SSLR
contains models created by developers and
wrappers of different packages such as RSSL
.
From RSSL
, we
use S3VM methods.
The list of models is:
Classification: SelfTraining()
,SSLRDecisionTree()
,
SSLRRandomForest()
,
triTraining()
,
coBC()
, democratic()
, EMLeastSquaresClassifierSSLR()
,
EMNearestMeanClassifierSSLR()
,
EntropyRegularizedLogisticRegressionSSLR()
,
LaplacianSVMSSLR()
,
LinearTSVMSSLR()
,
WellSVMSSLR()
,
MCNearestMeanClassifierSSLR()
,
oneNN()
, setred()
, snnrce()
, TSVMSSLR()
, USMLeastSquaresClassifierSSLR()
,
GRFClassifierSSLR()
Regression: coBC()
,COREG()
, SSLRDecisionTree()
,
SSLRRandomForest()
Clustering: constrained_kmeans()
,
seeded_kmeans()
,
ckmeansSSLR()
,
cclsSSLR()
, mpckmSSLR()
, lcvqeSSLR()
NOTE: In the Regression modelling
section we can see more examples of use in regression tasks. In
Decision Tree , Random Forest and coBC we
only have examples for classification tasks.
NOTE: In the Clustering modelling
section we can see how to plot clusters with factoextra
package.