--- title: "ShapleyOutlier examples" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{ShapleyOutlier examples} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- In this file, we present two examples based on real-world data to illustrate the use of the functions from the `ShapleyOutlier` package. ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 8 , fig.height = 8, fig.align ='center' ) ``` ```{r setup} library(ShapleyOutlier) ``` ```{r} library(robustHD) library(dplyr) library(tidyr) # library(tidyverse) library(cellWise) ``` # TopGear dataset First, we analyze the TopGear dataset from the `robustHD` package. We dplyr::select all numeric variables except the `verdict` variable and use a logarithmic transformation for five variables to obtain more symmetrical marginal distributions. We robustly center and scale each column using the median and the MAD and estimate the covariance using the MCD estimator. ```{r} data(TopGear) rownames(TopGear) = paste(TopGear[,1],TopGear[,2]) myTopGear <- TopGear[,-31] #removing the verdict variable myTopGear <- myTopGear[,sapply(myTopGear,function(x)any(is.numeric(x)))] myTopGear <- myTopGear[!apply(myTopGear,1, function(x)any(is.na(x))),] myTopGear <- myTopGear[,-2] # Transform some variables to get roughly gaussianity in the center: transTG = myTopGear transTG$Price = log(myTopGear$Price) transTG$Displacement = log(myTopGear$Displacement) transTG$BHP = log(myTopGear$BHP) transTG$Torque = log(myTopGear$Torque) transTG$TopSpeed = log(myTopGear$TopSpeed) transTG <- transTG %>% rename("log(Price)" = Price, "log(Displacement)" = Displacement, "log(BHP)" = BHP, "log(Torque)" = Torque, "log(TopSpeed)" = TopSpeed) X <- as.matrix(transTG) X <- robStandardize(X) n <- nrow(X) p <- ncol(X) set.seed(1) MCD <- covMcd(X, nsamp = "best") mu <-MCD$center Sigma <- MCD$cov Sigma_inv <- solve(MCD$cov) phi <- shapley(x = X, mu = mu, Sigma = Sigma_inv, inverted = TRUE)$phi colnames(phi) <- colnames(transTG) rownames(phi) <- rownames(transTG) md <- rowSums(phi) chi2.q <- 0.99 crit <- sqrt(qchisq(chi2.q,p)) ``` ## Explaining multivariate outlyingness In the following, we use the `SCD` and `MOE` procedure to analyze the TopGear data. We focus on the six observations with the highest Mahalanobis distance. ```{r} n_obs <- 6 TopGear_SCD <- SCD(x = X[names(sort(md, decreasing = TRUE)[1:n_obs]),], mu, Sigma, Sigma_inv, step_size = 0.1, min_deviation = 0.2) plot(TopGear_SCD, type = "bar", md_squared = FALSE) ``` ```{r} TopGear_MOE <- MOE(x = X[names(sort(md, decreasing = TRUE)[1:n_obs]),], mu, Sigma, Sigma_inv, step_size = 0.1, local = TRUE, min_deviation = 0.2) plot(TopGear_MOE, type = "bar", md_squared = FALSE) ``` As a comparison, we use the `cellHandler` procedure from the `cellWise` package and explain the results using Shapley values. ```{r} X_sub <- X[names(sort(md, decreasing = TRUE)[1:n_obs]),] X_sub_cH <- cellHandler(X_sub, mu = mu, Sigma = Sigma)$Ximp explain_cH <- shapley(x = X_sub, mu = mu, Sigma = Sigma_inv, inverted = TRUE, cells = (X_sub != X_sub_cH)) plot(explain_cH, abbrev.var = FALSE, abbrev.obs = FALSE, md_squared = FALSE) ``` ## Analyzing cellwise outliers We plot the outlying cells according to the `SCD`, `MOE`, and `cellHandler` procedure. ```{r} TopGear_SCD_rescaled <- TopGear_SCD TopGear_SCD_rescaled$x_original <- t(apply(TopGear_SCD_rescaled$x_original,1, function(x) x*attr(X, "scale") + attr(X, "center"))) TopGear_SCD_rescaled$x <- t(apply(TopGear_SCD_rescaled$x,1, function(x) x*attr(X, "scale") + attr(X, "center"))) plot(TopGear_SCD_rescaled, type = "cell") + coord_flip() ``` ```{r} TopGear_MOE_rescaled <- TopGear_MOE TopGear_MOE_rescaled$x_original <- t(apply(TopGear_MOE_rescaled$x_original,1, function(x) x*attr(X, "scale") + attr(X, "center"))) TopGear_MOE_rescaled$x <- t(apply(TopGear_MOE_rescaled$x,1, function(x) x*attr(X, "scale") + attr(X, "center"))) plot(TopGear_MOE_rescaled, type = "cell") + coord_flip() ``` ```{r} plot(x = new_shapley_algorithm(x = t(apply(X_sub_cH,1, function(x) x*attr(X, "scale") + attr(X, "center"))), phi = explain_cH$phi, x_original = t(apply(X_sub,1, function(x) x*attr(X, "scale") + attr(X, "center")))), type = "cell") + coord_flip() ``` ## Shapley interaction indices Comparison of the pairwise outlyingness scores based on the Shapley interaction indices for two cars. ```{r} ind <- 3 interaction1 <- shapley_interaction(X[names(sort(md, decreasing = TRUE)[ind]),], TopGear_MOE$mu_tilde[ind,], Sigma) interaction2 <- shapley_interaction(X[names(sort(md, decreasing = TRUE)[ind+1]),], TopGear_MOE$mu_tilde[ind+1,], Sigma) dimnames(interaction1) <- list(c("Price", "Displ.", "BHP", "Torque", "Acc", "T.Speed", "MPG", "Weight", "Length", "Width", "Height"), c("Price", "Displ.", "BHP", "Torque", "Acc", "T.Speed", "MPG", "Weight", "Length", "Width", "Height")) dimnames(interaction2) <- dimnames(interaction1) plot(interaction1, abbrev = FALSE, title = names(sort(md, decreasing = TRUE)[ind])) plot(interaction2, abbrev = FALSE, title = names(sort(md, decreasing = TRUE)[ind+1])) ``` # WeatherVienna In the following, we analyze the monthly data from the weather station Hohe Warte in Vienna. We only consider the years after 1955, exclude some variables to avoid redundancy, and compute the average values of the summer months June, July, and August. The resulting dataset contains information about the average summer weather in Vienna from 1955 to 2022. We robustly center and scale each column using the median and the MAD and estimate the covariance using the MCD estimator. ```{r} data("WeatherVienna") weather_summer <- WeatherVienna %>% dplyr::select(-c(`t`, t_max, t_min, p_max, p_min)) %>% drop_na() %>% filter(month %in% c("JUN", "JUL", "AUG")) %>% filter(year >= 1955) %>% group_by(year) %>% dplyr::select(-month) %>% summarise(across(.cols = everything(), function(x) mean(x))) X <- weather_summer %>% dplyr::select(-c(num_frost, num_ice, year)) rownames(X) <- weather_summer$year X <- robStandardize(X) n <- nrow(X) p <- ncol(X) set.seed(1) MCD <- covMcd(X, alpha = 0.5, nsamp = "best") mu <-MCD$center Sigma <- MCD$cov Sigma_inv <- solve(MCD$cov) phi <- shapley(x = X, mu = mu, Sigma = Sigma_inv, inverted = TRUE)$phi colnames(phi) <- colnames(X) rownames(phi) <- rownames(X) md <- rowSums(phi) chi2.q <- 0.99 crit <- sqrt(qchisq(chi2.q,p)) ``` ## Explaining multivariate outlyingness We use the `SCD` and `MOE` procedure to analyze the weather data and compare it to the cellHandler procedure. ```{r} weather_SCD <- SCD(x = X, mu, Sigma, Sigma_inv, step_size = 0.1, min_deviation = 0.2) plot(weather_SCD, abbrev.var = FALSE, abbrev.obs = FALSE, md_squared = FALSE, sort.obs = FALSE, type = "bar") ``` ```{r} weather_MOE <- MOE(x = X, mu, Sigma, Sigma_inv, step_size = 0.1, local = TRUE, min_deviation = 0.2) plot(weather_MOE, abbrev.var = FALSE, abbrev.obs = FALSE, md_squared = FALSE, sort.obs = FALSE, type = "bar") ``` ```{r} X_cH <- cellHandler(as.matrix(X), mu = mu, Sigma = Sigma)$Ximp explain_cH <- shapley(x = X, mu = mu, Sigma = Sigma_inv, inverted = TRUE, cells = (X != X_cH)) plot(explain_cH, abbrev.var = FALSE, abbrev.obs = FALSE, md_squared = FALSE) ``` ## Analyzing cellwise outliers We plot the outlying cells according to the `SCD`, `MOE`, and `cellHandler` procedure. ```{r} weather_SCD_rescaled <- weather_SCD weather_SCD_rescaled$x_original <- t(apply(weather_SCD_rescaled$x_original,1, function(x) x*attr(X, "scale") + attr(X, "center"))) weather_SCD_rescaled$x <- t(apply(weather_SCD_rescaled$x,1, function(x) x*attr(X, "scale") + attr(X, "center"))) plot(weather_SCD_rescaled, type = "cell", n_digits = 0, continuous_rowname = 10, rotate_x = FALSE) ``` ```{r} weather_MOE_rescaled <- weather_MOE weather_MOE_rescaled$x_original <- t(apply(weather_MOE_rescaled$x_original,1, function(x) x*attr(X, "scale") + attr(X, "center"))) weather_MOE_rescaled$x <- t(apply(weather_MOE_rescaled$x,1, function(x) x*attr(X, "scale") + attr(X, "center"))) plot(weather_MOE_rescaled, type = "cell", n_digits = 0, continuous_rowname = 10, rotate_x = FALSE) ``` ```{r} plot(x = new_shapley_algorithm(x = t(apply(X_cH,1, function(x) x*attr(X, "scale") + attr(X, "center"))), phi = explain_cH$phi, x_original = t(apply(X,1, function(x) x*attr(X, "scale") + attr(X, "center")))), type = "cell", n_digits = 0, continuous_rowname = 10, rotate_x = FALSE) ``` ## Shapley interaction indices ```{r} ind <- 67 #year 2021 interaction1 <- shapley_interaction(as.numeric(X[ind,]), mu, Sigma) interaction2 <- shapley_interaction(as.numeric(X[ind,]), weather_MOE$mu_tilde[ind,], Sigma) plot(interaction1, abbrev = FALSE, legend = FALSE, title = "SCD: year 2021", text_size = 16) plot(interaction2, abbrev = FALSE, title = "MOE: year 2021", text_size = 16) ``` ## Iterations of `SCD` and `MOE` for the year 2021 ```{r} phi_SCD <- unique(weather_SCD$phi_history[[ind]]) rownames(phi_SCD) <- paste("Step", 0:(nrow(phi_SCD)-1)) plot(new_shapley(phi = phi_SCD), abbrev.var = FALSE, abbrev.obs = FALSE, sort.obs = FALSE, sort.var = FALSE) ``` ```{r} phi_MOE <- weather_MOE$phi_history[[ind]] mu_tilde_MOE <- weather_MOE$mu_tilde_history[[ind]] non_centrality_MOE <- apply(mu_tilde_MOE, 1, function(x) mahalanobis(x, mu, Sigma_inv, inverted = TRUE)) rownames(phi_MOE) <- paste("Step", 0:(nrow(phi_MOE)-1)) plot(new_shapley(phi = phi_MOE, mu_tilde = mu_tilde_MOE, non_centrality = non_centrality_MOE), abbrev.var = FALSE, abbrev.obs = FALSE, sort.obs = FALSE, sort.var = FALSE) ```