--- title: "clustering" output: html_document vignette: > %\VignetteIndexEntry{clustering} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include=FALSE} knitr::opts_chunk$set( digits = 3, collapse = TRUE, comment = "#>" ) options(digits = 3) ``` ## R Markdown We load de data: ```{r eval=TRUE, results="hide", warning=FALSE,message=FALSE} library(tidyverse) library(caret) library(SSLR) library(tidymodels) ``` ```{r data, results="hide"} data(wine) data <- iris set.seed(1) #% LABELED cls <- which(colnames(iris) == "Species") labeled.index <- createDataPartition(data$Species, p = .2, list = FALSE) data[-labeled.index,cls] <- NA ``` For example, we can train with Constrained Kmeans: ```{r fit, results="hide"} m <- constrained_kmeans() %>% fit(Species ~ ., data) ``` Labels: ```{r labels} m %>% cluster_labels() ``` Centers: ```{r centers} m %>% get_centers() ``` We can plot clusters with factoextra: ```{r clusters, warning=FALSE,message=FALSE} library(factoextra) fviz_cluster(m$model, as.matrix(data[,-cls])) ```