Title: | Simulation-Based Inference Methods for Infectious Disease Models |
---|---|
Description: | Provides some code to run simulations of state-space models, and then use these in the Approximate Bayesian Computation Sequential Monte Carlo (ABC-SMC) algorithm of Toni et al. (2009) <doi:10.1098/rsif.2008.0172> and a bootstrap particle filter based particle Markov chain Monte Carlo (PMCMC) algorithm (Andrieu et al., 2010 <doi:10.1111/j.1467-9868.2009.00736.x>). Also provides functions to plot and summarise the outputs. |
Authors: | Trevelyan J. McKinley [aut, cre], Stefan Widgren [aut] (Author of 'R/mparse.R'), Pavol Bauer [cph] (R/mparse.R), Robin Eriksson [cph] (R/mparse.R), Stefan Engblom [cph] (R/mparse.R) |
Maintainer: | Trevelyan J. McKinley <[email protected]> |
License: | GPL (>= 3) |
Version: | 0.2.1 |
Built: | 2024-12-15 07:42:23 UTC |
Source: | CRAN |
Package implements various simulation-based inference routines for infectious disease models.
Provides some code to run simulations of state-space models, and then use these in the Approximate Bayesian Computation Sequential Monte Carlo (ABC-SMC) algorithm of Toni et al. (2009) <doi:10.1098/rsif.2008.0172> and a bootstrap particle filter based particle Markov chain Monte Carlo (PMCMC) algorithm (Andrieu et al., 2010 <doi:10.1111/j.1467-9868.2009.00736.x>). Also provides functions to plot and summarise the outputs.
Trevelyan J. McKinley <[email protected]>
Produces reference table of simulated outcomes for use in various Approximate Bayesian Computation (ABC) algorithms.
ABCRef( npart, priors, pars, func, sumNames, parallel = FALSE, mc.cores = NA, ... )
ABCRef( npart, priors, pars, func, sumNames, parallel = FALSE, mc.cores = NA, ... )
npart |
The number of particles (must be a positive integer). |
priors |
A |
pars |
A named vector or matrix of parameters to use for the simulations. If |
func |
Function that runs the simulator. The first argument must be |
sumNames |
A |
parallel |
A |
mc.cores |
Number of cores to use if using parallel processing. |
... |
Extra arguments to be passed to |
Runs simulations for a large number of particles, either pre-specified or
sampled from the a set of given prior distributions. Returns a table of summary
statistics for each particle. Useful for deciding on initial tolerances during an
ABCSMC
run, or for producing a reference table to use in e.g. the
ABC with Random Forests approach of Raynal et al. (2017).
An data.frame
object with npart
rows, where the first p
columns correspond to
the proposed parameters, and the remaining columns correspond to the simulated outputs.
Raynal, L, Marin J-M, Pudlo P, Ribatet M, Robert CP and Estoup A. (2017) <ArXiv:1605.05537>
## set up SIR simulation model transitions <- c( "S -> beta * S * I -> I", "I -> gamma * I -> R" ) compartments <- c("S", "I", "R") pars <- c("beta", "gamma") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars ) model <- compileRcpp(model) ## generate function to run simulators ## and produce final epidemic size and time ## summary statistics simRef <- function(pars, model) { ## run model over a 100 day period with ## one initial infective in a population ## of 120 individuals sims <- model(pars, 0, 100, c(119, 1, 0)) ## return vector of summary statistics c(finaltime = sims[2], finalsize = sims[5]) } ## set priors priors <- data.frame( parnames = c("beta", "gamma"), dist = rep("gamma", 2), stringsAsFactors = FALSE ) priors$p1 <- c(10, 10) priors$p2 <- c(10^4, 10^2) ## produce reference table by sampling from priors ## (add additional arguments to 'func' at the end) refTable <- ABCRef( npart = 100, priors = priors, func = simRef, sumNames = c("finaltime", "finalsize"), model = model ) refTable
## set up SIR simulation model transitions <- c( "S -> beta * S * I -> I", "I -> gamma * I -> R" ) compartments <- c("S", "I", "R") pars <- c("beta", "gamma") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars ) model <- compileRcpp(model) ## generate function to run simulators ## and produce final epidemic size and time ## summary statistics simRef <- function(pars, model) { ## run model over a 100 day period with ## one initial infective in a population ## of 120 individuals sims <- model(pars, 0, 100, c(119, 1, 0)) ## return vector of summary statistics c(finaltime = sims[2], finalsize = sims[5]) } ## set priors priors <- data.frame( parnames = c("beta", "gamma"), dist = rep("gamma", 2), stringsAsFactors = FALSE ) priors$p1 <- c(10, 10) priors$p2 <- c(10^4, 10^2) ## produce reference table by sampling from priors ## (add additional arguments to 'func' at the end) refTable <- ABCRef( npart = 100, priors = priors, func = simRef, sumNames = c("finaltime", "finalsize"), model = model ) refTable
Runs the Approximate Bayesian Computation Sequential Monte Carlo (ABC-SMC) algorithm of Toni et al. (2009) for fitting infectious disease models to time series count data.
ABCSMC(x, ...) ## S3 method for class 'ABCSMC' ABCSMC( x, tols = NULL, ptols = NULL, mintols = NULL, ngen = 1, parallel = FALSE, mc.cores = NA, ... ) ## Default S3 method: ABCSMC( x, priors, func, u, tols = NULL, ptols = NULL, mintols = NULL, ngen = 1, npart = 100, parallel = FALSE, mc.cores = NA, ... )
ABCSMC(x, ...) ## S3 method for class 'ABCSMC' ABCSMC( x, tols = NULL, ptols = NULL, mintols = NULL, ngen = 1, parallel = FALSE, mc.cores = NA, ... ) ## Default S3 method: ABCSMC( x, priors, func, u, tols = NULL, ptols = NULL, mintols = NULL, ngen = 1, npart = 100, parallel = FALSE, mc.cores = NA, ... )
x |
An |
... |
Further arguments to pass to |
tols |
A |
ptols |
The proportion of simulated outcomes at each generation to use to derive adaptive tolerances. |
mintols |
A vector of minimum tolerance levels. |
ngen |
The number of generations of ABC-SMC to run. |
parallel |
A |
mc.cores |
Number of cores to use if using parallel processing. |
priors |
A |
func |
Function that runs the simulator and checks whether the simulation matches the data.
The first four arguments must be |
u |
A named vector of initial states. |
npart |
An integer specifying the number of particles. |
Samples initial particles from the specified prior distributions and
then runs a series of generations of ABC-SMC. The generations can either be
specified with a set of fixed tolerances, or by setting the tolerances at
each new generation as a quantile of the tolerances of the accepted particles
at the previous generation. Uses bisection method as detailed in McKinley et al. (2018).
Passing an ABCSMC
object into the ABCSMC()
function acts as a
continuation method, allowing further generations to be run.
An ABCSMC
object, essentially a list
containing:
pars
: a list
of matrix
objects containing the accepted
particles. Each element of the list corresponds to a generation
of ABC-SMC, with each matrix being of dimension
npart
x npars
;
output
: a list
of matrix
objects containing the simulated
summary statistics. Each element of the list corresponds to a
generation of ABC-SMC, with each matrix being of dimension
npart
x ncol(data)
;
weights
: a list
of vector
objects containing the particle
weights. Each element of the list corresponds to a
generation of ABC-SMC, with each vector being of length
npart
;
ESS
: a list
of effective sample sizes. Each element of the list
corresponds to a generation of ABC-SMC, with each vector being of
length npart
;
accrate
: a vector
of length nrow(tols)
containing the
acceptance rates for each generation of ABC;
tols
: a copy of the tols
input;
ptols
: a copy of the ptols
input;
mintols
: a copy of the mintols
input;
priors
: a copy of the priors
input;
data
: a copy of the data
input;
func
: a copy of the func
input;
u
a copy of the u
input;
addargs
: a copy of the ...
inputs.
Toni T, Welch D, Strelkowa N, Ipsen A and Stumpf MP (2009) <doi:10.1098/rsif.2008.0172>
McKinley TJ, Cook AR and Deardon R (2009) <doi:10.2202/1557-4679.1171>
McKinley TJ, Vernon I, Andrianakis I, McCreesh N, Oakley JE, Nsubuga RN, Goldstein M and White RG (2018) <doi:10.1214/17-STS618>
print.ABCSMC
, plot.ABCSMC
, summary.ABCSMC
## set up SIR simulationmodel transitions <- c( "S -> beta * S * I -> I", "I -> gamma * I -> R" ) compartments <- c("S", "I", "R") pars <- c("beta", "gamma") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars ) model <- compileRcpp(model) ## generate function to run simulators ## and return summary statistics simSIR <- function(pars, data, tols, u, model) { ## run model sims <- model(pars, 0, data[2] + tols[2], u) ## this returns a vector of the form: ## completed (1/0), t, S, I, R (here) if(sims[1] == 0) { ## if simulation rejected return(NA) } else { ## extract finaltime and finalsize finaltime <- sims[2] finalsize <- sims[5] } ## return vector if match, else return NA if(all(abs(c(finalsize, finaltime) - data) <= tols)){ return(c(finalsize, finaltime)) } else { return(NA) } } ## set priors priors <- data.frame( parnames = c("beta", "gamma"), dist = rep("gamma", 2), stringsAsFactors = FALSE ) priors$p1 <- c(10, 10) priors$p2 <- c(10^4, 10^2) ## define the targeted summary statistics data <- c( finalsize = 30, finaltime = 76 ) ## set initial states (1 initial infection ## in population of 120) iniStates <- c(S = 119, I = 1, R = 0) ## set initial tolerances tols <- c( finalsize = 50, finaltime = 50 ) ## run 2 generations of ABC-SMC ## setting tolerance to be 50th ## percentile of the accepted ## tolerances at each generation post <- ABCSMC( x = data, priors = priors, func = simSIR, u = iniStates, tols = tols, ptol = 0.2, ngen = 2, npart = 50, model = model ) post ## run one further generation post <- ABCSMC(post, ptols = 0.5, ngen = 1) post summary(post) ## plot posteriors plot(post) ## plot outputs plot(post, "output")
## set up SIR simulationmodel transitions <- c( "S -> beta * S * I -> I", "I -> gamma * I -> R" ) compartments <- c("S", "I", "R") pars <- c("beta", "gamma") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars ) model <- compileRcpp(model) ## generate function to run simulators ## and return summary statistics simSIR <- function(pars, data, tols, u, model) { ## run model sims <- model(pars, 0, data[2] + tols[2], u) ## this returns a vector of the form: ## completed (1/0), t, S, I, R (here) if(sims[1] == 0) { ## if simulation rejected return(NA) } else { ## extract finaltime and finalsize finaltime <- sims[2] finalsize <- sims[5] } ## return vector if match, else return NA if(all(abs(c(finalsize, finaltime) - data) <= tols)){ return(c(finalsize, finaltime)) } else { return(NA) } } ## set priors priors <- data.frame( parnames = c("beta", "gamma"), dist = rep("gamma", 2), stringsAsFactors = FALSE ) priors$p1 <- c(10, 10) priors$p2 <- c(10^4, 10^2) ## define the targeted summary statistics data <- c( finalsize = 30, finaltime = 76 ) ## set initial states (1 initial infection ## in population of 120) iniStates <- c(S = 119, I = 1, R = 0) ## set initial tolerances tols <- c( finalsize = 50, finaltime = 50 ) ## run 2 generations of ABC-SMC ## setting tolerance to be 50th ## percentile of the accepted ## tolerances at each generation post <- ABCSMC( x = data, priors = priors, func = simSIR, u = iniStates, tols = tols, ptol = 0.2, ngen = 2, npart = 50, model = model ) post ## run one further generation post <- ABCSMC(post, ptols = 0.5, ngen = 1) post summary(post) ## plot posteriors plot(post) ## plot outputs plot(post, "output")
SimBIID_model
objectCompiles an object of class SimBIID_model
into an
XPtr
object for use in Rcpp functions, or an
object of class function
for calling directly from R.
compileRcpp(model)
compileRcpp(model)
model |
An object of class |
An object of class XPtr
that points to the compiled function, or
an R function
object for calling directly from R.
## set up SIR simulationmodel transitions <- c( "S -> beta * S * I -> I", "I -> gamma * I -> R" ) compartments <- c("S", "I", "R") pars <- c("beta", "gamma") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars ) ## compile model to be run directly model <- compileRcpp(model) model ## set initial states (1 initial infection ## in population of 120) iniStates <- c(S = 119, I = 1, R = 0) ## set parameters pars <- c(beta = 0.001, gamma = 0.1) ## run compiled model model(pars, 0, 100, iniStates)
## set up SIR simulationmodel transitions <- c( "S -> beta * S * I -> I", "I -> gamma * I -> R" ) compartments <- c("S", "I", "R") pars <- c("beta", "gamma") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars ) ## compile model to be run directly model <- compileRcpp(model) model ## set initial states (1 initial infection ## in population of 120) iniStates <- c(S = 119, I = 1, R = 0) ## set parameters pars <- c(beta = 0.001, gamma = 0.1) ## run compiled model model(pars, 0, 100, iniStates)
A dataset containing time series counts for the number of new individuals exhibiting clinical signs, and the number of new removals each day for the 1995 Ebola epidemic in the Democratic Republic of Congo
ebola
ebola
A data frame with 192 rows and 3 variables:
days from 1st January 1995
number of new clinical cases at each day
number of new removals at each day
Khan AS et al. (1999) <doi:10.1086/514306>
SimInf
style markupParse custom model using SimInf
style markup.
Does not have full functionality of mparse
. Currently only supports
simulations on a single node.
mparseRcpp( transitions = NULL, compartments = NULL, pars = NULL, obsProcess = NULL, addVars = NULL, stopCrit = NULL, tspan = FALSE, incidence = FALSE, afterTstar = NULL, PF = FALSE, runFromR = TRUE )
mparseRcpp( transitions = NULL, compartments = NULL, pars = NULL, obsProcess = NULL, addVars = NULL, stopCrit = NULL, tspan = FALSE, incidence = FALSE, afterTstar = NULL, PF = FALSE, runFromR = TRUE )
transitions |
character vector containing transitions on the form |
compartments |
contains the names of the involved compartments, for
example, |
pars |
a |
obsProcess |
|
addVars |
a |
stopCrit |
A |
tspan |
A |
incidence |
A |
afterTstar |
A |
PF |
A |
runFromR |
|
Uses a SimInf
style markup to create compartmental state-space
written using Rcpp
. A helper run
function exists to compile
and run the model. Another helper function, compileRcpp
,
can compile the model to produce a function that can be run directly from R,
or compiled into an external pointer (using the RcppXPtrUtils
package).
An object of class SimBIID_model
, which is essentially a list
containing elements:
code: parsed code to compile;
transitions: copy of transitions
argument;
compartments: copy of compartments
argument;
pars: copy of pars
argument;
obsProcess: copy of obsProcess
argument;
stopCrit: copy of stopCrit
argument;
addVars: copy of addVars
argument;
tspan: copy of tspan
argument;
incidence: copy of incidence
argument;
afterTstar: copy of afterTstar
argument;
PF: copy of PF
argument;
runFromR: copy of runFromR
argument.
This can be compiled into an XPtr
or function
object
using compileRcpp()
.
run
, compileRcpp
, print.SimBIID_model
## set up SIR simulation model transitions <- c( "S -> beta * S * I -> I", "I -> gamma * I -> R" ) compartments <- c("S", "I", "R") pars <- c("beta", "gamma") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars ) ## compile and run model sims <- run( model = model, pars = c(beta = 0.001, gamma = 0.1), tstart = 0, tstop = 100, u = c(S = 119, I = 1, R = 0) ) sims
## set up SIR simulation model transitions <- c( "S -> beta * S * I -> I", "I -> gamma * I -> R" ) compartments <- c("S", "I", "R") pars <- c("beta", "gamma") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars ) ## compile and run model sims <- run( model = model, pars = c(beta = 0.001, gamma = 0.1), tstart = 0, tstop = 100, u = c(S = 119, I = 1, R = 0) ) sims
ABCSMC
objectsPlot method for ABCSMC
objects.
## S3 method for class 'ABCSMC' plot( x, type = c("post", "output"), gen = NA, joint = FALSE, transfunc = NA, ... )
## S3 method for class 'ABCSMC' plot( x, type = c("post", "output"), gen = NA, joint = FALSE, transfunc = NA, ... )
x |
An |
type |
Takes the value |
gen |
A vector of generations to plot. If left missing then defaults to all generations. |
joint |
A logical describing whether joint or marginal distributions are wanted. |
transfunc |
Is a |
... |
Not used here. |
A plot of the ABC posterior distributions for different generations, or the distributions of the simulated summary measures for different generations.
ABCSMC
, print.ABCSMC
, summary.ABCSMC
## set up SIR simulation model transitions <- c( "S -> beta * S * I -> I", "I -> gamma * I -> R" ) compartments <- c("S", "I", "R") pars <- c("beta", "gamma") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars ) model <- compileRcpp(model) ## generate function to run simulators ## and return summary statistics simSIR <- function(pars, data, tols, u, model) { ## run model sims <- model(pars, 0, data[2] + tols[2], u) ## this returns a vector of the form: ## completed (1/0), t, S, I, R (here) if(sims[1] == 0) { ## if simulation rejected return(NA) } else { ## extract finaltime and finalsize finaltime <- sims[2] finalsize <- sims[5] } ## return vector if match, else return NA if(all(abs(c(finalsize, finaltime) - data) <= tols)){ return(c(finalsize, finaltime)) } else { return(NA) } } ## set priors priors <- data.frame( parnames = c("beta", "gamma"), dist = rep("gamma", 2), stringsAsFactors = FALSE ) priors$p1 <- c(10, 10) priors$p2 <- c(10^4, 10^2) ## define the targeted summary statistics data <- c( finalsize = 30, finaltime = 76 ) ## set initial states (1 initial infection ## in population of 120) iniStates <- c(S = 119, I = 1, R = 0) ## set initial tolerances tols <- c( finalsize = 50, finaltime = 50 ) ## run 2 generations of ABC-SMC ## setting tolerance to be 50th ## percentile of the accepted ## tolerances at each generation post <- ABCSMC( x = data, priors = priors, func = simSIR, u = iniStates, tols = tols, ptol = 0.2, ngen = 2, npart = 50, model = model ) post ## run one further generation post <- ABCSMC(post, ptols = 0.5, ngen = 1) post summary(post) ## plot posteriors plot(post) ## plot outputs plot(post, "output")
## set up SIR simulation model transitions <- c( "S -> beta * S * I -> I", "I -> gamma * I -> R" ) compartments <- c("S", "I", "R") pars <- c("beta", "gamma") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars ) model <- compileRcpp(model) ## generate function to run simulators ## and return summary statistics simSIR <- function(pars, data, tols, u, model) { ## run model sims <- model(pars, 0, data[2] + tols[2], u) ## this returns a vector of the form: ## completed (1/0), t, S, I, R (here) if(sims[1] == 0) { ## if simulation rejected return(NA) } else { ## extract finaltime and finalsize finaltime <- sims[2] finalsize <- sims[5] } ## return vector if match, else return NA if(all(abs(c(finalsize, finaltime) - data) <= tols)){ return(c(finalsize, finaltime)) } else { return(NA) } } ## set priors priors <- data.frame( parnames = c("beta", "gamma"), dist = rep("gamma", 2), stringsAsFactors = FALSE ) priors$p1 <- c(10, 10) priors$p2 <- c(10^4, 10^2) ## define the targeted summary statistics data <- c( finalsize = 30, finaltime = 76 ) ## set initial states (1 initial infection ## in population of 120) iniStates <- c(S = 119, I = 1, R = 0) ## set initial tolerances tols <- c( finalsize = 50, finaltime = 50 ) ## run 2 generations of ABC-SMC ## setting tolerance to be 50th ## percentile of the accepted ## tolerances at each generation post <- ABCSMC( x = data, priors = priors, func = simSIR, u = iniStates, tols = tols, ptol = 0.2, ngen = 2, npart = 50, model = model ) post ## run one further generation post <- ABCSMC(post, ptols = 0.5, ngen = 1) post summary(post) ## plot posteriors plot(post) ## plot outputs plot(post, "output")
PMCMC
objectsPlot method for PMCMC
objects.
## S3 method for class 'PMCMC' plot( x, type = c("post", "trace"), joint = FALSE, transfunc = NA, ask = TRUE, ... )
## S3 method for class 'PMCMC' plot( x, type = c("post", "trace"), joint = FALSE, transfunc = NA, ask = TRUE, ... )
x |
A |
type |
Takes the value |
joint |
A logical describing whether joint or marginal distributions are wanted. |
transfunc |
Is a |
ask |
Should the user ask before moving onto next trace plot. |
... |
Not used here. |
A plot of the (approximate) posterior distributions obtained from fitting a particle Markov chain Monte Carlo algorithm, or provides corresponding trace plots.
PMCMC
, print.PMCMC
, predict.PMCMC
, summary.PMCMC
window.PMCMC
## set up data to pass to PMCMC flu_dat <- data.frame( t = 1:14, Robs = c(3, 8, 26, 76, 225, 298, 258, 233, 189, 128, 68, 29, 14, 4) ) ## set up observation process obs <- data.frame( dataNames = "Robs", dist = "pois", p1 = "R + 1e-5", p2 = NA, stringsAsFactors = FALSE ) ## set up model (no need to specify tspan ## argument as it is set in PMCMC()) transitions <- c( "S -> beta * S * I / (S + I + R + R1) -> I", "I -> gamma * I -> R", "R -> gamma1 * R -> R1" ) compartments <- c("S", "I", "R", "R1") pars <- c("beta", "gamma", "gamma1") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars, obsProcess = obs ) ## set priors priors <- data.frame( parnames = c("beta", "gamma", "gamma1"), dist = rep("unif", 3), stringsAsFactors = FALSE) priors$p1 <- c(0, 0, 0) priors$p2 <- c(5, 5, 5) ## define initial states iniStates <- c(S = 762, I = 1, R = 0, R1 = 0) set.seed(50) ## run PMCMC algorithm post <- PMCMC( x = flu_dat, priors = priors, func = model, u = iniStates, npart = 25, niter = 5000, nprintsum = 1000 ) ## plot MCMC traces plot(post, "trace") ## continue for some more iterations post <- PMCMC(post, niter = 5000, nprintsum = 1000) ## plot traces and posteriors plot(post, "trace") plot(post) ## remove burn-in post <- window(post, start = 5000) ## summarise posteriors summary(post)
## set up data to pass to PMCMC flu_dat <- data.frame( t = 1:14, Robs = c(3, 8, 26, 76, 225, 298, 258, 233, 189, 128, 68, 29, 14, 4) ) ## set up observation process obs <- data.frame( dataNames = "Robs", dist = "pois", p1 = "R + 1e-5", p2 = NA, stringsAsFactors = FALSE ) ## set up model (no need to specify tspan ## argument as it is set in PMCMC()) transitions <- c( "S -> beta * S * I / (S + I + R + R1) -> I", "I -> gamma * I -> R", "R -> gamma1 * R -> R1" ) compartments <- c("S", "I", "R", "R1") pars <- c("beta", "gamma", "gamma1") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars, obsProcess = obs ) ## set priors priors <- data.frame( parnames = c("beta", "gamma", "gamma1"), dist = rep("unif", 3), stringsAsFactors = FALSE) priors$p1 <- c(0, 0, 0) priors$p2 <- c(5, 5, 5) ## define initial states iniStates <- c(S = 762, I = 1, R = 0, R1 = 0) set.seed(50) ## run PMCMC algorithm post <- PMCMC( x = flu_dat, priors = priors, func = model, u = iniStates, npart = 25, niter = 5000, nprintsum = 1000 ) ## plot MCMC traces plot(post, "trace") ## continue for some more iterations post <- PMCMC(post, niter = 5000, nprintsum = 1000) ## plot traces and posteriors plot(post, "trace") plot(post) ## remove burn-in post <- window(post, start = 5000) ## summarise posteriors summary(post)
SimBIID_runs
objectsPlot method for SimBIID_runs
objects.
## S3 method for class 'SimBIID_runs' plot( x, which = c("all", "t"), type = c("runs", "sums"), rep = NA, quant = 0.9, data = NULL, matchData = NULL, ... )
## S3 method for class 'SimBIID_runs' plot( x, which = c("all", "t"), type = c("runs", "sums"), rep = NA, quant = 0.9, data = NULL, matchData = NULL, ... )
x |
An |
which |
A character vector of states to plot. Can be |
type |
Character stating whether to plot full simulations over time ( |
rep |
An integer vector of simulation runs to plot. |
quant |
A vector of quantiles (> 0.5) to plot if |
data |
A |
matchData |
A character vector containing matches between the columns of |
... |
Not used here. |
A plot of individual simulations and/or summaries of repeated simulations
extracted from SimBIID_runs
object.
mparseRcpp
, print.SimBIID_runs
, run
## set up SIR simulation model transitions <- c( "S -> beta * S * I -> I", "I -> gamma * I -> R" ) compartments <- c("S", "I", "R") pars <- c("beta", "gamma") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars, tspan = TRUE ) ## run 100 replicate simulations and ## plot outputs sims <- run( model = model, pars = c(beta = 0.001, gamma = 0.1), tstart = 0, tstop = 100, u = c(S = 119, I = 1, R = 0), tspan = seq(1, 100, length.out = 10), nrep = 100 ) plot(sims, quant = c(0.55, 0.75, 0.9)) ## add replicate 1 to plot plot(sims, quant = c(0.55, 0.75, 0.9), rep = 1)
## set up SIR simulation model transitions <- c( "S -> beta * S * I -> I", "I -> gamma * I -> R" ) compartments <- c("S", "I", "R") pars <- c("beta", "gamma") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars, tspan = TRUE ) ## run 100 replicate simulations and ## plot outputs sims <- run( model = model, pars = c(beta = 0.001, gamma = 0.1), tstart = 0, tstop = 100, u = c(S = 119, I = 1, R = 0), tspan = seq(1, 100, length.out = 10), nrep = 100 ) plot(sims, quant = c(0.55, 0.75, 0.9)) ## add replicate 1 to plot plot(sims, quant = c(0.55, 0.75, 0.9), rep = 1)
Runs particle Markov chain Monte Carlo (PMCMC) algorithm using a bootstrap particle filter for fitting infectious disease models to time series count data.
PMCMC(x, ...) ## S3 method for class 'PMCMC' PMCMC( x, niter = 1000, nprintsum = 100, adapt = TRUE, adaptmixprop = 0.05, nupdate = 100, ... ) ## Default S3 method: PMCMC( x, priors, func, u, npart = 100, iniPars = NA, fixpars = FALSE, niter = 1000, nprintsum = 100, adapt = TRUE, propVar = NA, adaptmixprop = 0.05, nupdate = 100, ... )
PMCMC(x, ...) ## S3 method for class 'PMCMC' PMCMC( x, niter = 1000, nprintsum = 100, adapt = TRUE, adaptmixprop = 0.05, nupdate = 100, ... ) ## Default S3 method: PMCMC( x, priors, func, u, npart = 100, iniPars = NA, fixpars = FALSE, niter = 1000, nprintsum = 100, adapt = TRUE, propVar = NA, adaptmixprop = 0.05, nupdate = 100, ... )
x |
A |
... |
Not used here. |
niter |
An integer specifying the number of iterations to run the MCMC. |
nprintsum |
Prints summary of MCMC to screen every |
adapt |
Logical determining whether to use adaptive proposal or not. |
adaptmixprop |
Mixing proportion for adaptive proposal. |
nupdate |
Controls when to start adaptive update. |
priors |
A |
func |
A
|
u |
A named vector of initial states. |
npart |
An integer specifying the number of particles for the bootstrap particle filter. |
iniPars |
A named vector of initial values for the parameters of the model. If left unspecified, then these are sampled from the prior distribution(s). |
fixpars |
A logical determining whether to fix the input parameters (useful for determining the variance of the marginal likelihood estimates). |
propVar |
A numeric (npars x npars) matrix with log (or logistic) covariances to use
as (initial) proposal matrix. If left unspecified then defaults to
|
Function runs a particle MCMC algorithm using a bootstrap particle filter for a given model.
If running with fixpars = TRUE
then this runs niter
simulations
using fixed parameter values. This can be used to optimise the number of
particles after a training run. Also has print()
, summary()
,
plot()
, predict()
and window()
methods.
If the code throws an error, then it returns a missing value (NA
). If
fixpars = TRUE
it returns a list of length 2 containing:
output
: a matrix with two columns. The first contains the simulated
log-likelihood, and the second is a binary indicator relating to whether the
simulation was 'skipped' or not (1 = skipped, 0 = not skipped);
pars
: a vector of parameters used for the simulations.
If fixpars = FALSE
, the routine returns a PMCMC
object, essentially a
list
containing:
pars
: an mcmc
object containing posterior samples for the parameters;
u
: a copy of the u
input;
accrate
: the cumulative acceptance rate;
npart
: the chosen number of particles;
time
: the time taken to run the routine (in seconds);
propVar
: the proposal covariance for the parameter updates;
data
: a copy of the x
input;
priors
: a copy of the priors
input;
func
: a copy of the func
input.
Andrieu C, Doucet A and Holenstein R (2010) <doi:10.1111/j.1467-9868.2009.00736.x>
print.PMCMC
, plot.PMCMC
, predict.PMCMC
, summary.PMCMC
window.PMCMC
## set up data to pass to PMCMC flu_dat <- data.frame( t = 1:14, Robs = c(3, 8, 26, 76, 225, 298, 258, 233, 189, 128, 68, 29, 14, 4) ) ## set up observation process obs <- data.frame( dataNames = "Robs", dist = "pois", p1 = "R + 1e-5", p2 = NA, stringsAsFactors = FALSE ) ## set up model (no need to specify tspan ## argument as it is set in PMCMC()) transitions <- c( "S -> beta * S * I / (S + I + R + R1) -> I", "I -> gamma * I -> R", "R -> gamma1 * R -> R1" ) compartments <- c("S", "I", "R", "R1") pars <- c("beta", "gamma", "gamma1") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars, obsProcess = obs ) ## set priors priors <- data.frame( parnames = c("beta", "gamma", "gamma1"), dist = rep("unif", 3), stringsAsFactors = FALSE) priors$p1 <- c(0, 0, 0) priors$p2 <- c(5, 5, 5) ## define initial states iniStates <- c(S = 762, I = 1, R = 0, R1 = 0) set.seed(50) ## run PMCMC algorithm post <- PMCMC( x = flu_dat, priors = priors, func = model, u = iniStates, npart = 25, niter = 5000, nprintsum = 1000 ) ## plot MCMC traces plot(post, "trace") ## continue for some more iterations post <- PMCMC(post, niter = 5000, nprintsum = 1000) ## plot traces and posteriors plot(post, "trace") plot(post) ## remove burn-in post <- window(post, start = 5000) ## summarise posteriors summary(post)
## set up data to pass to PMCMC flu_dat <- data.frame( t = 1:14, Robs = c(3, 8, 26, 76, 225, 298, 258, 233, 189, 128, 68, 29, 14, 4) ) ## set up observation process obs <- data.frame( dataNames = "Robs", dist = "pois", p1 = "R + 1e-5", p2 = NA, stringsAsFactors = FALSE ) ## set up model (no need to specify tspan ## argument as it is set in PMCMC()) transitions <- c( "S -> beta * S * I / (S + I + R + R1) -> I", "I -> gamma * I -> R", "R -> gamma1 * R -> R1" ) compartments <- c("S", "I", "R", "R1") pars <- c("beta", "gamma", "gamma1") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars, obsProcess = obs ) ## set priors priors <- data.frame( parnames = c("beta", "gamma", "gamma1"), dist = rep("unif", 3), stringsAsFactors = FALSE) priors$p1 <- c(0, 0, 0) priors$p2 <- c(5, 5, 5) ## define initial states iniStates <- c(S = 762, I = 1, R = 0, R1 = 0) set.seed(50) ## run PMCMC algorithm post <- PMCMC( x = flu_dat, priors = priors, func = model, u = iniStates, npart = 25, niter = 5000, nprintsum = 1000 ) ## plot MCMC traces plot(post, "trace") ## continue for some more iterations post <- PMCMC(post, niter = 5000, nprintsum = 1000) ## plot traces and posteriors plot(post, "trace") plot(post) ## remove burn-in post <- window(post, start = 5000) ## summarise posteriors summary(post)
PMCMC
objectsPredict method for PMCMC
objects.
## S3 method for class 'PMCMC' predict(object, tspan, npart = 50, ...)
## S3 method for class 'PMCMC' predict(object, tspan, npart = 50, ...)
object |
A |
tspan |
A vector of times over which to output predictions. |
npart |
The number of particles to use in the bootstrap filter. |
... |
Not used here. |
A SimBIID_runs
object.
PMCMC
, print.PMCMC
, plot.PMCMC
, summary.PMCMC
window.PMCMC
## set up data to pass to PMCMC flu_dat <- data.frame( t = 1:14, Robs = c(3, 8, 26, 76, 225, 298, 258, 233, 189, 128, 68, 29, 14, 4) ) ## set up observation process obs <- data.frame( dataNames = "Robs", dist = "pois", p1 = "R + 1e-5", p2 = NA, stringsAsFactors = FALSE ) ## set up model (no need to specify tspan ## argument as it is set in PMCMC()) transitions <- c( "S -> beta * S * I / (S + I + R + R1) -> I", "I -> gamma * I -> R", "R -> gamma1 * R -> R1" ) compartments <- c("S", "I", "R", "R1") pars <- c("beta", "gamma", "gamma1") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars, obsProcess = obs ) ## set priors priors <- data.frame( parnames = c("beta", "gamma", "gamma1"), dist = rep("unif", 3), stringsAsFactors = FALSE) priors$p1 <- c(0, 0, 0) priors$p2 <- c(5, 5, 5) ## define initial states iniStates <- c(S = 762, I = 1, R = 0, R1 = 0) ## run PMCMC algorithm for first three days of data post <- PMCMC( x = flu_dat[1:3, ], priors = priors, func = model, u = iniStates, npart = 75, niter = 10000, nprintsum = 1000 ) ## plot traces plot(post, "trace") ## run predictions forward in time post_pred <- predict( window(post, start = 2000, thin = 8), tspan = 4:14 ) ## plot predictions plot(post_pred, quant = c(0.6, 0.75, 0.95))
## set up data to pass to PMCMC flu_dat <- data.frame( t = 1:14, Robs = c(3, 8, 26, 76, 225, 298, 258, 233, 189, 128, 68, 29, 14, 4) ) ## set up observation process obs <- data.frame( dataNames = "Robs", dist = "pois", p1 = "R + 1e-5", p2 = NA, stringsAsFactors = FALSE ) ## set up model (no need to specify tspan ## argument as it is set in PMCMC()) transitions <- c( "S -> beta * S * I / (S + I + R + R1) -> I", "I -> gamma * I -> R", "R -> gamma1 * R -> R1" ) compartments <- c("S", "I", "R", "R1") pars <- c("beta", "gamma", "gamma1") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars, obsProcess = obs ) ## set priors priors <- data.frame( parnames = c("beta", "gamma", "gamma1"), dist = rep("unif", 3), stringsAsFactors = FALSE) priors$p1 <- c(0, 0, 0) priors$p2 <- c(5, 5, 5) ## define initial states iniStates <- c(S = 762, I = 1, R = 0, R1 = 0) ## run PMCMC algorithm for first three days of data post <- PMCMC( x = flu_dat[1:3, ], priors = priors, func = model, u = iniStates, npart = 75, niter = 10000, nprintsum = 1000 ) ## plot traces plot(post, "trace") ## run predictions forward in time post_pred <- predict( window(post, start = 2000, thin = 8), tspan = 4:14 ) ## plot predictions plot(post_pred, quant = c(0.6, 0.75, 0.95))
ABCSMC
objectsPrint method for ABCSMC
objects.
## S3 method for class 'ABCSMC' print(x, ...)
## S3 method for class 'ABCSMC' print(x, ...)
x |
An |
... |
Not used here. |
Summary outputs printed to the screen.
ABCSMC
, plot.ABCSMC
, summary.ABCSMC
## set up SIR simulationmodel transitions <- c( "S -> beta * S * I -> I", "I -> gamma * I -> R" ) compartments <- c("S", "I", "R") pars <- c("beta", "gamma") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars ) model <- compileRcpp(model) ## generate function to run simulators ## and return summary statistics simSIR <- function(pars, data, tols, u, model) { ## run model sims <- model(pars, 0, data[2] + tols[2], u) ## this returns a vector of the form: ## completed (1/0), t, S, I, R (here) if(sims[1] == 0) { ## if simulation rejected return(NA) } else { ## extract finaltime and finalsize finaltime <- sims[2] finalsize <- sims[5] } ## return vector if match, else return NA if(all(abs(c(finalsize, finaltime) - data) <= tols)){ return(c(finalsize, finaltime)) } else { return(NA) } } ## set priors priors <- data.frame( parnames = c("beta", "gamma"), dist = rep("gamma", 2), stringsAsFactors = FALSE ) priors$p1 <- c(10, 10) priors$p2 <- c(10^4, 10^2) ## define the targeted summary statistics data <- c( finalsize = 30, finaltime = 76 ) ## set initial states (1 initial infection ## in population of 120) iniStates <- c(S = 119, I = 1, R = 0) ## set initial tolerances tols <- c( finalsize = 50, finaltime = 50 ) ## run 2 generations of ABC-SMC ## setting tolerance to be 50th ## percentile of the accepted ## tolerances at each generation post <- ABCSMC( x = data, priors = priors, func = simSIR, u = iniStates, tols = tols, ptol = 0.2, ngen = 2, npart = 50, model = model ) post ## run one further generation post <- ABCSMC(post, ptols = 0.5, ngen = 1) post summary(post) ## plot posteriors plot(post) ## plot outputs plot(post, "output")
## set up SIR simulationmodel transitions <- c( "S -> beta * S * I -> I", "I -> gamma * I -> R" ) compartments <- c("S", "I", "R") pars <- c("beta", "gamma") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars ) model <- compileRcpp(model) ## generate function to run simulators ## and return summary statistics simSIR <- function(pars, data, tols, u, model) { ## run model sims <- model(pars, 0, data[2] + tols[2], u) ## this returns a vector of the form: ## completed (1/0), t, S, I, R (here) if(sims[1] == 0) { ## if simulation rejected return(NA) } else { ## extract finaltime and finalsize finaltime <- sims[2] finalsize <- sims[5] } ## return vector if match, else return NA if(all(abs(c(finalsize, finaltime) - data) <= tols)){ return(c(finalsize, finaltime)) } else { return(NA) } } ## set priors priors <- data.frame( parnames = c("beta", "gamma"), dist = rep("gamma", 2), stringsAsFactors = FALSE ) priors$p1 <- c(10, 10) priors$p2 <- c(10^4, 10^2) ## define the targeted summary statistics data <- c( finalsize = 30, finaltime = 76 ) ## set initial states (1 initial infection ## in population of 120) iniStates <- c(S = 119, I = 1, R = 0) ## set initial tolerances tols <- c( finalsize = 50, finaltime = 50 ) ## run 2 generations of ABC-SMC ## setting tolerance to be 50th ## percentile of the accepted ## tolerances at each generation post <- ABCSMC( x = data, priors = priors, func = simSIR, u = iniStates, tols = tols, ptol = 0.2, ngen = 2, npart = 50, model = model ) post ## run one further generation post <- ABCSMC(post, ptols = 0.5, ngen = 1) post summary(post) ## plot posteriors plot(post) ## plot outputs plot(post, "output")
PMCMC
objectsPrint method for PMCMC
objects.
## S3 method for class 'PMCMC' print(x, ...)
## S3 method for class 'PMCMC' print(x, ...)
x |
A |
... |
Not used here. |
Summary outputs printed to the screen.
PMCMC
, plot.PMCMC
, predict.PMCMC
, summary.PMCMC
window.PMCMC
## set up data to pass to PMCMC flu_dat <- data.frame( t = 1:14, Robs = c(3, 8, 26, 76, 225, 298, 258, 233, 189, 128, 68, 29, 14, 4) ) ## set up observation process obs <- data.frame( dataNames = "Robs", dist = "pois", p1 = "R + 1e-5", p2 = NA, stringsAsFactors = FALSE ) ## set up model (no need to specify tspan ## argument as it is set in PMCMC()) transitions <- c( "S -> beta * S * I / (S + I + R + R1) -> I", "I -> gamma * I -> R", "R -> gamma1 * R -> R1" ) compartments <- c("S", "I", "R", "R1") pars <- c("beta", "gamma", "gamma1") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars, obsProcess = obs ) ## set priors priors <- data.frame( parnames = c("beta", "gamma", "gamma1"), dist = rep("unif", 3), stringsAsFactors = FALSE) priors$p1 <- c(0, 0, 0) priors$p2 <- c(5, 5, 5) ## define initial states iniStates <- c(S = 762, I = 1, R = 0, R1 = 0) set.seed(50) ## run PMCMC algorithm post <- PMCMC( x = flu_dat, priors = priors, func = model, u = iniStates, npart = 25, niter = 5000, nprintsum = 1000 ) ## plot MCMC traces plot(post, "trace") ## continue for some more iterations post <- PMCMC(post, niter = 5000, nprintsum = 1000) ## plot traces and posteriors plot(post, "trace") plot(post) ## remove burn-in post <- window(post, start = 5000) ## summarise posteriors summary(post)
## set up data to pass to PMCMC flu_dat <- data.frame( t = 1:14, Robs = c(3, 8, 26, 76, 225, 298, 258, 233, 189, 128, 68, 29, 14, 4) ) ## set up observation process obs <- data.frame( dataNames = "Robs", dist = "pois", p1 = "R + 1e-5", p2 = NA, stringsAsFactors = FALSE ) ## set up model (no need to specify tspan ## argument as it is set in PMCMC()) transitions <- c( "S -> beta * S * I / (S + I + R + R1) -> I", "I -> gamma * I -> R", "R -> gamma1 * R -> R1" ) compartments <- c("S", "I", "R", "R1") pars <- c("beta", "gamma", "gamma1") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars, obsProcess = obs ) ## set priors priors <- data.frame( parnames = c("beta", "gamma", "gamma1"), dist = rep("unif", 3), stringsAsFactors = FALSE) priors$p1 <- c(0, 0, 0) priors$p2 <- c(5, 5, 5) ## define initial states iniStates <- c(S = 762, I = 1, R = 0, R1 = 0) set.seed(50) ## run PMCMC algorithm post <- PMCMC( x = flu_dat, priors = priors, func = model, u = iniStates, npart = 25, niter = 5000, nprintsum = 1000 ) ## plot MCMC traces plot(post, "trace") ## continue for some more iterations post <- PMCMC(post, niter = 5000, nprintsum = 1000) ## plot traces and posteriors plot(post, "trace") plot(post) ## remove burn-in post <- window(post, start = 5000) ## summarise posteriors summary(post)
SimBIID_model
objectsPrint method for SimBIID_model
objects.
## S3 method for class 'SimBIID_model' print(x, ...)
## S3 method for class 'SimBIID_model' print(x, ...)
x |
A |
... |
Not used here. |
Prints parsed Rcpp
code to the screen.
SimBIID_runs
objectsPrint method for SimBIID_runs
objects.
## S3 method for class 'SimBIID_runs' print(x, ...)
## S3 method for class 'SimBIID_runs' print(x, ...)
x |
A |
... |
Not used here. |
Summary outputs printed to the screen.
mparseRcpp
, plot.SimBIID_runs
, run
## set up SIR simulation model transitions <- c( "S -> beta * S * I -> I", "I -> gamma * I -> R" ) compartments <- c("S", "I", "R") pars <- c("beta", "gamma") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars, tspan = TRUE ) ## run 100 replicate simulations and ## plot outputs sims <- run( model = model, pars = c(beta = 0.001, gamma = 0.1), tstart = 0, tstop = 100, u = c(S = 119, I = 1, R = 0), tspan = seq(1, 100, length.out = 10), nrep = 100 ) sims
## set up SIR simulation model transitions <- c( "S -> beta * S * I -> I", "I -> gamma * I -> R" ) compartments <- c("S", "I", "R") pars <- c("beta", "gamma") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars, tspan = TRUE ) ## run 100 replicate simulations and ## plot outputs sims <- run( model = model, pars = c(beta = 0.001, gamma = 0.1), tstart = 0, tstop = 100, u = c(S = 119, I = 1, R = 0), tspan = seq(1, 100, length.out = 10), nrep = 100 ) sims
SimBIID_model
objectWrapper function that compiles (if necessary) and runs
a SimBIID_model
object. Returns results in a
user-friendly manner as a SimBIID_run
object,
for which print()
and plot()
generics
are provided.
run( model, pars, tstart, tstop, u, tspan, nrep = 1, parallel = FALSE, mc.cores = NA )
run( model, pars, tstart, tstop, u, tspan, nrep = 1, parallel = FALSE, mc.cores = NA )
model |
An object of class |
pars |
A named vector of parameters. |
tstart |
The time at which to start the simulation. |
tstop |
The time at which to stop the simulation. |
u |
A named vector of initial states. |
tspan |
A numeric vector containing the times at which to save the states of the system. |
nrep |
Specifies the number of simulations to run. |
parallel |
A |
mc.cores |
Number of cores to use if using parallel processing. |
An object of class SimBIID_run
, essentially a list
containing elements:
sums: a data.frame()
with summaries of the model runs. This
includes columns run
, completed
, t
, u*
(see help file for SimBIID_model
for more details);
runs: a data.frame()
object, containing columns: run
,
t
, u*
(see help file for SimBIID_model
for more details).
These contain time series counts for the simulations. Note that this will
only be returned if tspan = TRUE
in the original SimBIID_model
object.
bootEnd: a time point denoting when bootstrapped estimates end and predictions
begin (for predict.PMCMC()
method).
mparseRcpp
, print.SimBIID_runs
, plot.SimBIID_runs
## set up SIR simulation model transitions <- c( "S -> beta * S * I -> I", "I -> gamma * I -> R" ) compartments <- c("S", "I", "R") pars <- c("beta", "gamma") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars ) ## compile and run model sims <- run( model = model, pars = c(beta = 0.001, gamma = 0.1), tstart = 0, tstop = 100, u = c(S = 119, I = 1, R = 0) ) sims ## add tspan option to return ## time series counts at different ## time points model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars, tspan = TRUE ) sims <- run( model = model, pars = c(beta = 0.001, gamma = 0.1), tstart = 0, tstop = 100, u = c(S = 119, I = 1, R = 0), tspan = seq(1, 100, length.out = 10) ) sims ## run 100 replicate simulations and ## plot outputs sims <- run( model = model, pars = c(beta = 0.001, gamma = 0.1), tstart = 0, tstop = 100, u = c(S = 119, I = 1, R = 0), tspan = seq(1, 100, length.out = 10), nrep = 100 ) sims plot(sims)
## set up SIR simulation model transitions <- c( "S -> beta * S * I -> I", "I -> gamma * I -> R" ) compartments <- c("S", "I", "R") pars <- c("beta", "gamma") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars ) ## compile and run model sims <- run( model = model, pars = c(beta = 0.001, gamma = 0.1), tstart = 0, tstop = 100, u = c(S = 119, I = 1, R = 0) ) sims ## add tspan option to return ## time series counts at different ## time points model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars, tspan = TRUE ) sims <- run( model = model, pars = c(beta = 0.001, gamma = 0.1), tstart = 0, tstop = 100, u = c(S = 119, I = 1, R = 0), tspan = seq(1, 100, length.out = 10) ) sims ## run 100 replicate simulations and ## plot outputs sims <- run( model = model, pars = c(beta = 0.001, gamma = 0.1), tstart = 0, tstop = 100, u = c(S = 119, I = 1, R = 0), tspan = seq(1, 100, length.out = 10), nrep = 100 ) sims plot(sims)
A dataset containing time series counts for the number of new removals for the 1967 Abakaliki smallpox outbreak.
smallpox
smallpox
A data frame with 23 rows and 2 variables:
days from initial observed removal
number of new removals in (time - 1, time)
Thompson D and Foege W (1968) <https://apps.who.int/iris/bitstream/handle/10665/67462/WHO_SE_68.3.pdf>
ABCSMC
objectsSummary method for ABCSMC
objects.
## S3 method for class 'ABCSMC' summary(object, gen = NA, transfunc = NA, ...)
## S3 method for class 'ABCSMC' summary(object, gen = NA, transfunc = NA, ...)
object |
An |
gen |
The generation of ABC that you want to extract. If left missing then defaults to final generation. |
transfunc |
Is a |
... |
Not used here. |
A data.frame
with weighted posterior means and variances.
ABCSMC
, print.ABCSMC
, plot.ABCSMC
## set up SIR simulationmodel transitions <- c( "S -> beta * S * I -> I", "I -> gamma * I -> R" ) compartments <- c("S", "I", "R") pars <- c("beta", "gamma") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars ) model <- compileRcpp(model) ## generate function to run simulators ## and return summary statistics simSIR <- function(pars, data, tols, u, model) { ## run model sims <- model(pars, 0, data[2] + tols[2], u) ## this returns a vector of the form: ## completed (1/0), t, S, I, R (here) if(sims[1] == 0) { ## if simulation rejected return(NA) } else { ## extract finaltime and finalsize finaltime <- sims[2] finalsize <- sims[5] } ## return vector if match, else return NA if(all(abs(c(finalsize, finaltime) - data) <= tols)){ return(c(finalsize, finaltime)) } else { return(NA) } } ## set priors priors <- data.frame( parnames = c("beta", "gamma"), dist = rep("gamma", 2), stringsAsFactors = FALSE ) priors$p1 <- c(10, 10) priors$p2 <- c(10^4, 10^2) ## define the targeted summary statistics data <- c( finalsize = 30, finaltime = 76 ) ## set initial states (1 initial infection ## in population of 120) iniStates <- c(S = 119, I = 1, R = 0) ## set initial tolerances tols <- c( finalsize = 50, finaltime = 50 ) ## run 2 generations of ABC-SMC ## setting tolerance to be 50th ## percentile of the accepted ## tolerances at each generation post <- ABCSMC( x = data, priors = priors, func = simSIR, u = iniStates, tols = tols, ptol = 0.2, ngen = 2, npart = 50, model = model ) post ## run one further generation post <- ABCSMC(post, ptols = 0.5, ngen = 1) post summary(post) ## plot posteriors plot(post) ## plot outputs plot(post, "output")
## set up SIR simulationmodel transitions <- c( "S -> beta * S * I -> I", "I -> gamma * I -> R" ) compartments <- c("S", "I", "R") pars <- c("beta", "gamma") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars ) model <- compileRcpp(model) ## generate function to run simulators ## and return summary statistics simSIR <- function(pars, data, tols, u, model) { ## run model sims <- model(pars, 0, data[2] + tols[2], u) ## this returns a vector of the form: ## completed (1/0), t, S, I, R (here) if(sims[1] == 0) { ## if simulation rejected return(NA) } else { ## extract finaltime and finalsize finaltime <- sims[2] finalsize <- sims[5] } ## return vector if match, else return NA if(all(abs(c(finalsize, finaltime) - data) <= tols)){ return(c(finalsize, finaltime)) } else { return(NA) } } ## set priors priors <- data.frame( parnames = c("beta", "gamma"), dist = rep("gamma", 2), stringsAsFactors = FALSE ) priors$p1 <- c(10, 10) priors$p2 <- c(10^4, 10^2) ## define the targeted summary statistics data <- c( finalsize = 30, finaltime = 76 ) ## set initial states (1 initial infection ## in population of 120) iniStates <- c(S = 119, I = 1, R = 0) ## set initial tolerances tols <- c( finalsize = 50, finaltime = 50 ) ## run 2 generations of ABC-SMC ## setting tolerance to be 50th ## percentile of the accepted ## tolerances at each generation post <- ABCSMC( x = data, priors = priors, func = simSIR, u = iniStates, tols = tols, ptol = 0.2, ngen = 2, npart = 50, model = model ) post ## run one further generation post <- ABCSMC(post, ptols = 0.5, ngen = 1) post summary(post) ## plot posteriors plot(post) ## plot outputs plot(post, "output")
PMCMC
objectsSummary method for PMCMC
objects.
## S3 method for class 'PMCMC' summary(object, transfunc = NA, ...)
## S3 method for class 'PMCMC' summary(object, transfunc = NA, ...)
object |
A |
transfunc |
Is a |
... |
Not used here. |
A summary.mcmc
object.
PMCMC
, print.PMCMC
, predict.PMCMC
, plot.PMCMC
window.PMCMC
## set up data to pass to PMCMC flu_dat <- data.frame( t = 1:14, Robs = c(3, 8, 26, 76, 225, 298, 258, 233, 189, 128, 68, 29, 14, 4) ) ## set up observation process obs <- data.frame( dataNames = "Robs", dist = "pois", p1 = "R + 1e-5", p2 = NA, stringsAsFactors = FALSE ) ## set up model (no need to specify tspan ## argument as it is set in PMCMC()) transitions <- c( "S -> beta * S * I / (S + I + R + R1) -> I", "I -> gamma * I -> R", "R -> gamma1 * R -> R1" ) compartments <- c("S", "I", "R", "R1") pars <- c("beta", "gamma", "gamma1") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars, obsProcess = obs ) ## set priors priors <- data.frame( parnames = c("beta", "gamma", "gamma1"), dist = rep("unif", 3), stringsAsFactors = FALSE) priors$p1 <- c(0, 0, 0) priors$p2 <- c(5, 5, 5) ## define initial states iniStates <- c(S = 762, I = 1, R = 0, R1 = 0) set.seed(50) ## run PMCMC algorithm post <- PMCMC( x = flu_dat, priors = priors, func = model, u = iniStates, npart = 25, niter = 5000, nprintsum = 1000 ) ## plot MCMC traces plot(post, "trace") ## continue for some more iterations post <- PMCMC(post, niter = 5000, nprintsum = 1000) ## plot traces and posteriors plot(post, "trace") plot(post) ## remove burn-in post <- window(post, start = 5000) ## summarise posteriors summary(post)
## set up data to pass to PMCMC flu_dat <- data.frame( t = 1:14, Robs = c(3, 8, 26, 76, 225, 298, 258, 233, 189, 128, 68, 29, 14, 4) ) ## set up observation process obs <- data.frame( dataNames = "Robs", dist = "pois", p1 = "R + 1e-5", p2 = NA, stringsAsFactors = FALSE ) ## set up model (no need to specify tspan ## argument as it is set in PMCMC()) transitions <- c( "S -> beta * S * I / (S + I + R + R1) -> I", "I -> gamma * I -> R", "R -> gamma1 * R -> R1" ) compartments <- c("S", "I", "R", "R1") pars <- c("beta", "gamma", "gamma1") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars, obsProcess = obs ) ## set priors priors <- data.frame( parnames = c("beta", "gamma", "gamma1"), dist = rep("unif", 3), stringsAsFactors = FALSE) priors$p1 <- c(0, 0, 0) priors$p2 <- c(5, 5, 5) ## define initial states iniStates <- c(S = 762, I = 1, R = 0, R1 = 0) set.seed(50) ## run PMCMC algorithm post <- PMCMC( x = flu_dat, priors = priors, func = model, u = iniStates, npart = 25, niter = 5000, nprintsum = 1000 ) ## plot MCMC traces plot(post, "trace") ## continue for some more iterations post <- PMCMC(post, niter = 5000, nprintsum = 1000) ## plot traces and posteriors plot(post, "trace") plot(post) ## remove burn-in post <- window(post, start = 5000) ## summarise posteriors summary(post)
PMCMC
objectswindow
method for class PMCMC
.
## S3 method for class 'PMCMC' window(x, ...)
## S3 method for class 'PMCMC' window(x, ...)
x |
a |
... |
arguments to pass to |
Acts as a wrapper function for window.mcmc
from the coda
package
a PMCMC
object
PMCMC
, print.PMCMC
, predict.PMCMC
, summary.PMCMC
plot.PMCMC
## set up data to pass to PMCMC flu_dat <- data.frame( t = 1:14, Robs = c(3, 8, 26, 76, 225, 298, 258, 233, 189, 128, 68, 29, 14, 4) ) ## set up observation process obs <- data.frame( dataNames = "Robs", dist = "pois", p1 = "R + 1e-5", p2 = NA, stringsAsFactors = FALSE ) ## set up model (no need to specify tspan ## argument as it is set in PMCMC()) transitions <- c( "S -> beta * S * I / (S + I + R + R1) -> I", "I -> gamma * I -> R", "R -> gamma1 * R -> R1" ) compartments <- c("S", "I", "R", "R1") pars <- c("beta", "gamma", "gamma1") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars, obsProcess = obs ) ## set priors priors <- data.frame( parnames = c("beta", "gamma", "gamma1"), dist = rep("unif", 3), stringsAsFactors = FALSE) priors$p1 <- c(0, 0, 0) priors$p2 <- c(5, 5, 5) ## define initial states iniStates <- c(S = 762, I = 1, R = 0, R1 = 0) set.seed(50) ## run PMCMC algorithm post <- PMCMC( x = flu_dat, priors = priors, func = model, u = iniStates, npart = 25, niter = 5000, nprintsum = 1000 ) ## plot MCMC traces plot(post, "trace") ## continue for some more iterations post <- PMCMC(post, niter = 5000, nprintsum = 1000) ## plot traces and posteriors plot(post, "trace") plot(post) ## remove burn-in post <- window(post, start = 5000) ## summarise posteriors summary(post)
## set up data to pass to PMCMC flu_dat <- data.frame( t = 1:14, Robs = c(3, 8, 26, 76, 225, 298, 258, 233, 189, 128, 68, 29, 14, 4) ) ## set up observation process obs <- data.frame( dataNames = "Robs", dist = "pois", p1 = "R + 1e-5", p2 = NA, stringsAsFactors = FALSE ) ## set up model (no need to specify tspan ## argument as it is set in PMCMC()) transitions <- c( "S -> beta * S * I / (S + I + R + R1) -> I", "I -> gamma * I -> R", "R -> gamma1 * R -> R1" ) compartments <- c("S", "I", "R", "R1") pars <- c("beta", "gamma", "gamma1") model <- mparseRcpp( transitions = transitions, compartments = compartments, pars = pars, obsProcess = obs ) ## set priors priors <- data.frame( parnames = c("beta", "gamma", "gamma1"), dist = rep("unif", 3), stringsAsFactors = FALSE) priors$p1 <- c(0, 0, 0) priors$p2 <- c(5, 5, 5) ## define initial states iniStates <- c(S = 762, I = 1, R = 0, R1 = 0) set.seed(50) ## run PMCMC algorithm post <- PMCMC( x = flu_dat, priors = priors, func = model, u = iniStates, npart = 25, niter = 5000, nprintsum = 1000 ) ## plot MCMC traces plot(post, "trace") ## continue for some more iterations post <- PMCMC(post, niter = 5000, nprintsum = 1000) ## plot traces and posteriors plot(post, "trace") plot(post) ## remove burn-in post <- window(post, start = 5000) ## summarise posteriors summary(post)