In this file, we present two
examples based on real-world data to illustrate the use of the functions
from the ShapleyOutlier
package.
library(robustHD)
#> Loading required package: ggplot2
#> Loading required package: perry
#> Loading required package: parallel
#> Loading required package: robustbase
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(tidyr)
# library(tidyverse)
library(cellWise)
#>
#> Attaching package: 'cellWise'
#> The following object is masked from 'package:tidyr':
#>
#> unpack
First, we analyze the TopGear dataset from the robustHD
package. We dplyr::select all numeric variables except the
verdict
variable and use a logarithmic transformation for
five variables to obtain more symmetrical marginal distributions. We
robustly center and scale each column using the median and the MAD and
estimate the covariance using the MCD estimator.
data(TopGear)
rownames(TopGear) = paste(TopGear[,1],TopGear[,2])
myTopGear <- TopGear[,-31] #removing the verdict variable
myTopGear <- myTopGear[,sapply(myTopGear,function(x)any(is.numeric(x)))]
myTopGear <- myTopGear[!apply(myTopGear,1, function(x)any(is.na(x))),]
myTopGear <- myTopGear[,-2]
# Transform some variables to get roughly gaussianity in the center:
transTG = myTopGear
transTG$Price = log(myTopGear$Price)
transTG$Displacement = log(myTopGear$Displacement)
transTG$BHP = log(myTopGear$BHP)
transTG$Torque = log(myTopGear$Torque)
transTG$TopSpeed = log(myTopGear$TopSpeed)
transTG <- transTG %>% rename("log(Price)" = Price,
"log(Displacement)" = Displacement,
"log(BHP)" = BHP,
"log(Torque)" = Torque,
"log(TopSpeed)" = TopSpeed)
X <- as.matrix(transTG)
X <- robStandardize(X)
n <- nrow(X)
p <- ncol(X)
set.seed(1)
MCD <- covMcd(X, nsamp = "best")
#> Warning in .fastmcd(x, h, nsamp, nmini, kmini, trace = as.integer(trace)): 'nsamp = "best"' allows maximally 100000 subsets;
#> computing these subsets of size 12 out of 245
mu <-MCD$center
Sigma <- MCD$cov
Sigma_inv <- solve(MCD$cov)
phi <- shapley(x = X, mu = mu, Sigma = Sigma_inv, inverted = TRUE)$phi
colnames(phi) <- colnames(transTG)
rownames(phi) <- rownames(transTG)
md <- rowSums(phi)
chi2.q <- 0.99
crit <- sqrt(qchisq(chi2.q,p))
In the following, we use the SCD
and MOE
procedure to analyze the TopGear data. We focus on the six observations
with the highest Mahalanobis distance.
n_obs <- 6
TopGear_SCD <- SCD(x = X[names(sort(md, decreasing = TRUE)[1:n_obs]),], mu, Sigma, Sigma_inv, step_size = 0.1, min_deviation = 0.2)
plot(TopGear_SCD, type = "bar", md_squared = FALSE)
TopGear_MOE <- MOE(x = X[names(sort(md, decreasing = TRUE)[1:n_obs]),], mu, Sigma, Sigma_inv, step_size = 0.1, local = TRUE, min_deviation = 0.2)
plot(TopGear_MOE, type = "bar", md_squared = FALSE)
As a comparison, we use the cellHandler
procedure from
the cellWise
package and explain the results using Shapley
values.
X_sub <- X[names(sort(md, decreasing = TRUE)[1:n_obs]),]
X_sub_cH <- cellHandler(X_sub, mu = mu, Sigma = Sigma)$Ximp
explain_cH <- shapley(x = X_sub, mu = mu, Sigma = Sigma_inv, inverted = TRUE, cells = (X_sub != X_sub_cH))
plot(explain_cH, abbrev.var = FALSE, abbrev.obs = FALSE, md_squared = FALSE)
We plot the outlying cells according to the SCD
,
MOE
, and cellHandler
procedure.
TopGear_SCD_rescaled <- TopGear_SCD
TopGear_SCD_rescaled$x_original <- t(apply(TopGear_SCD_rescaled$x_original,1, function(x) x*attr(X, "scale") + attr(X, "center")))
TopGear_SCD_rescaled$x <- t(apply(TopGear_SCD_rescaled$x,1, function(x) x*attr(X, "scale") + attr(X, "center")))
plot(TopGear_SCD_rescaled, type = "cell") + coord_flip()
#> Coordinate system already present. Adding new coordinate system, which will
#> replace the existing one.
TopGear_MOE_rescaled <- TopGear_MOE
TopGear_MOE_rescaled$x_original <- t(apply(TopGear_MOE_rescaled$x_original,1, function(x) x*attr(X, "scale") + attr(X, "center")))
TopGear_MOE_rescaled$x <- t(apply(TopGear_MOE_rescaled$x,1, function(x) x*attr(X, "scale") + attr(X, "center")))
plot(TopGear_MOE_rescaled, type = "cell") + coord_flip()
#> Coordinate system already present. Adding new coordinate system, which will
#> replace the existing one.
plot(x = new_shapley_algorithm(x = t(apply(X_sub_cH,1, function(x) x*attr(X, "scale") + attr(X, "center"))),
phi = explain_cH$phi,
x_original = t(apply(X_sub,1, function(x) x*attr(X, "scale") + attr(X, "center")))),
type = "cell") + coord_flip()
#> Coordinate system already present. Adding new coordinate system, which will
#> replace the existing one.
Comparison of the pairwise outlyingness scores based on the Shapley interaction indices for two cars.
ind <- 3
interaction1 <- shapley_interaction(X[names(sort(md, decreasing = TRUE)[ind]),], TopGear_MOE$mu_tilde[ind,], Sigma)
interaction2 <- shapley_interaction(X[names(sort(md, decreasing = TRUE)[ind+1]),], TopGear_MOE$mu_tilde[ind+1,], Sigma)
dimnames(interaction1) <- list(c("Price", "Displ.", "BHP", "Torque", "Acc", "T.Speed", "MPG", "Weight", "Length", "Width", "Height"),
c("Price", "Displ.", "BHP", "Torque", "Acc", "T.Speed", "MPG", "Weight", "Length", "Width", "Height"))
dimnames(interaction2) <- dimnames(interaction1)
plot(interaction1, abbrev = FALSE, title = names(sort(md, decreasing = TRUE)[ind]))
In the following, we analyze the monthly data from the weather station Hohe Warte in Vienna. We only consider the years after 1955, exclude some variables to avoid redundancy, and compute the average values of the summer months June, July, and August. The resulting dataset contains information about the average summer weather in Vienna from 1955 to 2022. We robustly center and scale each column using the median and the MAD and estimate the covariance using the MCD estimator.
data("WeatherVienna")
weather_summer <- WeatherVienna %>% dplyr::select(-c(`t`, t_max, t_min, p_max, p_min)) %>%
drop_na() %>%
filter(month %in% c("JUN", "JUL", "AUG")) %>%
filter(year >= 1955) %>%
group_by(year) %>%
dplyr::select(-month) %>%
summarise(across(.cols = everything(), function(x) mean(x)))
X <- weather_summer %>% dplyr::select(-c(num_frost, num_ice, year))
rownames(X) <- weather_summer$year
#> Warning: Setting row names on a tibble is deprecated.
X <- robStandardize(X)
n <- nrow(X)
p <- ncol(X)
set.seed(1)
MCD <- covMcd(X, alpha = 0.5, nsamp = "best")
#> Warning in .fastmcd(x, h, nsamp, nmini, kmini, trace = as.integer(trace)): 'nsamp = "best"' allows maximally 100000 subsets;
#> computing these subsets of size 17 out of 68
mu <-MCD$center
Sigma <- MCD$cov
Sigma_inv <- solve(MCD$cov)
phi <- shapley(x = X, mu = mu, Sigma = Sigma_inv, inverted = TRUE)$phi
colnames(phi) <- colnames(X)
rownames(phi) <- rownames(X)
md <- rowSums(phi)
chi2.q <- 0.99
crit <- sqrt(qchisq(chi2.q,p))
We use the SCD
and MOE
procedure to analyze
the weather data and compare it to the cellHandler procedure.
weather_SCD <- SCD(x = X, mu, Sigma, Sigma_inv, step_size = 0.1, min_deviation = 0.2)
plot(weather_SCD, abbrev.var = FALSE, abbrev.obs = FALSE, md_squared = FALSE, sort.obs = FALSE, type = "bar")
weather_MOE <- MOE(x = X, mu, Sigma, Sigma_inv, step_size = 0.1, local = TRUE, min_deviation = 0.2)
plot(weather_MOE, abbrev.var = FALSE, abbrev.obs = FALSE, md_squared = FALSE, sort.obs = FALSE, type = "bar")
X_cH <- cellHandler(as.matrix(X), mu = mu, Sigma = Sigma)$Ximp
explain_cH <- shapley(x = X, mu = mu, Sigma = Sigma_inv, inverted = TRUE, cells = (X != X_cH))
plot(explain_cH, abbrev.var = FALSE, abbrev.obs = FALSE, md_squared = FALSE)
## Analyzing cellwise outliers
We plot the outlying cells according to the SCD
,
MOE
, and cellHandler
procedure.
weather_SCD_rescaled <- weather_SCD
weather_SCD_rescaled$x_original <- t(apply(weather_SCD_rescaled$x_original,1, function(x) x*attr(X, "scale") + attr(X, "center")))
weather_SCD_rescaled$x <- t(apply(weather_SCD_rescaled$x,1, function(x) x*attr(X, "scale") + attr(X, "center")))
plot(weather_SCD_rescaled, type = "cell", n_digits = 0, continuous_rowname = 10, rotate_x = FALSE)
weather_MOE_rescaled <- weather_MOE
weather_MOE_rescaled$x_original <- t(apply(weather_MOE_rescaled$x_original,1, function(x) x*attr(X, "scale") + attr(X, "center")))
weather_MOE_rescaled$x <- t(apply(weather_MOE_rescaled$x,1, function(x) x*attr(X, "scale") + attr(X, "center")))
plot(weather_MOE_rescaled, type = "cell", n_digits = 0, continuous_rowname = 10, rotate_x = FALSE)
ind <- 67 #year 2021
interaction1 <- shapley_interaction(as.numeric(X[ind,]), mu, Sigma)
interaction2 <- shapley_interaction(as.numeric(X[ind,]), weather_MOE$mu_tilde[ind,], Sigma)
plot(interaction1, abbrev = FALSE, legend = FALSE, title = "SCD: year 2021", text_size = 16)
## Iterations of SCD
and MOE
for the year
2021
phi_SCD <- unique(weather_SCD$phi_history[[ind]])
rownames(phi_SCD) <- paste("Step", 0:(nrow(phi_SCD)-1))
plot(new_shapley(phi = phi_SCD), abbrev.var = FALSE, abbrev.obs = FALSE, sort.obs = FALSE, sort.var = FALSE)
phi_MOE <- weather_MOE$phi_history[[ind]]
mu_tilde_MOE <- weather_MOE$mu_tilde_history[[ind]]
non_centrality_MOE <- apply(mu_tilde_MOE, 1, function(x) mahalanobis(x, mu, Sigma_inv, inverted = TRUE))
rownames(phi_MOE) <- paste("Step", 0:(nrow(phi_MOE)-1))
plot(new_shapley(phi = phi_MOE,
mu_tilde = mu_tilde_MOE,
non_centrality = non_centrality_MOE),
abbrev.var = FALSE, abbrev.obs = FALSE, sort.obs = FALSE, sort.var = FALSE)