Title: | Simulate Survival Time and Markers |
---|---|
Description: | Provides functions to simulate from joint survival and marker models. The user can specific all basis functions of time, random or deterministic covariates, random or deterministic left-truncation and right-censoring times, and model parameters. |
Authors: | Benjamin Christoffersen [cre, aut] , Mark Clements [cph], Ignace Bogaert [cph] |
Maintainer: | Benjamin Christoffersen <[email protected]> |
License: | GPL-2 |
Version: | 0.1.3 |
Built: | 2024-12-09 06:43:12 UTC |
Source: | CRAN |
Simulates from a multivariate normal distribution and returns a matrix with appropriate dimensions.
draw_U(Psi_chol, n_y)
draw_U(Psi_chol, n_y)
Psi_chol |
Cholesky decomposition of the covariance matrix. |
n_y |
number of markers. |
library(SimSurvNMarker) set.seed(1) n_y <- 2L K <- 3L * n_y Psi <- drop(rWishart(1, K, diag(K))) Psi_chol <- chol(Psi) # example dim(draw_U(Psi_chol, n_y)) samples <- replicate(100, draw_U(Psi_chol, n_y)) samples <- t(apply(samples, 3, c)) colMeans(samples) # ~ zeroes cov(samples) # ~ Psi
library(SimSurvNMarker) set.seed(1) n_y <- 2L K <- 3L * n_y Psi <- drop(rWishart(1, K, diag(K))) Psi_chol <- chol(Psi) # example dim(draw_U(Psi_chol, n_y)) samples <- replicate(100, draw_U(Psi_chol, n_y)) samples <- t(apply(samples, 3, c)) colMeans(samples) # ~ zeroes cov(samples) # ~ Psi
Evaluates the marker mean given by
eval_marker(ti, B, g_func, U, m_func, offset)
eval_marker(ti, B, g_func, U, m_func, offset)
ti |
numeric vector with time points. |
B |
coefficient matrix for time-varying fixed effects.
Use |
g_func |
basis function for |
U |
random effects matrix for time-varying random effects.
Use |
m_func |
basis function for |
offset |
numeric vector with non-time-varying fixed effects. |
# compare R version with this function library(SimSurvNMarker) set.seed(1) n <- 100L n_y <- 3L ti <- seq(0, 1, length.out = n) offset <- runif(n_y) B <- matrix(runif(5L * n_y), nr = 5L) g_func <- function(x) cbind(1, x, x^2, x^3, x^4) U <- matrix(runif(3L * n_y), nr = 3L) m_func <- function(x) cbind(1, x, x^2) r_version <- function(ti, B, g_func, U, m_func, offset){ func <- function(ti) drop(crossprod(B, drop(g_func(ti))) + crossprod(U, drop(m_func(ti)))) vapply(ti, func, numeric(n_y)) + offset } # check that we get the same stopifnot(isTRUE(all.equal( c(r_version (ti[1], B, g_func, U, m_func, offset)), eval_marker(ti[1], B, g_func, U, m_func, offset)))) stopifnot(isTRUE(all.equal( r_version (ti, B, g_func, U, m_func, offset), eval_marker(ti, B, g_func, U, m_func, offset)))) # check the computation time system.time(replicate(100, r_version (ti, B, g_func, U, m_func, offset))) system.time(replicate(100, eval_marker(ti, B, g_func, U, m_func, offset)))
# compare R version with this function library(SimSurvNMarker) set.seed(1) n <- 100L n_y <- 3L ti <- seq(0, 1, length.out = n) offset <- runif(n_y) B <- matrix(runif(5L * n_y), nr = 5L) g_func <- function(x) cbind(1, x, x^2, x^3, x^4) U <- matrix(runif(3L * n_y), nr = 3L) m_func <- function(x) cbind(1, x, x^2) r_version <- function(ti, B, g_func, U, m_func, offset){ func <- function(ti) drop(crossprod(B, drop(g_func(ti))) + crossprod(U, drop(m_func(ti)))) vapply(ti, func, numeric(n_y)) + offset } # check that we get the same stopifnot(isTRUE(all.equal( c(r_version (ti[1], B, g_func, U, m_func, offset)), eval_marker(ti[1], B, g_func, U, m_func, offset)))) stopifnot(isTRUE(all.equal( r_version (ti, B, g_func, U, m_func, offset), eval_marker(ti, B, g_func, U, m_func, offset)))) # check the computation time system.time(replicate(100, r_version (ti, B, g_func, U, m_func, offset))) system.time(replicate(100, eval_marker(ti, B, g_func, U, m_func, offset)))
Evaluates the survival function at given points where the hazard is given by
eval_surv_base_fun(ti, omega, b_func, gl_dat = get_gl_rule(30L), delta = NULL)
eval_surv_base_fun(ti, omega, b_func, gl_dat = get_gl_rule(30L), delta = NULL)
ti |
numeric vector with time points. |
omega |
numeric vector with coefficients for the baseline hazard. |
b_func |
basis function for the baseline hazard like |
gl_dat |
Gauss–Legendre quadrature data.
See |
delta |
offset on the log hazard scale. Use |
# Example of a hazard function b_func <- function(x) cbind(1, sin(2 * pi * x), x) omega <- c(-3, 3, .25) haz_fun <- function(x) exp(drop(b_func(x) %*% omega)) plot(haz_fun, xlim = c(0, 10)) # plot the hazard library(SimSurvNMarker) gl_dat <- get_gl_rule(60L) plot(function(x) eval_surv_base_fun(ti = x, omega = omega, b_func = b_func, gl_dat = gl_dat), xlim = c(1e-4, 10), ylim = c(0, 1), bty = "l", xlab = "time", ylab = "Survival", yaxs = "i") # using to few nodes gives a wrong result in this case! gl_dat <- get_gl_rule(15L) plot(function(x) eval_surv_base_fun(ti = x, omega = omega, b_func = b_func, gl_dat = gl_dat), xlim = c(1e-4, 10), ylim = c(0, 1), bty = "l", xlab = "time", ylab = "Survival", yaxs = "i")
# Example of a hazard function b_func <- function(x) cbind(1, sin(2 * pi * x), x) omega <- c(-3, 3, .25) haz_fun <- function(x) exp(drop(b_func(x) %*% omega)) plot(haz_fun, xlim = c(0, 10)) # plot the hazard library(SimSurvNMarker) gl_dat <- get_gl_rule(60L) plot(function(x) eval_surv_base_fun(ti = x, omega = omega, b_func = b_func, gl_dat = gl_dat), xlim = c(1e-4, 10), ylim = c(0, 1), bty = "l", xlab = "time", ylab = "Survival", yaxs = "i") # using to few nodes gives a wrong result in this case! gl_dat <- get_gl_rule(15L) plot(function(x) eval_surv_base_fun(ti = x, omega = omega, b_func = b_func, gl_dat = gl_dat), xlim = c(1e-4, 10), ylim = c(0, 1), bty = "l", xlab = "time", ylab = "Survival", yaxs = "i")
Computes Gauss–Legendre Quadrature nodes and weights.
get_gl_rule(n)
get_gl_rule(n)
n |
number of nodes. |
library(SimSurvNMarker) get_gl_rule(4) get_gl_rule(25) # fast system.time(replicate(10000, get_gl_rule(10))) system.time(replicate(10000, get_gl_rule(100)))
library(SimSurvNMarker) get_gl_rule(4) get_gl_rule(25) # fast system.time(replicate(10000, get_gl_rule(10))) system.time(replicate(10000, get_gl_rule(100)))
Creates a function which can evaluate a natural cubic spline like
ns
.
The result may differ between different BLAS and LAPACK implementations as the QR decomposition is not unique. However, the column space of the returned matrix will always be the same regardless of the BLAS and LAPACK implementation.
get_ns_spline(knots, intercept = TRUE, do_log = TRUE)
get_ns_spline(knots, intercept = TRUE, do_log = TRUE)
knots |
sorted numeric vector with boundary and interior knots. |
intercept |
logical for whether to include an intercept. |
do_log |
logical for whether to evaluate the spline at |
# compare with splines library(splines) library(SimSurvNMarker) xs <- seq(1, 5, length.out = 10L) bks <- c(1, 5) iks <- 2:4 # we get the same if(require(Matrix)){ r1 <- unclass(ns(xs, knots = iks, Boundary.knots = bks, intercept = TRUE)) r2 <- get_ns_spline(knots = sort(c(iks, bks)), intercept = TRUE, do_log = FALSE)(xs) cat("Rank is correct: ", rankMatrix(cbind(r1, r2)) == NCOL(r1), "\n") r1 <- unclass(ns(log(xs), knots = log(iks), Boundary.knots = log(bks), intercept = TRUE)) r2 <- get_ns_spline(knots = log(sort(c(iks, bks))), intercept = TRUE, do_log = TRUE)(xs) cat("Rank is correct (log):", rankMatrix(cbind(r1, r2)) == NCOL(r1), "\n") } # the latter is faster system.time( replicate(100, ns(xs, knots = iks, Boundary.knots = bks, intercept = TRUE))) system.time( replicate(100, get_ns_spline(knots = sort(c(iks, bks)), intercept = TRUE, do_log = FALSE)(xs))) func <- get_ns_spline(knots = sort(c(iks, bks)), intercept = TRUE, do_log = FALSE) system.time(replicate(100, func(xs)))
# compare with splines library(splines) library(SimSurvNMarker) xs <- seq(1, 5, length.out = 10L) bks <- c(1, 5) iks <- 2:4 # we get the same if(require(Matrix)){ r1 <- unclass(ns(xs, knots = iks, Boundary.knots = bks, intercept = TRUE)) r2 <- get_ns_spline(knots = sort(c(iks, bks)), intercept = TRUE, do_log = FALSE)(xs) cat("Rank is correct: ", rankMatrix(cbind(r1, r2)) == NCOL(r1), "\n") r1 <- unclass(ns(log(xs), knots = log(iks), Boundary.knots = log(bks), intercept = TRUE)) r2 <- get_ns_spline(knots = log(sort(c(iks, bks))), intercept = TRUE, do_log = TRUE)(xs) cat("Rank is correct (log):", rankMatrix(cbind(r1, r2)) == NCOL(r1), "\n") } # the latter is faster system.time( replicate(100, ns(xs, knots = iks, Boundary.knots = bks, intercept = TRUE))) system.time( replicate(100, get_ns_spline(knots = sort(c(iks, bks)), intercept = TRUE, do_log = FALSE)(xs))) func <- get_ns_spline(knots = sort(c(iks, bks)), intercept = TRUE, do_log = FALSE) system.time(replicate(100, func(xs)))
Simulates individuals from the following model
with
where is the conditional hazard function.
sim_joint_data_set( n_obs, B, Psi, omega, delta, alpha, sigma, gamma, b_func, m_func, g_func, r_z, r_left_trunc, r_right_cens, r_n_marker, r_x, r_obs_time, y_max, use_fixed_latent = TRUE, m_func_surv = m_func, g_func_surv = g_func, gl_dat = get_gl_rule(30L), tol = .Machine$double.eps^(1/4) )
sim_joint_data_set( n_obs, B, Psi, omega, delta, alpha, sigma, gamma, b_func, m_func, g_func, r_z, r_left_trunc, r_right_cens, r_n_marker, r_x, r_obs_time, y_max, use_fixed_latent = TRUE, m_func_surv = m_func, g_func_surv = g_func, gl_dat = get_gl_rule(30L), tol = .Machine$double.eps^(1/4) )
n_obs |
integer with the number of individuals to draw. |
B |
coefficient matrix for time-varying fixed effects.
Use |
Psi |
the random effects' covariance matrix. |
omega |
numeric vector with coefficients for the baseline hazard. |
delta |
coefficients for fixed effects in the log hazard. |
alpha |
numeric vector with association parameters. |
sigma |
the noise's covariance matrix. |
gamma |
coefficient matrix for the non-time-varying fixed effects.
Use |
b_func |
basis function for the baseline hazard like |
m_func |
basis function for |
g_func |
basis function for |
r_z |
generator for the covariates in the log hazard. Takes an integer for the individual's id. |
r_left_trunc |
generator for the left-truncation time. Takes an integer for the individual's id. |
r_right_cens |
generator for the right-censoring time. Takes an integer for the individual's id. |
r_n_marker |
function to generate the number of observed markers. Takes an integer for the individual's id. |
r_x |
generator for the covariates in for the markers. Takes an integer for the individual's id. |
r_obs_time |
function to generate the observations times given the number of observed markers. Takes an integer for the number of markers and an integer for the individual's id. |
y_max |
maximum survival time before administrative censoring. |
use_fixed_latent |
logical for whether to include the
|
m_func_surv |
basis function for |
g_func_surv |
basis function for |
gl_dat |
Gauss–Legendre quadrature data.
See |
tol |
convergence tolerance passed to |
See the examples on Github at
https://github.com/boennecd/SimSurvNMarker/tree/master/inst/test-data
or this vignette
vignette("SimSurvNMarker", package = "SimSurvNMarker")
.
sim_marker
and surv_func_joint
##### # example with polynomial basis functions b_func <- function(x){ x <- x - 1 cbind(x^3, x^2, x) } g_func <- function(x){ x <- x - 1 cbind(x^3, x^2, x) } m_func <- function(x){ x <- x - 1 cbind(x^2, x, 1) } # parameters delta <- c(-.5, -.5, .5) gamma <- matrix(c(.25, .5, 0, -.4, 0, .3), 3, 2) omega <- c(1.4, -1.2, -2.1) Psi <- structure(c(0.18, 0.05, -0.05, 0.1, -0.02, 0.06, 0.05, 0.34, -0.25, -0.06, -0.03, 0.29, -0.05, -0.25, 0.24, 0.04, 0.04, -0.12, 0.1, -0.06, 0.04, 0.34, 0, -0.04, -0.02, -0.03, 0.04, 0, 0.1, -0.08, 0.06, 0.29, -0.12, -0.04, -0.08, 0.51), .Dim = c(6L, 6L)) B <- structure(c(-0.57, 0.17, -0.48, 0.58, 1, 0.86), .Dim = 3:2) sig <- diag(c(.6, .3)^2) alpha <- c(.5, .9) # generator functions r_n_marker <- function(id) # the number of markers is Poisson distributed rpois(1, 10) + 1L r_obs_time <- function(id, n_markes) # the observations times are uniform distributed sort(runif(n_markes, 0, 2)) r_z <- function(id) # return a design matrix for a dummy setup cbind(1, (id %% 3) == 1, (id %% 3) == 2) r_x <- r_z # same covariates for the fixed effects r_left_trunc <- function(id) # no left-truncation 0 r_right_cens <- function(id) # right-censoring time is exponentially distributed rexp(1, rate = .5) # simulate gl_dat <- get_gl_rule(30L) y_max <- 2 n_obs <- 100L set.seed(1) dat <- sim_joint_data_set( n_obs = n_obs, B = B, Psi = Psi, omega = omega, delta = delta, alpha = alpha, sigma = sig, gamma = gamma, b_func = b_func, m_func = m_func, g_func = g_func, r_z = r_z, r_left_trunc = r_left_trunc, r_right_cens = r_right_cens, r_n_marker = r_n_marker, r_x = r_x, r_obs_time = r_obs_time, y_max = y_max) # checks stopifnot( NROW(dat$survival_data) == n_obs, NROW(dat$marker_data) >= n_obs, all(dat$survival_data$y <= y_max))
##### # example with polynomial basis functions b_func <- function(x){ x <- x - 1 cbind(x^3, x^2, x) } g_func <- function(x){ x <- x - 1 cbind(x^3, x^2, x) } m_func <- function(x){ x <- x - 1 cbind(x^2, x, 1) } # parameters delta <- c(-.5, -.5, .5) gamma <- matrix(c(.25, .5, 0, -.4, 0, .3), 3, 2) omega <- c(1.4, -1.2, -2.1) Psi <- structure(c(0.18, 0.05, -0.05, 0.1, -0.02, 0.06, 0.05, 0.34, -0.25, -0.06, -0.03, 0.29, -0.05, -0.25, 0.24, 0.04, 0.04, -0.12, 0.1, -0.06, 0.04, 0.34, 0, -0.04, -0.02, -0.03, 0.04, 0, 0.1, -0.08, 0.06, 0.29, -0.12, -0.04, -0.08, 0.51), .Dim = c(6L, 6L)) B <- structure(c(-0.57, 0.17, -0.48, 0.58, 1, 0.86), .Dim = 3:2) sig <- diag(c(.6, .3)^2) alpha <- c(.5, .9) # generator functions r_n_marker <- function(id) # the number of markers is Poisson distributed rpois(1, 10) + 1L r_obs_time <- function(id, n_markes) # the observations times are uniform distributed sort(runif(n_markes, 0, 2)) r_z <- function(id) # return a design matrix for a dummy setup cbind(1, (id %% 3) == 1, (id %% 3) == 2) r_x <- r_z # same covariates for the fixed effects r_left_trunc <- function(id) # no left-truncation 0 r_right_cens <- function(id) # right-censoring time is exponentially distributed rexp(1, rate = .5) # simulate gl_dat <- get_gl_rule(30L) y_max <- 2 n_obs <- 100L set.seed(1) dat <- sim_joint_data_set( n_obs = n_obs, B = B, Psi = Psi, omega = omega, delta = delta, alpha = alpha, sigma = sig, gamma = gamma, b_func = b_func, m_func = m_func, g_func = g_func, r_z = r_z, r_left_trunc = r_left_trunc, r_right_cens = r_right_cens, r_n_marker = r_n_marker, r_x = r_x, r_obs_time = r_obs_time, y_max = y_max) # checks stopifnot( NROW(dat$survival_data) == n_obs, NROW(dat$marker_data) >= n_obs, all(dat$survival_data$y <= y_max))
Simulates from
with
The number of observations and the observations times, s, are
determined from the passed generating functions.
sim_marker( B, U, sigma_chol, r_n_marker, r_obs_time, m_func, g_func, offset, id = 1L )
sim_marker( B, U, sigma_chol, r_n_marker, r_obs_time, m_func, g_func, offset, id = 1L )
B |
coefficient matrix for time-varying fixed effects.
Use |
U |
random effects matrix for time-varying random effects.
Use |
sigma_chol |
Cholesky decomposition of the noise's covariance matrix. |
r_n_marker |
function to generate the number of observed markers. Takes an integer for the individual's id. |
r_obs_time |
function to generate the observations times given the number of observed markers. Takes an integer for the number of markers and an integer for the individual's id. |
m_func |
basis function for |
g_func |
basis function for |
offset |
numeric vector with non-time-varying fixed effects. |
id |
integer with id passed to |
##### # example with polynomial basis functions g_func <- function(x){ x <- x - 1 cbind(x^3, x^2, x) } m_func <- function(x){ x <- x - 1 cbind(x^2, x, 1) } # parameters gamma <- matrix(c(.25, .5, 0, -.4, 0, .3), 3, 2) Psi <- structure(c(0.18, 0.05, -0.05, 0.1, -0.02, 0.06, 0.05, 0.34, -0.25, -0.06, -0.03, 0.29, -0.05, -0.25, 0.24, 0.04, 0.04, -0.12, 0.1, -0.06, 0.04, 0.34, 0, -0.04, -0.02, -0.03, 0.04, 0, 0.1, -0.08, 0.06, 0.29, -0.12, -0.04, -0.08, 0.51), .Dim = c(6L, 6L)) B <- structure(c(-0.57, 0.17, -0.48, 0.58, 1, 0.86), .Dim = 3:2) sig <- diag(c(.6, .3)^2) # generator functions r_n_marker <- function(id){ cat(sprintf("r_n_marker: passed id is %d\n", id)) # the number of markers is Poisson distributed rpois(1, 10) + 1L } r_obs_time <- function(id, n_markes){ cat(sprintf("r_obs_time: passed id is %d\n", id)) # the observations times are uniform distributed sort(runif(n_markes, 0, 2)) } # simulate marker set.seed(1) U <- draw_U(chol(Psi), NCOL(B)) sim_marker(B = B, U = U, sigma_chol = chol(sig), r_n_marker = r_n_marker, r_obs_time = r_obs_time, m_func = m_func, g_func = g_func, offset = NULL, id = 1L)
##### # example with polynomial basis functions g_func <- function(x){ x <- x - 1 cbind(x^3, x^2, x) } m_func <- function(x){ x <- x - 1 cbind(x^2, x, 1) } # parameters gamma <- matrix(c(.25, .5, 0, -.4, 0, .3), 3, 2) Psi <- structure(c(0.18, 0.05, -0.05, 0.1, -0.02, 0.06, 0.05, 0.34, -0.25, -0.06, -0.03, 0.29, -0.05, -0.25, 0.24, 0.04, 0.04, -0.12, 0.1, -0.06, 0.04, 0.34, 0, -0.04, -0.02, -0.03, 0.04, 0, 0.1, -0.08, 0.06, 0.29, -0.12, -0.04, -0.08, 0.51), .Dim = c(6L, 6L)) B <- structure(c(-0.57, 0.17, -0.48, 0.58, 1, 0.86), .Dim = 3:2) sig <- diag(c(.6, .3)^2) # generator functions r_n_marker <- function(id){ cat(sprintf("r_n_marker: passed id is %d\n", id)) # the number of markers is Poisson distributed rpois(1, 10) + 1L } r_obs_time <- function(id, n_markes){ cat(sprintf("r_obs_time: passed id is %d\n", id)) # the observations times are uniform distributed sort(runif(n_markes, 0, 2)) } # simulate marker set.seed(1) U <- draw_U(chol(Psi), NCOL(B)) sim_marker(B = B, U = U, sigma_chol = chol(sig), r_n_marker = r_n_marker, r_obs_time = r_obs_time, m_func = m_func, g_func = g_func, offset = NULL, id = 1L)
Evaluates the conditional survival function given the random effects,
. The conditional hazard function is
surv_func_joint( ti, B, U, omega, delta, alpha, b_func, m_func, gl_dat = get_gl_rule(30L), g_func, offset )
surv_func_joint( ti, B, U, omega, delta, alpha, b_func, m_func, gl_dat = get_gl_rule(30L), g_func, offset )
ti |
numeric vector with time points. |
B |
coefficient matrix for time-varying fixed effects.
Use |
U |
random effects matrix for time-varying random effects.
Use |
omega |
numeric vector with coefficients for the baseline hazard. |
delta |
offset on the log hazard scale. Use |
alpha |
numeric vector with association parameters. |
b_func |
basis function for the baseline hazard like |
m_func |
basis function for |
gl_dat |
Gauss–Legendre quadrature data.
See |
g_func |
basis function for |
offset |
numeric vector with non-time-varying fixed effects. |
sim_marker
, draw_U
,
eval_surv_base_fun
##### # example with polynomial basis functions b_func <- function(x){ x <- x - 1 cbind(x^3, x^2, x) } g_func <- function(x){ x <- x - 1 cbind(x^3, x^2, x) } m_func <- function(x){ x <- x - 1 cbind(x^2, x, 1) } # parameters omega <- c(1.4, -1.2, -2.1) Psi <- structure(c(0.18, 0.05, -0.05, 0.1, -0.02, 0.06, 0.05, 0.34, -0.25, -0.06, -0.03, 0.29, -0.05, -0.25, 0.24, 0.04, 0.04, -0.12, 0.1, -0.06, 0.04, 0.34, 0, -0.04, -0.02, -0.03, 0.04, 0, 0.1, -0.08, 0.06, 0.29, -0.12, -0.04, -0.08, 0.51), .Dim = c(6L, 6L)) B <- structure(c(-0.57, 0.17, -0.48, 0.58, 1, 0.86), .Dim = 3:2) alpha <- c(.5, .9) # simulate and draw survival curve gl_dat <- get_gl_rule(30L) set.seed(1) U <- draw_U(chol(Psi), NCOL(B)) tis <- seq(0, 2, length.out = 100) Survs <- surv_func_joint(ti = tis, B = B, U = U, omega = omega, delta = NULL, alpha = alpha, b_func = b_func, m_func = m_func, gl_dat = gl_dat, g_func = g_func, offset = NULL) par_old <- par(mar = c(5, 5, 1, 1)) plot(tis, Survs, xlab = "Time", ylab = "Survival", type = "l", ylim = c(0, 1), bty = "l", xaxs = "i", yaxs = "i") par(par_old)
##### # example with polynomial basis functions b_func <- function(x){ x <- x - 1 cbind(x^3, x^2, x) } g_func <- function(x){ x <- x - 1 cbind(x^3, x^2, x) } m_func <- function(x){ x <- x - 1 cbind(x^2, x, 1) } # parameters omega <- c(1.4, -1.2, -2.1) Psi <- structure(c(0.18, 0.05, -0.05, 0.1, -0.02, 0.06, 0.05, 0.34, -0.25, -0.06, -0.03, 0.29, -0.05, -0.25, 0.24, 0.04, 0.04, -0.12, 0.1, -0.06, 0.04, 0.34, 0, -0.04, -0.02, -0.03, 0.04, 0, 0.1, -0.08, 0.06, 0.29, -0.12, -0.04, -0.08, 0.51), .Dim = c(6L, 6L)) B <- structure(c(-0.57, 0.17, -0.48, 0.58, 1, 0.86), .Dim = 3:2) alpha <- c(.5, .9) # simulate and draw survival curve gl_dat <- get_gl_rule(30L) set.seed(1) U <- draw_U(chol(Psi), NCOL(B)) tis <- seq(0, 2, length.out = 100) Survs <- surv_func_joint(ti = tis, B = B, U = U, omega = omega, delta = NULL, alpha = alpha, b_func = b_func, m_func = m_func, gl_dat = gl_dat, g_func = g_func, offset = NULL) par_old <- par(mar = c(5, 5, 1, 1)) plot(tis, Survs, xlab = "Time", ylab = "Survival", type = "l", ylim = c(0, 1), bty = "l", xaxs = "i", yaxs = "i") par(par_old)