Package: SpNMF (via r-universe)

September 11, 2024

Type Package	
Fitle Supervised NMF	
Version 0.1.1	
Description Non-negative Matrix Factorization(NMF) is a powerful tool for identifying the key features of microbial communities and a dimension-reduction method. When we are interested in the differences between the structures of two groups of communities, supervised NMF(Yun Cai, Hong Gu and Tobby Kenney (2017), <doi:10.1186 s40168-017-0323-1="">) provides a better way to do this, while retaining all the advantages of NMF such as interpretability, and being based on a simple biological intuition.</doi:10.1186>	
Depends R (>= 3.2.3),	
mports NMF, stats	
License GPL-3	
Encoding UTF-8	
LazyData true	
NeedsCompilation no	
Maintainer Yun Cai <yun.cai@dal.ca></yun.cai@dal.ca>	
Author Yun Cai [aut, cre], Hong Gu [aut], Toby Kenney [aut]	
Repository CRAN	
Date/Publication 2018-10-03 07:50:03 UTC	
Contents	
getT	2 3 4 4
ndex	6
ndex	6

2 chty

Description

chty is used to get number of types for the data.

Usage

```
chty(data,y,k,maxr)
```

Arguments

data	an optional n by p count data matrix. The p columns of the matrix are different variables and the n rows are samples. Each column should contain at lest one none zero entry. When $n = 1$, it is a row vector.
у	a binary variable contains classification information of the data. Usually one group is labelled as "0" and the other as "1".
k	a value gives the number of folds used in cross validation when choosing number of types.
maxr	a number gives the upper bound of the number of types.

Value

r1	the suggested number of types for class labeled as 1.
r2	the suggested number of types for class labeled as 0.

Author(s)

Yun Cai, Hong Gu and Toby Kenney

References

Learning Microbial Community Structures with Supervised and Unsupervised Non-negative Matrix Factorization

Examples

```
##we use the simulated data spdata here
##the spdata is simulated from feature matrix combined by 2
#3types features from one group and 3 types from the other.
##choose number of types using our function
##2-folds cross validation is used here
##the upper bound of number of types for both classes is 2
##remove all zero variables from the data
spdata.rm=spdata[c(1:4,41:44),colSums(spdata)!=0]
y=c(rep(1,4),rep(0,4))
```

getT 3

```
types=chty(spdata.rm,y,2,2)
#number of types for class labeled as 1
nmb1 = types$r1
#number of types for class labeled as 0
nmb2 = types$r2
```

getT	getT
800.	30.1

Description

getT is used to calculate the combined feature matrix.

Usage

```
getT(data,y,Tr1,Tr2)
```

Arguments

data	an optional n by p count data matrix. The p columns of the matrix are different variables and the n rows are samples. Each column should contain at lest one none zero entry. When $n=1$, it is a row vector.
У	a binary variable contains classification information of the data. Usually one group is labelled as "0" and the other as "1".
Tr1	a value gives the number of types for class labeled as 1. The appropriate Tr1 can also be estimated from function chty.
Tr2	a value gives the number of types for class labeled as 0. The appropriate Tr2 can also be estimated from function chty.

Details

getT is used to calculate the combined feature matrix. The data used in getT should contain samples from both classes. If feature matrix is needed for only one class, basis(NMF(data; Tr; "KL")) can be used.

Value

T a feature matrix in dimension p by r. It is a combined feature matrix contains information from both classes.

Author(s)

Yun Cai, Hong Gu and Tobby Kenney

References

Learning Microbial Community Structures with Supervised and Unsupervised Non-negative Matrix Factorization

4 spnmf

Examples

```
#get feature matrix with rank 2 for one group and rank 3 for the other of the simualted spdata y=c(rep(1,4),rep(0,4)) T.eg=getT(spdata,y,2,3)
```

spdata

spdata

Description

the spdata is simulated from poisson distribution with mean as the product of feature and weight matrix. The feature matrix has 2804 variables and is combined by 2 types features from one group and 3 types from the other. The weight matrix is generated from uniform distribution on 0,1.

Format

```
The format is: int [1:80, 1:2804] 5 12 7 10 14 1 12 18 4 26 ... - attr(*, "dimnames")=List of 2 ..$: chr [1:80] "ibd.old0" "ibd.old0" "ibd.old0" "ibd.old0" ... ..$: NULL
```

Details

The spdata has a dimention of 80 by 2804, 40 labeled as class one and the left labeled as class two.

Examples

```
data(spdata)
```

spnmf

spnmf

Description

The spnmf is used to fit supervised Non-negative Matrix Factorization model on data when the combined feature matrix is known.

Usage

```
spnmf(data,Tp)
```

Arguments

data an optional n by p count data matrix. The p colum	ns of the matrix are different
--	--------------------------------

variables and the n rows are samples. Each column should contain at lest one

none zero entry. When n = 1, it is a row vector.

Tp a combined feature matrix in dimension p by r. p is the number of variables and

r is the number of types. Tp can also be calculated from function getT.

spnmf 5

Details

The function is based on R package NMF.

Value

W the supervised weight matrix in dimension n by r. n is the number of observa-

tions. r is the number of type for the data. It is the coefficients of the feature

matrix.

loglh the log-likelihood of the supervised NMF model.

Author(s)

Yun Cai, Hong Gu and Toby Kenney

References

Learning Microbial Community Structures with Supervised and Unsupervised Non-negative Matrix Factorization

Examples

```
##an example of classification based on supervised nmf results
#spdata consists of two classes, the first 40 samples are from class 1 and the left from class 2
##label each observation's class as 1 or 0
y=c(rep(1,4),rep(0,4))
##split the data half as training data the other half as test data
y.train=y.test=c(rep(1 ,2),rep(0,2))
spdata.train=spdata[c(1:2,41:42),]
spdata.test=spdata[c(21:22,61:62),]
#remove all zero columns
spdata.train.rm=spdata.train[,colSums(spdata.train)!=0]
#remove the same variables from test data
spdata.test.rm=spdata.test[,colSums(spdata.train)!=0]
#get feature matrix with rank 2 and 3 for the two groups
T.eg=getT(spdata.train.rm,y.train,2,3)
#get weight matrix
rs.train=spnmf(spdata.train.rm,T.eg)
w.train=rs.train$W
rs.test=spnmf(spdata.test.rm,T.eg)
w.test=rs.test$W
##the weight matrix can be used to do classification
md.train=glm(y.train~.,data=data.frame(w.train),family=binomial(link=logit))
##predict the test data
pred=predict(md.train,newdata=data.frame(w.test),type ="response")
```

Index