--- title: "SimSST Examples" author: "Mohsen Soltanifar" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{SimSST Examples} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} editor_options: chunk_output_type: console --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` # SimSST The goal of SimSST is to simulate stop signal task data based on fixed ssd method and the tracking method. ## Installation You can install the development version of descfarspkg with: ``` {r} library(dplyr) library(gamlss.dist) library(MASS) library(SimSST) set.seed(1) ``` ### Example: Fixed SSD method-based Simulation ```{r} mySSTdata1 <- simssfixed( pid = c("FNLN1","FNLN1"), block = c(1,2), n = c(10,10), m = c(4,4), SSD.b = c(220,240), dist.go = c("ExG","ExG"), theta.go = as.matrix(rbind(c(440,90,90),c(440,90,90))), dist.stop = c("ExG","ExG"), theta.stop = as.matrix(rbind(c(120,80,70),c(120,80,70))) ) mySSTdata1 ``` ### Example: Tracking Method-based Simulation ```{r} mySSTdata2 <- simsstrack( pid = c("FNLN1","FNLN1"), block = c(1,2), n = c(10,10), m = c(4,4), SSD.b = c(220,240), dist.go = c("ExG","ExG" ), theta.go = as.matrix(rbind(c(440,90,90),c(440,90,90))), dist.stop = c("ExG","ExG" ), theta.stop = as.matrix(rbind(c(120,80,70),c(120,80,70))) ) mySSTdata2 ``` To convert tracking-based SimSST simulated data to BEESTS software input data, we have: ### Example: Converstion to BEESTs software format ```{r} Datatemp2 <- mySSTdata2 ss_presented <- recode(Datatemp2[,3], 'Stop' = "1", 'Go' = "0") inhibited <- Datatemp2[,4] ssd <- Datatemp2[,8] rt <- Datatemp2[,5] srrt <- Datatemp2[,7] Data2 <- cbind.data.frame(ss_presented, inhibited, ssd, rt, srrt) for(i in 1:20) if(Data2$inhibited[i]==0) Data2$rt[i] <- Data2$srrt[i] myBEESTSdata2 <- (Data2[,-5])[order(ss_presented),] myBEESTSdata2 ``` Once users reformat the simulated datasets to BEESTS dataset format, they may feed the BEESTS data to the BEESTS software to compute their plausible parameters (mu, sigma, tau). ### Example: Simulating correlated SST data using general tracking method ```{r} mySSTdata3 <- simssgen( pid = c("FNLN1","FNLN2","FNLN2"), block = c(1,1,2), n = c(50,100,150), m = c(10,20,30), SSD.b = c(200,220,240), dist.go = c("ExG","ExG","ExG"), theta.go = as.matrix(rbind(c(400,60,30),c(440,90,90),c(440,90,90))), dist.stop = c("ExG","ExG","ExG"), theta.stop = as.matrix(rbind(c(100,70,60),c(120,80,70),c(120,80,70))), rho = c(0.35,0.45,0.45), d = c(50,65,75)) mySSTdata3 ```