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Abstract
Bayesian additive regression tree (BART) models have seen increased attention in recent years as a

general-purpose nonparametric modeling technique. BART combines the flexibility of modern machine
learning techniques with the principled uncertainty quantification of Bayesian inference, and it has been
shown to be uniquely appropriate for addressing the high-noise problems that occur commonly in many
areas of science, including medicine and the social sciences. This paper introduces the SoftBart package
for fitting the Soft BART algorithm of Linero and Yang (2018). In addition to improving upon the
predictive performance of other BART packages, a major goal of this package has been to facilitate the
inclusion of BART in larger models, making it ideal for researchers in Bayesian statistics. I show both
how to use this package for standard prediction tasks and how to embed BART models in larger models;
I illustrate by using SoftBart to implement a nonparametric probit regression model, a semiparametric
varying coefficient model, and a partial linear model.

1 Introduction
Introduced by Chipman et al. (2010), Bayesian additive regression tree (or BART) models have attracted
substantial interest from the Bayesian nonparametrics and machine learning communities. BART is used in
nonparametric function estimation problems, where the function of interest r(x) is modeled as a decision tree
ensemble (containing T trees) of the form

r(x) =
T∑

t=1
Tree(x; Tt,Mt) where (Tt,Mt)

iid∼ πT (Tt)πM(Mt | Tt),

and where (πT , πM) defines a prior for the the parameters of the decision trees. Each of the functions
Tree(x; Tt,Mt) defines a regression tree (see Figure 2). This model can be viewed as a Bayesian version of
the famous decision tree boosting framework (Freund et al., 1999; Friedman, 2001), with the T decision trees
in the ensemble representing “weak learners” that are then aggregated into a single “strong learner” for r(x).
The canonical problem where BART is applied is the semiparametric Gaussian regression problem

Yi = r(Xi) + ϵi where ϵi ∼ Normal(0, σ2),

but it can also be used to model nonparametric functions r(x) in essentially arbitrary problems; these
problems include nonparametric probit and logit regression (Chipman et al., 2010; Murray, 2021), survival
analysis (Sparapani et al., 2016; Linero et al., 2021; Basak et al., 2021; Henderson et al., 2020; Bonato
et al., 2010), density regression (Li et al., 2022; Orlandi et al., 2021; Um et al., 2022), and estimation of
inhomogeneous Poisson processes (Lamprinakou et al., 2020). Moreover, Linero (2022) shows how BART can
be used with arbitrary probabilistic models using reversible jump Markov chain Monte Carlo, allowing it to
be applied in the same settings that one can apply decision tree boosting.

In this way, BART can be viewed as a flexible drop-in replacement for other Bayesian nonparametric and/or
tree-based function estimation approaches. In my view, the most important features of the BART framework
are the following:
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Figure 1: Comparison of the fit of the BART and SoftBart models to data generated from the relationship
Yi = sin(2πx) + ϵi with ϵi ∼ Normal(0, 0.12). The sine curve is overlayed in black.

1. Among Bayesian nonparametric approaches, BART is unique in that there are several high-quality,
easy to use, software implementations, including the BayesTree (Chipman and McCulloch, 2016),
bartMachine (Kapelner and Bleich, 2016), dbarts (Dorie, 2022), and BART (Sparapani et al., 2021)
packages. These mainly focus on the problems of semiparametric Gaussian and nonparametric binary
regression. Because of the existence of these packages (and the common practice in the BART community
of proposing default priors) less expertise is required to use BART than other Bayesian nonparametric
models such as Gaussian processes (Rasmussen and Williams, 2006) or Dirichlet process mixtures
(Escobar and West, 1995).

2. BART has been shown to perform extremely well in the high-noise settings that are typical in the social
sciences and medicine; for example Linero and Yang (2018) showed that BART routinely outperformed
both random forests and decision tree boosting on average over many datasets. Because of this, BART
has seen wide deployment in the causal inference literature (Hahn et al., 2020; Hill, 2011; Linero and
Zhang, 2022), where it is used both for Bayesian estimation of heterogeneous causal effects and as a
black-box machine learning algorithm by Frequentists.

3. Unlike most other black-box machine learning methods (e.g., neural networks, Gaussian processes,
and random forests), the BART prior shrinks towards low-order interactions in the data — because
the decision trees used by BART are usually shallow, realizations of r(x) from the prior will tend to
prioritize main effects, with a smaller number of second-order interactions, and even fewer high-order
interactions. While complex high-order interactions are common in some fields (image recognition,
natural language processing, and so forth), they are not thought to be very important in traditional
areas of statistics. That BART emphasizes low-order interactions was part of the initial motivation of
Chipman et al. (2010), as that BART is optimal in this regime was established theoretically in a series
of recent papers (Ročková and van der Pas, 2020; Linero and Yang, 2018; Saha, 2021).

To balance these positives, BART has several shortcomings. One shortcoming of BART, and of decision tree
ensembling approaches in general, is that the predictions produced by these models are generally non-smooth;
for example, realizations from the BART prior are stepwise-continuous functions. The impact of this lack
of smoothness can be seen in Figure 1, where BART performs suboptimally in estimating the univariate
function r(x) = sin(2πx). In this case, the mean-squared error of the BART model is 140% larger than the
mean-squared error of the SoftBart model we propose here.

To address the lack of smoothness of BART, Linero and Yang (2018) introduced the SoftBart model, with
the authors demonstrating both theoretically (through studies of posterior concentration rates) and practically
(through the analysis of benchmark datasets) that leveraging smoothness often results in substantially
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improved prediction on real datasets. Since its introduction, the SoftBart model has been used by many
researchers; in addition to extensions proposed by its progenitors, it has seen substantial interest in both
the Bayesian nonparametrics and the Bayesian causal inference literature. A non-comprehensive list of
applications include: Liu et al. (2021), who use SoftBart as the algorithm of choice for addressing non-
response in surveys; Ran and Bai (2021), who constructed a MAP-reduce algorithm for fitting SoftBart
to massive datasets; Bai et al. (2022), who found SoftBart to be a very high-quality competitor to their
spike-and-slab group lasso GAM model; and Hahn et al. (2020), where the method was discussed both in the
main manuscript and by multiple discussants.

1.1 Our Motivation
In this paper, we introduce the SoftBart package, and show how to apply it to a number of nonparametric
estimation problems. Given the large number of high-quality packages for implementing BART, as well as
the large number of competing nonparametric techniques (Bayesian or otherwise), it is natural to wonder at
the value added by yet another package. There are two major goals of this package:

1. this package makes accessible the SoftBart methodology of Linero and Yang (2018) to a wider audience;
the value of this is apparent from the analysis of benchmark datasets given by Linero and Yang (2018),
as well as the fact that SoftBart has been consistently observed to outperform other variants of BART
by other authors (Prado et al., 2021).

2. this package includes functionality that makes it easy to embed BART (or SoftBart) into larger R
programs; this will aide researchers interested in BART by making it easy to include BART in custom
models.

The second objective is a novel contribution of this package, as to the best of my knowledge SoftBart is
the only BART package that allows users to embed BART within a larger model without having to modify
the underlying C++ code. To this point, work extending BART has mainly been carried out by, as most
statisticians do not have the requisite programming knowledge (such as familiarity with C++ or other compiled
languages, knowledge of tree-based data structures, and experience implementing Markov chain Monte Carlo
algorithms on discrete data structures) to modify existing BART code effectively. Part of the motivation for
developing this functionality comes, in fact, from the realities of working on projects with graduate students;
for many problems I have worked on, the modifications required were conceptually simple, but nevertheless
required the student to learn a non-trivial amount of C++ to implement. Making extending BART more
convenient for graduate students was therefore an important aim for this package.

I show through several illustrations how SoftBart makes it easy for non-experts to implement extensions of
BART; all that is needed is a conceptual understanding of Gibbs sampling and experience implementing
MCMC algorithms in R. By embedding the BART updates inside of simple Gibbs sampling algorithms, I
show how to implement the following models: a nonparametric probit regression BART model described by
Chipman et al. (2010); the varying coefficient model of Deshpande et al. (2020), which I show also contains
the Bayesian causal forests model of Hahn et al. (2020) as a special case; and the general BART model of Tan
and Roy (2019). Beyond these models, I also note here that several existing works have used a preliminary
version of this software to implement their proposed methodology, including the survival analysis model of
Basak et al. (2021) and the skewed error model of Um et al. (2022).

1.2 Description of Methodology
We begin by reviewing the original BART model of Chipman et al. (2010) before describing the SoftBart
model. The BART framework models an unknown function r(x) as a sum of decision trees

r(x) =
T∑

t=1
Tree(x; Tt,Mt) (1)

where Tt denotes a decision tree, Mt denotes a collection of leaf node parameters, and Tree(x; T ,M) is a
regression tree function that returns the prediction associated to x for the pair (T ,M). I illustrate this
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Figure 2: Schematic depiction of a decision tree; the left figure gives the decision tree T and its leaf node
values M = (µ1, µ2, µ3), while the right figure gives the induced step function on [0, 1]2. A given value of x
starts at the top of the tree and goes left if the rule at each node is true and goes right if the rule is false,
until it reaches a terminal node.

in Figure 2, which gives a schematic of a decision tree T with leaf node parameters M = {µ1, µ2, µ3}; for
example, if x = (0.3, 0.6)⊤ then Tree(x; T ,M) = µ2 because [0.3 ≤ 0.7] and [0.6 > 0.4]. Figure 2 also shows
that each regression tree Tree(x; T ,M) corresponds to a piecewise constant function.

As seen in Figure 2, each tree T consists of a collection of leaf nodes (the nodes with no “child” nodes) and a
collection of branch nodes that each have an associated splitting rule of the form [xjb

≤ Cb]. We write L(T )
for the collection of leaf nodes ℓ and write B(T ) for the collection of branch nodes b.

1.3 The Prior on Decision Trees
Unlike other decision tree ensembling strategies, such as random forests or boosting (Breiman, 2001; Freund
et al., 1999), BART proceeds by placing a prior on the regression trees. Given the model hyperparameters
ϑ = (s, β, γ, T, σ2

µ) (to be described later), BART takes the regression trees to be a-priori independent, i.e.,

π
(
(T1,M1), . . . , (TT ,MT ) | ϑ

)
=

T∏

t=1
πT (Tt | ϑ)πM(Mt | Tt).

In SoftBart, the prior distribution for the trees πT consists of two components:

1. a prior on the shape of the tree T ; and
2. a prior on the splitting rules [xjb

≤ Cb] for each branch node of the tree.

The prior on the shape of T is a branching process described by Chipman et al. (2010). We start with a tree
consisting only of a root node of depth d = 0; we then make this root a branch node with two children with
probability

Pr(is a branch) = γ

(1 + d)β
(2)

otherwise the root becomes a leaf node. This process then iterates for d = 1, 2, . . . until all nodes at a given
depth are leaf nodes.

SoftBart uses a prior for the splitting rules that first selects a predictor by sampling jb ∼ Categorical(s)
where s = (s1, . . . , sP )⊤ is a probability vector. The prior then selects the cutpoint Cb by sampling
Cb ∼ Uniform(Ajb

, Bjb
) where

∏P
j=1[Aj , Bj ] is the hyperrectangle of x values that are associated to branch b.

The hyperparameters (s, γ, β, σµ, T ) are, by default, either fixed or given weakly-informative hyperpriors, but
users can specify their own values/priors for these quantities if desired. We defer discussion of the prior on s
to Section 3, as s plays an important role in variable selection. SoftBart follows the convention of Chipman
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et al. (2010) by taking γ = 0.95 and β = 2 by default, and opts for using fewer trees (T = 20) by default
than other BART packages. Finally, SoftBart uses the a half-Cauchy prior σµ ∼ Cauchy+(σ̂µ) for σµ, where
σ̂µ = 0.5/(k

√
T ) and k = 2. This is different than other BART packages in that we use a hyperprior for σµ,

but the prior is centered at the default value of σµ recommended for semiparametric Gaussian regression
by Chipman et al. (2010) (after scaling the outcome Yi to lie in the interval [−0.5, 0.5]). For BART models
other than the semiparametric Gaussian regression model, this choice of σµ might not be appropriate, and
we use (for example) the default σ̂µ = 3/

√
T for the probit regression model discussed in Section 4.1.

The prior used in SoftBart differs in several minor ways from the prior described by Chipman et al. (2010).
First, we use continuous uniform cutpoints rather than taking the cutpoints to occur only at the observed
values of the Xij ’s. Second, we do not place any restrictions on the number of Xi’s required for a node
to be made a branch; the high level motivation for such restrictions is to reduce the risk of overfitting,
but I have found it to be redundant in practice given that the prior regularizes the predictions at the leaf
nodes. Ultimately, I have found that these differences make very little difference in practice in terms of
predictive performance, and my choice of prior is driven by other concerns (in particular, it allows for a
simple conditionally conjugate prior for s).

1.4 Smoothing Decision Trees
The SoftBart model modifies the sum of decision trees r(x) by replacing the regression trees Tree(x; Tt,Mt)
with soft regression trees (Irsoy et al., 2012). To generalize a regression tree to a soft regression tree, we
begin by noting that we can rewrite

Tree(x; T ,M) =
∑

ℓ∈L(T )

µℓ ϕℓ(x; T )

where ϕℓ(x; T ) is the indicator function of the event that x is associated to leaf ℓ of tree T . Notice that we
can rewrite ϕℓ(x; T ) in terms of the branch rules as

ϕℓ(x; T ) =
∏

b∈A(ℓ)

I(xjb
≤ Cb)Lb I(xjb

> Cb)1−Lb , (3)

where A(ℓ) is the set of leaf nodes that are ancestral to leaf node ℓ and Lb = 1 if the path from the root to ℓ
goes left at b and Lb = 0 if the path goes right; for example, the leaf with µ3 in Figure 2 has A(ℓ) consisting
only of the root and has Lroot = 0 since the path from the root goes right rather than left. The indicator
functions in (3) are not ideal, as they encode a sharp jump from 0 to 1 as we increase xb from xb ≤ Cb to
xb > Cb. Linero and Yang (2018) generalize (3) by replacing the “hard” decision rules I(xj ≤ C) with soft
decision rules ψ


xj−C

τ


, where ψ(x) is the cumulative distribution function of a symmetric random variable.

The modified weights become

ϕℓ(x; T ) =
∏

b∈A(ℓ)

ψ


xjb

− Cb

τ

Lb


1 − ψ


xjb

− Cb

τ

1−Lb

. (4)

Because the function ψ(x) is continuous, the soft decision tree is continuous in x. The parameter τ controls
how “sharp” the decisions are, with the limit τ → 0 corresponding to a standard decision tree. Figure
3 compares a hard decision tree to a soft decision tree in terms of the associated functions; we see that
the soft decision tree smooths over the decision boundaries of the hard decision tree. SoftBart uses the
logistic function ψ(x) = (1 + exp(−x))−1 and gives each tree Tt its own bandwidth parameter τt with
τt ∼ Exponential(scale = 0.1).

1.5 Scaling the Outcome and Covariates
In order to ensure that the default prior used by SoftBart is widely appropriate, most functions in the
package either work with, or assume, that a default scaling has been used. The covariates Xij are assumed to
have been scaled to lie in the interval [0, 1]. The model fitting functions (softbart, softbart_regression(),
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Figure 3: Left: a regression tree function corresponding to “hard” decision rules. Right: a “soft” version of
the same regression tree. Points are colored according to the respective values of ϕℓ(x; T ).

softbart_probit(), etc) perform this standardization automatically by applying a quantile transformation
to each numeric covariate, i.e., each covariate is passed through its empirical cdf, and categorical variables
with C levels are binarized by introducing C “dummy” variables indicating the factor level. I generally
recommend avoiding the legacy function softbart(), particularly when working with categorical variables,
as this requires the user to manually preprocess the data.

Models with a continuous outcome Yi preprocess the outcome as well. The softbart() function applies
a linear transformation to put Yi in the interval [−0.5, 0.5] as recommended by Chipman et al. (2010),
while later functions simply standardize Yi to have mean 0 and variance 1. I have not found the choice of
standardization for Yi to have a large impact on the results.

Fitting custom models using the MakeForest() functionality described in Section 4 unfortunately requires users
to scale the covariates and outcomes on their own, and it is also recommended that users think carefully about
the hyperparameters they use, as there is no guarantee that what is appropriate for regression/classification
problems is appropriate in general.

1.6 Fitting SoftBart Models
SoftBart models are fit using a Markov chain Monte Carlo algorithm referred to as Bayesian backfitting to
approximately sample realizations of r(x) from the posterior distribution. For more details, see Kapelner and
Bleich (2016) or Linero and Yang (2018), and for a comprehensive treatment of Markov chain Monte Carlo see
Robert and Casella (2004). Bayesian backfitting for the semiparametric Gaussian model proceeds by defining
the residuals Rit = Yi − ∑

k ̸=t Tree(Xi; Tk,Mk) and then noting that Rit ∼ Normal{Tree(Xi; Tt,Mt), σ2}.
A valid Gibbs sampler could then proceed by iteratively sampling (Tt,Mt) from the posterior distribution of
the single-tree model with conditional

π(Tt,Mt | Data, T−t,M−t) ∝
∏

i

Normal{Rit | Tree(Xi; Tt,Mt), σ2}πT (Tt)πM(Mt | Tt)

This can be sampled via Markov chain Monte Carlo in the following steps:

1. Integrate out Mt to obtain the marginal likelihood L(Tt) = πT (Tt)
∫

Normal{Rit | Tree(Xi; Tt,Mt), σ2}πM(M |
Tt) dM.

2. Propose a modification T ′ ∼ q(· | Tt) to Tt and accept this modification with probability L(T ′) q(Tt♣T ′)
L(Tt) q(T ′♣Tt) ∧1

(otherwise, leave Tt unchanged).

3. Sample Mt from its full conditional given Tt.
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Linero and Yang (2018) shows how to carry out these individual steps in the case of SoftBart. As we show,
this framework can be extended to many other models of interest, with these steps being automatically
carried out in custom SoftBart models.

2 SoftBart in Action
The SoftBart package is available on CRAN and can be installed by running
install.packages("SoftBart")

Alternatively, for the most up-to-date version of the software, SoftBart can be installed from source using
the devtools package:
devtools::install_github("www.github.com/theodds/SoftBart")

I show how to use the softbart and softbart_regression functions to fit a semiparametric Gaussian
regression model. Both of these functions fit the same model; the difference is that softbart is designed
to mirror the usage of the bart function in the original BayesTree package, while softbart_regression
specifies models using formulas and also has an associated predict function for predicting on data that was
not passed to the function.

2.1 The softbart Function
I first illustrate the softbart function, which has users pass a matrix of covariates X, a vector of outcomes Y,
and a test set of covariates X_test that the user wants to predict r(x) at. Below we generate data under a
simulation setting of Friedman (1991), which takes

Yi ∼ Normal{r0(Xi), σ2
0} where r0(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5, (5)

where σ0 = 1 and Xi
iid∼ Uniform([0, 1]P ). Note that only Xi1, . . . , Xi5 are relevant, and Xij is a “nuisance

predictor” when j > 5. We then use the function softbart to fit the semiparametric Gaussian regression
model.
set.seed(1212)
sim_fried <- function(N,P,sigma) {

X <- matrix(runif(N * P), nrow = N, ncol = P)
mu <- 10 * sin(pi * X[,1] * X[,2]) + 20 * (X[,3] - 0.5)ˆ2 +

10 * X[,4] + 5 * X[,5]
Y <- mu + sigma * rnorm(N)
return(data.frame(X = X, Y = Y, mu = mu))

}

training_data <- sim_fried(250, 250, 1)
test_data <- sim_fried(250, 250, 1)

X_train <- model.matrix(Y ~ . - 1 - mu, data = training_data)
X_test <- model.matrix(Y ~ . - 1 - mu, data = test_data)

fitted_softbart <- softbart(X = X_train, Y = training_data$Y,
X_test = X_test)

The softbart function returns an object of type softbart, and the associated plot function displays a
traceplot for the parameter σ and a plot of the outcome Yi against its prediction r̂(Xi) where r̂(x) is the
posterior mean of r(x).
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Figure 4: Left: traceplot of σ for the model fit using softbart. Right: plot of the predictions against their
posterior predicted values, with vertical lines representing 95% confidence (not prediction) intervals for the
mean outcome.

plot(fitted_softbart)

The output is given in Figure 4, and we see that the posterior distribution of σ is concentrated around its
true value σ0 = 1, the chain for σ mixes quite well, and the predictions produced by softbart() are quite
close to their true values. We can also check the prediction error on the test set using the rmse function,
which returns rmse(x,y) =

√
1
N

∑
i(xi − yi)2. The Bayes estimates of r0(Xi) for the training and test sets

are given by y_hat_train_mean and y_hat_test_mean, respectively. We compare the true values of r0(Xi)
to their estimates as:
rmse(fitted_softbart$y_hat_train_mean, training_data$mu)

## [1] 0.4172506
rmse(fitted_softbart$y_hat_test_mean, test_data$mu)

## [1] 0.4404536

The raw samples of r(Xi) for the training and test sets are given by y_hat_train and y_hat_test, which
are matrices with rows corresponding to samples from the Markov chain. These can be used to, among other
things, construct credible intervals for the predicted values from the model. For example, the following code
constructs a credible interval for r(X1):
quantile(fitted_softbart$y_hat_train[,1], c(0.025, 0.975))

## 2.5% 97.5%
## 18.82388 20.24865

which contains the true value training_data$mu[1] = 19.3.
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2.2 Model Options: Hypers and Opts
Users may also wish to customize the model hyperparameters or change the behavior of the Markov chain
(for example, they may want to collect more samples, fix some hyperparameters to be constant, or thin the
Markov chain). This can be done by setting the hypers and opts arguments of softbart. These arguments
can be constructed using the functions Hypers() and Opts(), respectively. For example, the following code
uses Opts() to construct an opts argument that (i) increases the number of samples, (ii) turns off the
updating of the splitting proportion vector s, and (iii) turns off updating of σµ:
opts <- Opts(num_burn = 5000, num_save = 5000,

update_s = FALSE, update_sigma_mu = FALSE)

The Hypers() function can similarly be used to change the hyperparameters. For example, we can modify
the tree-growing prior by changing the values of γ and β in (2) and increase the number of trees T as follows:
hypers <- Hypers(X = X_train, Y = training_data$Y,

num_tree = 50, beta = 1, gamma = 0.9)

The objects hypers and opts can then be passed to the function softbart().
set.seed(19320)
fitted_softbart_2 <- softbart(X_train, training_data$Y, X_test,

opts = opts, hypers = hypers)

We can then check the performance of the model:
rmse(test_data$mu, fitted_softbart_2$y_hat_test_mean)

## [1] 1.175639

We see that this new model performs worse than the old one; this is because the ground truth r0(x) is sparse,
but we have turned off the variable selection prior for s.

Hypers() and Opts() can be used to modify many other settings, and this is often required when embedding
SoftBart into other models. We revisit the usage of Hypers() and Opts() for this purpose in Section 4.

2.3 Other Options for Fitting Models
The softbart() function is designed to match the BayesTree package in terms of usage. Other functions in
SoftBart instead use model specifications that are in line with how users specify (say) linear models using
lm(). For example, the softbart_regression() function allows users to specify a model using a formula:
fitted_regression <- softbart_regression(Y ~ . - mu,

data = training_data,
test_data = test_data)

The softbart_regression() function returns an object of type softbart_regression, which also has
several advantages over the output of softbart(). For example, softbart_regression() has an as-
sociated predict() generic that can be used to predict on data after the model is fit. Additionally,
softbart_regression() and the other functions I discuss (softbart_probit(), gsoftbart_regression()
and vc_softbart_regression()) are designed to work with data frames rather than matrices and allow for
factors to be passed directly as predictors.

Both the softbart_regression() and softbart_probit() functions produce objects that can be used with
the predict() generic, provided Opts() is called with cache_trees = TRUE, which is done by default. We
predict as follows:
predicted_values <- predict(fitted_regression, test_data)
names(predicted_values)
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## [1] "mu" "mu_mean"

For softbart_regression(), predict() returns both samples of the predicted values (mu) on the test set
and their posterior means (mu_mean).

2.4 Partial Dependence Plots
A common method for summarizing the information contained in black-box models is to construct a partial
dependence plot (Friedman, 1991). A partial dependence plot for predictor j is constructed from a partial
dependence function

PDj(v) = 1
N

N∑

i=1
r(Xi1, . . . , Xi(j−1), v,Xi(j+1), . . . , XiP ).

This reduces a multivariate function r(x) to a univariate function that is much easier to visualize. Like other
BART packages, SoftBart makes it easy to compute samples of PDj(v) at a specified collection of v’s. This
can be done using the partial_dependence_regression() function on softbart_regression objects. For
example, using our model fit to (5) we can estimate PD4 as
grid_x4 <- seq(from = 0, to = 1, length = 10)
pdf_x4 <- partial_dependence_regression(fitted_regression,

training_data, "X.4", grid_x4)

library(tidyverse)
pdf_offset <- mean(training_data$mu - 10 * training_data$X.4)
ggplot(pdf_x4$pred_df, aes(x = X.4, y = mu)) +

geom_line(stat = "summary", fun = mean) +
geom_ribbon(stat = "summary", alpha = 0.3,

fun.min = function(x) quantile(x, 0.025),
fun.max = function(x) quantile(x, 0.975)) +

xlab("$X_4$") + ylab("$\\mbox{PD}_4$") +
stat_function(fun = function(x) pdf_offset + 10 * x,

color = "#5F96C2", linetype = 2, size = 2) +
theme_bw()

For convenience, this function returns both a “tidy” (Wickham et al., 2019) data.frame to be used with
ggplot() (Wickham, 2016) as well as a matrix of samples of PDj(v) to be used with base R plotting functions.
Based on the plot (see Figure 5), we see that the fitted model does a good of capturing the true partial
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Figure 6: Plot of posterior inclusion probabilities produced by softbart using the variable selection prior.

dependence function, which (due to the fact that r(x) is additive in x4) is equal to PD4(v) = C + 10v for
some constant C.

3 Variable Selection
By default, SoftBart uses the sparsity inducing prior introduced by Linero (2018) to perform variable selection.
This prior induces sparsity on the vector of splitting proportions by taking s ∼ Dirichlet(α/P, . . . , α/P ), with
the idea being that if a variable j is irrelevant then the model can remove j by taking sj very small. Linero
(2018) shows that, when both the number of predictors P and the number of branches B in the ensemble
are large, then we have the prior approximation Q − 1 ∼ Poisson(θB) where Q is the number of relevant
predictors and θB = α

∑B−1
i=0 (α+ i)−1. The value of α can be fixed to obtain a desired amount of sparsity

a-priori, but by default SoftBart gives α a beta-prime hyperprior α
α+P ∼ Beta(0.5, 1).

Variables can be selected according to their posterior inclusion probability

PIPj = Pr(predictor j appears in the ensemble | Data).

We can then extract the PIP’s from the model fit using posterior_probs() and plot them (Figure 6):
variable_selection <- posterior_probs(fitted_softbart)
plot(variable_selection$post_probs,

col = ifelse(1:250 < 6, "#386CB0", "#7FC97F"), pch = 20,
xlab = "Predictor", ylab = "PIP", main = "Variable Selection")

The posterior_probs() function also returns the median probability model, defined by S = {j : PIPj ≥ 0.5}.
For the fit to the (5) data, we see that the median probability model coincides with the true data generating
process:
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Figure 7: Plot of posterior inclusion probabilities produced by softbart without using the variable selection
prior.

print(variable_selection$median_probability_model)

## [1] 1 2 3 4 5

The variable selection prior can be turned off by setting update_s = FALSE in Opts(). For example, we can
compare the above fit to the fit fitted_softbart_2 (Figure 7), which we recall does not place a prior on s:
variable_selection_2 <- posterior_probs(fitted_softbart_2)
plot(variable_selection_2$post_probs,

col = ifelse(1:250 < 6, "#386CB0", "#7FC97F"), pch = 20,
xlab = "Predictor", ylab = "PIP", main = "Variable Selection",
ylim = c(0,1))

abline(h = 0.5, col = "darkblue", lwd = 2, lty = 3)

We see that there are many more variables selected by the median probability model when the variable
selection prior is not used and, moreover, all of the predictors have a PIP higher than 0.2. For this reason,
some works (Chipman et al., 2010; Bleich and Kapelner, 2014) recommend using only a small number of
trees when the end goal is variable selection, as this forces the variables to “compete” for splitting rules in
the ensemble. The use of the variable selection prior makes this restriction to small numbers of trees largely
unnecessary.

Chipman et al. (2010) also suggest using the number of times a predictor is used in the ensemble as a measure
of overall variable importance; this idea, or ideas like it, have also been used to measure the importance of
variables for other types of tree-based machine learning algorithms, such as random forests (Breiman, 2001;
Díaz-Uriarte and De Andres, 2006). The variable importances are given by the quantity varimp (see Figure
8):
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Figure 8: Left: variable importance when using the variable selection prior for s. Right: variable importances
without using the variable selection prior for s.

par(mfrow = c(1,2))
plot(variable_selection$varimp,

col = ifelse(1:250 < 6, "#386CB0", "#7FC97F"), pch = 20,
xlab = "Predictor", ylab = "PIP", main = "Variable Importance")

plot(variable_selection_2$varimp,
col = ifelse(1:250 < 6, "#386CB0", "#7FC97F"), pch = 20,
xlab = "Predictor", ylab = "PIP", main = "Variable Importance")

We see that placing a prior on s leads to a much sharper transition between the relevant and irrelevant
predictors in terms of variable importance. When the data generating mechanism is sparse this leads to
better predictions, as the ensemble can dedicate more splitting rules to the relevant predictors; for example,
we see in Figure 8 that placing a prior on s also allows the ensemble to use more splitting rules to capture
the interaction between x1 and x2.

4 Embedding SoftBart Into Other Models
Beyond allowing for the use of soft decision trees, SoftBart has the unique advantage of making it easy for
researchers to embed a SoftBart model into other models within R without having to modify the underlying
C++ code. This allows users to seamlessly extend SoftBart to any setting in which the Bayesian backfitting
algorithm can be applied. Additionally, SoftBart allows users to construct multiple forests, which is required
to implement (for example) the Bayesian causal forest (BCF) model of Hahn et al. (2020).

Users can construct a decision tree ensemble using the function MakeForest(), which returns a pointer to
an Rcpp (Eddelbuettel and Balamuta, 2018) data structure called an Rcpp_Forest. Rcpp_Forests can be
interacted with using the $ operator, and a full list of available functions is given in the documentation for
MakeForest(). Some important functions include:

• forest$do_gibbs(X, Y, X_test, i) runs i iterations of the Bayesian backfitting algorithm with
covariate matrix X and outcome Y. It returns predictions on the test set of covariates X_test. It also
changes the data structure itself, with the state of forest now reflecting the forest after an additional
i iterations have been run. The related function do_gibbs_weights(X, Y, weights, X_test) runs a
heteroskedastic version of the Bayesian backfitting update, with the error variance for each observation
proportional to 1/weights.

• forest$do_predict(X) returns predictions for the covariate matrix X at the current state of forest.

13



• forest$get_sigma() and forest$set_sigma() allow us to retrieve and change the error variance σ2

assumed in the regression model of Y on X. This can be useful if we have multiple forests being updated
with only one error variance parameter.

We give some examples below. For convenience, more developed versions of the basic functions
we write are included in SoftBart as the softbart_probit(), vc_softbart_regression(), and
goftbartbart_regression() functions.

4.1 Probit Regression with Data Augmentation
It is straight-forward using an Rcpp_Forest object to implement data augmentation algorithms, such as
the algorithm of Albert and Chib (1993). The nonparametric probit regression model takes [Yi | Xi = x] ∼
Bernoulli[Φ{r(x)}], and this model can be expressed in terms of latent variables as

Yi = I(Zi > 0) where Zi ∼ Normal{r(Xi), 1}.

Let Normal(µ, σ2, A) denote the normal distribution truncated to the set A and let A0 = (−∞, 0) and
A1 = (0,∞). The data augmentation algorithm of Albert and Chib (1993) alternates between (i) sampling
the unobserved latent variables Zi ∼ Normal{r(Xi), 1, AYi

} and (ii) updating r(Xi) via Bayesian backfitting
with the Zi’s as the outcomes. The first step can be accomplished in R using the rtruncnorm() function in
the truncnorm package (Mersmann et al., 2018).

In implementing this algorithm, it is important to both set σ = 1 in our Rcpp_Forest and to ensure that σ
is not updated, since the variance of Zi is fixed at 1. The following basic function will fit the probit model
using appropriate default values for the hyperparameters:
fit_probit <- function(X, Y, X_test, num_tree, num_iter) {

## Construct forest
hypers <- Hypers(X, Y, k = 1/6,

num_tree = num_tree, sigma_hat = 1)
opts <- Opts(update_sigma = FALSE)

probit_forest <- MakeForest(hypers, opts)

## Store the output
r_train <- matrix(nrow = num_iter, ncol = nrow(X))
r_test <- matrix(nrow = num_iter, ncol = X_test)

## Initialize chain
r <- probit_forest$do_predict(X)
upper <- ifelse(Y == 0, 0, Inf)
lower <- ifelse(Y == 0, -Inf, 0)
Z <- truncnorm::rtruncnorm(n = length(Y_probit_train),

a = lower, b = upper, mean = r, sd = 1)

## Do MCMC
for(i in 1:num_iter) {

r <- probit_forest$do_gibbs(X, Z, X, 1)
Z <- truncnorm::rtruncnorm(n = length(Y_probit_train),

a = lower, b = upper, mean = r, sd = 1)
r_train[i,] <- r
r_test[i,] <- probit_forest$do_predict(X_test)

}

## Return results
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return(list(r_train = r_train, r_test = r_test))
}

The corresponding function softbart_probit() in SoftBart is more complicated, but ultimately uses the
same implementation as the above code.

I now test this function using data from the probit regression model with r(x) = 3
5 {r0(x) − 14} where r0(x)

is the same function used in our semiparametric regression illustration. I first generate the data:
set.seed(77887)
r_probit_train <- 3*(training_data$mu - 14) / 5
r_probit_test <- 3*(test_data$mu - 14) / 5
p_train <- pnorm(r_probit_train)
p_test <- pnorm(r_probit_test)
Y_probit_train <- rbinom(length(p_train), size = 1, prob = p_train)
Y_probit_test <- rbinom(length(p_test), size = 1, prob = p_test)

I then fit the model:
set.seed(1903)
fitted_probit <- fit_probit(X = X_train, Y = Y_probit_train,

X_test = X_test,
num_tree = 20, num_iter = 5000)

The following code plots the estimated values of r(Xi) from the fit_probit() output to against their true
values, with the results in Figure 9:
plot(colMeans(fitted_probit$r_train), r_probit_train,

xlab = "$\\widehat r(X_i)$", ylab = "$r(X_i)$",
pch = 20, col = "#7FC97F")

abline(a = 0, b = 1, col = "#386CB0", lwd = 4, lty = 2)

The same functionality is available in the package with the softbart_probit() function, which can be fit as
follows:
probit_data <- data.frame(X = X_train,

Y = factor(Y_probit_train, levels = c(0,1)))
probit_test <- data.frame(X = X_test,

Y = factor(Y_probit_test, levels = c(0,1)))

fitted_probit <- softbart_probit(Y ~ ., data = probit_data,
test_data = probit_test, verbose = FALSE)

4.2 A Varying Coefficient BART Model and a Bayesian Causal Forest
The varying coefficient BART (VC-BART) model of Deshpande et al. (2020) assumes a linear relationship in
a covariate of interest Zi, with the regression coefficient possibly depending on the other covariates:

Yi = α(Xi) + Zi β(Xi) + ϵi. (6)

Here, Zi is the covariate of interest, Xi is a vector of other covariates, and ϵi ∼ Normal(0, σ2). This model can
be fit via a two-stage Gibbs sampler by sampling from the distributions of [α, σ2 | β,Data] and [β | α, σ2,Data].
We can derive the update for (α, σ2) by forming the residuals Rαi = Yi −Zi β(Xi) = α(Xi) + ϵi, which follow
the usual BART model. An update for β(·) can be derived similarly by noting that

Yi − α(Xi)
Zi

≡ Rβi ∼ Normal

β(Xi),

σ2

Z2
i


.
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Figure 9: Results from fitting the probit regression model to the simulated data.

Hence Rβi follows a heteroskedastic BART model, with weights wi = Z2
i . Rcpp_Forest objects allow users to

specify a vector of weights using the $do_gibbs_weighted() method, and can therefore handle the update
for β as well. A short function for fitting the VC-BART model is given in Appendix A; the main component
of this code is the pair of updates for (α, σ2) and β:
## Update alpha
R_alpha <- Y - Z * beta
alpha <- alpha_forest$do_gibbs(X, R_alpha, X, 1)
sigma <- alpha_forest$get_sigma()

## Update beta
R_beta <- (Y - alpha) / Z
beta_forest$set_sigma(sigma)
beta <- beta_forest$do_gibbs_weight(X, R_beta, Zˆ2, X, 1)

Note that it is important that beta_forest and alpha_forest share the same value of σ internally, hence the
call of beta_forest$set_sigma(sigma). This design pattern is common in models where multiple forests
are used.

To evaluate the model, we generate data that takes β(x) = r(x) and α(x) ≡ 0, where r(x) is given in (5).
Figure 10 shows that our VC-BART model effectively estimates β(Xi), σ2, and sets ᾱ = 1

N

∑
i α(Xi) ≈ 0.

The varying coefficient model contains the Bayesian causal forest (BCF) model of Hahn et al. (2020) as a
special case. This model takes the outcome to be the observed outcome Yi ≡ Yi(Ai) of a pair of potential
outcomes {Yi(0), Yi(1)} under a binary treatment variable a ∈ {0, 1}. A BCF specifies

Yi(a) = µ(Xi) + a τ(Xi) + ϵi, ϵi ∼ Normal(0, σ2).

When applying BCFs, one is typically interested in both the population average causal effect (PACE), given by
τ = E{Yi(1)−Yi(0)} or the conditional average causal effect (CACE) given by τ(x) = E{Yi(1)−Yi(0) | Xi = x}.
A simple way to implement a BCF is to define Zi = 1/2 − Ai and fit the VC-BART model (6). Under the
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Figure 10: Fit of the varying coefficient model to the simulated data. Left: plot of β̂(Xi) against β(Xi) for
each observation. Middle: traceplot of ᾱ. Right: traceplot of σ.

common ignorability assumption that the treatment Zi is independent of the potential outcomes {Yi(0), Yi(1)}
conditional on the covariates Xi, it is then easy to show that β(x) = τ(x) for this choice of Zi.

4.3 The General BART Model
Finally, I show how SoftBart can be used to implement the general BART model described by Tan and Roy
(2019). This is effectively a partial linear model

Yi = r(Xi) + Z⊤
i β + ϵi,

which is straight-forward to also extend to probit outcomes. This model can also be used to encode a mixed
effects model when β is a vector of random effects; for simplicity, I will take β to be a set of fixed effects, with
a flat prior on β.

Code for fitting this model is given in Appendix B, with the relevant updates being given by the lines
## Update beta
R <- Y_train - r_train
beta <- update_beta(R, Z_train, sigmaˆ2)

## Update forest and sigma
R <- Y_train - as.numeric(Z_train %*% beta)
r_train <- forest$do_gibbs(X_train, R, X_train, 1) %>% as.numeric()
sigma <- forest$get_sigma()

where the line beta <- update_beta(R, Z_train, sigmaˆ2) samples β from its full conditional

β ∼ Normal{(Z⊤Z)−1Z⊤R, σ2(Z⊤Z)−1}.

I illustrate the use of this code by fitting data generated from the semiparametric Gaussian regression model
under (5), but now taking into account the fact that X4 and X5 have linear effects. Traceplots and posterior
histograms for the parameters (β1, β2, σ) (with ground truth values (10, 5, 1)) are given in Figure 11, where
β1 is the regression coefficient for X4 and β2 is the regression coefficient for X5. We see that the partial linear
model is capable of estimating both of the regression coefficients and the error variance accurately and that
the chain mixes well.
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Figure 11: Traceplots (top) and posterior histograms (bottom) associated with the general BART model fit
to the simulation setting of (5).

5 Illustration: Diamonds
I illustrate the use of SoftBart on the diamonds dataset available in the IIS package (Schneider, 2017):
library(IIS)
data("diamonds_carats_color_cost")
diamonds_pre <- diamonds_carats_color_cost
head(diamonds_pre)

## carat color clarity certification_body price
## 1 0.3 D VS2 GIA 1302
## 2 0.3 E VS1 GIA 1510
## 3 0.3 G VVS1 GIA 1510
## 4 0.3 G VS1 GIA 1260
## 5 0.31 D VS1 GIA 1641
## 6 0.31 E VS1 GIA 1555

Linero and Yang (2018) showed that SoftBart performs better than competing methods (random forests,
gradient boosted trees, BART, and the lasso) on this dataset. I fit a semiparametric regression model using
log(price) as the outcome and with the remaining variables used as predictors.
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set.seed(77777)
diamonds <- diamonds_pre %>%

mutate(logprice = log(as.numeric(as.character(price))),
carat = as.numeric(as.character(carat))) %>% select(-price)

opts <- Opts(num_burn = 5000, num_save = 2500, num_thin = 4)
fitted_diamonds <- softbart_regression(logprice ~ ., data = diamonds,

test_data = diamonds,
opts = opts)

This model has four predictors: carat, clarity, color, and certification_body. Examining the posterior
inclusion probabilities, all of the variables are included in the median probability model with the exception of
certification_body:
posterior_probs(fitted_diamonds)[["post_probs"]]

## carat color clarity certification_body
## 1.0000 1.0000 1.0000 0.3704

Next, I use the partial_dependence_regression() function to visualize the partial dependence functions
for the variables carat and clarity. As carat measures the weight of a diamond, we expect that PDcarat
should be increasing in carat, as larger diamonds should, all other things being equal, be more expensive:
pd_clarity <- partial_dependence_regression(

fit = fitted_diamonds,
test_data = diamonds,
var_str = "clarity",
grid = unique(diamonds$clarity)

)

pd_carat <- partial_dependence_regression(
fit = fitted_diamonds,
test_data = diamonds,
var_str = "carat",
grid = unique(diamonds$carat)

)

The code below plots the posterior mean and 95% credible bands for the partial dependence functions (see
Figure 12):
LCL <- function(x) quantile(x, 0.025)
UCL <- function(x) quantile(x, 0.975)

pdp_clarity <- ggplot(pd_clarity$pred_df, aes(x = clarity, y = mu)) +
geom_point(stat = "summary", fun = mean) +
geom_errorbar(stat = "summary", fun.min = LCL, fun.max = UCL) +
xlab("Clarity") +
ylab("$\\mbox{PD}_{\\mbox{Clarity}}$") +
theme_bw()

pdp_carat <- ggplot(pd_carat$pred_df, aes(x = carat, y = mu)) +
geom_ribbon(stat = "summary",

fun.min = LCL,
fun.max = UCL,
alpha = 0.3

) +

19



8.1

8.2

8.3

8.4

IF VS1 VS2 VVS1 VVS2

Clarity

P
D
C
la
ri
ty

6.5

7.0

7.5

8.0

8.5

9.0

9.5

0.3 0.6 0.9

Carat

P
D
C
a
ra
t

Figure 12: Estimates and credible intervals for the posterior dependence function of Clarity (left) and
Carat(right).

geom_point(stat = "summary",
fun = mean,
size = 0.5

) +
xlab("Carat") +
ylab("$\\mbox{PD}_{\\mbox{Carat}}$") +
theme_bw()

gridExtra::grid.arrange(pdp_clarity, pdp_carat, nrow = 1)

We see that there is very little uncertainty in the relationship between carat and log(price), although
there are some values of carat where we do not have much data. There is also a clear effect of clarity on
log(price); in reality, the variables color and clarity are ordinal, with the model correctly ranking the
possible values of clarity as IF (best), VVS1, VVS2, VS1, and VS2 (worst).

SoftBart is, to the best of my knowledge, the only package for fitting BART models that allows for partial
dependence plots to be computed for categorical variables with three or more levels, and hence it would not
be convenient to compute the partial dependence function for clarity using other packages.

6 Discussion
Moving forward, it is my plan to expand SoftBart to include recent developments in BART methodology. In
ongoing work, the MakeForest() functionality has been used to extent BCFs to mediation analysis (Imai
et al., 2010) and panel data (Bell and Jones, 2015) settings.

There are a couple of important settings where neither SoftBart nor most other existing BART packages are
applicable. Several recent applications of BART have made critical use of targeted smoothing over a variable
of interest, such as time (Starling et al., 2020; Li et al., 2022; Linero et al., 2021), and, while it would be
feasible to do so, the functionality to do this has not been added to SoftBart at this point. Additionally,
recent work of Murray (2021) has allowed for the extension of BART to loglinear models, gamma regression
models (Linero et al., 2020), heteroskedastic regression models (Pratola et al., 2020), and Cox survival models
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(Linero et al., 2021), but the Bayesian backfitting algorithms used for these extensions cannot be used with
soft decision trees. Finally, the trees used are strictly univariate, and SoftBart does not allow for the use of
multivariate decision trees as used by Linero et al. (2020).

A Code for the VC-BART Model
The following function for fitting the VC-BART model takes as input two forests alpha_forest and
beta_forest constructed using the MakeForest() function, along with a design matrix X, an outcome
y (both of which are assumed to have been appropriately scaled), and a covariate to be treated linearly
Z. SoftBart includes broader functionality for the VC-BART model via the vc_softbart_regression()
function.
fit_vc_bart <- function(alpha_forest, beta_forest, y, X, Z, num_iter) {

## Variables to save
alpha_out <- matrix(NA, nrow = num_iter, ncol = nrow(X))
beta_out <- matrix(NA, nrow = num_iter, ncol = nrow(X))
sigma_out <- numeric(num_save)

## Initializing alpha vector
alpha <- alpha_forest$do_predict(X)

for(i in 1:num_iter) {
R <- (y - alpha) / Z
beta <- beta_forest$do_gibbs_weighted(X, R, Zˆ2, X, 1)
sigma <- beta_forest$get_sigma()
alpha_forest$set_sigma(sigma)
R <- (y - Z * beta)
alpha <- alpha_forest$do_gibbs(X, R, X, 1)

alpha_out[i,] <- alpha
beta_out[i,] <- beta
sigma_out[i] <- sigma

}

mu_out <- alpha_out + t(Z * t(beta_out))
return(list(alpha = alpha_out, beta = beta_out,

sigma = sigma_out, mu = mu_out))
}

B Code for the General BART Model
The following function does a conjugate update for a parameter β in a Bayesian linear regression model
Ri = Z⊤

i β + ϵi under a flat prior for β.
update_beta <- function(R, Z, sigma_sq) {

ZtR <- t(Z) %*% R
ZtZi <- solve(t(Z) %*% Z)
beta_hat <- ZtZi %*% ZtR
Sigma <- sigma_sq * ZtZi
beta <- MASS::mvrnorm(n = 1, mu = beta_hat, Sigma = Sigma) %>%

as.numeric()
return(beta)

}
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Using the function to update β, along with the functionality from SoftBart, we can fit the general BART
model. The following function for fitting the generalized BART model takes as input a forest r_forest
constructed using the MakeForest() function, along with a design matrix X, an outcome y (both of which
are assumed to be scaled) and a design matrix Z of covariates to be treated linearly. This functionality is
available in the gsoftbart_regression() function in SoftBart.
fit_gbart <- function(r_forest, y, X, Z, num_iter) {

## Variables to save
r_out <- matrix(NA, nrow = num_iter, ncol = nrow(X))
beta_out <- matrix(NA, nrow = num_iter, ncol = ncol(Z))
sigma_out <- numeric(num_save)
eta_out <- matrix(NA, nrow = num_iter, ncol = nrow(X))

## Initializing
r <- r_forest$do_predict(X)
sigma <- r_forest$get_sigma()

for(i in 1:num_iter) {
R <- y - r
beta <- update_beta(R, Z, sigmaˆ2)
eta <- as.numeric(X %*% beta)
R <- y - eta
r <- r_forest$do_gibbs(X, R, X, 1)
sigma <- r_forest$get_sigma()

r_out[i,] <- r
beta_out[i,] <- beta_out
sigma_out[i] <- sigma
eta_out[i,] <- eta

}

return(list(r = r_out, beta = beta_out, sigma = sigma_out,
eta = eta_out, mu = eta_out + r_out))

}
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