maxima.summer <- maxima.summer[,chosen.site] ## Define a function to plot the border border <- function(add = FALSE) maps::map("usa", add = add) par(mar = rep(0, 4)) ## Produce a pairwise concurrence probability map w.r.t. station number 15 concurrencemap(maxima.summer, coord, type = 15, plot.border = border, compute.std.err = TRUE) ## Produce the expected concurrence cell area concurrencemap(maxima.summer, coord, plot.border = border)
##require(maps) ## <<-- to plot US borders data(USHCNTemp) coord <- as.matrix(metadata[,2:3]) ## Subset the station to have a fast example n.site <- 30 chosen.site <- sample(nrow(coord), n.site) coord <- coord[chosen.site,] maxima.summer <- maxima.summer[,chosen.site] ## Define a function to plot the border border <- function(add = FALSE) maps::map("usa", add = add) par(mar = rep(0, 4)) ## Produce a pairwise concurrence probability map w.r.t. station number 15 concurrencemap(maxima.summer, coord, type = 15, plot.border = border, compute.std.err = TRUE) ## Produce the expected concurrence cell area concurrencemap(maxima.summer, coord, plot.border = border)
Produces a conditional 2D map from a fitted max-stable process.
condmap(fitted, fix.coord, x, y, covariates = NULL, ret.per1 = 100, ret.per2 = ret.per1, col = terrain.colors(64), plot.contour = TRUE, ...)
condmap(fitted, fix.coord, x, y, covariates = NULL, ret.per1 = 100, ret.per2 = ret.per1, col = terrain.colors(64), plot.contour = TRUE, ...)
fitted |
An object of class |
fix.coord |
The spatial coordinates of the location from which the conditional quantile is computed. |
x , y
|
Numeric vector defining the grid at which the levels are computed. |
covariates |
An array specifying the covariates at each grid
point defined by |
ret.per1 , ret.per2
|
Numerics giving the return period for which the quantile map is plotted. See details. |
col |
A list of colors such as that generated by 'rainbow', 'heat.colors', 'topo.colors', 'terrain.colors' or similar functions. |
plot.contour |
Logical. If |
... |
Several arguments to be passed to the |
The function solves the following equation:
where .
In other words, it computes, given that at location we
exceed the level
, the levels which is expected to be
exceeded in average every
year.
A plot. Additionally, a list with the details for plotting the map is returned invisibly.
Mathieu Ribatet
map
, filled.contour
,
heatmap
, heat.colors
,
topo.colors
, terrain.colors
,
rainbow
##Define the coordinate of each location n.site <- 30 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(50, locations, cov.mod = "whitmat", nugget = 0, range = 2, smooth = 1) ##Now define the spatial model for the GEV parameters param.loc <- -10 - 4 * locations[,1] + locations[,2]^2 param.scale <- 5 + locations[,2] + locations[,1]^2 / 10 param.shape <- rep(.2, n.site) ##Transform the unit Frechet margins to GEV for (i in 1:n.site) data[,i] <- frech2gev(data[,i], param.loc[i], param.scale[i], param.shape[i]) ##Define a model for the GEV margins to be fitted ##shape ~ 1 stands for the GEV shape parameter is constant ##over the region loc.form <- loc ~ lon + I(lat^2) scale.form <- scale ~ lat + I(lon^2) shape.form <- shape ~ 1 ## 1- Fit a max-stable process fitted <- fitmaxstab(data, locations, "whitmat", loc.form, scale.form, shape.form, nugget = 0) cond.coord <- c(5.1, 5.1) condmap(fitted, cond.coord, seq(0, 10, length = 25), seq(0,10, length =25), ret.per1 = 100, ret.per2 = 1.5) points(t(cond.coord), pch = "*", col = 2, cex = 2)
##Define the coordinate of each location n.site <- 30 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(50, locations, cov.mod = "whitmat", nugget = 0, range = 2, smooth = 1) ##Now define the spatial model for the GEV parameters param.loc <- -10 - 4 * locations[,1] + locations[,2]^2 param.scale <- 5 + locations[,2] + locations[,1]^2 / 10 param.shape <- rep(.2, n.site) ##Transform the unit Frechet margins to GEV for (i in 1:n.site) data[,i] <- frech2gev(data[,i], param.loc[i], param.scale[i], param.shape[i]) ##Define a model for the GEV margins to be fitted ##shape ~ 1 stands for the GEV shape parameter is constant ##over the region loc.form <- loc ~ lon + I(lat^2) scale.form <- scale ~ lat + I(lon^2) shape.form <- shape ~ 1 ## 1- Fit a max-stable process fitted <- fitmaxstab(data, locations, "whitmat", loc.form, scale.form, shape.form, nugget = 0) cond.coord <- c(5.1, 5.1) condmap(fitted, cond.coord, seq(0, 10, length = 25), seq(0,10, length =25), ret.per1 = 100, ret.per2 = 1.5) points(t(cond.coord), pch = "*", col = 2, cex = 2)
This function generates conditional simulation of Gaussian random fields from the simple kriging predictor.
condrgp(n, coord, data.coord, data, cov.mod = "powexp", mean = 0, sill = 1, range = 1, smooth = 1, grid = FALSE, control = list())
condrgp(n, coord, data.coord, data, cov.mod = "powexp", mean = 0, sill = 1, range = 1, smooth = 1, grid = FALSE, control = list())
n |
Integer. The number of conditional simulations. |
coord |
A numeric vector or matrix specifying the coordinates
where the process has to be generated. If |
data.coord |
A numeric vector or matrix specifying the coordinates where the process is conditioned. |
data |
A numeric vector giving the conditioning observations. |
cov.mod |
A character string specifying the covariance function family. Must be one of "whitmat", "powexp", "cauchy" or "bessel" for the Whittle-Mater, the powered exponential, the Cauchy or Bessel covariance families. |
mean , sill , range , smooth
|
The mean, sill, range and smooth of the Gaussian process. |
grid |
Logical. Does |
control |
A named list passing options to the simulation method
of Gaussian processes — see |
A list with components:
coord |
The coordinates at which the process was simulated; |
cond.sim |
The simulated process; |
data.coord |
The coordinates of the conditioning locations; |
data |
The conditioning observations; |
cov.mod |
The covariance function family; |
grid |
Does |
Mathieu Ribatet
## Several conditional simulations n.site <- 50 n.sim <- 512 x.obs <- runif(n.site, -100, 100) x.sim <- seq(-100, 100, length = n.sim) data <- rgp(1, x.obs, "whitmat", sill = 1, range = 10, smooth = 0.75) sim <- condrgp(5, x.sim, x.obs, data, "whitmat", sill = 1, range = 10, smooth = 0.75) matplot(x.sim, t(sim$cond.sim), type = "l", lty = 1, xlab = "x", ylab = expression(Y[cond](x))) points(x.obs, data, pch = 21, bg = 1) title("Five conditional simulations") ## Comparison between one conditional simulations and the kriging ## predictor on a grid x.obs <- matrix(runif(2 * n.site, -100, 100), ncol = 2) x <- y <- seq(-100, 100, length = 100) x.sim <- cbind(x, y) data <- rgp(1, x.obs, "whitmat", sill = 1, range = 50, smooth = 0.75) krig <- kriging(data, x.obs, x.sim, "whitmat", sill = 1, range = 50, smooth = 0.75, grid = TRUE) sim <- condrgp(1, x.sim, x.obs, data, "whitmat", sill = 1, range = 50, smooth = 0.75, grid = TRUE) z.lim <- range(c(sim$cond.sim, data, krig$krig.est)) breaks <- seq(z.lim[1], z.lim[2], length = 65) col <- heat.colors(64) idx <- as.numeric(cut(data, breaks)) op <- par(mfrow = c(1,2)) image(x, y, krig$krig.est, col = col, breaks = breaks) points(x.obs, bg = col[idx], pch = 21) title("Kriging predictor") image(x, y, sim$cond.sim, col = col, breaks = breaks) points(x.obs, bg = col[idx], pch = 21) title("Conditional simulation") ## Note how the background colors of the above points matches the ones ## returned by the image function par(op)
## Several conditional simulations n.site <- 50 n.sim <- 512 x.obs <- runif(n.site, -100, 100) x.sim <- seq(-100, 100, length = n.sim) data <- rgp(1, x.obs, "whitmat", sill = 1, range = 10, smooth = 0.75) sim <- condrgp(5, x.sim, x.obs, data, "whitmat", sill = 1, range = 10, smooth = 0.75) matplot(x.sim, t(sim$cond.sim), type = "l", lty = 1, xlab = "x", ylab = expression(Y[cond](x))) points(x.obs, data, pch = 21, bg = 1) title("Five conditional simulations") ## Comparison between one conditional simulations and the kriging ## predictor on a grid x.obs <- matrix(runif(2 * n.site, -100, 100), ncol = 2) x <- y <- seq(-100, 100, length = 100) x.sim <- cbind(x, y) data <- rgp(1, x.obs, "whitmat", sill = 1, range = 50, smooth = 0.75) krig <- kriging(data, x.obs, x.sim, "whitmat", sill = 1, range = 50, smooth = 0.75, grid = TRUE) sim <- condrgp(1, x.sim, x.obs, data, "whitmat", sill = 1, range = 50, smooth = 0.75, grid = TRUE) z.lim <- range(c(sim$cond.sim, data, krig$krig.est)) breaks <- seq(z.lim[1], z.lim[2], length = 65) col <- heat.colors(64) idx <- as.numeric(cut(data, breaks)) op <- par(mfrow = c(1,2)) image(x, y, krig$krig.est, col = col, breaks = breaks) points(x.obs, bg = col[idx], pch = 21) title("Kriging predictor") image(x, y, sim$cond.sim, col = col, breaks = breaks) points(x.obs, bg = col[idx], pch = 21) title("Conditional simulation") ## Note how the background colors of the above points matches the ones ## returned by the image function par(op)
This function generates (approximate) conditional simulation of unit Frechet max-linear random fields. It can be used to get approximate conditional simulation for max-stable processes.
condrmaxlin(n, coord, data.coord, data, cov.mod = "gauss", ..., grid = FALSE, p = 10000)
condrmaxlin(n, coord, data.coord, data, cov.mod = "gauss", ..., grid = FALSE, p = 10000)
n |
Integer. The number of conditional simulations. |
coord |
A numeric vector or matrix specifying the coordinates
where the process has to be generated. If |
data.coord |
A numeric vector or matrix specifying the coordinates where the process is conditioned. |
data |
A numeric vector giving the conditioning observations. |
cov.mod |
A character string specifying the max-stable model. See section Details. |
... |
The parameters of the max-stable model. See section Details. |
grid |
Logical. Does |
p |
An integer. The number of unit Frechet random variables used in the max-linear approximation. |
Any unit Frechet max-stable processes can be
approximated by a unit Frechet max-linear process, i.e.,
where are non-negative deterministic functions,
is a sufficiently large integer and
are
independent unit Frechet random variables. Note that to ensure unit
Frechet margins, the following condition has to be satisfied
for all .
Currently only the discretized Smith model is implemented for which
where
is the zero mean (multivariate) normal density with covariance matrix
,
is a sequence of deterministic
points appropriately chosen and
is a constant
ensuring unit Frechet margins.
A matrix containing observations from the required max-stable
model. Each column represents one stations. If grid = TRUE
, the
function returns an array of dimension nrow(coord) x nrow(coord) x n.
It may happen that some conditional observations are not honored
because the approximation of a max-stable process by a max-linear one
isn't accurate enough! Sometimes taking a larger p
solves the
issue.
Mathieu Ribatet
Wang, Y. and Stoev, S. A. (2011) Conditional Sampling for Max-Stable Random Fields. Advances in Applied Probability.
## One dimensional conditional simulations n.cond.site <- 10 cond.coord <- runif(n.cond.site, -10, 10) data <- rmaxlin(1, cond.coord, var = 3, p = 10000) x <- seq(-10, 10, length = 250) cond.sim <- condrmaxlin(5, x, cond.coord, data, var = 3) matplot(x, t(log(cond.sim)), type = "l", lty = 1, pch = 1) points(cond.coord, log(data)) ## Two dimensional conditional simulation cond.coord <- matrix(runif(2 * n.cond.site, -10, 10), ncol = 2) data <- rmaxstab(1, cond.coord, "gauss", cov11 = 4, cov12 = 0, cov22 = 4) x <- y <- seq(-10, 10, length = 75) cond.sim <- condrmaxlin(4, cbind(x, y), cond.coord, data, cov11 = 4, cov12 = 0, cov22 = 4, grid = TRUE, p = 2000) ## Note p is set to 2000 for CPU reasons but is likely to be too small op <- par(mfrow = c(2, 2), mar = rep(1, 4)) for (i in 1:4){ image(x, y, log(cond.sim[,,i]), col = heat.colors(64), xaxt = "n", yaxt = "n", bty = "n") contour(x, y, log(cond.sim[,,i]), add = TRUE) text(cond.coord[,1], cond.coord[,2], round(log(data), 2), col = 3) } par(op)
## One dimensional conditional simulations n.cond.site <- 10 cond.coord <- runif(n.cond.site, -10, 10) data <- rmaxlin(1, cond.coord, var = 3, p = 10000) x <- seq(-10, 10, length = 250) cond.sim <- condrmaxlin(5, x, cond.coord, data, var = 3) matplot(x, t(log(cond.sim)), type = "l", lty = 1, pch = 1) points(cond.coord, log(data)) ## Two dimensional conditional simulation cond.coord <- matrix(runif(2 * n.cond.site, -10, 10), ncol = 2) data <- rmaxstab(1, cond.coord, "gauss", cov11 = 4, cov12 = 0, cov22 = 4) x <- y <- seq(-10, 10, length = 75) cond.sim <- condrmaxlin(4, cbind(x, y), cond.coord, data, cov11 = 4, cov12 = 0, cov22 = 4, grid = TRUE, p = 2000) ## Note p is set to 2000 for CPU reasons but is likely to be too small op <- par(mfrow = c(2, 2), mar = rep(1, 4)) for (i in 1:4){ image(x, y, log(cond.sim[,,i]), col = heat.colors(64), xaxt = "n", yaxt = "n", bty = "n") contour(x, y, log(cond.sim[,,i]), add = TRUE) text(cond.coord[,1], cond.coord[,2], round(log(data), 2), col = 3) } par(op)
This function performs conditional simulation of various max-stable processes.
condrmaxstab(k = 1, coord, cond.coord, cond.data, cov.mod = "powexp", ..., do.sim = TRUE, thin = n.cond, burnin = 50, parts)
condrmaxstab(k = 1, coord, cond.coord, cond.data, cov.mod = "powexp", ..., do.sim = TRUE, thin = n.cond, burnin = 50, parts)
k |
An integer. The number of conditional simulations to be generated. |
coord |
A vector or matrix that gives the coordinates of each location. Each row corresponds to one location - if any. |
cond.coord |
A vector or matrix that gives the coordinates of each conditional location. Each row corresponds to one location - if any. |
cond.data |
A vector that gives the conditional values at the corresponding conditioning locations. Each row corresponds to one location - if any. |
cov.mod |
A character string that gives the max-stable model. This must be one of "brown" for the Brown-Resnick model, or "whitmat", "cauchy", "powexp" and "bessel" for the Schlather model with the given correlation family. |
... |
The parameters of the max-stable model. See
|
do.sim |
A logical value. If |
thin |
A positive integer giving by which amount the generated Markov chain should be thinned. This is only useful when the number of conditioning locations is greater than 7. |
burnin |
A positive integer giving the duration of the burnin period of the Markov chain. |
parts |
A matrix giving the hitting scenarios. Each row corresponds to one hitting scenarios. If missing then a Gibbs sampler will be used to generate such hitting scenarios. |
The algorithm consists in three steps:
Draw a random partition from
Given the random partition, draw the extremal functions from
Independently, draw the sub-extremal functions, i.e.,
The distribution in Step 1 is usually intractable and in such cases a random scan Gibbs sampler will be used to sample from this distribution.
This function returns a list whose components are
sim |
The conditional simulations. Beware the first values corresponds to the conditioning values. |
sub.ext.fct |
The values of the sub-extremal functions. |
ext.fct |
The values of the extremal functions. |
timings |
The timings in seconds for each step of the algorithm. |
This function can be extremely time consuming when the number of conditioning locations is large.
Mathieu Ribatet
Dombry, C. and Eyi-Minko, F. (2012) Regular conditional distributions of max infinitely divisible processes. Submitted.
Dombry, C., Eyi-Minko, F. and Ribatet, M. (2012) Conditional simulation of max-stable processes. To appear in Biometrika.
n.sim <- 50 n.cond <- 5 range <- 10 smooth <- 1.5 n.site <- 200 coord <- seq(-5, 5, length = n.site) cond.coord <- seq(-4, 4, length = n.cond) all.coord <- c(cond.coord, coord) all.cond.data <- rmaxstab(1, all.coord, "powexp", nugget = 0, range = range, smooth = smooth) cond.data <- all.cond.data[1:n.cond] ans <- condrmaxstab(n.sim, coord, cond.coord, cond.data, range = range, smooth = smooth, cov.mod = "powexp") idx <- order(all.coord) matplot(coord, t(log(ans$sim)), type = "l", col = "grey", lty = 1, xlab = expression(x), ylab = expression(Z(x))) lines(all.coord[idx], log(all.cond.data)[idx]) points(cond.coord, log(cond.data), pch = 15, col = 2)
n.sim <- 50 n.cond <- 5 range <- 10 smooth <- 1.5 n.site <- 200 coord <- seq(-5, 5, length = n.site) cond.coord <- seq(-4, 4, length = n.cond) all.coord <- c(cond.coord, coord) all.cond.data <- rmaxstab(1, all.coord, "powexp", nugget = 0, range = range, smooth = smooth) cond.data <- all.cond.data[1:n.cond] ans <- condrmaxstab(n.sim, coord, cond.coord, cond.data, range = range, smooth = smooth, cov.mod = "powexp") idx <- order(all.coord) matplot(coord, t(log(ans$sim)), type = "l", col = "grey", lty = 1, xlab = expression(x), ylab = expression(Z(x))) lines(all.coord[idx], log(all.cond.data)[idx]) points(cond.coord, log(cond.data), pch = 15, col = 2)
This function defines and computes several covariance function either from a fitted “max-stable” model; either by specifying directly the covariance parameters.
covariance(fitted, nugget, sill, range, smooth, smooth2 = NULL, cov.mod = "whitmat", plot = TRUE, dist, xlab, ylab, col = 1, ...)
covariance(fitted, nugget, sill, range, smooth, smooth2 = NULL, cov.mod = "whitmat", plot = TRUE, dist, xlab, ylab, col = 1, ...)
fitted |
An object of class “maxstab”. Most often this will be
the output of the |
nugget , sill , range , smooth , smooth2
|
The nugget, sill, scale and smooth parameters
for the covariance function. May be missing if |
cov.mod |
Character string. The name of the covariance
model. Must be one of "whitmat", "cauchy", "powexp", "bessel" or
"caugen" for the Whittle-Matern, Cauchy, Powered Exponential, Bessel
and Generalized Cauchy models. May be missing if |
plot |
Logical. If |
dist |
A numeric vector corresponding to the distance at which the covariance function should be evaluated. May be missing. |
xlab , ylab
|
The x-axis and y-axis labels. May be missing. |
col |
The color to be used for the plot. |
... |
Several option to be passed to the |
Currently, four covariance functions are defined: the Whittle-Matern,
powered exponential (also known as "stable"), Cauchy and Bessel
models. These covariance functions are defined as follows for
where ,
and
are the sill, the range and shape parameters,
is the gamma function,
and
are both
modified Bessel functions of order
. In addition
a nugget effect can be set that is there is a jump at the origin,
i.e.,
, where
is the nugget effect.
This function returns the covariance function. Eventually, if
dist
is given, the covariance function is computed for each
distance given by dist
. If plot = TRUE
, the covariance
function is plotted.
Mathieu Ribatet
## 1- Calling covariance using fixed covariance parameters covariance(nugget = 0, sill = 1, range = 1, smooth = 0.5, cov.mod = "whitmat") covariance(nugget = 0, sill = 0.5, range = 1, smooth = 0.5, cov.mod = "whitmat", dist = seq(0,5, 0.2), plot = FALSE) ## 2- Calling covariance from a fitted model ##Define the coordinate of each location n.site <- 30 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(30, locations, cov.mod = "whitmat", nugget = 0, range = 3, smooth = 1) ##Fit a max-stable model fitted <- fitmaxstab(data, locations, "whitmat", nugget = 0) covariance(fitted, ylim = c(0, 1)) covariance(nugget = 0, sill = 1, range = 3, smooth = 1, cov.mod = "whitmat", add = TRUE, col = 3) title("Whittle-Matern covariance function") legend("topright", c("Theo.", "Fitted"), lty = 1, col = c(3,1), inset = .05)
## 1- Calling covariance using fixed covariance parameters covariance(nugget = 0, sill = 1, range = 1, smooth = 0.5, cov.mod = "whitmat") covariance(nugget = 0, sill = 0.5, range = 1, smooth = 0.5, cov.mod = "whitmat", dist = seq(0,5, 0.2), plot = FALSE) ## 2- Calling covariance from a fitted model ##Define the coordinate of each location n.site <- 30 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(30, locations, cov.mod = "whitmat", nugget = 0, range = 3, smooth = 1) ##Fit a max-stable model fitted <- fitmaxstab(data, locations, "whitmat", nugget = 0) covariance(fitted, ylim = c(0, 1)) covariance(nugget = 0, sill = 1, range = 3, smooth = 1, cov.mod = "whitmat", add = TRUE, col = 3) title("Whittle-Matern covariance function") legend("topright", c("Theo.", "Fitted"), lty = 1, col = c(3,1), inset = .05)
Estimates the penalty coefficient from the cross-validation criterion.
cv(y, x, knots, degree, plot = TRUE, n.points = 150, ...)
cv(y, x, knots, degree, plot = TRUE, n.points = 150, ...)
y |
The response vector. |
x |
A vector/matrix giving the values of the predictor
variable(s). If |
knots |
A vector givint the coordinates of the knots. |
degree |
The degree of the penalized smoothing spline. |
plot |
Logical. If |
n.points |
A numeric giving the number of CV computations needed to produce the plot. |
... |
Options to be passed to the |
For every linear smoother e.g. , the cross-validation criterion consists in minimizing
the following quantity:
where is the penalty coefficient,
the
number of observations and
the
i-th diagonal element of the matrix
.
A list with components 'penalty', 'cv' and 'nlm.code' which give the
location of the minimum, the value of the cross-validation
criterion at that point and the code returned by the nlm
function - useful to assess for convergence issues.
Mathieu Ribatet
Ruppert, D. Wand, M.P. and Carrol, R.J. (2003) Semiparametric Regression Cambridge Series in Statistical and Probabilistic Mathematics.
n <- 200 x <- runif(n) fun <- function(x) sin(3 * pi * x) y <- fun(x) + rnorm(n, 0, sqrt(0.4)) knots <- quantile(x, prob = 1:(n/4) / (n/4 + 1)) cv(y, x, knots = knots, degree = 3)
n <- 200 x <- runif(n) fun <- function(x) sin(3 * pi * x) y <- fun(x) + rnorm(n, 0, sqrt(0.4)) knots <- quantile(x, prob = 1:(n/4) / (n/4 + 1)) cv(y, x, knots = knots, degree = 3)
This function computes the Deviance Information Criterion (DIC), and related quantities, which is a hierarchical modeling generalization of the Akaike Information Criterion. It is useful for Bayesian model selection.
DIC(object, ..., fun = "mean")
DIC(object, ..., fun = "mean")
object |
An object of class |
... |
Optional arguments. Not implemented. |
fun |
A chararcter string giving the name of the function to be used to summarize the Markov chain. The default is to consider the posterior mean. |
The deviance is
where are the data,
are the unknown
parameters of the models and
is
the likelihood function. Thus the expected deviance, a measure of how
well the model fits the data, is given by
while the effective number of parameters is
where is point estimate of the posterior
distribution, e.g., the posterior mean. Finally the DIC is given by
In accordance with the AIC, models with smaller DIC should be preferred to models with larger DIC. Roughly speaking, differences of more than 10 might rule out the model with the higher DIC, differences between 5 and 10 are substantial.
A vector of length 3 that returns the DIC, effective number of
parameters eNoP
and an estimate of the expected deviance
Dbar
.
Mathieu Ribatet
Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van Der Linde, A. (2002) Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B 64, 583–639.
## Generate realizations from the model n.site <- 15 n.obs <- 35 coord <- cbind(lon = runif(n.site, -10, 10), lat = runif(n.site, -10 , 10)) gp.loc <- rgp(1, coord, "powexp", sill = 4, range = 20, smooth = 1) gp.scale <- rgp(1, coord, "powexp", sill = 0.4, range = 5, smooth = 1) gp.shape <- rgp(1, coord, "powexp", sill = 0.01, range = 10, smooth = 1) locs <- 26 + 0.5 * coord[,"lon"] + gp.loc scales <- 10 + 0.2 * coord[,"lat"] + gp.scale shapes <- 0.15 + gp.shape data <- matrix(NA, n.obs, n.site) for (i in 1:n.site) data[,i] <- rgev(n.obs, locs[i], scales[i], shapes[i]) loc.form <- y ~ lon scale.form <- y ~ lat shape.form <- y ~ 1 hyper <- list() hyper$sills <- list(loc = c(1,8), scale = c(1,1), shape = c(1,0.02)) hyper$ranges <- list(loc = c(2,20), scale = c(1,5), shape = c(1, 10)) hyper$smooths <- list(loc = c(1,1/3), scale = c(1,1/3), shape = c(1, 1/3)) hyper$betaMeans <- list(loc = rep(0, 2), scale = c(9, 0), shape = 0) hyper$betaIcov <- list(loc = solve(diag(c(400, 100))), scale = solve(diag(c(400, 100))), shape = solve(diag(c(10), 1, 1))) ## We will use an exponential covariance function so the jump sizes for ## the shape parameter of the covariance function are null. prop <- list(gev = c(2.5, 1.5, 0.3), ranges = c(40, 20, 20), smooths = c(0,0,0)) start <- list(sills = c(4, .36, 0.009), ranges = c(24, 17, 16), smooths = c(1, 1, 1), beta = list(loc = c(26, 0), scale = c(10, 0), shape = c(0.15))) mc <- latent(data, coord, loc.form = loc.form, scale.form = scale.form, shape.form = shape.form, hyper = hyper, prop = prop, start = start, n = 500) DIC(mc)
## Generate realizations from the model n.site <- 15 n.obs <- 35 coord <- cbind(lon = runif(n.site, -10, 10), lat = runif(n.site, -10 , 10)) gp.loc <- rgp(1, coord, "powexp", sill = 4, range = 20, smooth = 1) gp.scale <- rgp(1, coord, "powexp", sill = 0.4, range = 5, smooth = 1) gp.shape <- rgp(1, coord, "powexp", sill = 0.01, range = 10, smooth = 1) locs <- 26 + 0.5 * coord[,"lon"] + gp.loc scales <- 10 + 0.2 * coord[,"lat"] + gp.scale shapes <- 0.15 + gp.shape data <- matrix(NA, n.obs, n.site) for (i in 1:n.site) data[,i] <- rgev(n.obs, locs[i], scales[i], shapes[i]) loc.form <- y ~ lon scale.form <- y ~ lat shape.form <- y ~ 1 hyper <- list() hyper$sills <- list(loc = c(1,8), scale = c(1,1), shape = c(1,0.02)) hyper$ranges <- list(loc = c(2,20), scale = c(1,5), shape = c(1, 10)) hyper$smooths <- list(loc = c(1,1/3), scale = c(1,1/3), shape = c(1, 1/3)) hyper$betaMeans <- list(loc = rep(0, 2), scale = c(9, 0), shape = 0) hyper$betaIcov <- list(loc = solve(diag(c(400, 100))), scale = solve(diag(c(400, 100))), shape = solve(diag(c(10), 1, 1))) ## We will use an exponential covariance function so the jump sizes for ## the shape parameter of the covariance function are null. prop <- list(gev = c(2.5, 1.5, 0.3), ranges = c(40, 20, 20), smooths = c(0,0,0)) start <- list(sills = c(4, .36, 0.009), ranges = c(24, 17, 16), smooths = c(1, 1, 1), beta = list(loc = c(26, 0), scale = c(10, 0), shape = c(0.15))) mc <- latent(data, coord, loc.form = loc.form, scale.form = scale.form, shape.form = shape.form, hyper = hyper, prop = prop, start = start, n = 500) DIC(mc)
This function computes euclidean distance or distance vector for each pair of a set of spatial locations.
distance(coord, vec = FALSE)
distance(coord, vec = FALSE)
coord |
A matrix representing the coordinates of each locations. Each row corresponds to one location. |
vec |
Logical. If |
If vec = FALSE
, this function returns a vector that gives the
euclidean distance for each pair of locations. Otherwise, this is a
matrix where each column correspond to one dimension -
i.e. longitude, latitude, ...
Mathieu Ribatet
coords <- cbind(seq(0, 10, by = 2), seq(10, 0, by = -2)) distance(coords) distance(coords, vec = TRUE)
coords <- cbind(seq(0, 10, by = 2), seq(10, 0, by = -2)) distance(coords) distance(coords, vec = TRUE)
Plots the extremal coefficient evolution as the coordinates evolves.
extcoeff(fitted, cov.mod, param, n = 200, xlab, ylab, ...)
extcoeff(fitted, cov.mod, param, n = 200, xlab, ylab, ...)
fitted |
A object of class " |
cov.mod |
A character string corresponding the the covariance
model in the max-stable representation. Must be one of "gauss" for
the Smith's model; or "whitmat", "cauchy" or "powexp" for
the Whittle-Matern, the Cauchy and the Powered Exponential
covariance family with the Schlather's model. May be missing if
|
param |
Numeric vector of length 3. The parameters for the Smith's or Schlather model - i.e. c(cov11, cov12, cov22) or c(nugget, range, smooth). Please respect this order. |
n |
Numeric. |
xlab , ylab
|
The x-axis and y-axis labels. May be missing. |
... |
Several options to be passed to the |
A plot.
Mathieu Ribatet
## 1- Random field generation n.site <- 30 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") data <- rmaxstab(60, locations, cov.mod = "whitmat", nugget = 0, range = 3, smooth = 1) ## 2- Fit a max-stable processes schlather <- fitmaxstab(data, locations, "whitmat", nugget = 0) ## 3- Plot the extremal coefficient extcoeff(schlather)
## 1- Random field generation n.site <- 30 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") data <- rmaxstab(60, locations, cov.mod = "whitmat", nugget = 0, range = 3, smooth = 1) ## 2- Fit a max-stable processes schlather <- fitmaxstab(data, locations, "whitmat", nugget = 0) ## 3- Plot the extremal coefficient extcoeff(schlather)
This function fits various copula-based models to spatial extremes data sets.
fitcopula(data, coord, copula = "gaussian", cov.mod = "whitmat", loc.form, scale.form, shape.form, marg.cov = NULL, temp.cov = NULL, temp.form.loc = NULL, temp.form.scale = NULL, temp.form.shape = NULL, ..., start, control = list(maxit = 10000), method = "Nelder", std.err = TRUE, warn = TRUE, corr = FALSE)
fitcopula(data, coord, copula = "gaussian", cov.mod = "whitmat", loc.form, scale.form, shape.form, marg.cov = NULL, temp.cov = NULL, temp.form.loc = NULL, temp.form.scale = NULL, temp.form.shape = NULL, ..., start, control = list(maxit = 10000), method = "Nelder", std.err = TRUE, warn = TRUE, corr = FALSE)
data |
A matrix representing the data. Each column corresponds to one location. |
coord |
A matrix that gives the coordinates of each location. Each row corresponds to one location. |
copula |
A character string. Must be one of "gaussian" and "student" for a Gaussian and Student copula. |
cov.mod |
A character string corresponding to the correlation function family used in the copula. Must be one of "whitmat", "cauchy", "powexp", "bessel" or "caugen" for the Whittle-Matern, the Cauchy, the Powered Exponential, the Bessel and the Generalized Cauchy correlation families. |
loc.form , scale.form , shape.form
|
R formulas defining the
spatial linear model for the GEV parameters. May be missing. See
section Details of function |
marg.cov |
Matrix with named columns giving additional covariates
for the GEV parameters. If |
temp.cov |
Matrix with names columns giving additional *temporal*
covariates for the GEV parameters. If |
temp.form.loc , temp.form.scale , temp.form.shape
|
R formulas
defining the temporal trends for the GEV parameters. May be
missing. See section Details of function |
... |
Several arguments to be passed to the
|
start |
A named list giving the initial values for the
parameters over which the pairwise likelihood is to be minimized. If
|
control |
A list giving the control parameters to be passed to
the |
method |
The method used for the numerical optimisation
procedure. Must be one of |
std.err |
Logical. Should the standard errors be computed ? The
default is to return the standard errors, i.e., |
warn |
Logical. If |
corr |
Logical. If |
This function returns a object of class copula
.
This function does not use max-stable copula and the use of non max-stable copula for modelling spatial extreme is highly questionable. This function was mainly implemented for educational purposes and not for concrete modelling purposes.
Mathieu Ribatet
Davison, A.C., Padoan, S.A., Ribatet, M. (2010) Statistical Modelling of Spatial Extremes. Submitted to Statistical Science.
## Not run: n.site <- 30 n.obs <- 50 coord <- matrix(runif(2 * n.site, -10, 10), ncol = 2) colnames(coord) <- c("lon", "lat") ## Generate data from a Gaussian copula model data <- rcopula(n.obs, coord, "gaussian", "powexp", nugget = 0, range = 4, smooth = 1.2) ## Transform the margins to GEV locs <- -5 + coord[,"lon"] / 10 scales <- 10 + coord[,"lat"] / 2 shapes <- rep(0.2, n.site) for (i in 1:n.site) data[,i] <- frech2gev(data[,i], locs[i], scales[i], shapes[i]) ## Fit a Gaussian copula model ## 1. Define trend surfaces loc.form <- y ~ lon scale.form <- y ~ lat shape.form <- y ~ 1 ## 2. Fit M0 <- fitcopula(data, coord, "gaussian", "powexp", loc.form, scale.form, shape.form, nugget = 0) ## End(Not run)
## Not run: n.site <- 30 n.obs <- 50 coord <- matrix(runif(2 * n.site, -10, 10), ncol = 2) colnames(coord) <- c("lon", "lat") ## Generate data from a Gaussian copula model data <- rcopula(n.obs, coord, "gaussian", "powexp", nugget = 0, range = 4, smooth = 1.2) ## Transform the margins to GEV locs <- -5 + coord[,"lon"] / 10 scales <- 10 + coord[,"lat"] / 2 shapes <- rep(0.2, n.site) for (i in 1:n.site) data[,i] <- frech2gev(data[,i], locs[i], scales[i], shapes[i]) ## Fit a Gaussian copula model ## 1. Define trend surfaces loc.form <- y ~ lon scale.form <- y ~ lat shape.form <- y ~ 1 ## 2. Fit M0 <- fitcopula(data, coord, "gaussian", "powexp", loc.form, scale.form, shape.form, nugget = 0) ## End(Not run)
Estimates the covariance function for the Schlather's model using non-parametric estimates of the pairwise extremal coefficients.
fitcovariance(data, coord, cov.mod, marge = "emp", control = list(), ..., start, weighted = TRUE)
fitcovariance(data, coord, cov.mod, marge = "emp", control = list(), ..., start, weighted = TRUE)
data |
A matrix representing the data. Each column corresponds to one location. |
coord |
A matrix that gives the coordinates of each location. Each row corresponds to one location. |
cov.mod |
A character string corresponding the the covariance model in the Schlather's model. Must be one of "whitmat", "cauchy", "powexp", "bessel" or "caugen" for the Whittle-Matern, the Cauchy, the Powered Exponential, the Bessel and the Generalized Cauchy correlation families. |
marge |
Character string specifying how margins are transformed
to unit Frechet. Must be one of "emp", "frech" or "mle" - see
function |
control |
The control arguments to be passed to the
|
... |
Optional arguments to be passed to the |
start |
A named list giving the initial values for the
parameters over which the weighted sum of square is to be
minimized. If |
weighted |
Logical. Should weighted least squares be used? |
The fitting procedure is based on weighted least squares. More precisely, the fitting criteria is to minimize:
where is a non
parametric estimate of the extremal coefficient related to location
i
and j
, is
the fitted extremal coefficient derived from the Schlather's model and
are the standard errors related to the
estimates
.
An object of class maxstab.
Mathieu Ribatet
Smith, R. L. (1990) Max-stable processes and spatial extremes. Unpublished manuscript.
fitcovmat
, fitmaxstab
,
fitextcoeff
n.site <- 50 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulating a max-stable process using RandomFields ##This is the Schlather's approach data <- rmaxstab(50, locations, cov.mod = "whitmat", nugget = 0, range = 30, smooth = 1) fitcovariance(data, locations, "whitmat")
n.site <- 50 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulating a max-stable process using RandomFields ##This is the Schlather's approach data <- rmaxstab(50, locations, cov.mod = "whitmat", nugget = 0, range = 30, smooth = 1) fitcovariance(data, locations, "whitmat")
Estimates the covariance matrix for the Smith's model using non-parametric estimates of the pairwise extremal coefficients.
fitcovmat(data, coord, marge = "emp", iso = FALSE, control = list(), ..., start, weighted = TRUE)
fitcovmat(data, coord, marge = "emp", iso = FALSE, control = list(), ..., start, weighted = TRUE)
data |
A matrix representing the data. Each column corresponds to one location. |
coord |
A matrix that gives the coordinates of each location. Each row corresponds to one location. |
marge |
Character string specifying how margins are transformed
to unit Frechet. Must be one of "emp", "frech" or "mle" - see
function |
iso |
Logical. If |
control |
The control arguments to be passed to the
|
... |
Optional arguments to be passed to the |
start |
A named list giving the initial values for the
parameters over which the weighted sum of square is to be
minimized. If |
weighted |
Logical. Should weighted least squares be used? |
The fitting procedure is based on weighted least squares. More precisely, the fitting criteria is to minimize:
where is a non
parametric estimate of the extremal coefficient related to location
i
and j
, is
the fitted extremal coefficient derived from the Smith's model and
are the standard errors related to the
estimates
.
An object of class maxstab.
Mathieu Ribatet
Smith, R. L. (1990) Max-stable processes and spatial extremes. Unpublished manuscript.
fitcovariance
, fitmaxstab
,
fitextcoeff
n.site <- 50 n.obs <- 100 locations <- matrix(runif(2*n.site, 0, 40), ncol = 2) colnames(locations) <- c("lon", "lat") ## Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(50, locations, cov.mod = "gauss", cov11 = 200, cov12 = 0, cov22 = 200) fitcovmat(data, locations) ##Force an isotropic model fitcovmat(data, locations, iso = TRUE)
n.site <- 50 n.obs <- 100 locations <- matrix(runif(2*n.site, 0, 40), ncol = 2) colnames(locations) <- c("lon", "lat") ## Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(50, locations, cov.mod = "gauss", cov11 = 200, cov12 = 0, cov22 = 200) fitcovmat(data, locations) ##Force an isotropic model fitcovmat(data, locations, iso = TRUE)
Estimates non parametrically the extremal coefficient function.
fitextcoeff(data, coord, ..., estim = "ST", marge = "emp", prob = 0, plot = TRUE, loess = TRUE, method = "BFGS", std.err = TRUE, xlab, ylab, angles = NULL, identify = FALSE)
fitextcoeff(data, coord, ..., estim = "ST", marge = "emp", prob = 0, plot = TRUE, loess = TRUE, method = "BFGS", std.err = TRUE, xlab, ylab, angles = NULL, identify = FALSE)
data |
A matrix representing the data. Each column corresponds to one location. |
coord |
A matrix that gives the coordinates of each location. Each row corresponds to one location. |
... |
Additional options to be passed to the |
estim |
Character string specifying the estimator to be used. Must be one of "ST" (Schlather and Tawn) or "Smith". |
marge |
Character string specifying how margins are transformed to unit Frechet. Must be one of "emp", "mle" or "none" - see Details |
prob |
The probability related to the threshold. Only useful with
the |
plot |
Logical. If |
loess |
If |
method |
The optimizer used when fitting the GEV distribution to
data. See function |
std.err |
Logical. If |
xlab , ylab
|
The x-axis and y-axis labels. May be missing. |
angles |
A numeric vector. A partition of the interval
|
identify |
Logical. If |
During the estimation procedure, data need to be transformed to unit Frechet margins firts. This can be done in two different ways ; by using the empirical CDF or the GEV ML estimates.
If marge = "emp"
, then the data are transformed using the
following relation:
where are the observations available at location
,
is the empirical CDF and
are the
observations transformed to unit Frechet scale.
If marge = "mle"
, then the data are transformed using the MLE
of the GEV distribution - see function gev2frech
.
Lastly, if data are already supposed to be unit Frechet, then no
transformation is performed if one passed the option marge =
"frech"
.
If data
are already componentwise maxima, prob
should be
zero. Otherwise, users have to define a threshold (large
enough) where univariate extreme value arguments are relevant. We
define
prob
such that .
Plots the extremal coefficient function and returns the points used
for the plot. If loess = TRUE
, the output is a list with
argument "ext.coeff" and "loess".
Mathieu Ribatet
Schlather, M. and Tawn, J. A. (2003) A dependence measure for multivariate and spatial extreme values: Properties and inference. Biometrika 90(1):139–156.
Smith, R. L. (1990) Max-stable processes and spatial extremes. Unpublished manuscript.
n.site <- 30 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(50, locations, cov.mod = "gauss", cov11 = 10, cov12 = 40, cov22 = 220) ##Plot the extremal coefficient function op <- par(mfrow=c(1,2)) fitextcoeff(data, locations, estim = "Smith") fitextcoeff(data, locations, angles = seq(-pi, pi, length = 4), estim = "Smith") par(op)
n.site <- 30 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(50, locations, cov.mod = "gauss", cov11 = 10, cov12 = 40, cov22 = 220) ##Plot the extremal coefficient function op <- par(mfrow=c(1,2)) fitextcoeff(data, locations, estim = "Smith") fitextcoeff(data, locations, angles = seq(-pi, pi, length = 4), estim = "Smith") par(op)
This function fits max-stable processes to data using pairwise likelihood. Two max-stable characterisations are available: the Smith and Schlather representations.
fitmaxstab(data, coord, cov.mod, loc.form, scale.form, shape.form, marg.cov = NULL, temp.cov = NULL, temp.form.loc = NULL, temp.form.scale = NULL, temp.form.shape = NULL, iso = FALSE, ..., fit.marge = FALSE, warn = TRUE, method = "Nelder", start, control = list(), weights = NULL, corr = FALSE, check.grad = FALSE)
fitmaxstab(data, coord, cov.mod, loc.form, scale.form, shape.form, marg.cov = NULL, temp.cov = NULL, temp.form.loc = NULL, temp.form.scale = NULL, temp.form.shape = NULL, iso = FALSE, ..., fit.marge = FALSE, warn = TRUE, method = "Nelder", start, control = list(), weights = NULL, corr = FALSE, check.grad = FALSE)
data |
A matrix representing the data. Each column corresponds to one location. |
coord |
A matrix that gives the coordinates of each location. Each row corresponds to one location. |
cov.mod |
A character string corresponding to the covariance model in the max-stable representation. Must be one of "gauss" for the Smith's model; "whitmat", "cauchy", "powexp", "bessel" or "caugen" for the Whittle-Matern, the Cauchy, the Powered Exponential, the Bessel and the Generalized Cauchy correlation families with the Schlather's model; "brown" for Brown-Resnick processes. The geometric Gaussian and Extremal-t models with a Whittle-Matern correlation function can be fitted by passing respectively "gwhitmat" or "twhitmat". Other correlation function families are considered in a similar way. |
loc.form , scale.form , shape.form
|
R formulas defining the spatial linear model for the GEV parameters. May be missing. See section Details. |
marg.cov |
Matrix with named columns giving additional covariates
for the GEV parameters. If |
temp.cov |
Matrix with names columns giving additional *temporal*
covariates for the GEV parameters. If |
temp.form.loc , temp.form.scale , temp.form.shape
|
R formulas defining the temporal trends for the GEV parameters. May be missing. See section Details. |
iso |
Logical. If |
... |
Several arguments to be passed to the
|
fit.marge |
Logical. If |
warn |
Logical. If |
method |
The method used for the numerical optimisation
procedure. Must be one of |
start |
A named list giving the initial values for the
parameters over which the pairwise likelihood is to be minimized. If
|
control |
A list giving the control parameters to be passed to
the |
weights |
A numeric vector specifying the weights in the pairwise
likelihood - and so has length the number of pairs. If |
corr |
Logical. If |
check.grad |
Logical. If |
As spatial data often deal with a large number of locations, it is impossible to write analytically the joint distribution. Consequently, the fitting procedure substitutes the "full likelihood" for the pairwise likelihood.
Let define the
likelihood for site
and
, where
,
,
is the number of site within the region and
are the joint observations for site
and
. Then the pairwise likelihood
is defined by:
As pairwise likelihood is an approximation of the “full likelihood”, standard errors cannot be computed directly by the inverse of the Fisher information matrix. Instead, a sandwich estimate must be used to account for model mispecification e.g.
where is the Fisher information matrix (computed from the
misspecified model) and
is the variance of the score
function.
There are two different kind of covariates : "spatial" and "temporal".
A "spatial" covariate may have different values accross station but
does not depend on time. For example the coordinates of the stations
are obviously "spatial". These "spatial" covariates should be used
with the marg.cov
and loc.form, scale.form, shape.form
.
A "temporal" covariates may have different values accross time but
does not depend on space. For example the years where the annual
maxima were recorded is "temporal". These "temporal" covariates should
be used with the temp.cov
and temp.form.loc,
temp.form.scale, temp.form.shape
.
As a consequence note that marg.cov
must have K rows (K being
the number of sites) while temp.cov
must have n rows (n being
the number of observations).
This function returns a object of class maxstab
. Such objects
are list with components:
fitted.values |
A vector containing the estimated parameters. |
std.err |
A vector containing the standard errors. |
fixed |
A vector containing the parameters of the model that have been held fixed. |
param |
A vector containing all parameters (optimised and fixed). |
deviance |
The (pairwise) deviance at the maximum pairwise likelihood estimates. |
corr |
The correlation matrix. |
convergence , counts , message
|
Components taken from the
list returned by |
data |
The data analysed. |
model |
The max-stable characterisation used. |
fit.marge |
A logical that specifies if the GEV margins were estimated. |
cov.fun |
The estimated covariance function - for the Schlather model only. |
extCoeff |
The estimated extremal coefficient function. |
cov.mod |
The covariance model for the spatial structure. |
When using reponse surfaces to model spatially the GEV parameters, the likelihood is pretty rough so that the general purpose optimization routines may fail. It is your responsability to check if the numerical optimization succeeded or not. I tried, as best as I can, to provide warning messages if the optimizers failed but in some cases, no warning will appear!
Mathieu Ribatet
Cox, D. R. and Reid, N. (2004) A note on pseudo-likelihood constructed from marginal densities. Biometrika 91, 729–737.
Demarta, S. and McNeil, A. (2005) The t copula and Related Copulas International Statistical Review 73, 111-129.
Gholam–Rezaee, M. (2009) Spatial extreme value: A composite likelihood. PhD Thesis. Ecole Polytechnique Federale de Lausanne.
Kabluchko, Z., Schlather, M. and de Haan, L. (2009) Stationary max-stable fields associated to negative definite functions Annals of Probability 37:5, 2042–2065.
Padoan, S. A. (2008) Computational Methods for Complex Problems in Extreme Value Theory. PhD Thesis. University of Padova.
Padoan, S. A., Ribatet, M. and Sisson, S. A. (2010) Likelihood-based inference for max-stable processes. Journal of the American Statistical Association (Theory and Methods) 105:489, 263-277.
Schlather, M. (2002) Models for Stationary Max-Stable Random Fields. Extremes 5:1, 33–44.
Smith, R. L. (1990) Max-stable processes and spatial extremes. Unpublished.
## Not run: ##Define the coordinate of each location n.site <- 30 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(40, locations, cov.mod = "whitmat", nugget = 0, range = 3, smooth = 0.5) ##Now define the spatial model for the GEV parameters param.loc <- -10 + 2 * locations[,2] param.scale <- 5 + 2 * locations[,1] + locations[,2]^2 param.shape <- rep(0.2, n.site) ##Transform the unit Frechet margins to GEV for (i in 1:n.site) data[,i] <- frech2gev(data[,i], param.loc[i], param.scale[i], param.shape[i]) ##Define a model for the GEV margins to be fitted ##shape ~ 1 stands for the GEV shape parameter is constant ##over the region loc.form <- loc ~ lat scale.form <- scale ~ lon + I(lat^2) shape.form <- shape ~ 1 ##Fit a max-stable process using the Schlather's model fitmaxstab(data, locations, "whitmat", loc.form, scale.form, shape.form) ## Model without any spatial structure for the GEV parameters ## Be careful this could be *REALLY* time consuming fitmaxstab(data, locations, "whitmat") ## Fixing the smooth parameter of the Whittle-Matern family ## to 0.5 - e.g. considering exponential family. We suppose the data ## are unit Frechet here. fitmaxstab(data, locations, "whitmat", smooth = 0.5, fit.marge = FALSE) ## Fitting a penalized smoothing splines for the margins with the ## Smith's model data <- rmaxstab(40, locations, cov.mod = "gauss", cov11 = 100, cov12 = 25, cov22 = 220) ## And transform it to ordinary GEV margins with a non-linear ## function fun <- function(x) 2 * sin(pi * x / 4) + 10 fun2 <- function(x) (fun(x) - 7 ) / 15 param.loc <- fun(locations[,2]) param.scale <- fun(locations[,2]) param.shape <- fun2(locations[,1]) ##Transformation from unit Frechet to common GEV margins for (i in 1:n.site) data[,i] <- frech2gev(data[,i], param.loc[i], param.scale[i], param.shape[i]) ##Defining the knots, penalty, degree for the splines n.knots <- 5 knots <- quantile(locations[,2], prob = 1:n.knots/(n.knots+1)) knots2 <- quantile(locations[,1], prob = 1:n.knots/(n.knots+1)) ##Be careful the choice of the penalty (i.e. the smoothing parameter) ##may strongly affect the result Here we use p-splines for each GEV ##parameter - so it's really CPU demanding but one can use 1 p-spline ##and 2 linear models. ##A simple linear model will be clearly faster... loc.form <- y ~ rb(lat, knots = knots, degree = 3, penalty = .5) scale.form <- y ~ rb(lat, knots = knots, degree = 3, penalty = .5) shape.form <- y ~ rb(lon, knots = knots2, degree = 3, penalty = .5) fitted <- fitmaxstab(data, locations, "gauss", loc.form, scale.form, shape.form, control = list(ndeps = rep(1e-6, 24), trace = 10), method = "BFGS") fitted op <- par(mfrow=c(1,3)) plot(locations[,2], param.loc, col = 2, ylim = c(7, 14), ylab = "location parameter", xlab = "latitude") plot(fun, from = 0, to = 10, add = TRUE, col = 2) points(locations[,2], predict(fitted)[,"loc"], col = "blue", pch = 5) new.data <- cbind(lon = seq(0, 10, length = 100), lat = seq(0, 10, length = 100)) lines(new.data[,1], predict(fitted, new.data)[,"loc"], col = "blue") legend("topleft", c("true values", "predict. values", "true curve", "predict. curve"), col = c("red", "blue", "red", "blue"), pch = c(1, 5, NA, NA), inset = 0.05, lty = c(0, 0, 1, 1), ncol = 2) plot(locations[,2], param.scale, col = 2, ylim = c(7, 14), ylab = "scale parameter", xlab = "latitude") plot(fun, from = 0, to = 10, add = TRUE, col = 2) points(locations[,2], predict(fitted)[,"scale"], col = "blue", pch = 5) lines(new.data[,1], predict(fitted, new.data)[,"scale"], col = "blue") legend("topleft", c("true values", "predict. values", "true curve", "predict. curve"), col = c("red", "blue", "red", "blue"), pch = c(1, 5, NA, NA), inset = 0.05, lty = c(0, 0, 1, 1), ncol = 2) plot(locations[,1], param.shape, col = 2, ylab = "shape parameter", xlab = "longitude") plot(fun2, from = 0, to = 10, add = TRUE, col = 2) points(locations[,1], predict(fitted)[,"shape"], col = "blue", pch = 5) lines(new.data[,1], predict(fitted, new.data)[,"shape"], col = "blue") legend("topleft", c("true values", "predict. values", "true curve", "predict. curve"), col = c("red", "blue", "red", "blue"), pch = c(1, 5, NA, NA), inset = 0.05, lty = c(0, 0, 1, 1), ncol = 2) par(op) ## End(Not run)
## Not run: ##Define the coordinate of each location n.site <- 30 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(40, locations, cov.mod = "whitmat", nugget = 0, range = 3, smooth = 0.5) ##Now define the spatial model for the GEV parameters param.loc <- -10 + 2 * locations[,2] param.scale <- 5 + 2 * locations[,1] + locations[,2]^2 param.shape <- rep(0.2, n.site) ##Transform the unit Frechet margins to GEV for (i in 1:n.site) data[,i] <- frech2gev(data[,i], param.loc[i], param.scale[i], param.shape[i]) ##Define a model for the GEV margins to be fitted ##shape ~ 1 stands for the GEV shape parameter is constant ##over the region loc.form <- loc ~ lat scale.form <- scale ~ lon + I(lat^2) shape.form <- shape ~ 1 ##Fit a max-stable process using the Schlather's model fitmaxstab(data, locations, "whitmat", loc.form, scale.form, shape.form) ## Model without any spatial structure for the GEV parameters ## Be careful this could be *REALLY* time consuming fitmaxstab(data, locations, "whitmat") ## Fixing the smooth parameter of the Whittle-Matern family ## to 0.5 - e.g. considering exponential family. We suppose the data ## are unit Frechet here. fitmaxstab(data, locations, "whitmat", smooth = 0.5, fit.marge = FALSE) ## Fitting a penalized smoothing splines for the margins with the ## Smith's model data <- rmaxstab(40, locations, cov.mod = "gauss", cov11 = 100, cov12 = 25, cov22 = 220) ## And transform it to ordinary GEV margins with a non-linear ## function fun <- function(x) 2 * sin(pi * x / 4) + 10 fun2 <- function(x) (fun(x) - 7 ) / 15 param.loc <- fun(locations[,2]) param.scale <- fun(locations[,2]) param.shape <- fun2(locations[,1]) ##Transformation from unit Frechet to common GEV margins for (i in 1:n.site) data[,i] <- frech2gev(data[,i], param.loc[i], param.scale[i], param.shape[i]) ##Defining the knots, penalty, degree for the splines n.knots <- 5 knots <- quantile(locations[,2], prob = 1:n.knots/(n.knots+1)) knots2 <- quantile(locations[,1], prob = 1:n.knots/(n.knots+1)) ##Be careful the choice of the penalty (i.e. the smoothing parameter) ##may strongly affect the result Here we use p-splines for each GEV ##parameter - so it's really CPU demanding but one can use 1 p-spline ##and 2 linear models. ##A simple linear model will be clearly faster... loc.form <- y ~ rb(lat, knots = knots, degree = 3, penalty = .5) scale.form <- y ~ rb(lat, knots = knots, degree = 3, penalty = .5) shape.form <- y ~ rb(lon, knots = knots2, degree = 3, penalty = .5) fitted <- fitmaxstab(data, locations, "gauss", loc.form, scale.form, shape.form, control = list(ndeps = rep(1e-6, 24), trace = 10), method = "BFGS") fitted op <- par(mfrow=c(1,3)) plot(locations[,2], param.loc, col = 2, ylim = c(7, 14), ylab = "location parameter", xlab = "latitude") plot(fun, from = 0, to = 10, add = TRUE, col = 2) points(locations[,2], predict(fitted)[,"loc"], col = "blue", pch = 5) new.data <- cbind(lon = seq(0, 10, length = 100), lat = seq(0, 10, length = 100)) lines(new.data[,1], predict(fitted, new.data)[,"loc"], col = "blue") legend("topleft", c("true values", "predict. values", "true curve", "predict. curve"), col = c("red", "blue", "red", "blue"), pch = c(1, 5, NA, NA), inset = 0.05, lty = c(0, 0, 1, 1), ncol = 2) plot(locations[,2], param.scale, col = 2, ylim = c(7, 14), ylab = "scale parameter", xlab = "latitude") plot(fun, from = 0, to = 10, add = TRUE, col = 2) points(locations[,2], predict(fitted)[,"scale"], col = "blue", pch = 5) lines(new.data[,1], predict(fitted, new.data)[,"scale"], col = "blue") legend("topleft", c("true values", "predict. values", "true curve", "predict. curve"), col = c("red", "blue", "red", "blue"), pch = c(1, 5, NA, NA), inset = 0.05, lty = c(0, 0, 1, 1), ncol = 2) plot(locations[,1], param.shape, col = 2, ylab = "shape parameter", xlab = "longitude") plot(fun2, from = 0, to = 10, add = TRUE, col = 2) points(locations[,1], predict(fitted)[,"shape"], col = "blue", pch = 5) lines(new.data[,1], predict(fitted, new.data)[,"shape"], col = "blue") legend("topleft", c("true values", "predict. values", "true curve", "predict. curve"), col = c("red", "blue", "red", "blue"), pch = c(1, 5, NA, NA), inset = 0.05, lty = c(0, 0, 1, 1), ncol = 2) par(op) ## End(Not run)
This function derives the MLE of a spatial GEV model.
fitspatgev(data, covariables, loc.form, scale.form, shape.form, temp.cov = NULL, temp.form.loc = NULL, temp.form.scale = NULL, temp.form.shape = NULL, ..., start, control = list(maxit = 10000), method = "Nelder", warn = TRUE, corr = FALSE)
fitspatgev(data, covariables, loc.form, scale.form, shape.form, temp.cov = NULL, temp.form.loc = NULL, temp.form.scale = NULL, temp.form.shape = NULL, ..., start, control = list(maxit = 10000), method = "Nelder", warn = TRUE, corr = FALSE)
data |
A matrix representing the data. Each column corresponds to one location. |
covariables |
Matrix with named columns giving required covariates for the GEV parameter models. |
loc.form , scale.form , shape.form
|
R formulas defining the spatial models for the GEV parameters. See section Details. |
temp.cov |
Matrix with names columns giving additional *temporal*
covariates for the GEV parameters. If |
temp.form.loc , temp.form.scale , temp.form.shape
|
R formulas defining the temporal trends for the GEV parameters. May be missing. See section Details. |
start |
A named list giving the initial values for the
parameters over which the pairwise likelihood is to be minimized. If
|
... |
Several arguments to be passed to the
|
control |
The control argument to be passed to the
|
method |
The method used for the numerical optimisation
procedure. Must be one of |
warn |
Logical. If |
corr |
Logical. If |
A kind of "spatial" GEV model can be defined by using response surfaces for the GEV parameters. For instance, the GEV location parameters are defined through the following equation:
where is the design matrix and
is the vector parameter to be
estimated. The GEV scale and shape parameters are defined accordingly
to the above equation.
The log-likelihood for the GEV spatial model is consequently defined as follows:
where is the vector of the GEV parameters for
the
-th site.
Most often, there will be some dependence between stations. However, it can be seen from the log-likelihood definition that we supposed that the stations are mutually independent. Consequently, to get reliable standard error estimates, these standard errors are estimated with their sandwich estimates.
There are two different kind of covariates : "spatial" and "temporal".
A "spatial" covariate may have different values accross station but
does not depend on time. For example the coordinates of the stations
are obviously "spatial". These "spatial" covariates should be used
with the marg.cov
and loc.form, scale.form, shape.form
.
A "temporal" covariates may have different values accross time but
does not depend on space. For example the years where the annual
maxima were recorded is "temporal". These "temporal" covariates should
be used with the temp.cov
and temp.form.loc,
temp.form.scale, temp.form.shape
.
As a consequence note that marg.cov
must have K rows (K being
the number of sites) while temp.cov
must have n rows (n being
the number of observations).
An object of class spatgev
. Namely, this is a list with the
following arguments:
fitted.values |
The parameter estimates. |
param |
All the parameters e.g. parameter estimates and fixed parameters. |
std.err |
The standard errors. |
var.cov |
The asymptotic MLE variance covariance matrix. |
counts , message , convergence
|
Some information about the optimization procedure. |
logLik , deviance
|
The log-likelihood and deviance values. |
loc.form , scale.form , shape.form
|
The formulas defining the spatial models for the GEV parameters. |
covariables |
The covariables used for the spatial models. |
ihessian |
The inverse of the Hessian matrix of the negative log-likelihood. |
jacobian |
The variance covariance matrix of the score. |
Mathieu Ribatet
## 1- Simulate a max-stable random field n.site <- 35 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") data <- rmaxstab(50, locations, cov.mod = "whitmat", nugget = 0, range = 3, smooth = 0.5) ## 2- Transformation to non unit Frechet margins param.loc <- -10 + 2 * locations[,2] param.scale <- 5 + 2 * locations[,1] param.shape <- rep(0.2, n.site) for (i in 1:n.site) data[,i] <- frech2gev(data[,i], param.loc[i], param.scale[i], param.shape[i]) ## 3- Fit a ''spatial GEV'' mdoel to data with the following models for ## the GEV parameters form.loc <- loc ~ lat form.scale <- scale ~ lon form.shape <- shape ~ 1 fitspatgev(data, locations, form.loc, form.scale, form.shape)
## 1- Simulate a max-stable random field n.site <- 35 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") data <- rmaxstab(50, locations, cov.mod = "whitmat", nugget = 0, range = 3, smooth = 0.5) ## 2- Transformation to non unit Frechet margins param.loc <- -10 + 2 * locations[,2] param.scale <- 5 + 2 * locations[,1] param.shape <- rep(0.2, n.site) for (i in 1:n.site) data[,i] <- frech2gev(data[,i], param.loc[i], param.scale[i], param.shape[i]) ## 3- Fit a ''spatial GEV'' mdoel to data with the following models for ## the GEV parameters form.loc <- loc ~ lat form.scale <- scale ~ lon form.shape <- shape ~ 1 fitspatgev(data, locations, form.loc, form.scale, form.shape)
Computes the F-madogram for max-stable processes.
fmadogram(data, coord, fitted, n.bins, which = c("mado", "ext"), xlab, ylab, col = c(1, 2), angles = NULL, marge = "emp", add = FALSE, xlim = c(0, max(dist)), ...)
fmadogram(data, coord, fitted, n.bins, which = c("mado", "ext"), xlab, ylab, col = c(1, 2), angles = NULL, marge = "emp", add = FALSE, xlim = c(0, max(dist)), ...)
data |
A matrix representing the data. Each column corresponds to one location. |
coord |
A matrix that gives the coordinates of each location. Each row corresponds to one location. |
fitted |
An object of class maxstab - usually the output of the
|
n.bins |
The number of bins to be used. If missing, pairwise F-madogram estimates will be computed. |
which |
A character vector of maximum size 2. It specifies if the madogram and/or the extremal coefficient functions have to be plotted. |
xlab , ylab
|
The x-axis and y-axis labels. May be missing. Note
that |
col |
The colors used for the points and optionnaly the fitted curve. |
angles |
A numeric vector. A partition of the interval
|
marge |
Character string. If 'emp', the probabilities of non exceedances are estimated using the empirical CDF. If 'mle' (default), maximum likelihood estimates are used. |
add |
Logical. If |
xlim |
A numeric vector of length 2 specifying the x coordinate range. |
... |
Additional options to be passed to the |
Let be a stationary process. The F-madogram is
defined as follows:
The extremal coefficient satisfies:
A graphic and (invisibly) a matrix with the lag distances, the F-madogram and extremal coefficient estimates.
Mathieu Ribatet
Cooley, D., Naveau, P. and Poncet, P. (2006) Variograms for spatial max-stable random fields. Dependence in Probability and Statistics, 373–390.
n.site <- 15 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(40, locations, cov.mod = "whitmat", nugget = 0, range = 1, smooth = 2) ##Compute the F-madogram fmadogram(data, locations) ##Compare the F-madogram with a fitted max-stable process fitted <- fitmaxstab(data, locations, "whitmat", nugget = 0) fmadogram(fitted = fitted, which = "ext")
n.site <- 15 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(40, locations, cov.mod = "whitmat", nugget = 0, range = 1, smooth = 2) ##Compute the F-madogram fmadogram(data, locations) ##Compare the F-madogram with a fitted max-stable process fitted <- fitmaxstab(data, locations, "whitmat", nugget = 0) fmadogram(fitted = fitted, which = "ext")
Estimates the penalty coefficient from the generalized cross-validation criterion.
gcv(y, x, knots, degree, plot = TRUE, n.points = 150, ...)
gcv(y, x, knots, degree, plot = TRUE, n.points = 150, ...)
y |
The response vector. |
x |
A vector/matrix giving the values of the predictor
variable(s). If |
knots |
A vector givint the coordinates of the knots. |
degree |
The degree of the penalized smoothing spline. |
plot |
Logical. If |
n.points |
A numeric giving the number of CV computations needed to produce the plot. |
... |
Options to be passed to the |
For every linear smoother e.g. , the cross-validation criterion consists in minimizing
the following quantity:
where is the penalty coefficient,
the
number of observations and
is the
trace of the matrix
.
A list with components 'penalty', 'gcv' and 'nlm.code' which give the
location of the minimum, the value of the cross-validation
criterion at that point and the code returned by the link{nlm}
function - useful to assess for convergence issues.
Mathieu Ribatet
Ruppert, D. Wand, M.P. and Carrol, R.J. (2003) Semiparametric Regression Cambridge Series in Statistical and Probabilistic Mathematics.
n <- 200 x <- runif(n) fun <- function(x) sin(3 * pi * x) y <- fun(x) + rnorm(n, 0, sqrt(0.4)) knots <- quantile(x, prob = 1:(n/4) / (n/4 + 1)) gcv(y, x, knots = knots, degree = 3)
n <- 200 x <- runif(n) fun <- function(x) sin(3 * pi * x) y <- fun(x) + rnorm(n, 0, sqrt(0.4)) knots <- quantile(x, prob = 1:(n/4) / (n/4 + 1)) gcv(y, x, knots = knots, degree = 3)
Density, distribution function, quantile function and random generation for the GP distribution with location equal to 'loc', scale equal to 'scale' and shape equal to 'shape'.
rgev(n, loc = 0, scale = 1, shape = 0) pgev(q, loc = 0, scale = 1, shape = 0, lower.tail = TRUE) qgev(p, loc = 0, scale = 1, shape = 0, lower.tail = TRUE) dgev(x, loc = 0, scale = 1, shape = 0, log = FALSE)
rgev(n, loc = 0, scale = 1, shape = 0) pgev(q, loc = 0, scale = 1, shape = 0, lower.tail = TRUE) qgev(p, loc = 0, scale = 1, shape = 0, lower.tail = TRUE) dgev(x, loc = 0, scale = 1, shape = 0, log = FALSE)
x , q
|
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. |
loc |
vector of the location parameters. |
scale |
vector of the scale parameters. |
shape |
a numeric of the shape parameter. |
lower.tail |
logical; if TRUE (default), probabilities are |
log |
logical; if TRUE, probabilities p are given as log(p). |
If 'loc', 'scale' and 'shape' are not specified they assume the default values of '0', '1' and '0', respectively.
The GEV distribution function for loc = , scale =
and shape =
is
for
and
, where
. If
, the distribution is defined by continuity
corresponding to the Gumbel distribution.
dgev(0.1) rgev(100, 1, 2, 0.2) qgev(seq(0.1, 0.9, 0.1), 1, 0.5, -0.2) pgev(12.6, 2, 0.5, 0.1)
dgev(0.1) rgev(100, 1, 2, 0.2) qgev(seq(0.1, 0.9, 0.1), 1, 0.5, -0.2) pgev(12.6, 2, 0.5, 0.1)
Density, distribution function, quantile function and random generation for the GP distribution with location equal to 'loc', scale equal to 'scale' and shape equal to 'shape'.
rgpd(n, loc = 0, scale = 1, shape = 0) pgpd(q, loc = 0, scale = 1, shape = 0, lower.tail = TRUE, lambda = 0) qgpd(p, loc = 0, scale = 1, shape = 0, lower.tail = TRUE, lambda = 0) dgpd(x, loc = 0, scale = 1, shape = 0, log = FALSE)
rgpd(n, loc = 0, scale = 1, shape = 0) pgpd(q, loc = 0, scale = 1, shape = 0, lower.tail = TRUE, lambda = 0) qgpd(p, loc = 0, scale = 1, shape = 0, lower.tail = TRUE, lambda = 0) dgpd(x, loc = 0, scale = 1, shape = 0, log = FALSE)
x , q
|
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. |
loc |
vector of the location parameters. |
scale |
vector of the scale parameters. |
shape |
a numeric of the shape parameter. |
lower.tail |
logical; if TRUE (default), probabilities are |
log |
logical; if TRUE, probabilities p are given as log(p). |
lambda |
a single probability - see the "value" section. |
If 'loc', 'scale' and 'shape' are not specified they assume the default values of '0', '1' and '0', respectively.
The GP distribution function for loc = , scale =
and shape =
is
for
and
, where
. If
, the distribution is defined by continuity
corresponding to the exponential distribution.
By definition, the GP distribution models exceedances above a
threshold. In particular, the function is a suited
candidate to model
for large enough.
However, it may be usefull to model the "non conditional" quantiles,
that is the ones related to . Using
the conditional probability definition, one have :
where .
When , the "conditional" distribution
is equivalent to the "non conditional" distribution.
dgpd(0.1) rgpd(100, 1, 2, 0.2) qgpd(seq(0.1, 0.9, 0.1), 1, 0.5, -0.2) pgpd(12.6, 2, 0.5, 0.1) ##for non conditional quantiles qgpd(seq(0.9, 0.99, 0.01), 1, 0.5, -0.2, lambda = 0.9) pgpd(2.6, 2, 2.5, 0.25, lambda = 0.5)
dgpd(0.1) rgpd(100, 1, 2, 0.2) qgpd(seq(0.1, 0.9, 0.1), 1, 0.5, -0.2) pgpd(12.6, 2, 0.5, 0.1) ##for non conditional quantiles qgpd(seq(0.9, 0.99, 0.01), 1, 0.5, -0.2, lambda = 0.9) pgpd(2.6, 2, 2.5, 0.25, lambda = 0.5)
Transforms GEV data to unit Frechet ones and vice versa
gev2frech(x, loc, scale, shape, emp = FALSE) frech2gev(x, loc, scale, shape)
gev2frech(x, loc, scale, shape, emp = FALSE) frech2gev(x, loc, scale, shape)
x |
The data to be transformed to unit Frechet or ordinary GEV margins |
loc , scale , shape
|
The location, scale and shape parameters of the GEV. |
emp |
Logical. If |
If Y is a random variable with a GEV distribution with location
, scale
and shape
. Then,
is unit Frechet distributed - where .
If Z is a unit Frechet random variable. Then,
is unit GEV distributed with location, scale and shape parameters
equal to ,
and
respectively.
Returns a numeric vector with the same length of x
Mathieu Ribatet
x <- c(2.2975896, 1.6448808, 1.3323833, -0.4464904, 2.2737603, -0.2581876, 9.5184398, -0.5899699, 0.4974283, -0.8152157) y <- gev2frech(x, 1, 2, .2) y frech2gev(y, 1, 2, .2)
x <- c(2.2975896, 1.6448808, 1.3323833, -0.4464904, 2.2737603, -0.2581876, 9.5184398, -0.5899699, 0.4974283, -0.8152157) y <- gev2frech(x, 1, 2, .2) y frech2gev(y, 1, 2, .2)
This function interpolates a zero mean Gaussian random field using the simple kriging predictor.
kriging(data, data.coord, krig.coord, cov.mod = "whitmat", sill, range, smooth, smooth2 = NULL, grid = FALSE, only.weights = FALSE)
kriging(data, data.coord, krig.coord, cov.mod = "whitmat", sill, range, smooth, smooth2 = NULL, grid = FALSE, only.weights = FALSE)
data |
A numeric vector or matrix. If |
data.coord |
A numeric vector or matrix specifying the
coordinates of the observed data. If |
krig.coord |
A numeric vector or matrix specifying the
coordinates where the kriging predictor has to be computed. If
|
cov.mod |
A character string specifying the covariance function family. Must be one of "whitmat", "powexp", "cauchy", "bessel" or "caugen" for the Whittle-Matern, the powered exponential, the Cauchy, the Bessel or the generalized Cauchy covariance families. |
sill , range , smooth , smooth2
|
Numerics specifiying the sill, range, smooth and, if any, the second smooth parameters of the covariance function. |
grid |
Logical. Does |
only.weights |
Logical. Should only the kriging weights be
computed? If |
A list with components
coord |
The coordinates where the kriging predictor has been computed; |
krig.est |
The kriging predictor estimates; |
grid |
Does |
weights |
A matrix giving the kriging weights: each column corresponds to one prediction location. |
Mathieu Ribatet
Chiles, J.-P. and Delfiner, P. (1999) Geostatistics, Modeling Spatial Uncertainty Wiley Series in Probability and Statistics.
condrgp
, rgp
, covariance
.
## Kriging from a single realisation n.site <- 50 n.pred <- 512 x.obs <- runif(n.site, -100, 100) x.pred <- seq(-100, 100, length = n.pred) data <- rgp(1, x.obs, "whitmat", sill = 1, range = 10, smooth = 0.75) krig <- kriging(data, x.obs, x.pred, "whitmat", sill = 1, range = 10, smooth = 0.75) plot(krig$coord, krig$krig.est, type = "l", xlab = "x", ylab = expression(hat(Y)(x))) points(x.obs, data, col = 2, pch = 21, bg = 2) ## Kriging from several realisations n.real <- 3 data <- rgp(n.real, x.obs, "whitmat", sill = 1, range = 10, smooth = 0.75) krig <- kriging(data, x.obs, x.pred, "whitmat", sill = 1, range = 10, smooth = 0.75) matplot(krig$coord, t(krig$krig.est), type = "l", xlab = "x", ylab = expression(hat(Y)(x)), lty = 1) matpoints(x.obs, t(data), pch = 21, col = 1:n.real, bg = 1:n.real) title("Three kriging predictors in one shot") ## Two dimensional kriging on a grid x.obs <- matrix(runif(2 * n.site, -100, 100), ncol = 2) x <- y <- seq(-100, 100, length = 100) x.pred <- cbind(x, y) data <- rgp(1, x.obs, "whitmat", sill = 1, range = 10, smooth = 0.75) krig <- kriging(data, x.obs, x.pred, "whitmat", sill = 1, range = 10, smooth = 0.75, grid = TRUE) z.lim <- range(c(data, krig$krig.est)) breaks <- seq(z.lim[1], z.lim[2], length = 65) col <- heat.colors(64) idx <- as.numeric(cut(data, breaks)) image(x, y, krig$krig.est, col = col, breaks = breaks) points(x.obs, bg = col[idx], pch = 21) ## Note how the background colors of the above points matches the ones ## returned by the image function
## Kriging from a single realisation n.site <- 50 n.pred <- 512 x.obs <- runif(n.site, -100, 100) x.pred <- seq(-100, 100, length = n.pred) data <- rgp(1, x.obs, "whitmat", sill = 1, range = 10, smooth = 0.75) krig <- kriging(data, x.obs, x.pred, "whitmat", sill = 1, range = 10, smooth = 0.75) plot(krig$coord, krig$krig.est, type = "l", xlab = "x", ylab = expression(hat(Y)(x))) points(x.obs, data, col = 2, pch = 21, bg = 2) ## Kriging from several realisations n.real <- 3 data <- rgp(n.real, x.obs, "whitmat", sill = 1, range = 10, smooth = 0.75) krig <- kriging(data, x.obs, x.pred, "whitmat", sill = 1, range = 10, smooth = 0.75) matplot(krig$coord, t(krig$krig.est), type = "l", xlab = "x", ylab = expression(hat(Y)(x)), lty = 1) matpoints(x.obs, t(data), pch = 21, col = 1:n.real, bg = 1:n.real) title("Three kriging predictors in one shot") ## Two dimensional kriging on a grid x.obs <- matrix(runif(2 * n.site, -100, 100), ncol = 2) x <- y <- seq(-100, 100, length = 100) x.pred <- cbind(x, y) data <- rgp(1, x.obs, "whitmat", sill = 1, range = 10, smooth = 0.75) krig <- kriging(data, x.obs, x.pred, "whitmat", sill = 1, range = 10, smooth = 0.75, grid = TRUE) z.lim <- range(c(data, krig$krig.est)) breaks <- seq(z.lim[1], z.lim[2], length = 65) col <- heat.colors(64) idx <- as.numeric(cut(data, breaks)) image(x, y, krig$krig.est, col = col, breaks = breaks) points(x.obs, bg = col[idx], pch = 21) ## Note how the background colors of the above points matches the ones ## returned by the image function
This function generates a Markov chain from a Bayesian hierarchical model for block maxima assuming conditional independence.
latent(data, coord, cov.mod = "powexp", loc.form, scale.form, shape.form, marg.cov = NULL, hyper, prop, start, n = 5000, thin = 1, burn.in = 0, use.log.link = FALSE)
latent(data, coord, cov.mod = "powexp", loc.form, scale.form, shape.form, marg.cov = NULL, hyper, prop, start, n = 5000, thin = 1, burn.in = 0, use.log.link = FALSE)
data |
A matrix representing the data. Each column corresponds to one location. |
coord |
A matrix that gives the coordinates of each location. Each row corresponds to one location. |
cov.mod |
A character string corresponding to the covariance model for the Gaussian latent processes. Must be one of "gauss" for the Smith's model; "whitmat", "cauchy", "powexp" or "bessel" or for the Whittle-Matern, the Cauchy, the Powered Exponential and the Bessel correlation families. |
loc.form , scale.form , shape.form
|
R formulas defining the spatial linear model for the mean of the latent processes. |
marg.cov |
Matrix with named columns giving additional covariates
for the latent processes means. If |
hyper |
A named list specifying the hyper-parameters — see Details. |
prop |
A named list specifying the jump sizes when a Metropolis–Hastings move is needed — see Details. |
start |
A named list specifying the starting values — see Details. |
n |
The effective length of the simulated Markov chain i.e., once the burnin period has been discarded and after thinning. |
thin |
An integer specifying the thinning length. The default is 1, i.e., no thinning. |
burn.in |
An integer specifying the burnin period. The default is 0, i.e., no burnin. |
use.log.link |
An integer. Should a log-link function should be use for the GEV scale parameters, i.e., assuming that the GEV scale parameters a drawn from a log-normal process rather than a gaussian process. |
This function generates a Markov chain from the following model. For
each , suppose that
is GEV distributed whose parameters
vary smoothly for
according to a stochastic process
. We assume that the processes for each GEV
parameters are mutually independent Gaussian processes. For instance,
we take for the location parameter
where is a deterministic function depending on
regression parameters
, and
is a zero mean, stationary Gaussian process with a
prescribed covariance function with sill
,
range
and shape parameters
. Similar formulations for the scale
and the shape
parameters
are used. Then conditional on the values of the three Gaussian
processes at the sites
,
the maxima are assumed to follow GEV distributions
independently for each location .
A joint prior density must be defined for the sills, ranges, shapes
parameters of the covariance functions as well as for the regression
parameters ,
and
. Conjugate priors are used whenever
possible, taking independent inverse Gamma and multivariate normal
distributions for the sills and the regression parameters. No
conjugate prior exist for
and
, for wich a Gamma distribution is assumed.
Consequently hyper
is a named list with named components
A list with three components named 'loc', 'scale' and 'shape' each of these is a 2-length vector specifying the shape and the scale of the inverse Gamma prior distribution for the sill parameter of the covariance functions;
A list with three components named 'loc', 'scale' and 'shape' each of these is a 2-length vector specifying the shape and the scale of the Gamma prior distribution for the range parameter of the covariance functions.
A list with three components named 'loc', 'scale' and 'shape' each of these is a 2-length vector specifying the shape and the scale of the Gamma prior distribution for the shape parameter of the covariance functions;
A list with three components named 'loc', 'scale' and 'shape' each of these is a vector specifying the mean vector of the multivariate normal prior distribution for the regression parameters;
A list with three components named 'loc', 'scale' and 'shape' each of these is a matrix specifying the inverse of the covariance matrix of the multivariate normal prior distribution for the regression parameters.
As no conjugate prior exists for the GEV parameters and the range and
shape parameters of the covariance functions, Metropolis–Hastings
steps are needed. The proposals are
drawn from a proposal density
where
is
the current state of the parameter and
is a parameter of
the proposal density to be defined. These proposals are driven by
prop
which is a list with three named components
A vector of length 3 specifying the standard deviations of the proposal distributions. These are taken to be normal distribution for the location and shape GEV parameters and a log-normal distribution for the scale GEV parameters;
A vector of length 3 specifying the jump sizes for the
range parameters of the covariance functions — is the log-normal density
with mean
and standard deviation
both on the log-scale;
A vector of length 3 specifying the jump sizes for
the shape parameters of the covariance functions — is the log-normal density
with mean
and standard deviation
both on the log-scale.
If one want to held fixed a parameter this can be done by setting a null jump size then the parameter will be held fixed to its starting value.
Finally start
must be a named list with 4 named components
A vector of length 3 specifying the starting values for the sill of the covariance functions;
A vector of length 3 specifying the starting values for the range of the covariance functions;
A vector of length 3 specifying the starting values for the shape of the covariance functions;
A named list with 3 components 'loc', 'scale' and 'shape' each of these is a numeric vector specifying the starting values for the regression coefficients.
A list
This function can be time consuming and makes an intensive use of BLAS routines so it is (much!) faster if you have an optimized BLAS.
The starting values will never be stored in the generated Markov chain
even when burn.in=0
.
If you want to analyze the convergence ans mixing properties of the Markov chain, it is recommended to use the library coda.
Mathieu Ribatet
Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2004). Hierarchical Modeling and Analysis for Spatial Data. Chapman & Hall/CRC, New York.
Casson, E. and Coles, S. (1999) Spatial regression models for extremes. Extremes 1,449–468.
Cooley, D., Nychka, D. and Naveau, P. (2007) Bayesian spatial modelling of extreme precipitation return levels Journal of the American Statistical Association 102:479, 824–840.
Davison, A.C., Padoan, S.A. and Ribatet, M. Statistical Modelling of Spatial Extremes. Submitted.
## Not run: ## Generate realizations from the model n.site <- 30 n.obs <- 50 coord <- cbind(lon = runif(n.site, -10, 10), lat = runif(n.site, -10 , 10)) gp.loc <- rgp(1, coord, "powexp", sill = 4, range = 20, smooth = 1) gp.scale <- rgp(1, coord, "powexp", sill = 0.4, range = 5, smooth = 1) gp.shape <- rgp(1, coord, "powexp", sill = 0.01, range = 10, smooth = 1) locs <- 26 + 0.5 * coord[,"lon"] + gp.loc scales <- 10 + 0.2 * coord[,"lat"] + gp.scale shapes <- 0.15 + gp.shape data <- matrix(NA, n.obs, n.site) for (i in 1:n.site) data[,i] <- rgev(n.obs, locs[i], scales[i], shapes[i]) loc.form <- y ~ lon scale.form <- y ~ lat shape.form <- y ~ 1 hyper <- list() hyper$sills <- list(loc = c(1,8), scale = c(1,1), shape = c(1,0.02)) hyper$ranges <- list(loc = c(2,20), scale = c(1,5), shape = c(1, 10)) hyper$smooths <- list(loc = c(1,1/3), scale = c(1,1/3), shape = c(1, 1/3)) hyper$betaMeans <- list(loc = rep(0, 2), scale = c(9, 0), shape = 0) hyper$betaIcov <- list(loc = solve(diag(c(400, 100))), scale = solve(diag(c(400, 100))), shape = solve(diag(c(10), 1, 1))) ## We will use an exponential covariance function so the jump sizes for ## the shape parameter of the covariance function are null. prop <- list(gev = c(1.2, 0.08, 0.08), ranges = c(0.7, 0.8, 0.7), smooths = c(0,0,0)) start <- list(sills = c(4, .36, 0.009), ranges = c(24, 17, 16), smooths = c(1, 1, 1), beta = list(loc = c(26, 0.5), scale = c(10, 0.2), shape = c(0.15))) mc <- latent(data, coord, loc.form = loc.form, scale.form = scale.form, shape.form = shape.form, hyper = hyper, prop = prop, start = start, n = 10000, burn.in = 5000, thin = 15) mc ## End(Not run)
## Not run: ## Generate realizations from the model n.site <- 30 n.obs <- 50 coord <- cbind(lon = runif(n.site, -10, 10), lat = runif(n.site, -10 , 10)) gp.loc <- rgp(1, coord, "powexp", sill = 4, range = 20, smooth = 1) gp.scale <- rgp(1, coord, "powexp", sill = 0.4, range = 5, smooth = 1) gp.shape <- rgp(1, coord, "powexp", sill = 0.01, range = 10, smooth = 1) locs <- 26 + 0.5 * coord[,"lon"] + gp.loc scales <- 10 + 0.2 * coord[,"lat"] + gp.scale shapes <- 0.15 + gp.shape data <- matrix(NA, n.obs, n.site) for (i in 1:n.site) data[,i] <- rgev(n.obs, locs[i], scales[i], shapes[i]) loc.form <- y ~ lon scale.form <- y ~ lat shape.form <- y ~ 1 hyper <- list() hyper$sills <- list(loc = c(1,8), scale = c(1,1), shape = c(1,0.02)) hyper$ranges <- list(loc = c(2,20), scale = c(1,5), shape = c(1, 10)) hyper$smooths <- list(loc = c(1,1/3), scale = c(1,1/3), shape = c(1, 1/3)) hyper$betaMeans <- list(loc = rep(0, 2), scale = c(9, 0), shape = 0) hyper$betaIcov <- list(loc = solve(diag(c(400, 100))), scale = solve(diag(c(400, 100))), shape = solve(diag(c(10), 1, 1))) ## We will use an exponential covariance function so the jump sizes for ## the shape parameter of the covariance function are null. prop <- list(gev = c(1.2, 0.08, 0.08), ranges = c(0.7, 0.8, 0.7), smooths = c(0,0,0)) start <- list(sills = c(4, .36, 0.009), ranges = c(24, 17, 16), smooths = c(1, 1, 1), beta = list(loc = c(26, 0.5), scale = c(10, 0.2), shape = c(0.15))) mc <- latent(data, coord, loc.form = loc.form, scale.form = scale.form, shape.form = shape.form, hyper = hyper, prop = prop, start = start, n = 10000, burn.in = 5000, thin = 15) mc ## End(Not run)
Computes the lambda-madogram for max-stable processes.
lmadogram(data, coord, n.bins, xlab, ylab, zlab, n.lambda = 11, marge = "emp", col = terrain.colors(50, alpha = 0.5), theta = 90, phi = 20, border = NA, ...)
lmadogram(data, coord, n.bins, xlab, ylab, zlab, n.lambda = 11, marge = "emp", col = terrain.colors(50, alpha = 0.5), theta = 90, phi = 20, border = NA, ...)
data |
A matrix representing the data. Each column corresponds to one location. |
coord |
A matrix that gives the coordinates of each location. Each row corresponds to one location. |
n.bins |
The number of bins to be used. If missing, pairwise lambda-madogram estimates will be computed. |
xlab , ylab , zlab
|
The x-axis, y-axis and z-axis labels. May be missing. |
n.lambda |
Integer giving the number of lambda values. |
marge |
Character string. If 'emp', probabilities of non exceedances are estimated using the empirical CDF. If 'mle' (default), maximum likelihood estimates are used. |
col |
The colors used to emphasize the gradient of the lambda-madogram. |
theta , phi , border
|
Options to be passed to the
|
... |
Additional options to be passed to the |
Let be a stationary process. The
-madogram is defined as follows:
A graphic and (invisibly) a matrix with the lag distances, the
-madogram estimate.
Mathieu Ribatet
Naveau, P., Guillou, A., Cooley, D. and Diebolt, J. (2009) Modelling Pairwise Dependence of Maxima in Space. To appear in Biometrika.
n.site <- 50 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(40, locations, cov.mod = "whitmat", nugget = 0, range = 1, smooth = 2) ##Compute the lambda-madogram lmadogram(data, locations, n.bins = 80)
n.site <- 50 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(40, locations, cov.mod = "whitmat", nugget = 0, range = 1, smooth = 2) ##Compute the lambda-madogram lmadogram(data, locations, n.bins = 80)
Extract the pairwise log-likelihood for objects of class “maxstab” and “copula”
## S3 method for class 'maxstab' logLik(object, ...) ## S3 method for class 'copula' logLik(object, ...)
## S3 method for class 'maxstab' logLik(object, ...) ## S3 method for class 'copula' logLik(object, ...)
object |
An object of class “maxstab” or “copula”. Most often
this will be the output of the |
... |
Other arguments to be passed to the |
Standard logLik
object (see logLik
) except that
it might actually correspond to the pairwise log-likelihood, e.g., for
the class “maxstab”!
Mathieu Ribatet
##Define the coordinates of each location n.site <- 30 locations <- matrix(5 + runif(2*n.site, 0, 10), ncol = 2) ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(30, locations, cov.mod = "whitmat", nugget = 0, range = 3, smooth = 0.5) fit <- fitmaxstab(data, locations, "whitmat") logLik(fit)
##Define the coordinates of each location n.site <- 30 locations <- matrix(5 + runif(2*n.site, 0, 10), ncol = 2) ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(30, locations, cov.mod = "whitmat", nugget = 0, range = 3, smooth = 0.5) fit <- fitmaxstab(data, locations, "whitmat") logLik(fit)
Estimates the spatial dependence parameter of a max-stable process by minimizing least squares.
lsmaxstab(data, coord, cov.mod = "gauss", marge = "emp", control = list(), iso = FALSE, ..., weighted = TRUE)
lsmaxstab(data, coord, cov.mod = "gauss", marge = "emp", control = list(), iso = FALSE, ..., weighted = TRUE)
data |
A matrix representing the data. Each column corresponds to one location. |
coord |
A matrix that gives the coordinates of each location. Each row corresponds to one location. |
cov.mod |
Character string specifying the max-stable process considered. Must be one of "gauss" (Smith's model), "whitmat", "cauchy", "powexp", "bessel", "caugen" for the Schlather model with the corresponding correlation function. |
marge |
Character string specifying how margins are transformed
to unit Frechet. Must be one of "emp", "frech" or "mle" - see
function |
control |
The control arguments to be passed to the
|
iso |
Logical. If |
... |
Optional arguments. |
weighted |
Logical. Should weighted least squares be used? See Details. |
The fitting procedure is based on weighted least squares. More precisely, the fitting criteria is to minimize:
where is a non
parametric estimate of the extremal coefficient related to location
i
and j
, is
the fitted extremal coefficient derived from the maxstable model
considered and
are the standard errors related
to the estimates
.
An object of class maxstab.
Mathieu Ribatet
Smith, R. L. (1990) Max-stable processes and spatial extremes. Unpublished manuscript.
fitcovariance
, fitmaxstab
,
fitextcoeff
n.site <- 50 n.obs <- 100 locations <- matrix(runif(2*n.site, 0, 40), ncol = 2) colnames(locations) <- c("lon", "lat") ## Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(50, locations, cov.mod = "gauss", cov11 = 200, cov12 = 0, cov22 = 200) lsmaxstab(data, locations, "gauss") ##Force an isotropic model and do not use weights lsmaxstab(data, locations, "gauss", iso = TRUE, weighted = FALSE)
n.site <- 50 n.obs <- 100 locations <- matrix(runif(2*n.site, 0, 40), ncol = 2) colnames(locations) <- c("lon", "lat") ## Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(50, locations, cov.mod = "gauss", cov11 = 200, cov12 = 0, cov22 = 200) lsmaxstab(data, locations, "gauss") ##Force an isotropic model and do not use weights lsmaxstab(data, locations, "gauss", iso = TRUE, weighted = FALSE)
Computes the madogram for max-stable processes.
madogram(data, coord, fitted, n.bins, gev.param = c(0, 1, 0), which = c("mado", "ext"), xlab, ylab, col = c(1, 2), angles = NULL, marge = "emp", add = FALSE, xlim = c(0, max(dist)), ...)
madogram(data, coord, fitted, n.bins, gev.param = c(0, 1, 0), which = c("mado", "ext"), xlab, ylab, col = c(1, 2), angles = NULL, marge = "emp", add = FALSE, xlim = c(0, max(dist)), ...)
data |
A matrix representing the data. Each column corresponds to one location. |
coord |
A matrix that gives the coordinates of each location. Each row corresponds to one location. |
fitted |
An object of class maxstab - usually the output of the
|
n.bins |
The number of bins to be used. If missing, pairwise madogram estimates will be computed. |
gev.param |
Numeric vector of length 3 specifying the location, scale and shape parameters for the GEV. |
which |
A character vector of maximum size 2. It specifies if the madogram and/or the extremal coefficient functions have to be plotted. |
xlab , ylab
|
The x-axis and y-axis labels. May be missing. Note
that |
col |
The colors used for the points and optionnaly for the fitted curve. |
angles |
A numeric vector. A partition of the interval
|
marge |
Character string. If 'emp', the observation are first transformed to the unit Frechet scale by using the empirical CDF. If 'mle' (default), maximum likelihood estimates are used. |
add |
Logical. If |
xlim |
A numeric vector of length 2 specifying the x coordinate range. |
... |
Additional options to be passed to the |
Let be a stationary process. The madogram is defined
as follows:
If now is a stationary max-stable random field with
GEV marginals. Provided the GEV shape parameter
is such
that
. The extremal coefficient
satisfies:
where is the gamma function and
is defined as follows:
and
, i.e,
the vector of the GEV parameters.
A graphic and (invisibly) a matrix with the lag distances, the madogram and extremal coefficient estimates.
Mathieu Ribatet
Cooley, D., Naveau, P. and Poncet, P. (2006) Variograms for spatial max-stable random fields. Dependence in Probability and Statistics, 373–390.
n.site <- 15 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(40, locations, cov.mod = "whitmat", nugget = 0, range = 1, smooth = 2) ##Compute the madogram madogram(data, locations) ##Compare the madogram with a fitted max-stable model fitted <- fitmaxstab(data, locations, "whitmat", nugget = 0) madogram(fitted = fitted, which = "ext")
n.site <- 15 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(40, locations, cov.mod = "whitmat", nugget = 0, range = 1, smooth = 2) ##Compute the madogram madogram(data, locations) ##Compare the madogram with a fitted max-stable model fitted <- fitmaxstab(data, locations, "whitmat", nugget = 0) madogram(fitted = fitted, which = "ext")
Produces a 2D map from a fitted max-stable process.
map(fitted, x, y, covariates = NULL, param = "quant", ret.per = 100, col = terrain.colors(64), plot.contour = TRUE, ...)
map(fitted, x, y, covariates = NULL, param = "quant", ret.per = 100, col = terrain.colors(64), plot.contour = TRUE, ...)
fitted |
An object of class |
x , y
|
Numeric vector that gives the coordinates of the grid. |
covariates |
An array specifying the covariates at each grid
point defined by |
param |
A character string. Must be one of "loc", "scale", "shape" or "quant" for a map of the location, scale, shape parameters or for a map of a specified quantile. |
ret.per |
A numeric giving the return period for which the
quantile map is plotted. It is only required if |
col |
A list of colors such as that generated by 'rainbow', 'heat.colors', 'topo.colors', 'terrain.colors' or similar functions. |
plot.contour |
Logical. If |
... |
Several arguments to be passed to the |
A plot. Additionally, a list with the details for plotting the map is returned invisibly.
Mathieu Ribatet
condmap
, filled.contour
,
heatmap
, heat.colors
,
topo.colors
, terrain.colors
,
rainbow
##We run an artifical example using the volcano data set as a study ##region dim <- dim(volcano) n.x <- dim[1] n.y <- dim[2] x <- 10 * 1:n.x y <- 10 * 1:n.y n.site <- 15 idx.x <- sample(n.x, n.site) idx.y <- sample(n.y, n.site) locations <- cbind(lon = x[idx.x], lat = y[idx.y]) alt <- diag(volcano[idx.x, idx.y]) ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(40, locations, cov.mod = "whitmat", nugget = 0, range = 750, smooth = 1) ##Now define the spatial model for the GEV parameters param.loc <- -10 - 0.04 * locations[,1] + alt / 5 param.scale <- 5 - locations[,2] / 30 + alt / 4 param.shape <- rep(.2, n.site) ##Transform the unit Frechet margins to GEV for (i in 1:n.site) data[,i] <- frech2gev(data[,i], param.loc[i], param.scale[i], param.shape[i]) ##Define a model for the GEV margins to be fitted ##shape ~ 1 stands for the GEV shape parameter is constant ##over the region loc.form <- loc ~ lon + alt scale.form <- scale ~ lat + alt shape.form <- shape ~ 1 ## 1- Fit a max-stable process schlather <- fitmaxstab(data, locations, "whitmat", loc.form, scale.form, shape.form, marg.cov = cbind(alt = alt), nugget = 0) ## 2- Produce a map of the pointwise 50-year return level ##Here we have only one covariate i.e. alt n.cov <- 1 covariates <- array(volcano, dim = c(n.x, n.y, n.cov), dimnames = list(NULL, NULL, "alt")) par(mfrow = c(1,2)) image(x, y, volcano, col = terrain.colors(64), main = "Elevation map") map(schlather, x, y, covariates, ret.per = 50, plot.contour = FALSE, main = "50-year return level")
##We run an artifical example using the volcano data set as a study ##region dim <- dim(volcano) n.x <- dim[1] n.y <- dim[2] x <- 10 * 1:n.x y <- 10 * 1:n.y n.site <- 15 idx.x <- sample(n.x, n.site) idx.y <- sample(n.y, n.site) locations <- cbind(lon = x[idx.x], lat = y[idx.y]) alt <- diag(volcano[idx.x, idx.y]) ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(40, locations, cov.mod = "whitmat", nugget = 0, range = 750, smooth = 1) ##Now define the spatial model for the GEV parameters param.loc <- -10 - 0.04 * locations[,1] + alt / 5 param.scale <- 5 - locations[,2] / 30 + alt / 4 param.shape <- rep(.2, n.site) ##Transform the unit Frechet margins to GEV for (i in 1:n.site) data[,i] <- frech2gev(data[,i], param.loc[i], param.scale[i], param.shape[i]) ##Define a model for the GEV margins to be fitted ##shape ~ 1 stands for the GEV shape parameter is constant ##over the region loc.form <- loc ~ lon + alt scale.form <- scale ~ lat + alt shape.form <- shape ~ 1 ## 1- Fit a max-stable process schlather <- fitmaxstab(data, locations, "whitmat", loc.form, scale.form, shape.form, marg.cov = cbind(alt = alt), nugget = 0) ## 2- Produce a map of the pointwise 50-year return level ##Here we have only one covariate i.e. alt n.cov <- 1 covariates <- array(volcano, dim = c(n.x, n.y, n.cov), dimnames = list(NULL, NULL, "alt")) par(mfrow = c(1,2)) image(x, y, volcano, col = terrain.colors(64), main = "Elevation map") map(schlather, x, y, covariates, ret.per = 50, plot.contour = FALSE, main = "50-year return level")
This function plots 2D maps from a Markov chain.
map.latent(fitted, x, y, covariates = NULL, param = "quant", ret.per = 100, col = terrain.colors(64), plot.contour = TRUE, fun = mean, level = 0.95, show.data = TRUE, control = list(nlines = 500), ...)
map.latent(fitted, x, y, covariates = NULL, param = "quant", ret.per = 100, col = terrain.colors(64), plot.contour = TRUE, fun = mean, level = 0.95, show.data = TRUE, control = list(nlines = 500), ...)
fitted |
An object of class "latent". Typically this will be the
output of |
x , y
|
Numeric vector specifying the coordinates of the grid points. |
covariates |
An array specifying the covariates at each grid
point defined by |
param |
A character string. Must be one of "loc", "scale", "shape" or "quant" for a map of the location, scale, shape parameters or for a map of a specified quantile. |
ret.per |
A numeric giving the return period for which the
quantile map is plotted. It is only required if |
col |
A list of colors such as that generated by 'rainbow', 'heat.colors', 'topo.colors', 'terrain.colors' or similar functions. |
plot.contour |
Logical. If |
fun |
A character string specifying the function to be used to get posterior point estimates. The default is to take posterior means. |
level |
A numeric specifying the significance level for the pointwise credible intervals. |
show.data |
Logical. Should the locations where have observed the process have to be plotted? |
control |
A list with named components specifying options to be
passed to |
... |
Several arguments to be passed to the |
A plot and a invisible list containing all the data required to do the plot.
Mathieu Ribatet
## Not run: ## Generate realizations from the model n.site <- 30 n.obs <- 50 coord <- cbind(lon = runif(n.site, -10, 10), lat = runif(n.site, -10 , 10)) gp.loc <- rgp(1, coord, "powexp", sill = 4, range = 20, smooth = 1) gp.scale <- rgp(1, coord, "powexp", sill = 0.4, range = 5, smooth = 1) gp.shape <- rgp(1, coord, "powexp", sill = 0.01, range = 10, smooth = 1) locs <- 26 + 0.5 * coord[,"lon"] + gp.loc scales <- 10 + 0.2 * coord[,"lat"] + gp.scale shapes <- 0.15 + gp.shape data <- matrix(NA, n.obs, n.site) for (i in 1:n.site) data[,i] <- rgev(n.obs, locs[i], scales[i], shapes[i]) loc.form <- y ~ lon scale.form <- y ~ lat shape.form <- y ~ 1 hyper <- list() hyper$sills <- list(loc = c(1,8), scale = c(1,1), shape = c(1,0.02)) hyper$ranges <- list(loc = c(2,20), scale = c(1,5), shape = c(1, 10)) hyper$smooths <- list(loc = c(1,1/3), scale = c(1,1/3), shape = c(1, 1/3)) hyper$betaMeans <- list(loc = rep(0, 2), scale = c(9, 0), shape = 0) hyper$betaIcov <- list(loc = solve(diag(c(400, 100))), scale = solve(diag(c(400, 100))), shape = solve(diag(c(10), 1, 1))) ## We will use an exponential covariance function so the jump sizes for ## the shape parameter of the covariance function are null. prop <- list(gev = c(2.5, 1.5, 0.2), ranges = c(0.7, 0.75, 0.9), smooths = c(0,0,0)) start <- list(sills = c(4, .36, 0.009), ranges = c(24, 17, 16), smooths = c(1, 1, 1), beta = list(loc = c(26, 0.5), scale = c(10, 0.2), shape = c(0.15))) ## Generate a Markov chain mc <- latent(data, coord, loc.form = loc.form, scale.form = scale.form, shape.form = shape.form, hyper = hyper, prop = prop, start = start, n = 100) x.grid <- y.grid <- seq(-10, 10, length = 50) map.latent(mc, x.grid, y.grid, param = "shape") ## End(Not run)
## Not run: ## Generate realizations from the model n.site <- 30 n.obs <- 50 coord <- cbind(lon = runif(n.site, -10, 10), lat = runif(n.site, -10 , 10)) gp.loc <- rgp(1, coord, "powexp", sill = 4, range = 20, smooth = 1) gp.scale <- rgp(1, coord, "powexp", sill = 0.4, range = 5, smooth = 1) gp.shape <- rgp(1, coord, "powexp", sill = 0.01, range = 10, smooth = 1) locs <- 26 + 0.5 * coord[,"lon"] + gp.loc scales <- 10 + 0.2 * coord[,"lat"] + gp.scale shapes <- 0.15 + gp.shape data <- matrix(NA, n.obs, n.site) for (i in 1:n.site) data[,i] <- rgev(n.obs, locs[i], scales[i], shapes[i]) loc.form <- y ~ lon scale.form <- y ~ lat shape.form <- y ~ 1 hyper <- list() hyper$sills <- list(loc = c(1,8), scale = c(1,1), shape = c(1,0.02)) hyper$ranges <- list(loc = c(2,20), scale = c(1,5), shape = c(1, 10)) hyper$smooths <- list(loc = c(1,1/3), scale = c(1,1/3), shape = c(1, 1/3)) hyper$betaMeans <- list(loc = rep(0, 2), scale = c(9, 0), shape = 0) hyper$betaIcov <- list(loc = solve(diag(c(400, 100))), scale = solve(diag(c(400, 100))), shape = solve(diag(c(10), 1, 1))) ## We will use an exponential covariance function so the jump sizes for ## the shape parameter of the covariance function are null. prop <- list(gev = c(2.5, 1.5, 0.2), ranges = c(0.7, 0.75, 0.9), smooths = c(0,0,0)) start <- list(sills = c(4, .36, 0.009), ranges = c(24, 17, 16), smooths = c(1, 1, 1), beta = list(loc = c(26, 0.5), scale = c(10, 0.2), shape = c(0.15))) ## Generate a Markov chain mc <- latent(data, coord, loc.form = loc.form, scale.form = scale.form, shape.form = shape.form, hyper = hyper, prop = prop, start = start, n = 100) x.grid <- y.grid <- seq(-10, 10, length = 50) map.latent(mc, x.grid, y.grid, param = "shape") ## End(Not run)
These functions fit the generalised extreme value and generalised Pareto distribution to data using maximum likelihood.
gevmle(x, ..., method = "Nelder") gpdmle(x, threshold, ..., method = "Nelder")
gevmle(x, ..., method = "Nelder") gpdmle(x, threshold, ..., method = "Nelder")
x |
Numeric vector of observations |
... |
Optional arguments to be passed to the
|
threshold |
Numeric. The threshold value. |
method |
The numerical optimisation method to be used. |
These two functions are “extremely light” functions to fit the
GEV/GPD. These functions are mainly useful to compute starting values
for the Schlather and Smith model - see fitmaxstab
.
If more refined (univariate) analysis have to be performed, users should use more specialised packages - e.g. POT, evd, ismev, ....
A vector for the estimated parameters of the GEV/GPD.
Mathieu Ribatet
## 1 - GEV fit x <- rep(NA, 100) for (i in 1:100) x[i] <- max(rnorm(365)) gevmle(x) ## 2- GPD fit x <- rnorm(10000) ##we need to fix a threshold u <- quantile(x, 0.99) gpdmle(x, u)
## 1 - GEV fit x <- rep(NA, 100) for (i in 1:100) x[i] <- max(rnorm(365)) gevmle(x) ## 2- GPD fit x <- rnorm(10000) ##we need to fix a threshold u <- quantile(x, 0.99) gpdmle(x, u)
This function defines the model for the spatial behaviour of the GEV parameter.
modeldef(data, formula)
modeldef(data, formula)
data |
A matrix representing the data. Each column corresponds to one location. |
formula |
A R formula. See details for further details. |
need to be documented
Mathieu Ribatet
## 1- A design matrix from a classical linear model n.site <- 5 coord <- matrix(rnorm(2*n.site, sd = sqrt(.2)), ncol = 2) colnames(coord) <- c("lon", "lat") loc.form <- loc ~ lat + I(lon^2) modeldef(coord, loc.form) ## 2- A design and penalization matrix from a penalized smoothin spline x <- sort(runif(10, -2, 10)) n.knots <- 3 knots <- quantile(x, prob = 1:n.knots / (n.knots + 2)) modeldef(x, y ~ rb(x, knots = knots, degree = 3, penalty = 1))
## 1- A design matrix from a classical linear model n.site <- 5 coord <- matrix(rnorm(2*n.site, sd = sqrt(.2)), ncol = 2) colnames(coord) <- c("lon", "lat") loc.form <- loc ~ lat + I(lon^2) modeldef(coord, loc.form) ## 2- A design and penalization matrix from a penalized smoothin spline x <- sort(runif(10, -2, 10)) n.knots <- 3 knots <- quantile(x, prob = 1:n.knots / (n.knots + 2)) modeldef(x, y ~ rb(x, knots = knots, degree = 3, penalty = 1))
This function produces several plots to assess the goodness of fit of a fitted copula based model for spatial extremes.
## S3 method for class 'copula' plot(x, ..., sites)
## S3 method for class 'copula' plot(x, ..., sites)
x |
An object of class |
... |
Here for compatibility reasons but not yet implemented. |
sites |
A vector of integer of length 4 specifying the locations to be used for the model checking. If missing, locations will be choosen randomly. |
The diagonal plots are return level plots. The lower ones are qq-plots
(on the Gumbel scale) between observed pairwise maxima for each block,
e.g. year, and the ones obtained by simulations from the fitted
model. The upper plot compares the fitted extremal coefficient
functions to semi-empirical estimates from the F-madogram - see
fmadogram
. The two remaining plots are the stations
locations and a qq-plot of blockwise maxima where the block size is 4.
Several diagnostic plots.
Mathieu Ribatet
## Not run: n.site <- 20 n.obs <- 50 coord <- matrix(runif(2 * n.site, 0, 10), ncol = 2) colnames(coord) <- c("lon", "lat") data <- rmaxstab(n.obs, coord, "powexp", nugget = 0, range = 3, smooth = 1) fitted <- fitcopula(log(data), coord, "student", "powexp", y ~ 1, y ~ 1, y ~ 1, nugget = 0) plot(fitted) ## End(Not run)
## Not run: n.site <- 20 n.obs <- 50 coord <- matrix(runif(2 * n.site, 0, 10), ncol = 2) colnames(coord) <- c("lon", "lat") data <- rmaxstab(n.obs, coord, "powexp", nugget = 0, range = 3, smooth = 1) fitted <- fitcopula(log(data), coord, "student", "powexp", y ~ 1, y ~ 1, y ~ 1, nugget = 0) plot(fitted) ## End(Not run)
This function produces several plots to assess the goodness of fit of a fitted max-stable model.
## S3 method for class 'maxstab' plot(x, ..., sites)
## S3 method for class 'maxstab' plot(x, ..., sites)
x |
An object of class |
... |
Here for compatibility reasons but not yet implemented. |
sites |
A vector of integer of length 4 specifying the locations to be used for the model checking. If missing, locations will be choosen randomly. |
The diagonal plots are return level plots. The lower ones are qq-plots
(on the Gumbel scale) between observed pairwise maxima for each block,
e.g. year, and the ones obtained by simulations from the fitted
model. The upper plot compares the fitted extremal coefficient
functions to semi-empirical estimates from the F-madogram - see
fmadogram
. The two remaining plots are the stations
locations and a qq-plot of blockwise maxima where the block size is 4.
Several diagnostic plots.
Mathieu Ribatet
n.site <- 20 n.obs <- 50 coord <- matrix(runif(2 * n.site, 0, 10), ncol = 2) colnames(coord) <- c("lon", "lat") data <- rmaxstab(n.obs, coord, "powexp", nugget = 0, range = 3, smooth = 1) fitted <- fitmaxstab(log(data), coord, "powexp", y ~ 1, y ~ 1, y ~ 1, nugget = 0) plot(fitted)
n.site <- 20 n.obs <- 50 coord <- matrix(runif(2 * n.site, 0, 10), ncol = 2) colnames(coord) <- c("lon", "lat") data <- rmaxstab(n.obs, coord, "powexp", nugget = 0, range = 3, smooth = 1) fitted <- fitmaxstab(log(data), coord, "powexp", y ~ 1, y ~ 1, y ~ 1, nugget = 0) plot(fitted)
This function predicts the marginal GEV parameters from a fitted max-stable process, copula, penalized spline or spatial GEV model.
## S3 method for class 'maxstab' predict(object, newdata, ret.per = NULL, std.err = TRUE, ...) ## S3 method for class 'copula' predict(object, newdata, ret.per = NULL, std.err = TRUE, ...) ## S3 method for class 'pspline2' predict(object, newdata, ...) ## S3 method for class 'spatgev' predict(object, newdata, ret.per = NULL, ...)
## S3 method for class 'maxstab' predict(object, newdata, ret.per = NULL, std.err = TRUE, ...) ## S3 method for class 'copula' predict(object, newdata, ret.per = NULL, std.err = TRUE, ...) ## S3 method for class 'pspline2' predict(object, newdata, ...) ## S3 method for class 'spatgev' predict(object, newdata, ret.per = NULL, ...)
object |
An object of class 'maxstab', 'copula', 'pspline' or
'spatgev'. Most often, it will be the output of one of the
following functions: |
newdata |
An optional data frame in which to look for variables with which to predict. If omitted, the fitted values are used. |
ret.per |
Numeric vector giving the return periods for which
return levels are computed. If |
std.err |
Logical. If |
... |
further arguments passed to or from other methods. |
Print several information on screen.
Mathieu Ribatet
## 1- Simulate a max-stable random field n.site <- 35 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") data <- rmaxstab(50, locations, cov.mod = "whitmat", nugget = 0, range = 30, smooth = 0.5) ## 2- Transformation to non unit Frechet margins param.loc <- -10 + 2 * locations[,2] param.scale <- 5 + 2 * locations[,1] param.shape <- rep(0.2, n.site) for (i in 1:n.site) data[,i] <- frech2gev(data[,i], param.loc[i], param.scale[i], param.shape[i]) ## 3- Fit a max-stable process with the following model for ## the GEV parameters form.loc <- loc ~ lat form.scale <- scale ~ lon form.shape <- shape ~ 1 schlather <- fitmaxstab(data, locations, "whitmat", loc.form = form.loc, scale.form = form.scale, shape.form = form.shape) ## 4- GEV parameters estimates at each locations or at ungauged locations predict(schlather) ungauged <- data.frame(lon = runif(10, 0, 10), lat = runif(10, 0, 10)) predict(schlather, ungauged)
## 1- Simulate a max-stable random field n.site <- 35 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") data <- rmaxstab(50, locations, cov.mod = "whitmat", nugget = 0, range = 30, smooth = 0.5) ## 2- Transformation to non unit Frechet margins param.loc <- -10 + 2 * locations[,2] param.scale <- 5 + 2 * locations[,1] param.shape <- rep(0.2, n.site) for (i in 1:n.site) data[,i] <- frech2gev(data[,i], param.loc[i], param.scale[i], param.shape[i]) ## 3- Fit a max-stable process with the following model for ## the GEV parameters form.loc <- loc ~ lat form.scale <- scale ~ lon form.shape <- shape ~ 1 schlather <- fitmaxstab(data, locations, "whitmat", loc.form = form.loc, scale.form = form.scale, shape.form = form.shape) ## 4- GEV parameters estimates at each locations or at ungauged locations predict(schlather) ungauged <- data.frame(lon = runif(10, 0, 10), lat = runif(10, 0, 10)) predict(schlather, ungauged)
Methods for printing objects of classes introduced by the SpatialExtremes package.
## S3 method for class 'pspline2' print(x, ...) ## S3 method for class 'maxstab' print(x, digits = max(3, getOption("digits") - 3), ...) ## S3 method for class 'copula' print(x, digits = max(3, getOption("digits") - 3), ...) ## S3 method for class 'spatgev' print(x, digits = max(3, getOption("digits") - 3), ...) ## S3 method for class 'latent' print(x, digits = max(3, getOption("digits") - 3), ..., level = 0.95)
## S3 method for class 'pspline2' print(x, ...) ## S3 method for class 'maxstab' print(x, digits = max(3, getOption("digits") - 3), ...) ## S3 method for class 'copula' print(x, digits = max(3, getOption("digits") - 3), ...) ## S3 method for class 'spatgev' print(x, digits = max(3, getOption("digits") - 3), ...) ## S3 method for class 'latent' print(x, digits = max(3, getOption("digits") - 3), ..., level = 0.95)
x |
An object of class 'pspline', 'maxstab', 'copula', 'spatgev'
or 'latent'. Most often, |
digits |
The number of digits to be printed. |
... |
Other options to be passed to the |
level |
A numeric giving the significance level for the credible intervals—class 'latent' only. |
Print several information on screen.
Mathieu Ribatet
##Define the coordinates of each location n.site <- 30 coord <- matrix(5 + rnorm(2*n.site, sd = sqrt(2)), ncol = 2) colnames(coord) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(30, coord, cov.mod = "whitmat", nugget = 0, range = 3, smooth = 0.5) ## Printing max-stable objects fit <- fitmaxstab(data, coord, "whitmat") fit ## Printing spatial GEV objects loc.form <- scale.form <- shape.form <- y ~ 1 fit <- fitspatgev(data, coord, loc.form, scale.form, shape.form) fit
##Define the coordinates of each location n.site <- 30 coord <- matrix(5 + rnorm(2*n.site, sd = sqrt(2)), ncol = 2) colnames(coord) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(30, coord, cov.mod = "whitmat", nugget = 0, range = 3, smooth = 0.5) ## Printing max-stable objects fit <- fitmaxstab(data, coord, "whitmat") fit ## Printing spatial GEV objects loc.form <- scale.form <- shape.form <- y ~ 1 fit <- fitspatgev(data, coord, loc.form, scale.form, shape.form) fit
Computes profile traces for fitted max-stable models.
## S3 method for class 'maxstab' profile(fitted, param, range, n = 10, plot = TRUE, conf = 0.90, method = "RJ", square = "chol", ...)
## S3 method for class 'maxstab' profile(fitted, param, range, n = 10, plot = TRUE, conf = 0.90, method = "RJ", square = "chol", ...)
fitted |
An object of class “maxstab”. Most often, it will be
the output of the function |
param |
A character string giving the model parameter that are to be profiled. |
range |
The range for the profiled model parameter that must be explored. |
n |
Integer. The number of profiled model parameter that must be considered. |
plot |
Logical. If |
conf |
Numeric giving the confidence interval level. |
method |
Character string. Must be one of "CB", "RJ" or "none" for the Chandler and Bate or the Rotnitzky and Jewell approaches respectively. The "none" method simply plots the profile of the log-composite likelihood. See details. |
square |
The choice for the matrix square root. This is only useful for the 'CB' method. Must be one of 'chol' (Cholesky) or 'svd' (Singular Value Decomposition). |
... |
Extra options that must be passed to the
|
The Rotnitzky and Jewell approach consists in adjusting the
distribution of the likelihood ratio statistics - which under
misspecification is no longer distributed.
The Chandler and Bate approach adjusts the composite likelihood itself
is such a way that the usual asymptotic null
distribution is preserved. Note that in the current code, we use the
singular value decomposition for the computation of matrix square
roots to preserve asymmetry in the profile composite likelihood.
A matrix. The first column corresponds to the values for which the profiled model parameter is fixed. The second column gives the value of the pairwise log-likelihood. The remaining columns contain the constrained maximum likelihood estimates for the remaining model parameters.
This function can be really time consuming!
Mathieu Ribatet
Chandler, R. E. and Bate, S. (2007) Inference for clustered data using the independence loglikelihood Biometrika, 94, 167–183.
Rotnitzky, A. and Jewell, N. (1990) Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data. Biometrika 77, 485–97.
## Not run: ##Define the coordinates of each location n.site <- 30 locations <- matrix(rnorm(2*n.site, sd = sqrt(.2)), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(50, locations, cov.mod = "gauss", cov11 = 100, cov12 = 25, cov22 = 220) ##Fit a max-stable process ## 1- using the Smith's model fitted <- fitmaxstab(data, locations, "gauss", fit.marge = FALSE) ##Plot the profile pairwise log-likelihood for the ''cov11'' parameter profile(fitted, "cov11", range = c(20, 180)) ## End(Not run)
## Not run: ##Define the coordinates of each location n.site <- 30 locations <- matrix(rnorm(2*n.site, sd = sqrt(.2)), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(50, locations, cov.mod = "gauss", cov11 = 100, cov12 = 25, cov22 = 220) ##Fit a max-stable process ## 1- using the Smith's model fitted <- fitmaxstab(data, locations, "gauss", fit.marge = FALSE) ##Plot the profile pairwise log-likelihood for the ''cov11'' parameter profile(fitted, "cov11", range = c(20, 180)) ## End(Not run)
Computes profile surfaces for fitted max-stable models.
## S3 method for class 'maxstab' profile2d(fitted, params, ranges, n = 10, plot = TRUE, ...)
## S3 method for class 'maxstab' profile2d(fitted, params, ranges, n = 10, plot = TRUE, ...)
fitted |
An object of class “maxstab”. Most often, it will be
the output of the function |
params |
A character vector giving the two model parameters that are to be profiled. |
ranges |
A matrix corresponding to the ranges for the profiled model parameters that must be explored. Each row corresponds to one model parameter range. |
n |
Integer. The number of profiled model parameter that must be considered. |
plot |
Logical. If |
... |
Extra options that must be passed to the
|
A list with two arguments: coord
and llik
. coord
is a matrix representing the grid where the profiled model parameters
are fixed. llik
the corresponding pairwise log-likelihood.
This function can be really time consuming!
Mathieu Ribatet
## Not run: ##Define the coordinates of each location n.site <- 30 locations <- matrix(rnorm(2*n.site, sd = sqrt(.2)), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(30, locations, cov.mod = "whitmat", nugget = 0, range = 30, smooth = 0.5) ##Now define the spatial model for the GEV parameters param.loc <- -10 + 2 * locations[,2] param.scale <- 5 + 2 * locations[,1] + locations[,2]^2 param.shape <- rep(0.2, n.site) ##Transform the unit Frechet margins to GEV for (i in 1:n.site) data[,i] <- frech2gev(data[,i], param.loc[i], param.scale[i], param.shape[i]) ##Define a model for the GEV margins to be fitted ##shape ~ 1 stands for the GEV shape parameter is constant ##over the region loc.form <- loc ~ lat scale.form <- scale ~ lon + (lat^2) shape.form <- shape ~ 1 ##Fit a max-stable process ## 1- using the Schlather representation fitted <- fitmaxstab(data, locations, "whitmat", loc.form, scale.form, shape.form) ##Plot the profile pairwise log-likelihood for the smooth parameter ranges <- rbind(c(9,11), c(.3, .8)) profile2d(fitted, c("range", "smooth"), ranges = ranges) ## End(Not run)
## Not run: ##Define the coordinates of each location n.site <- 30 locations <- matrix(rnorm(2*n.site, sd = sqrt(.2)), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(30, locations, cov.mod = "whitmat", nugget = 0, range = 30, smooth = 0.5) ##Now define the spatial model for the GEV parameters param.loc <- -10 + 2 * locations[,2] param.scale <- 5 + 2 * locations[,1] + locations[,2]^2 param.shape <- rep(0.2, n.site) ##Transform the unit Frechet margins to GEV for (i in 1:n.site) data[,i] <- frech2gev(data[,i], param.loc[i], param.scale[i], param.shape[i]) ##Define a model for the GEV margins to be fitted ##shape ~ 1 stands for the GEV shape parameter is constant ##over the region loc.form <- loc ~ lat scale.form <- scale ~ lon + (lat^2) shape.form <- shape ~ 1 ##Fit a max-stable process ## 1- using the Schlather representation fitted <- fitmaxstab(data, locations, "whitmat", loc.form, scale.form, shape.form) ##Plot the profile pairwise log-likelihood for the smooth parameter ranges <- rbind(c(9,11), c(.3, .8)) profile2d(fitted, c("range", "smooth"), ranges = ranges) ## End(Not run)
This function compares the extremal coefficients estimated from a fitted max-stable process to the ones estimated semi-parametrically.
qqextcoeff(fitted, estim = "ST", marge = "emp", xlab = "Semi-Empirical", ylab = "Model", ...)
qqextcoeff(fitted, estim = "ST", marge = "emp", xlab = "Semi-Empirical", ylab = "Model", ...)
fitted |
An object of class |
estim , marge
|
The |
xlab , ylab
|
The x and y-axis labels. |
... |
Optional arguments to be passed to the |
A QQ-plot.
Mathieu Ribatet
Schlather, M. (2002) Models for Stationary Max-Stable Random Fields. Extremes 5:1, 33–44.
Schlather, M. and Tawn, J. A. (2003) A dependence measure for multivariate and spatial extreme values: Properties and inference. Biometrika 90(1):139–156.
Smith, R. L. (1990) Max-stable processes and spatial extremes. Unpublished manuscript.
##Define the coordinate of each location n.site <- 30 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(50, locations, cov.mod = "gauss", cov11 = 10, cov12 = 5, cov22 = 22) fitted <- fitmaxstab(data, locations, "gauss") qqextcoeff(fitted)
##Define the coordinate of each location n.site <- 30 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(50, locations, cov.mod = "gauss", cov11 = 10, cov12 = 5, cov22 = 22) fitted <- fitmaxstab(data, locations, "gauss") qqextcoeff(fitted)
This function compares the GEV parameters estimated separately for each location to the ones estimated from a fitted spatial model.
qqgev(fitted, xlab, ylab, ...)
qqgev(fitted, xlab, ylab, ...)
fitted |
An object of class |
xlab , ylab
|
The x and y-axis labels. May be missing. |
... |
Optional arguments to be passed to the |
A QQ-plot.
Mathieu Ribatet
Schlather, M. (2002) Models for Stationary Max-Stable Random Fields. Extremes 5:1, 33–44.
Schlather, M. and Tawn, J. A. (2003) A dependence measure for multivariate and spatial extreme values: Properties and inference. Biometrika 90(1):139–156.
Smith, R. L. (1990) Max-stable processes and spatial extremes. Unpublished manuscript.
##Define the coordinate of each location n.site <- 30 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(50, locations, cov.mod = "gauss", cov11 = 100, cov12 = 25, cov22 = 220) ##Now define the spatial model for the GEV parameters param.loc <- -10 + 2 * locations[,2] param.scale <- 5 + 2 * locations[,1] + locations[,2]^2 param.shape <- rep(0.2, n.site) ##Transform the unit Frechet margins to GEV for (i in 1:n.site) data[,i] <- frech2gev(data[,i], param.loc[i], param.scale[i], param.shape[i]) ##Define a model for the GEV margins to be fitted ##shape ~ 1 stands for the GEV shape parameter is constant ##over the region loc.form <- loc ~ lat scale.form <- scale ~ lon + I(lat^2) shape.form <- shape ~ 1 fitted <- fitspatgev(data, locations, loc.form = loc.form, scale.form = scale.form, shape.form = shape.form) qqgev(fitted)
##Define the coordinate of each location n.site <- 30 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(50, locations, cov.mod = "gauss", cov11 = 100, cov12 = 25, cov22 = 220) ##Now define the spatial model for the GEV parameters param.loc <- -10 + 2 * locations[,2] param.scale <- 5 + 2 * locations[,1] + locations[,2]^2 param.shape <- rep(0.2, n.site) ##Transform the unit Frechet margins to GEV for (i in 1:n.site) data[,i] <- frech2gev(data[,i], param.loc[i], param.scale[i], param.shape[i]) ##Define a model for the GEV margins to be fitted ##shape ~ 1 stands for the GEV shape parameter is constant ##over the region loc.form <- loc ~ lat scale.form <- scale ~ lon + I(lat^2) shape.form <- shape ~ 1 fitted <- fitspatgev(data, locations, loc.form = loc.form, scale.form = scale.form, shape.form = shape.form) qqgev(fitted)
Maximum daily rainfall amounts over the years 1962–2008 occuring during June–August at 79 sites in Switzerland.
data(rainfall)
data(rainfall)
This data set contains two R objects: 'rain' and 'coord'. 'rain' is a 47 by 79 matrix giving the amount of rain in millimeters, each column correspond to one locations. 'coord' is a 79 by 3 matrix giving the longitude, latitude and the elevation for each station, all of them being in meters.
Mathieu Ribatet
data(rainfall) op <- par(mfrow = c(1,2),pty = "s", mar = c(0,0,0,0)) swiss(city = TRUE) idx.site <- c(1, 10, 20) points(coord[-idx.site,]) points(coord[idx.site,], pch = 15, col = 2:4) par(mar = c(2,4,0,0)) plot(1962:2008, rain[,1], type = "b", xlab = "Year", ylab = "Precipitation (cm)", ylim = c(0, 120), col = 2) lines(1962:2008, rain[,10], col = 3, type = "b") lines(1962:2008, rain[,20], col = 4, type = "b") par(op)
data(rainfall) op <- par(mfrow = c(1,2),pty = "s", mar = c(0,0,0,0)) swiss(city = TRUE) idx.site <- c(1, 10, 20) points(coord[-idx.site,]) points(coord[idx.site,], pch = 15, col = 2:4) par(mar = c(2,4,0,0)) plot(1962:2008, rain[,1], type = "b", xlab = "Year", ylab = "Precipitation (cm)", ylim = c(0, 120), col = 2) lines(1962:2008, rain[,10], col = 3, type = "b") lines(1962:2008, rain[,20], col = 4, type = "b") par(op)
Creates a model using penalized smoothing splines using radial basis functions
rb(..., knots, degree, penalty)
rb(..., knots, degree, penalty)
... |
The explicative variables for which the spline is based on. |
knots |
The coordinates of knots. See section details. |
degree |
Numeric. The degree of the spline. |
penalty |
Numeric. The penalty coefficient. |
If one explicative variable is given in "...", the knots
should be a numeric vector. Otherwise, knots
should be a matrix
with the same number of column and covariates.
A list giving all the required information to fit a penalized smoothing spline:
dsgn.mat |
The design matrix. |
pen.mat |
The penalization matrix. |
degree |
The degree of the smoothing spline. |
penalty |
The penalty of the smoothing spline. |
knots |
The knots of the smoothing spline. |
data |
The explicative variables (e.g. covariates). |
call |
How was the |
This function is not supposed to be called directly. rb
is
supposed to be embedded in a R formula.
Mathieu Ribatet
n.site <- 30 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") knots <- quantile(locations[,2], 1:5/6) form <- y ~ rb(lat, knots = knots, degree = 3, penalty = .5)
n.site <- 30 locations <- matrix(runif(2*n.site, 0, 10), ncol = 2) colnames(locations) <- c("lon", "lat") knots <- quantile(locations[,2], 1:5/6) form <- y ~ rb(lat, knots = knots, degree = 3, penalty = .5)
Fits a penalized spline with radial basis functions to data.
rbpspline(y, x, knots, degree, penalty = "gcv", ...)
rbpspline(y, x, knots, degree, penalty = "gcv", ...)
y |
The response vector. |
x |
A vector/matrix giving the values of the predictor
variable(s). If |
knots |
A vector givint the coordinates of the knots. |
degree |
The degree of the penalized smoothing spline. |
penalty |
A numeric giving the penalty coefficient for the
penalization term. Alternatively, it could be either 'cv' or 'gcv'
to choose the |
... |
The penalized spline with radial basis is defined by:
where are the coefficients to be estimated,
are the coordinates of the i-th knot and
where
corresponds to
the
degree
of the spline.
The fitting criterion is to minimize
where is the penalty coefficient and
the penalty matrix.
An object of class pspline
.
Mathieu Ribatet
Ruppert, D. Wand, M.P. and Carrol, R.J. (2003) Semiparametric Regression Cambridge Series in Statistical and Probabilistic Mathematics.
n <- 200 x <- runif(n) fun <- function(x) sin(3 * pi * x) y <- fun(x) + rnorm(n, 0, sqrt(0.4)) knots <- quantile(x, prob = 1:(n/4) / (n/4 + 1)) fitted <- rbpspline(y, x, knots = knots, degree = 3) fitted plot(x, y) lines(fitted, col = 2)
n <- 200 x <- runif(n) fun <- function(x) sin(3 * pi * x) y <- fun(x) + rnorm(n, 0, sqrt(0.4)) knots <- quantile(x, prob = 1:(n/4) / (n/4 + 1)) fitted <- rbpspline(y, x, knots = knots, degree = 3) fitted plot(x, y) lines(fitted, col = 2)
This function generates realisations from the Gaussian and Student copula with unit Frechet margins.
rcopula(n, coord, copula = "gaussian", cov.mod = "whitmat", grid = FALSE, control = list(), nugget = 0, range = 1, smooth = 1, DoF = 1)
rcopula(n, coord, copula = "gaussian", cov.mod = "whitmat", grid = FALSE, control = list(), nugget = 0, range = 1, smooth = 1, DoF = 1)
n |
Integer. The number of observations. |
coord |
A vector or matrix that gives the coordinates of each location. Each row corresponds to one location - if any |
copula |
A character string that specifies the copula to be used, i.e., "gaussian" or "student". |
cov.mod |
A character string that gives the correlation function family to be used. This must be one of "whitmat", "cauchy", "powexp" and "bessel" for the Whittle-Matern, the cauchy, the powered exponential and the bessel correlation functions. |
grid |
Logical. Does the coordinates represent grid points? |
control |
A named list that control the simulation of the
gaussian process — see |
nugget , range , smooth , DoF
|
Numerics. The parameters of the copula. |
A matrix containing observations from the required max-stable
model. Each column represents one stations. If grid = TRUE
, the
function returns an array of dimension nrow(coord) x nrow(coord) x n.
Mathieu Ribatet
Demarta, S. and McNeil, A. J. (2005) The t Copula and Related Copulas International Statistical Review 73:1, 111–129.
Davison, A. C., Padoan, S. A. and Ribatet, M. (2010) Statistical Modelling of Spatial Extremes Submitted to Statistical Science.
n.site <- 25 n.obs <- 50 coord <- matrix(runif(2 * n.site, 0, 10), ncol = 2) data1 <- rcopula(n.obs, coord, "student", "whitmat", range = 3, DoF = 3) x <- y <- seq(0, 10, length = 100) data2 <- rcopula(1, cbind(x, y), "gaussian", "whitmat", range = 3, grid = TRUE) image(x, y, log(data2), col = rainbow(64))
n.site <- 25 n.obs <- 50 coord <- matrix(runif(2 * n.site, 0, 10), ncol = 2) data1 <- rcopula(n.obs, coord, "student", "whitmat", range = 3, DoF = 3) x <- y <- seq(0, 10, length = 100) data2 <- rcopula(1, cbind(x, y), "gaussian", "whitmat", range = 3, grid = TRUE) image(x, y, log(data2), col = rainbow(64))
This functions generates gaussian random fields.
rgp(n, coord, cov.mod = "powexp", mean = 0, nugget = 0, sill = 1, range = 1, smooth = 1, grid = FALSE, control = list())
rgp(n, coord, cov.mod = "powexp", mean = 0, nugget = 0, sill = 1, range = 1, smooth = 1, grid = FALSE, control = list())
n |
Integer. The number of replications. |
coord |
The locations coordinates for which the gaussian process is observed. |
cov.mod |
Character string. The covariance model used. Must be
one of "whitmat", "cauchy", "powexp" of "cauchy". See the
|
mean |
Numeric. The mean of the gaussian random field. |
nugget |
Numeric. The nugget of the gaussian random field. |
sill |
Numeric. The sill parameter in the covariance function. |
range |
Numeric. The range parameter in the covariance function. |
smooth |
Numeric. The smooth parameter in the covariance function. |
grid |
Logical. Does |
control |
A named list with arguments 'nlines' (number of lines
of the TBM simulation) and 'method' the name of the simulation
method - must be one of 'exact', 'tbm' or 'circ'. If 'method' is
|
A matrix or an array containing the random field replicates.
Mathieu Ribatet
link{rmaxstab}
x <- y <- seq(0, 20, length = 100) coord <- cbind(x, y) gp <- rgp(1, coord, cov.mod = "whitmat", grid = TRUE) filled.contour(x, y, gp, color.palette = terrain.colors)
x <- y <- seq(0, 20, length = 100) coord <- cbind(x, y) gp <- rgp(1, coord, cov.mod = "whitmat", grid = TRUE) filled.contour(x, y, gp, color.palette = terrain.colors)
This function generates realisations from a max-linear model.
rmaxlin(n, coord, cov.mod = "gauss", dsgn.mat, grid = FALSE, p = 500, ...)
rmaxlin(n, coord, cov.mod = "gauss", dsgn.mat, grid = FALSE, p = 500, ...)
n |
Integer. The number of observations. |
coord |
A vector or matrix that gives the coordinates of each
location. Each row corresponds to one location - if any. May be
missing if |
cov.mod |
A character string that specifies the max-linear
model. Currently only the discretized Smith model is implemented,
i.e., |
dsgn.mat |
The design matrix of the max-linear model — see
Section Details. May be missing if |
grid |
Logical. Does |
p |
An integer corresponding to the number of unit Frechet random variable used in the max-linear model — see Section Details. |
... |
The parameters of the max-stable model — see Section Details. |
A max-linear process is defined by
where is a positive integer,
are non
negative functions and
are independent unit Frechet
random variables. Most often, the max-linear process will be generated
at locations
and an alternative but equivalent formulation is
where ,
,
is the max-linear operator, see the first equation, and
is the design matrix of the max-linear model. The design
matrix
is a
matrix with non
negative entries and whose
-th row is
.
Currently only the discretized Smith model is implemented for which
where
is the
zero mean (multivariate) normal density with covariance matrix
,
is a sequence of deterministic
points appropriately chosen and
is a constant
ensuring unit Frechet margins. Hence if this max-linear model is used,
users must specify
var
for one dimensional processes, and
cov11
, cov12
, cov22
for two dimensional
processes.
A matrix containing observations from the max-linear model. Each
column represents one stations. If grid = TRUE
, the function
returns an array of dimension nrow(coord) x nrow(coord) x n.
Mathieu Ribatet
Wang, Y. and Stoev, S. A. (2011) Conditional Sampling for Max-Stable Random Fields. Advances in Applied Probability.
## A one dimensional simulation from a design matrix. This design matrix ## corresponds to a max-moving average process MMA(alpha) n.site <- 250 x <- seq(-10, 10, length = n.site) ## Build the design matrix alpha <- 0.8 dsgn.mat <- matrix(0, n.site, n.site) dsgn.mat[1,1] <- 1 for (i in 2:n.site){ dsgn.mat[i,1:(i-1)] <- alpha * dsgn.mat[i-1,1:(i-1)] dsgn.mat[i,i] <- 1 - alpha } data <- rmaxlin(3, dsgn.mat = dsgn.mat) matplot(x, t(log(data)), pch = 1, type = "l", lty = 1, ylab = expression(log(Y(x)))) ## One realisation from the discretized Smith model (2d sim) x <- y <- seq(-10, 10, length = 100) data <- rmaxlin(1, cbind(x, y), cov11 = 3, cov12 = 1, cov22 = 4, grid = TRUE, p = 2000) image(x, y, log(data), col = heat.colors(64))
## A one dimensional simulation from a design matrix. This design matrix ## corresponds to a max-moving average process MMA(alpha) n.site <- 250 x <- seq(-10, 10, length = n.site) ## Build the design matrix alpha <- 0.8 dsgn.mat <- matrix(0, n.site, n.site) dsgn.mat[1,1] <- 1 for (i in 2:n.site){ dsgn.mat[i,1:(i-1)] <- alpha * dsgn.mat[i-1,1:(i-1)] dsgn.mat[i,i] <- 1 - alpha } data <- rmaxlin(3, dsgn.mat = dsgn.mat) matplot(x, t(log(data)), pch = 1, type = "l", lty = 1, ylab = expression(log(Y(x)))) ## One realisation from the discretized Smith model (2d sim) x <- y <- seq(-10, 10, length = 100) data <- rmaxlin(1, cbind(x, y), cov11 = 3, cov12 = 1, cov22 = 4, grid = TRUE, p = 2000) image(x, y, log(data), col = heat.colors(64))
This function generates realisation from a max-stable random field.
rmaxstab(n, coord, cov.mod = "gauss", grid = FALSE, control = list(), ...)
rmaxstab(n, coord, cov.mod = "gauss", grid = FALSE, control = list(), ...)
n |
Integer. The number of observations. |
coord |
A vector or matrix that gives the coordinates of each location. Each row corresponds to one location - if any. |
cov.mod |
A character string that gives the max-stable model. This must be one of "gauss" for the Smith model, "brown" for the Brown–Resnick model, or "whitmat", "cauchy", "powexp" and "bessel" for the Schlather model with the given correlation family. If the latters are prefix by a "t", e.g., "twhitmat", this would corresponds to the extremal-t model. |
grid |
Logical. Does the coordinates represent grid points? |
control |
A named list with arguments 'nlines' (number of lines of the TBM simulation), 'method' the name of the simulation method - must be one of 'exact', 'tbm' or 'circ', and 'uBound' the uniform upper bound. See details. |
... |
The parameters of the max-stable model. See details. |
Users must supply the parameters for the max-stable model. For the
Schlather model, users should supply the "nugget", "range" and "smooth"
parameter values. For the Smith model, if coord
is univariate
you must specify var
, otherwise users should supply the
covariance parameters i.e. parameters with names such as cov11
,
cov12
, ... For the extremal-t model, users should supply the
"DoF", "nugget", "range" and "smooth" parameters. Finally for the
Brown–Resnick model, users should supply the "range" and the "smooth"
parameters.
Here are the details for each allowed components of 'control'. If
'method' is NULL
(default), the function tries to find the
most appropriate simulation technique. Current simulation techniques
are a direct approach, i.e. Cholesky decomposition of the covariance
matrix, the turning bands and the circular embedding methods. If
'nlines' is NULL
, it is set to 1000. If 'uBound' is
NULL
, it is set to reasonable values - for example 3.5 for the
Schlather model.
A matrix containing observations from the required max-stable
model. Each column represents one stations. If grid = TRUE
, the
function returns an array of dimension nrow(coord) x nrow(coord) x n.
Mathieu Ribatet
Schlather, M. (2002) Models for Stationary Max-Stable Random Fields. Extremes 5:1, 33–44.
Smith, R. L. (1990) Max-stable processes and spatial extremes. Unpublished manuscript.
## 1. Smith's model set.seed(8) x <- y <- seq(0, 10, length = 100) coord <- cbind(x, y) data <- rmaxstab(1, coord, "gauss", cov11 = 9/8, cov12 = 0, cov22 = 9/8, grid = TRUE) ##We change to unit Gumbel margins for visibility filled.contour(x, y, log(data), color.palette = terrain.colors) ## 2. Schlather's model data <- rmaxstab(1, coord, cov.mod = "powexp", nugget = 0, range = 3, smooth = 1, grid = TRUE) filled.contour(x, y, log(data), color.palette = terrain.colors) ## 3. Brown--Resnick's model **** Only available for non gridded points currently **** data <- rmaxstab(1, x, cov.mod = "brown", range = 3, smooth = 0.5) plot(x, log(data), type = "l") ## 4. Extremal-t model *** Very time consuming for 2d grids *** data <- rmaxstab(1, x, "twhitmat", DoF = 4, nugget = 0, range = 3, smooth = 0.7) plot(x, log(data), type = "l")
## 1. Smith's model set.seed(8) x <- y <- seq(0, 10, length = 100) coord <- cbind(x, y) data <- rmaxstab(1, coord, "gauss", cov11 = 9/8, cov12 = 0, cov22 = 9/8, grid = TRUE) ##We change to unit Gumbel margins for visibility filled.contour(x, y, log(data), color.palette = terrain.colors) ## 2. Schlather's model data <- rmaxstab(1, coord, cov.mod = "powexp", nugget = 0, range = 3, smooth = 1, grid = TRUE) filled.contour(x, y, log(data), color.palette = terrain.colors) ## 3. Brown--Resnick's model **** Only available for non gridded points currently **** data <- rmaxstab(1, x, cov.mod = "brown", range = 3, smooth = 0.5) plot(x, log(data), type = "l") ## 4. Extremal-t model *** Very time consuming for 2d grids *** data <- rmaxstab(1, x, "twhitmat", DoF = 4, nugget = 0, range = 3, smooth = 0.7) plot(x, log(data), type = "l")
The package SpatialExtremes aims to provide tools for the analysis of spatial extremes. Currently, the package uses the max-stable processes framework for the modelling of spatial extremes.
Max-stable processes are the extension of the extreme value theory to random fields. Consequently, they are good candidate to the analysis of spatial extremes. The strategy used in this package is to fit max-stable processes to data using composite likelihood.
In the future, the package will allow for non-stationarity as well as other approaches to model spatial extremes; namely latent variable and copula based approaches.
A package vignette has been writen to help new users. It can be
viewed, from the R console, by invoking
vignette("SpatialExtremesGuide")
.
The package provides the following main tools:
rgp, rmaxstab, rmaxlin,
rcopula
: simulates gaussian, max-stable, max-linear and copula
based random fields,
condrgp, condrmaxlin
: conditional simulations for
gaussian, max-linear processes,
fitspatgev
: fits a spatial GEV model to data,
fitmaxstab
, lsmaxstab
: fits
max-stable processes to data,
latent
: draws a Markov chain from a Bayesian
hierarchical model for spatial extremes,
predict
: allows predictions
for fitted max-stable processes,
map
, condmap
: plot a map for GEV
parameter as well as return levels - or conditional return levels
madogram
, fmadogram
,
lmadogram
: are (kind of) variograms devoted to extremes,
fitextcoeff
: estimates semi-parametrically the
extremal coefficient,
extcoeff
: plots the evolution of the extremal
coefficient from a fitted max-stable process,
rbpspline
: fits a penalized spline with radial
basis function,
gev2frech
, frech2gev
: transform
GEV (resp. Frechet) observation to unit Frechet (resp. GEV) ones
distance
: computes the distance between each
pair of locations,
profile
,
profile2d
: computes the profile
composite likelihood,
covariance
, variogram
: computes
the covariance/semivariogram function.
The development of the package has been financially supported by the Competence Center Environment and Sustainability (CCES) and more precisely within the EXTREMES project.
Mathieu Ribatet
Plot a map of Switzerland and optionnaly some cities.
swiss(city = FALSE, add = FALSE, axes = FALSE, km = TRUE, xlab = "", ylab = "", ...)
swiss(city = FALSE, add = FALSE, axes = FALSE, km = TRUE, xlab = "", ylab = "", ...)
city |
Logical. It |
add |
Logical. Should the map be added to an existing plot? |
axes |
Logical. Should the axis be displayed? |
km |
Logical. If |
xlab , ylab
|
The x and y-axis labels. |
... |
Optional arguments to be passed to the |
A graphic window.
Dominik Schaub
swiss()
swiss()
Data required for plotting a Switzerland map with elevation.
data(swissalt)
data(swissalt)
This data set contains three R objects. 'alt.mat' is a 192 by 115 matrix giving the elevation at the grid points defined by 'lon.vec' and 'lat.vec'.
Mathieu Ribatet
data(swissalt) layout(matrix(c(1,2), 1), width = c(3.5,1)) mar <- rep(0, 4) op <- par(mar = mar) breaks <- seq(0, 2000, by = 250) image(lon.vec, lat.vec, alt.mat, col = terrain.colors(length(breaks) - 1), xaxt = "n", yaxt = "n", bty = "n", xlab = "", ylab = "", xlim = c(480, 840), ylim = c(58, 300)) swiss(add = TRUE, city = TRUE) ##Heat bar mar <- c(3, 3, 3, 4) par(las = 1, mar = mar) plot.new() plot.window(xlim = c(0, 1), ylim = range(breaks), xaxs = "i", yaxs = "i") rect(0, breaks[-length(breaks)], 1, breaks[-1], col = terrain.colors(length(breaks) - 1), border = NA) axis(4, at = breaks[-length(breaks)]) box() title("Elevation\n(meters)") par(op)
data(swissalt) layout(matrix(c(1,2), 1), width = c(3.5,1)) mar <- rep(0, 4) op <- par(mar = mar) breaks <- seq(0, 2000, by = 250) image(lon.vec, lat.vec, alt.mat, col = terrain.colors(length(breaks) - 1), xaxt = "n", yaxt = "n", bty = "n", xlab = "", ylab = "", xlim = c(480, 840), ylim = c(58, 300)) swiss(add = TRUE, city = TRUE) ##Heat bar mar <- c(3, 3, 3, 4) par(las = 1, mar = mar) plot.new() plot.window(xlim = c(0, 1), ylim = range(breaks), xaxs = "i", yaxs = "i") rect(0, breaks[-length(breaks)], 1, breaks[-1], col = terrain.colors(length(breaks) - 1), border = NA) axis(4, at = breaks[-length(breaks)]) box() title("Elevation\n(meters)") par(op)
This function performs a symbol plot to help in identifying any spatial trends
symbolplot(data, coord, which = "gev", plot.border = NULL, col = c("#FF000080", "#0000FF80"), plot.legend = TRUE, scale = 1)
symbolplot(data, coord, which = "gev", plot.border = NULL, col = c("#FF000080", "#0000FF80"), plot.legend = TRUE, scale = 1)
data |
A matrix representing the data. Each column corresponds to one location. |
coord |
A matrix that gives the coordinates of each location. Each row corresponds to one location. |
which |
A character string specifying which values should be plotted. Must be one of "gev" (for the GEV marginal parameters), "mean" for pointwise mean or "median" for pointwise median. |
plot.border |
An R function that plots the border of the study
region. If |
col |
A vector of length 2 giving the colors to be used to fill the circles. |
plot.legend |
Logical. If |
scale |
Positive number. It enables to enlarge (if scale > 1) or reduce (if 0 < scale < 1) the radius of the plotted circles to get a better display. |
This function will plot several circles whose center is located at the weather stations and whose radius is proportional to the departure of the value at that position to the areal mean value.
A plot.
Mathieu Ribatet
## Symbol plot for the Swiss rainfall data set data(rainfall) symbolplot(rain, coord, plot.border = swiss)
## Symbol plot for the Swiss rainfall data set data(rainfall) symbolplot(rain, coord, plot.border = swiss)
Computes a the Takeuchi's information criterion which is equivalent to the AIC when the model is miss-specified.
TIC(object, ..., k = 2)
TIC(object, ..., k = 2)
object |
An object of class |
... |
Additional objects of class |
k |
Numeric. The penalty per parameter to be used. The case k = 2
(default) correspond to the classical TIC and |
TIC is like AIC so that when comparing models one wants to get the lowest TIC score.
Numeric.
Mathieu Ribatet
Gao, X. and Song, P. X.-K. (2009) Composite likelihood Bayesian information criteria for model selection in high dimensional data. Preprint.
Sakamoto, Y., Ishiguro, M., and Kitagawa G. (1986) Akaike Information Criterion Statistics. D. Reidel Publishing Company.
Varin, C. and Vidoni, P. (2005) A note on composite likelihood inference and model selection. Biometrika 92(3):519–528.
##Define the coordinate of each location n.site <- 50 locations <- matrix(runif(2*n.site, 0, 100), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(40, locations, cov.mod = "whitmat", nugget = 0.2, range = 30, smooth = 0.5) M0 <- fitmaxstab(data, locations, "powexp", fit.marge = FALSE) M1 <- fitmaxstab(data, locations, "cauchy", fit.marge = FALSE) TIC(M0, M1) TIC(M0, M1, k = log(nrow(data)))
##Define the coordinate of each location n.site <- 50 locations <- matrix(runif(2*n.site, 0, 100), ncol = 2) colnames(locations) <- c("lon", "lat") ##Simulate a max-stable process - with unit Frechet margins data <- rmaxstab(40, locations, cov.mod = "whitmat", nugget = 0.2, range = 30, smooth = 0.5) M0 <- fitmaxstab(data, locations, "powexp", fit.marge = FALSE) M1 <- fitmaxstab(data, locations, "cauchy", fit.marge = FALSE) TIC(M0, M1) TIC(M0, M1, k = log(nrow(data)))
Summer maxima/Winter minima temperatures over the years 1911–2010 observed at 424 weather stations located in continental USA.
data(USHCNTemp)
data(USHCNTemp)
This data set contains three R objects: 'maxima.summer', 'minima.winter' and 'metadata'. 'maxima.summer' is a 100 by 424 matrix giving the temperature in degrees, each column correspond to one location. 'minima.winter is a 99 by 424 matrix giving the temperature in degrees, each column correspond to one location. 'metadata' is a 424 by 5 data frame giving station identifier, the longitude, latitude, elevation and the state for each station.
Mathieu Ribatet
data(USHCNTemp) ##require(maps) ## <<-- to plot US borders maps::map("usa") plot(metadata[,2:3], pch = 15)
data(USHCNTemp) ##require(maps) ## <<-- to plot US borders maps::map("usa") plot(metadata[,2:3], pch = 15)
This function computes the empirical variogram.
variogram(data, coord, n.bins, xlab, ylab, angles = NULL, add = FALSE, xlim = c(0, max(dist)), ...)
variogram(data, coord, n.bins, xlab, ylab, angles = NULL, add = FALSE, xlim = c(0, max(dist)), ...)
data |
A matrix representing the data. Each column corresponds to one location. |
coord |
A matrix that gives the coordinates of each location. Each row corresponds to one location. |
n.bins |
The number of bins to be used. If missing, pairwise madogram estimates will be computed. |
xlab , ylab
|
The x-axis and y-axis labels. May be missing. Note
that |
angles |
A numeric vector. A partition of the interval
|
add |
Logical. If |
xlim |
A numeric vector of length 2 specifying the x coordinate range. |
... |
Additional options to be passed to the |
A graphic and (invisibly) a matrix with the lag distances and the empirical variogram estimates.
Mathieu Ribatet
n.site <- 20 n.obs <- 100 coord <- matrix(runif(2 * n.site, 0, 10), ncol = 2) data <- rgp(n.obs, coord, "powexp", sill = 2, range = 3, smooth = 1) variogram(data, coord)
n.site <- 20 n.obs <- 100 coord <- matrix(runif(2 * n.site, 0, 10), ncol = 2) data <- rgp(n.obs, coord, "powexp", sill = 2, range = 3, smooth = 1) variogram(data, coord)
This function generates the three dimensional Van der Corput sequence
on the half unit Sphere of - eventually randomly
rotated.
vdc(n, rand.rot = FALSE)
vdc(n, rand.rot = FALSE)
n |
Integer. The length of the sequence. |
rand.rot |
Logical. Should the sequence be randomly rotated? |
A matrix giving the coordinates of the points in the half unit sphere.
Mathieu Ribatet
Freulon, X., de Fouquet, C., 1991. Remarques sur la pratique des bandes tournantes a trois dimensions. Cahiers de geostatistique, Fascicule 1, Centre de Geostatistique, Ecole des Mines de Paris, Fontainebleau, pp. 101–117.
vdc(10)
vdc(10)
Annual maxima wind gusts (km/h) in the Netherlands recorded at 35 weather stations over the period 1971–2012.
data(wind)
data(wind)
This data set contains two R objects: 'coord' and 'wind'. 'wind' is a 42 by 35 matrix giving the wind gust speeds in km/h—with missing values, each column correspond to one location. 'coord' is a 35 by 3 matrix giving the longitude (degree), latitude (degree) and elevation (m).
Mathieu Ribatet
##require(maps) data(wind) par(mar = rep(0, 4)) maps::map(xlim = c(0, 9), ylim = c(47.5, 57.5)) points(coord[,1:2], pch = 15)
##require(maps) data(wind) par(mar = rep(0, 4)) maps::map(xlim = c(0, 9), ylim = c(47.5, 57.5)) points(coord[,1:2], pch = 15)