Package 'SimSurvNMarker'

Title: Simulate Survival Time and Markers
Description: Provides functions to simulate from joint survival and marker models. The user can specific all basis functions of time, random or deterministic covariates, random or deterministic left-truncation and right-censoring times, and model parameters.
Authors: Benjamin Christoffersen [cre, aut] , Mark Clements [cph], Ignace Bogaert [cph]
Maintainer: Benjamin Christoffersen <[email protected]>
License: GPL-2
Version: 0.1.3
Built: 2024-12-09 06:43:12 UTC
Source: CRAN

Help Index


Samples from a Multivariate Normal Distribution

Description

Simulates from a multivariate normal distribution and returns a matrix with appropriate dimensions.

Usage

draw_U(Psi_chol, n_y)

Arguments

Psi_chol

Cholesky decomposition of the covariance matrix.

n_y

number of markers.

Examples

library(SimSurvNMarker)
set.seed(1)
n_y <- 2L
K <- 3L * n_y
Psi <- drop(rWishart(1, K, diag(K)))
Psi_chol <- chol(Psi)

# example
dim(draw_U(Psi_chol, n_y))
samples <- replicate(100, draw_U(Psi_chol, n_y))
samples <- t(apply(samples, 3, c))

colMeans(samples) # ~ zeroes
cov(samples) # ~ Psi

Fast Evaluation of Time-varying Marker Mean Term

Description

Evaluates the marker mean given by

μ(s,u)=o+Bg(s)+Um(s).\vec\mu(s, \vec u) = \vec o + B^\top\vec g(s) + U^\top\vec m(s).

Usage

eval_marker(ti, B, g_func, U, m_func, offset)

Arguments

ti

numeric vector with time points.

B

coefficient matrix for time-varying fixed effects. Use NULL if there is no effect.

g_func

basis function for B like poly.

U

random effects matrix for time-varying random effects. Use NULL if there is no effects.

m_func

basis function for U like poly.

offset

numeric vector with non-time-varying fixed effects.

Examples

# compare R version with this function
library(SimSurvNMarker)
set.seed(1)
n <- 100L
n_y <- 3L

ti <- seq(0, 1, length.out = n)
offset <- runif(n_y)
B <- matrix(runif(5L * n_y), nr = 5L)
g_func <- function(x)
  cbind(1, x, x^2, x^3, x^4)
U <- matrix(runif(3L * n_y), nr = 3L)
m_func <- function(x)
  cbind(1, x, x^2)

r_version <- function(ti, B, g_func, U, m_func, offset){
  func <- function(ti)
    drop(crossprod(B, drop(g_func(ti))) + crossprod(U, drop(m_func(ti))))

  vapply(ti, func, numeric(n_y)) + offset
}

# check that we get the same
stopifnot(isTRUE(all.equal(
  c(r_version  (ti[1], B, g_func, U, m_func, offset)),
    eval_marker(ti[1], B, g_func, U, m_func, offset))))
stopifnot(isTRUE(all.equal(
  r_version  (ti, B, g_func, U, m_func, offset),
  eval_marker(ti, B, g_func, U, m_func, offset))))

# check the computation time
system.time(replicate(100, r_version  (ti, B, g_func, U, m_func, offset)))
system.time(replicate(100, eval_marker(ti, B, g_func, U, m_func, offset)))

Evaluates the Survival Function without a Marker

Description

Evaluates the survival function at given points where the hazard is given by

h(t)=exp(ωb(t)+δ).h(t) = \exp(\vec\omega^\top\vec b(t) + \delta).

Usage

eval_surv_base_fun(ti, omega, b_func, gl_dat = get_gl_rule(30L), delta = NULL)

Arguments

ti

numeric vector with time points.

omega

numeric vector with coefficients for the baseline hazard.

b_func

basis function for the baseline hazard like poly.

gl_dat

Gauss–Legendre quadrature data. See get_gl_rule.

delta

offset on the log hazard scale. Use NULL if there is no effect.

Examples

# Example of a hazard function
b_func <- function(x)
  cbind(1, sin(2 * pi * x), x)
omega <- c(-3, 3, .25)
haz_fun <- function(x)
  exp(drop(b_func(x) %*% omega))

plot(haz_fun, xlim = c(0, 10))

# plot the hazard
library(SimSurvNMarker)
gl_dat <- get_gl_rule(60L)
plot(function(x) eval_surv_base_fun(ti = x, omega = omega,
                                    b_func = b_func, gl_dat = gl_dat),
     xlim = c(1e-4, 10), ylim = c(0, 1), bty = "l", xlab = "time",
     ylab = "Survival", yaxs = "i")

# using to few nodes gives a wrong result in this case!
gl_dat <- get_gl_rule(15L)
plot(function(x) eval_surv_base_fun(ti = x, omega = omega,
                                    b_func = b_func, gl_dat = gl_dat),
     xlim = c(1e-4, 10), ylim = c(0, 1), bty = "l", xlab = "time",
     ylab = "Survival", yaxs = "i")

Get Gauss–Legendre Quadrature Nodes and Weights

Description

Computes Gauss–Legendre Quadrature nodes and weights.

Usage

get_gl_rule(n)

Arguments

n

number of nodes.

Examples

library(SimSurvNMarker)
get_gl_rule(4)
get_gl_rule(25)

# fast
system.time(replicate(10000, get_gl_rule(10)))
system.time(replicate(10000, get_gl_rule(100)))

Faster Pointwise Function than ns

Description

Creates a function which can evaluate a natural cubic spline like ns.

The result may differ between different BLAS and LAPACK implementations as the QR decomposition is not unique. However, the column space of the returned matrix will always be the same regardless of the BLAS and LAPACK implementation.

Usage

get_ns_spline(knots, intercept = TRUE, do_log = TRUE)

Arguments

knots

sorted numeric vector with boundary and interior knots.

intercept

logical for whether to include an intercept.

do_log

logical for whether to evaluate the spline at log(x) or x.

Examples

# compare with splines
library(splines)
library(SimSurvNMarker)
xs <- seq(1, 5, length.out = 10L)
bks <- c(1, 5)
iks <- 2:4

# we get the same
if(require(Matrix)){
  r1 <- unclass(ns(xs, knots = iks, Boundary.knots = bks, intercept = TRUE))
  r2 <- get_ns_spline(knots = sort(c(iks, bks)), intercept = TRUE,
                      do_log = FALSE)(xs)

  cat("Rank is correct:      ", rankMatrix(cbind(r1, r2)) == NCOL(r1), "\n")

  r1 <- unclass(ns(log(xs), knots = log(iks), Boundary.knots = log(bks),
                   intercept = TRUE))
  r2 <- get_ns_spline(knots = log(sort(c(iks, bks))), intercept = TRUE,
                      do_log = TRUE)(xs)
  cat("Rank is correct (log):", rankMatrix(cbind(r1, r2)) == NCOL(r1), "\n")
}

# the latter is faster
system.time(
  replicate(100,
            ns(xs, knots = iks, Boundary.knots = bks, intercept = TRUE)))
system.time(
  replicate(100,
            get_ns_spline(knots = sort(c(iks, bks)), intercept = TRUE,
                          do_log = FALSE)(xs)))
func <- get_ns_spline(knots = sort(c(iks, bks)), intercept = TRUE,
                      do_log = FALSE)
system.time(replicate(100, func(xs)))

Simulate Individuals from a Joint Survival and Marker Model

Description

Simulates individuals from the following model

UiN(K)(0,Ψ)\vec U_i \sim N^{(K)}(\vec 0, \Psi)

YijUi=uiN(r)(μi(sij,ui),Σ)\vec Y_{ij} \mid \vec U_i = \vec u_i \sim N^{(r)}(\vec \mu_i(s_{ij}, \vec u_i), \Sigma)

h(tu)=exp(ωb(t)+δzi+1(diag(α)xi)vec(Γ)+1(diag(α)g(t))vec(B)+1(diag(α)m(t))u)h(t \mid \vec u) = \exp(\vec\omega^\top\vec b(t) + \vec\delta^\top\vec z_i + \vec 1^\top(diag(\vec \alpha) \otimes \vec x_i^\top)vec(\Gamma) + \vec 1^\top(diag(\vec \alpha) \otimes \vec g(t)^\top)vec(B) + \vec 1^\top(diag(\vec \alpha) \otimes \vec m(t)^\top)\vec u)

with

μi(s,u)=(Ixi)vec(Γ)+(Ig(s))vec(B)+(Im(s))u\vec\mu_i(s, \vec u) = (I \otimes \vec x_i^\top)vec(\Gamma) + \left(I \otimes \vec g(s)^\top\right)vec(B) + \left(I \otimes \vec m(s)^\top\right) \vec u

where h(tu)h(t \mid \vec u) is the conditional hazard function.

Usage

sim_joint_data_set(
  n_obs,
  B,
  Psi,
  omega,
  delta,
  alpha,
  sigma,
  gamma,
  b_func,
  m_func,
  g_func,
  r_z,
  r_left_trunc,
  r_right_cens,
  r_n_marker,
  r_x,
  r_obs_time,
  y_max,
  use_fixed_latent = TRUE,
  m_func_surv = m_func,
  g_func_surv = g_func,
  gl_dat = get_gl_rule(30L),
  tol = .Machine$double.eps^(1/4)
)

Arguments

n_obs

integer with the number of individuals to draw.

B

coefficient matrix for time-varying fixed effects. Use NULL if there is no effect.

Psi

the random effects' covariance matrix.

omega

numeric vector with coefficients for the baseline hazard.

delta

coefficients for fixed effects in the log hazard.

alpha

numeric vector with association parameters.

sigma

the noise's covariance matrix.

gamma

coefficient matrix for the non-time-varying fixed effects. Use NULL if there is no effect.

b_func

basis function for the baseline hazard like poly.

m_func

basis function for U like poly.

g_func

basis function for B like poly.

r_z

generator for the covariates in the log hazard. Takes an integer for the individual's id.

r_left_trunc

generator for the left-truncation time. Takes an integer for the individual's id.

r_right_cens

generator for the right-censoring time. Takes an integer for the individual's id.

r_n_marker

function to generate the number of observed markers. Takes an integer for the individual's id.

r_x

generator for the covariates in for the markers. Takes an integer for the individual's id.

r_obs_time

function to generate the observations times given the number of observed markers. Takes an integer for the number of markers and an integer for the individual's id.

y_max

maximum survival time before administrative censoring.

use_fixed_latent

logical for whether to include the 1(diag(α)xi)vec(Γ)\vec 1^\top(diag(\vec \alpha) \otimes \vec x_i^\top)vec(\Gamma) term in the log hazard. Useful if derivatives of the latent mean should be used.

m_func_surv

basis function for U like poly in the log hazard. Can be different from m_func. Useful if derivatives of the latent mean should be used.

g_func_surv

basis function for B like poly in the log hazard. Can be different from g_func. Useful if derivatives of the latent mean should be used.

gl_dat

Gauss–Legendre quadrature data. See get_gl_rule.

tol

convergence tolerance passed to uniroot.

See Also

See the examples on Github at https://github.com/boennecd/SimSurvNMarker/tree/master/inst/test-data or this vignette vignette("SimSurvNMarker", package = "SimSurvNMarker").

sim_marker and surv_func_joint

Examples

#####
# example with polynomial basis functions
b_func <- function(x){
  x <- x - 1
  cbind(x^3, x^2, x)
}
g_func <- function(x){
  x <- x - 1
  cbind(x^3, x^2, x)
}
m_func <- function(x){
  x <- x - 1
  cbind(x^2, x, 1)
}

# parameters
delta <- c(-.5, -.5, .5)
gamma <- matrix(c(.25, .5, 0, -.4, 0, .3), 3, 2)
omega <- c(1.4, -1.2, -2.1)
Psi <- structure(c(0.18, 0.05, -0.05, 0.1, -0.02, 0.06, 0.05, 0.34, -0.25,
                   -0.06, -0.03, 0.29, -0.05, -0.25, 0.24, 0.04, 0.04,
                   -0.12, 0.1, -0.06, 0.04, 0.34, 0, -0.04, -0.02, -0.03,
                   0.04, 0, 0.1, -0.08, 0.06, 0.29, -0.12, -0.04, -0.08,
                   0.51), .Dim = c(6L, 6L))
B <- structure(c(-0.57, 0.17, -0.48, 0.58, 1, 0.86), .Dim = 3:2)
sig <- diag(c(.6, .3)^2)
alpha <- c(.5, .9)

# generator functions
r_n_marker <- function(id)
  # the number of markers is Poisson distributed
  rpois(1, 10) + 1L
r_obs_time <- function(id, n_markes)
  # the observations times are uniform distributed
  sort(runif(n_markes, 0, 2))
r_z <- function(id)
  # return a design matrix for a dummy setup
  cbind(1, (id %% 3) == 1, (id %% 3) == 2)
r_x <- r_z # same covariates for the fixed effects
r_left_trunc <- function(id)
  # no left-truncation
  0
r_right_cens <- function(id)
  # right-censoring time is exponentially distributed
  rexp(1, rate = .5)

# simulate
gl_dat <- get_gl_rule(30L)
y_max <- 2
n_obs <- 100L
set.seed(1)
dat <- sim_joint_data_set(
  n_obs = n_obs, B = B, Psi = Psi, omega = omega, delta = delta,
  alpha = alpha, sigma = sig, gamma = gamma, b_func = b_func,
  m_func = m_func, g_func = g_func, r_z = r_z, r_left_trunc = r_left_trunc,
  r_right_cens = r_right_cens, r_n_marker = r_n_marker, r_x = r_x,
  r_obs_time = r_obs_time, y_max = y_max)

# checks
stopifnot(
  NROW(dat$survival_data) == n_obs,
  NROW(dat$marker_data) >= n_obs,
  all(dat$survival_data$y <= y_max))

Simulate a Number of Observed Marker for an Individual

Description

Simulates from

UiN(K)(0,Ψ)\vec U_i \sim N^{(K)}(\vec 0, \Psi)

YijUi=uiN(r)(μ(sij,ui),Σ)\vec Y_{ij} \mid \vec U_i = \vec u_i \sim N^{(r)}(\vec \mu(s_{ij}, \vec u_i), \Sigma)

with

μ(s,u)=o+(Ig(s))vec(B)+(Im(s))u.\vec\mu(s, \vec u) = \vec o + \left(I \otimes \vec g(s)^\top\right)vec(B) + \left(I \otimes \vec m(s)^\top\right) \vec u.

The number of observations and the observations times, sijs_{ij}s, are determined from the passed generating functions.

Usage

sim_marker(
  B,
  U,
  sigma_chol,
  r_n_marker,
  r_obs_time,
  m_func,
  g_func,
  offset,
  id = 1L
)

Arguments

B

coefficient matrix for time-varying fixed effects. Use NULL if there is no effect.

U

random effects matrix for time-varying random effects. Use NULL if there is no effects.

sigma_chol

Cholesky decomposition of the noise's covariance matrix.

r_n_marker

function to generate the number of observed markers. Takes an integer for the individual's id.

r_obs_time

function to generate the observations times given the number of observed markers. Takes an integer for the number of markers and an integer for the individual's id.

m_func

basis function for U like poly.

g_func

basis function for B like poly.

offset

numeric vector with non-time-varying fixed effects.

id

integer with id passed to r_n_marker and r_obs_time.

See Also

draw_U, eval_marker

Examples

#####
# example with polynomial basis functions
g_func <- function(x){
  x <- x - 1
  cbind(x^3, x^2, x)
}
m_func <- function(x){
  x <- x - 1
  cbind(x^2, x, 1)
}

# parameters
gamma <- matrix(c(.25, .5, 0, -.4, 0, .3), 3, 2)
Psi <- structure(c(0.18, 0.05, -0.05, 0.1, -0.02, 0.06, 0.05, 0.34, -0.25,
                   -0.06, -0.03, 0.29, -0.05, -0.25, 0.24, 0.04, 0.04,
                   -0.12, 0.1, -0.06, 0.04, 0.34, 0, -0.04, -0.02, -0.03,
                   0.04, 0, 0.1, -0.08, 0.06, 0.29, -0.12, -0.04, -0.08,
                   0.51), .Dim = c(6L, 6L))
B <- structure(c(-0.57, 0.17, -0.48, 0.58, 1, 0.86), .Dim = 3:2)
sig <- diag(c(.6, .3)^2)

# generator functions
r_n_marker <- function(id){
  cat(sprintf("r_n_marker: passed id is %d\n", id))
  # the number of markers is Poisson distributed
  rpois(1, 10) + 1L
}
r_obs_time <- function(id, n_markes){
  cat(sprintf("r_obs_time: passed id is %d\n", id))
  # the observations times are uniform distributed
  sort(runif(n_markes, 0, 2))
}

# simulate marker
set.seed(1)
U <- draw_U(chol(Psi), NCOL(B))
sim_marker(B = B, U = U, sigma_chol = chol(sig), r_n_marker = r_n_marker,
           r_obs_time = r_obs_time, m_func = m_func, g_func = g_func,
           offset = NULL, id = 1L)

Evaluates the Conditional Survival Function Given the Random Effects

Description

Evaluates the conditional survival function given the random effects, U\vec U. The conditional hazard function is

h(tu)=exp(ωb(t)+δ+αo+1(diag(α)g(t))vec(B)+1(diag(α)m(t))u).h(t \mid \vec u) = \exp(\vec\omega^\top\vec b(t) + \delta + \vec\alpha^\top\vec o + \vec 1^\top(diag(\vec \alpha) \otimes \vec g(t)^\top)vec(B) + \vec 1^\top(diag(\vec \alpha) \otimes \vec m(t)^\top)\vec u).

Usage

surv_func_joint(
  ti,
  B,
  U,
  omega,
  delta,
  alpha,
  b_func,
  m_func,
  gl_dat = get_gl_rule(30L),
  g_func,
  offset
)

Arguments

ti

numeric vector with time points.

B

coefficient matrix for time-varying fixed effects. Use NULL if there is no effect.

U

random effects matrix for time-varying random effects. Use NULL if there is no effects.

omega

numeric vector with coefficients for the baseline hazard.

delta

offset on the log hazard scale. Use NULL if there is no effect.

alpha

numeric vector with association parameters.

b_func

basis function for the baseline hazard like poly.

m_func

basis function for U like poly.

gl_dat

Gauss–Legendre quadrature data. See get_gl_rule.

g_func

basis function for B like poly.

offset

numeric vector with non-time-varying fixed effects.

See Also

sim_marker, draw_U, eval_surv_base_fun

Examples

#####
# example with polynomial basis functions
b_func <- function(x){
  x <- x - 1
  cbind(x^3, x^2, x)
}
g_func <- function(x){
  x <- x - 1
  cbind(x^3, x^2, x)
}
m_func <- function(x){
  x <- x - 1
  cbind(x^2, x, 1)
}

# parameters
omega <- c(1.4, -1.2, -2.1)
Psi <- structure(c(0.18, 0.05, -0.05, 0.1, -0.02, 0.06, 0.05, 0.34, -0.25,
                   -0.06, -0.03, 0.29, -0.05, -0.25, 0.24, 0.04, 0.04,
                   -0.12, 0.1, -0.06, 0.04, 0.34, 0, -0.04, -0.02, -0.03,
                   0.04, 0, 0.1, -0.08, 0.06, 0.29, -0.12, -0.04, -0.08,
                   0.51), .Dim = c(6L, 6L))
B <- structure(c(-0.57, 0.17, -0.48, 0.58, 1, 0.86), .Dim = 3:2)
alpha <- c(.5, .9)

# simulate and draw survival curve
gl_dat <- get_gl_rule(30L)
set.seed(1)
U <- draw_U(chol(Psi), NCOL(B))
tis <- seq(0, 2, length.out = 100)
Survs <- surv_func_joint(ti = tis, B = B, U = U, omega = omega,
                         delta = NULL, alpha = alpha, b_func = b_func,
                         m_func = m_func, gl_dat = gl_dat, g_func = g_func,
                         offset = NULL)
par_old <- par(mar = c(5, 5, 1, 1))
plot(tis, Survs, xlab = "Time", ylab = "Survival", type = "l",
     ylim = c(0, 1), bty = "l", xaxs = "i", yaxs = "i")
par(par_old)