
Package: SSBtools (via r-universe)
October 22, 2024

Type Package

Title Statistics Norway's Miscellaneous Tools

Version 1.5.5

Date 2024-10-21

Depends Matrix

Imports stringr, methods, MASS

Description Functions used by other packages from Statistics Norway
are gathered. General data manipulation functions, algorithms
for statistical disclosure control (Langsrud, 2024)
<doi:10.1007/978-3-031-69651-0_6> and functions for
hierarchical computations by sparse model matrices are included
(Langsrud, 2023) <doi:10.32614/RJ-2023-088>.

License MIT + file LICENSE

URL https://github.com/statisticsnorway/ssb-ssbtools

BugReports https://github.com/statisticsnorway/ssb-ssbtools/issues

RoxygenNote 7.3.1

Encoding UTF-8

Suggests testthat, data.table

NeedsCompilation no

Author Øyvind Langsrud [aut, cre]
(<https://orcid.org/0000-0002-1380-4396>), Daniel Lupp [aut]
(<https://orcid.org/0000-0003-3575-1691>), Bjørn-Helge Mevik
[ctb], Vidar Norstein Klungre [rev]
(<https://orcid.org/0000-0003-1925-5911>), Statistics Norway
[cph]

Maintainer Øyvind Langsrud <oyl@ssb.no>

Repository CRAN

Date/Publication 2024-10-21 15:20:02 UTC

1

https://doi.org/10.1007/978-3-031-69651-0_6
https://doi.org/10.32614/RJ-2023-088
https://github.com/statisticsnorway/ssb-ssbtools
https://github.com/statisticsnorway/ssb-ssbtools/issues
https://orcid.org/0000-0002-1380-4396
https://orcid.org/0000-0003-3575-1691
https://orcid.org/0000-0003-1925-5911

2 Contents

Contents
AddLeadingZeros . 3
aggregate_by_pkg . 4
aggregate_multiple_fun . 5
As_TsparseMatrix . 9
AutoHierarchies . 10
AutoSplit . 13
CbindIdMatch . 14
CheckInput . 15
DataDummyHierarchy . 17
DimList2Hierarchy . 18
DimList2Hrc . 19
DummyApply . 20
DummyDuplicated . 21
DummyHierarchy . 22
dummy_aggregate . 24
Extend0 . 26
Extend0rnd1 . 28
FactorLevCorr . 29
FindCommonCells . 30
FindDimLists . 31
FindDisclosiveCells . 32
FindHierarchies . 34
FindTableGroup . 35
FormulaSelection.default . 36
FormulaSums . 37
formula_utils . 39
GaussIndependent . 40
GaussIterationFunction . 41
GaussSuppression . 42
HierarchicalGroups . 45
HierarchicalWildcardGlobbing . 46
Hierarchies2ModelMatrix . 48
HierarchiesAndFormula2ModelMatrix . 51
Hierarchy2Formula . 53
HierarchyCompute . 55
HierarchyCompute2 . 58
LSfitNonNeg . 60
MakeHierFormula . 61
Match . 62
matlabColon . 63
Matrix2list . 64
Mipf . 65
ModelMatrix . 69
model_aggregate . 72
Number . 75
NumSingleton . 76

AddLeadingZeros 3

quantile_weighted . 77
RbindAll . 79
Reduce0exact . 80
RoundWhole . 82
RowGroups . 83
SortRows . 84
SSBtoolsData . 85
Stack . 86
UniqueSeq . 87
Unstack . 88
WildcardGlobbing . 89
WildcardGlobbingVector . 90

Index 91

AddLeadingZeros Add leading zeros to numbers while preserving other text

Description

This function is created to fix problems caused by a serious bug in Excel. Editing csv files in that
program causes leading zeros to disappear.

Usage

AddLeadingZeros(
codes,
places,
warningText = NULL,
viaFactor = TRUE,
nWarning = 6,
removeLeadingTrailingWhitespace = TRUE

)

Arguments

codes Character vector

places Number of places for positive numbers. Minus sign is extra

warningText When non-NULL, warning will be produced

viaFactor When TRUE, the algorithm uses factor coding internally.

nWarning Number of elements to be written before ... in warnings.
removeLeadingTrailingWhitespace

Remove leading and trailing whitespace

Value

Character vector

4 aggregate_by_pkg

Author(s)

Øyvind Langsrud

Examples

AddLeadingZeros(c("1", "ABC", "12345", " 23", "-8", "45 ", " -9", " Agent ", "007",
"7 James Bond "), 10)

AddLeadingZeros(c("1", "ABC", "12345", " 23", "-8", "45 ", " -9", " Agent ", "007",
"7 James Bond "), 4)

AddLeadingZeros(c("1", "ABC", "12345", " 23", "-8", "45 ", " -9", " Agent ", "007",
"7 James Bond "), 4, removeLeadingTrailingWhitespace = FALSE)

AddLeadingZeros(c("1", "ABC", "12345", " 23", "-8", "45 ", " -9", " Agent ", "007",
"7 James Bond "), 4, warningText = "string changes")

AddLeadingZeros(c("1", "ABC", "12345", " 23", "-8", "45 ", " -9", " Agent ", "007",
"7 James Bond "), 4, warningText = "", nWarning = 2)

aggregate_by_pkg Aggregate by base R or data.table

Description

This function aggregates data by specified grouping variables, using either base R or data.table.

Usage

aggregate_by_pkg(
data,
by,
var,
pkg = "base",
include_na = FALSE,
fun = sum,
base_order = TRUE,
...

)

Arguments

data A data frame

by A character vector specifying the column names to group by.

var A character vector specifying the column names of the variables to be aggre-
gated.

pkg A character string indicating which package to use for aggregation. Must be
either "base" for base R or "data.table" for data.table. Default is "base".

include_na A logical value indicating whether NA values in the grouping variables should be
included in the aggregation. Default is FALSE.

aggregate_multiple_fun 5

fun The function to be applied for aggregation. Default is sum.

base_order A logical value indicating whether to attempt to return the results in the same
order as base R when using data.table. Note that while the function strives to
maintain this order, it cannot be guaranteed due to potential variations in sorting
behavior across different systems. Default is TRUE.

... Further arguments passed to aggregate when pkg is "base"

Value

A data.frame containing the aggregated results.

Examples

d <- SSBtoolsData("d2")[1:20,]
d[[2]] <- as.numeric(d[[2]])
d$y <- as.numeric(1:20)
d$y[2] <- NA
d$county[8:9] <- NA
d$main_income[11:12] <- NA
d$k_group[19:20] <- NA
by <- c("main_income", "county", "k_group")

a1 <- aggregate_by_pkg(d, by = by, var = c("y", "freq"))
a2 <- aggregate_by_pkg(d, by = by, var = c("y", "freq"),

include_na = TRUE)
a3 <- aggregate_by_pkg(d, by = by, var = c("y", "freq"),

include_na = TRUE, fun = function(x) list(x))

if (requireNamespace("data.table", quietly = TRUE)) {

b1 <- aggregate_by_pkg(d, by = by, var = c("y", "freq"), pkg = "data.table")
b2 <- aggregate_by_pkg(d, by = by, var = c("y", "freq"), pkg = "data.table",

include_na = TRUE)
b3 <- aggregate_by_pkg(d, by = by, var = c("y", "freq"), pkg = "data.table",

include_na = TRUE, fun = function(x) list(x))

print(identical(a1, b1)) # TRUE when base_order succeeds
print(identical(a2, b2))
print(identical(a3, b3))

} else {
print("The 'data.table' package is not installed.")

}

aggregate_multiple_fun

Wrapper to aggregate

6 aggregate_multiple_fun

Description

Wrapper to aggregate that allows multiple functions and functions of several variables

Usage

aggregate_multiple_fun(
data,
by,
vars,
fun = NULL,
ind = NULL,
...,
name_sep = "_",
seve_sep = ":",
multi_sep = ",",
forward_dots = FALSE,
dots2dots = FALSE,
do_unmatrix = TRUE,
do_unlist = TRUE,
inc_progress = FALSE

)

Arguments

data A data frame containing data to be aggregated

by A data frame defining grouping

vars A named vector or list of variable names in data. The elements are named by
the names of fun. All the pairs of variable names and function names thus define
all the result variables to be generated.

• Parameter vars will converted to an internal standard by the function fix_vars_amf.
Thus, function names and also output variable names can be coded in differ-
ent ways. Multiple output variable names can be coded using multi_sep.
See examples and examples in fix_vars_amf. Indices instead of variable
names are allowed.

• Omission of (some) names is possible since names can be omitted for one
function (see fun below).

• A special possible feature is the combination of a single unnamed variable
and all functions named. In this case, all functions are run and output vari-
able names will be identical to the function names.

fun A named list of functions. These names will be used as suffixes in output vari-
able names. Name can be omitted for one function. A vector of function as
strings is also possible. When unnamed, these function names will be used di-
rectly. See the examples of fix_fun_amf, which is the function used to convert
fun. Without specifying fun, the functions, as strings, are taken from the func-
tion names coded in vars.

aggregate_multiple_fun 7

ind When non-NULL, a data frame of indices. When NULL, this variable will be
generated internally as data.frame(ind = seq_len(nrow(data))). The pa-
rameter is useful for advanced use involving model/dummy matrices. For spe-
cial use (dummy = FALSE in dummy_aggregate) ind can also be a two-column
data frame.

... Further arguments passed to aggregate and, depending on forward_dots/dots2dots,
forwarded to the functions in fun (see details).

name_sep A character string used when output variable names are generated.

seve_sep A character string used when output variable names are generated from func-
tions of several variables.

multi_sep A character string used when multiple output variable names are sent as input.

forward_dots Logical vector (possibly recycled) for each element of fun that determines whether
... should be forwarded (see details).

dots2dots Logical vector (possibly recycled) specifying the behavior when forward_dots
= TRUE (see details).

do_unmatrix By default (TRUE), the implementation uses unmatrix before returning output.
For special use this can be omitted (FALSE).

do_unlist By default (TRUE), the implementation uses unlist to combine output from
multiple functions. For special use this can be omitted (FALSE).

inc_progress logigal, NULL (same as FALSE) or a progress indicator function taking two pa-
rameters (i and n). TRUE means the same as inc_default. Note that this feature
is implemented in a hacky manner as internal/hidden variables are grabbed from
aggregate.

Details

One intention of aggregate_multiple_fun is to be a true generalization of aggregate. How-
ever, when many functions are involved, passing extra parameters can easily lead to errors. There-
fore forward_dots and dots2dots are set to FALSE by default. When forward_dots = TRUE and
dots2dots = FALSE, parameters will be forwarded, but only parameters that are explicitly defined
in the specific fun function. For the sum function, this means that a possible na.rm parameter is
forwarded but not others. When forward_dots = TRUE and dots2dots = TRUE, other parameters
will also be forwarded to fun functions where ... is included. For the sum function, this means that
such extra parameters will, probably erroneously, be included in the summation (see examples).

For the function to work with dummy_aggregate, the data is subject to unlist before the fun
functions are called. This does not apply in the special case where ind is a two-column data frame.
Then, in the case of list data, the fun functions have to handle this themselves.

A limitation when default output, when do_unlist = TRUE, is that variables in output are forced to
have the same class. This is caused by the unlist function being run on the output. This means,
for example, that all the variables will become numeric when they should have been both integer
and numeric.

Value

A data frame

8 aggregate_multiple_fun

Examples

d2 <- SSBtoolsData("d2")
set.seed(12)
d2$y <- round(rnorm(nrow(d2)), 2)
d <- d2[sample.int(nrow(d2), size = 20),]
aggregate_multiple_fun(

data = d,
by = d[c("k_group", "main_income")],
vars = c("freq", "y", median = "freq", median = "y", e1 = "freq"),
fun = c(sum, median = median, e1 = function(x) x[1])

)

With functions as named strings
aggregate_multiple_fun(

data = d,
by = d[c("k_group", "main_income")],
vars = c(sum = "y", med = "freq", med = "y"),
fun = c(sum = "sum", med = "median")

)

Without specifying functions
- equivalent to `fun = c("sum", "median")`
aggregate_multiple_fun(

data = d,
by = d[c("k_group", "main_income")],
vars = c(sum = "y", median = "freq", median = "y")

)

The single unnamed variable feature. Also functions as strings.
aggregate_multiple_fun(

data = d,
by = d[c("k_group", "main_income")],
vars = "y",
fun = c("sum", "median", "min", "max")

)

with multiple outputs (function my_range)
and with function of two variables (weighted.mean(y, freq))
my_range <- function(x) c(min = min(x), max = max(x))
aggregate_multiple_fun(

data = d,
by = d[c("k_group", "main_income")],
vars = list("freq", "y", ra = "freq", wmean = c("y", "freq")),
fun = c(sum, ra = my_range, wmean = weighted.mean)

)

with specified output variable names
my_range <- function(x) c(min = min(x), max = max(x))
aggregate_multiple_fun(

data = d,
by = d[c("k_group", "main_income")],
vars = list("freq", "y",

As_TsparseMatrix 9

`freqmin,freqmax` = list(ra = "freq"),
yWmean = list(wmean = c("y", "freq"))),

fun = c(sum, ra = my_range, wmean = weighted.mean)
)

To illustrate forward_dots and dots2dots
q <- d[1,]
q$w <- 100 * rnorm(1)
for (dots2dots in c(FALSE, TRUE)) for (forward_dots in c(FALSE, TRUE)) {

cat("\n=======================================\n")
cat("forward_dots =", forward_dots, ", dots2dots =", dots2dots)
out <- aggregate_multiple_fun(
data = q, by = q["k_group"],
vars = c(sum = "freq", round = "w"), fun = c("sum", "round"),
digits = 3, forward_dots = forward_dots, dots2dots = dots2dots)

cat("\n")
print(out)

}
In last case digits forwarded to sum (as ...)
and wrongly included in the summation

As_TsparseMatrix Transform to TsparseMatrix/dgTMatrix

Description

To implement adaption needed after Matrix ver. 1.4-2 since as(from, "dgTMatrix") no longer
allowed.

Usage

As_TsparseMatrix(from, do_drop0 = TRUE)

Arguments

from A matrix

do_drop0 whether to run drop0

Details

This function is made to replace as(from, "dgTMatrix") and as(drop0(from), "dgTMatrix")
in SSBtools and related packages.

Value

A matrix. Virtual class is TsparseMatrix. Class dgTMatrix expected.

10 AutoHierarchies

Note

Matrix:::.as.via.virtual in development version of package Matrix (date 2022-08-13) used
to generate code.

AutoHierarchies Ensure standardized coding of hierarchies

Description

Automatic convert list of hierarchies coded in different ways to standardized to-from coding

Usage

AutoHierarchies(
hierarchies,
data = NULL,
total = "Total",
hierarchyVarNames = c(mapsFrom = "mapsFrom", mapsTo = "mapsTo", sign = "sign", level =

"level"),
combineHierarchies = TRUE,
unionComplement = FALSE,
...

)

Arguments

hierarchies List of hierarchies

data Matrix or data frame with data containing codes of relevant variables

total Within AutoHierarchies: Vector of total codes (possibly recycled) used when
running Hrc2DimList or FindDimLists.

hierarchyVarNames

Variable names in the hierarchy tables as in HierarchyFix

combineHierarchies

Whether to combine several hierarchies for same variable into a single hierarchy
(see examples).

unionComplement

Logical vector as in Hierarchies2ModelMatrix. The parameter is only in use
when hierarchies are combined.

... Extra unused parameters

AutoHierarchies 11

Details

Input can be to-from coded hierarchies, hierarchies/dimList as in sdcTable, TauArgus coded hier-
archies or formulas. Automatic coding from data is also supported. Output is on a from ready for
input to HierarchyCompute. A single string as hierarchy input is assumed to be a total code. Then,
the hierarchy is created as a simple hierarchy where all codes in data sum up to this total. For con-
sistence with HierarchyCompute, the codes "rowFactor" and "colFactor" are unchanged. An
empty string is recoded to "rowFactor".

A special possibility is to include character vector(s) as unnamed list element(s) of hierarchies.
Then the elements of the character vector(s) must be variable names within data. This will cause
hierarchies to be created from selected data columns by running FindDimLists. Total coded can
be specified by parameter total or by naming the character vector. See examples.

Value

List of hierarchies

Author(s)

Øyvind Langsrud

See Also

FindHierarchies, DimList2Hierarchy, DimList2Hrc, Hierarchy2Formula, DummyHierarchies.

Examples

First, create different types of input
z <- SSBtoolsData("sprt_emp_withEU")
yearFormula <- c("y_14 = 2014", "y_15_16 = y_all - y_14", "y_all = 2014 + 2015 + 2016")
yearHier <- Formula2Hierarchy(yearFormula)
geoDimList <- FindDimLists(z[, c("geo", "eu")], total = "Europe")[[1]]
geoDimList2 <- FindDimLists(z[, c("geo", "eu")])[[1]]
geoHrc <- DimList2Hrc(geoDimList)
ageHier <- SSBtoolsData("sprt_emp_ageHier")

h1 <- AutoHierarchies(list(age = ageHier, geo = geoDimList, year = yearFormula))
h2 <- AutoHierarchies(list(age = "Y15-64", geo = geoHrc, year = yearHier), data = z,

total = "Europe")
h3 <- AutoHierarchies(list(age = "Total", geo = geoDimList2, year = "Total"), data = z)
h4 <- FindHierarchies(z[, c(1, 2, 3, 5)])
h5 <- AutoHierarchies(list(age = "Total", geo = "", year = "colFactor"), data = z)
identical(h1, h2)
identical(h3, h4)

Print the resulting hierarchies
h1 # = h2
h3 # = h4
h5

FindHierarchies(z[, c("geo", "eu", "age")])

12 AutoHierarchies

===
Examples illustrating the combineHierarchies parameter
===

First, create data
d <- SSBtoolsData("d2ws")[1:3]
d$isCounty1 <- "NO"
d$isCounty1[d$county == "county-1"] <- "YES"
d

sdcTable coding showing two tree-shaped hierarchies
dimList <- FindDimLists(d)
dimList

Two tree-shaped hierarchies can still be seen
Hierarchies with three and two levels
hA <- AutoHierarchies(dimList, combineHierarchies = FALSE)
hA

A single hierarchy with only one level
Contains the information needed to create a dummy matrix
hB <- AutoHierarchies(dimList)
hB

Dummy matrices from the hierarchies
DummyHierarchies(hA)
DummyHierarchies(hB)

===
Special examples with character vector(s) as unnamed list elements
===

Same output as FindHierarchies above
AutoHierarchies(list(c("geo", "eu", "age")), data = z)

Now combined with a named list element
AutoHierarchies(list(year = yearHier, c("geo", "eu", "age")), data = z)

Total codes by unnamed list element as named character vector
AutoHierarchies(list(year = yearHier, c(Europe = "geo", "eu", All = "age")), data = z)

Two types of year input. Total codes by using the parameter `total`.
AutoHierarchies(list("year", year = yearHier, c("geo", "eu", "age")), data = z,

total = c("allYears", "unused", "Tot"))

Avoid combineHierarchies to see effect of each year input separately
(even earlier return possible with `combineHierarchies = NA`)
AutoHierarchies(list("year", year = yearHier, c("geo", "eu", "age")), data = z,

total = c("allYears", "unused", "Tot"), combineHierarchies = FALSE)

AutoSplit 13

AutoSplit Creating variables by splitting the elements of a character vector with-
out needing a split string

Description

Creating variables by splitting the elements of a character vector without needing a split string

Usage

AutoSplit(
s,
split = NULL,
border = "_",
revBorder = FALSE,
noSplit = FALSE,
varNames = paste("var", 1:100, sep = ""),
tryReverse = TRUE

)

Arguments

s The character vector

split Split string. When NULL (default), automatic splitting without a split string.

border A split character or an integer (move split) to be used when the exact split posi-
tion is not unique.

revBorder When border is integer the split position is moved from the other side.

noSplit No splitting when TRUE.

varNames Variable names of the created variables (too many is ok)

tryReverse When TRUE, the automatic method tries to find more variables by splitting from
reversed strings.

Value

A data frame with s as row names.

Author(s)

Øyvind Langsrud

14 CbindIdMatch

Examples

s <- c("A12-3-A-x","A12-3-B-x","B12-3-A-x","B12-3-B-x",
"A12-3-A-y","A12-3-B-y","B12-3-A-y","B12-3-B-y")

AutoSplit(s)
AutoSplit(s,border="-")
AutoSplit(s,split="-")
AutoSplit(s,border=1)
AutoSplit(s,border=2)
AutoSplit(s,border=2,revBorder=TRUE)
AutoSplit(s,noSplit=TRUE)
AutoSplit(s,varNames=c("A","B","C","D"))

CbindIdMatch Combine several data frames by using id variables to match rows

Description

Combine several data frames by using id variables to match rows

Usage

CbindIdMatch(
...,
addName = names(x),
sep = "_",
idNames = sapply(x, function(x) names(x)[1]),
idNames1 = idNames,
addLast = FALSE

)

Arguments

... Several data frames as several input parameters or a list of data frames

addName NULL or vector of strings used to name columns according to origin frame

sep A character string to separate when addName apply

idNames Names of a id variable within each data frame

idNames1 Names of variables in first data frame that correspond to the id variable within
each data frame

addLast When TRUE addName will be at end

Details

The first data frame is the basis and the other frames will be matched by using id-variables. The
default id-variables are the first variable in each frame. Corresponding variables with the same name
in first frame is assumed. An id-variable is not needed if the number of rows is one or the same as
the first frame. Then the element of idNames can be set to a string with zero length.

CheckInput 15

Value

A single data frame

Author(s)

Øyvind Langsrud

See Also

RbindAll (same example data)

Examples

zA <- data.frame(idA = 1:10, idB = rep(10 * (1:5), 2), idC = rep(c(100, 200), 5),
idC2 = c(100, rep(200, 9)), idC3 = rep(100, 10),
idD = 99, x = round(rnorm(10), 3), xA = round(runif(10), 2))

zB <- data.frame(idB = 10 * (1:5), x = round(rnorm(5), 3), xB = round(runif(5), 2))
zC <- data.frame(idC = c(100, 200), x = round(rnorm(2), 3), xC = round(runif(2), 2))
zD <- data.frame(idD = 99, x = round(rnorm(1), 3), xD = round(runif(1), 2))
CbindIdMatch(zA, zB, zC, zD)
CbindIdMatch(a = zA, b = zB, c = zC, d = zD, idNames = c("", "idB", "idC", ""))
CbindIdMatch(a = zA, b = zB, c = zC, d = zD, idNames1 = c("", "idB", "idC2", ""))
CbindIdMatch(a = zA, b = zB, c = zC, d = zD, idNames1 = c("", "idB", "idC3", ""))
CbindIdMatch(zA, zB, zC, zD, addName = c("", "bbb", "ccc", "ddd"), sep = ".", addLast = TRUE)
try(CbindIdMatch(X = zA, Y = zA[, 4:5], Z = zC, idNames = NULL)) # Error
CbindIdMatch(X = zA, Y = zA[, 4:5], Z = zD, idNames = NULL) # Ok since equal NROW or NROW==1
CbindIdMatch(list(a = zA, b = zB, c = zC, d = zD)) # List is alternative input

CheckInput Checking function inputs

Description

An input vector (of length one unless okSeveral is TRUE) is checked.

Usage

CheckInput(
x,
alt = NULL,
min = NULL,
max = NULL,
type = "character",
data = NULL,
okSeveral = FALSE,
okNULL = FALSE,
okNA = FALSE,
okDuplicates = is.null(alt) & !(type %in% c("varName", "varNr", "varNrName"))

16 CheckInput

)

check_input(
x,
alt = NULL,
min = NULL,
max = NULL,
type = "character",
data = NULL,
okSeveral = FALSE,
okNULL = FALSE,
okNA = FALSE,
okDuplicates = is.null(alt) & !(type %in% c("varName", "varNr", "varNrName"))

)

Arguments

x Input vector to be checked

alt NULL or vector of allowed values

min NULL or minimum value (when type is numeric or integer)

max NULL or maximum value (when type is numeric or integer)

type One of: "character", "numeric", "integer", "logical", "varName", "varNr",
"varNrName". numeric/integer is not checked against exact class, but whether
the value fit into the class. Also see data below.

data A data frame or matrix. When above type is varNames, x is checked against
colnames(data). When type is varNr, x is checked against column numbers.
When type is varNrName, x can be either column numbers or column names.

okSeveral When TRUE, length(x)>1 is allowed

okNULL When TRUE, NULL is allowed

okNA When TRUE, NA is allowed

okDuplicates When TRUE, duplicated values are allowed. Default is TRUE if alt is NULL and if
type does not refer to column(s) of data.

Details

x is checked according to the other input parameters. When x is wrong an error is produced with
appropriate text.

The function was originally created in 2016 and has been included in internal packages at Statistics
Norway (SSB). Due to its widespread use, it was beneficial to include it in this CRAN package.

Note

check_input and CheckInput are identical

Author(s)

Øyvind Langsrud

DataDummyHierarchy 17

Examples

a <- c("no", "yes")
b <- c(3.14, 4, 5)
z <- data.frame(A = a, B = b[1:2], C = TRUE)

Lines causing error are embedded in 'try'

try(CheckInput(a, type = "character"))
CheckInput(a, type = "character", alt = c("no", "yes", "dontknow"), okSeveral = TRUE)
try(CheckInput("yesno", type = "character", alt = c("no", "yes", "dontknow")))
CheckInput(a[1], type = "character", alt = c("no", "yes", "dontknow"))

try(CheckInput(b, type = "integer", max = 100, okSeveral = TRUE))
try(CheckInput(b, type = "numeric", min = 4, okSeveral = TRUE))
CheckInput(b, type = "numeric", max = 100, okSeveral = TRUE)
try(CheckInput(b, type = "numeric", alt = 1:10, okSeveral = TRUE))
CheckInput(b[2], type = "numeric", alt = 1:10)

try(CheckInput("TRUE", type = "logical"))
CheckInput(TRUE, type = "logical")

try(CheckInput("A", type = "varName"))
CheckInput("A", type = "varName", data = z)
CheckInput(c("A", "B"), type = "varNrName", data = z, okSeveral = TRUE)
try(CheckInput("ABC", type = "varNrName", data = z))
try(CheckInput(5, type = "varNrName", data = z))
CheckInput(3, type = "varNr", data = z)
CheckInput(2:3, type = "varNr", data = z, okSeveral = TRUE)

DataDummyHierarchy Create a (signed) dummy matrix for hierarcical mapping of codes in
data

Description

Create a (signed) dummy matrix for hierarcical mapping of codes in data

Usage

DataDummyHierarchy(dataVector, dummyHierarchy)

DataDummyHierarchies(data, dummyHierarchies, colNamesFromData = FALSE)

Arguments

dataVector A vector of codes in data

dummyHierarchy Output from DummyHierarchy

data data

18 DimList2Hierarchy

dummyHierarchies

Output from DummyHierarchies

colNamesFromData

Column names from data when TRUE

Details

DataDummyHierarchies is a user-friendly wrapper for the original function DataDummyHierarchy.
When colNamesFromData is FALSE (default), this function returns mapply(DataDummyHierarchy,
data[names(dummyHierarchies)], dummyHierarchies).

Value

A sparse matrix. Column names are taken from dataVector (if non-NULL) and row names are taken
from the row names of dummyHierarchy.

Author(s)

Øyvind Langsrud

Examples

z <- SSBtoolsData("sprt_emp_withEU")[1:9,]
hi <- FindHierarchies(z[, c("geo", "eu", "age", "year")])
dhi <- DummyHierarchies(hi, inputInOutput = TRUE)
DataDummyHierarchies(z, dhi, colNamesFromData = TRUE)

DimList2Hierarchy DimList2Hierarchy

Description

From hierarchy/dimList as in sdcTable to to-from coded hierarchy

Usage

DimList2Hierarchy(x)

Arguments

x An element of a dimList as in sdcTable

Value

Data frame with to-from coded hierarchy

Author(s)

Øyvind Langsrud

DimList2Hrc 19

See Also

DimList2Hrc, Hierarchy2Formula, AutoHierarchies.

Examples

First generate a dimList element
x <- FindDimLists(SSBtoolsData("sprt_emp_withEU")[, c("geo", "eu")], , total = "Europe")[[1]]
x

DimList2Hierarchy(x)

DimList2Hrc DimList2Hrc/Hrc2DimList

Description

Conversion between hierarchies/dimList as in sdcTable and TauArgus coded hierarchies

Usage

DimList2Hrc(dimList)

Hrc2DimList(hrc, total = "Total")

Arguments

dimList List of data frames according to the specifications in sdcTable

hrc List of character vectors

total String used to name totals.

Value

See Arguments

Author(s)

Øyvind Langsrud

See Also

DimList2Hierarchy, Hierarchy2Formula, AutoHierarchies.

20 DummyApply

Examples

First generate dimList
dimList <- FindDimLists(SSBtoolsData("sprt_emp_withEU")[, c("geo", "eu", "age")])
dimList
hrc <- DimList2Hrc(dimList)
hrc
dimList2 <- Hrc2DimList(hrc)
identical(dimList, dimList2)

DummyApply Apply a function to subsets defined by a dummy matrix

Description

For each column, i, of the matrix x of zeros and ones, the output value is equivalent to FUN(y[x[,
i] != 0]).

Usage

DummyApply(x, y, FUN = sum, simplify = TRUE)

Arguments

x A (sparse) dummy matrix

y Vector of input values

FUN A function

simplify Parameter to aggregate. When FALSE, list output is ensured.

Details

With a dummy x and FUN = sum, output is equivalent to z = t(x) %*% y.

Value

Vector of output values or a matrix when multiple outputs from FUN (see examples). List output is
also possible (ensured when simplify = FALSE).

Examples

z <- SSBtoolsData("sprt_emp_withEU")
z$age[z$age == "Y15-29"] <- "young"
z$age[z$age == "Y30-64"] <- "old"

a <- ModelMatrix(z, formula = ~age + geo, crossTable = TRUE)

cbind(as.data.frame(a$crossTable),
sum1 = (t(a$modelMatrix) %*% z$ths_per)[,1],
sum2 = DummyApply(a$modelMatrix, z$ths_per, sum),

DummyDuplicated 21

max = DummyApply(a$modelMatrix, z$ths_per, max))

DummyApply(a$modelMatrix, z$ths_per, range)
DummyApply(a$modelMatrix, z$ths_per, range, simplify = FALSE)

a$modelMatrix[, c(3, 5)] <- 0 # Introduce two empty columns.
DummyApply(a$modelMatrix, z$ths_per, function(x){

c(min = min(x),
max = max(x),
mean = mean(x),
median = median(x),
n = length(x))})

DummyApply(a$modelMatrix, z$ths_per, function(x) x, simplify = FALSE)

DummyDuplicated Duplicated columns in dummy matrix

Description

The algorithm is based on crossprod(x) or crossprod(x, u) where u is a vector of random num-
bers

Usage

DummyDuplicated(x, idx = FALSE, rows = FALSE, rnd = FALSE)

Arguments

x A matrix

idx Indices returned when TRUE

rows Duplicated rows instead when TRUE

rnd Algorithm based on cross product with random numbers when TRUE (dummy
matrix not required)

Details

The efficiency of the default algorithm depends on the sparsity of crossprod(x). The random
values are generated locally within the function without affecting the random value stream in R.

Value

Logical vectors specifying duplicated columns or vector of indices (first match)

Author(s)

Øyvind Langsrud

22 DummyHierarchy

Examples

x <- cbind(1, rbind(diag(2), diag(2)), diag(4)[, 1:2])
z <- Matrix(x[c(1:4, 2:3), c(1, 2, 1:5, 5, 2)])

DummyDuplicated(z)
which(DummyDuplicated(z, rows = TRUE))

Four ways to obtain the same result
DummyDuplicated(z, idx = TRUE)
DummyDuplicated(z, idx = TRUE, rnd = TRUE)
DummyDuplicated(t(z), idx = TRUE, rows = TRUE)
DummyDuplicated(t(z), idx = TRUE, rows = TRUE, rnd = TRUE)

The unique values in four ways
which(!DummyDuplicated(z),)
which(!DummyDuplicated(z, rnd = TRUE))
which(!DummyDuplicated(t(z), rows = TRUE))
which(!DummyDuplicated(t(z), rows = TRUE, rnd = TRUE))

DummyHierarchy Converting hierarchy specifications to a (signed) dummy matrix

Description

A matrix for mapping input codes (columns) to output codes (rows) are created. The elements of
the matrix specify how columns contribute to rows.

Usage

DummyHierarchy(
mapsFrom,
mapsTo,
sign,
level,
mapsInput = NULL,
inputInOutput = FALSE,
keepCodes = mapsFrom[integer(0)],
unionComplement = FALSE,
reOrder = FALSE

)

DummyHierarchies(
hierarchies,
data = NULL,
inputInOutput = FALSE,
unionComplement = FALSE,
reOrder = FALSE

)

DummyHierarchy 23

Arguments

mapsFrom Character vector from hierarchy table

mapsTo Character vector from hierarchy table

sign Numeric vector of either 1 or -1 from hierarchy table

level Numeric vector from hierarchy table

mapsInput All codes in mapsFrom not in mapsTo (created automatically when NULL) and
possibly other codes in input data.

inputInOutput When FALSE all output rows represent codes in mapsTo

keepCodes To prevent some codes to be removed when inputInOutput = FALSE
unionComplement

When TRUE, sign means union and complement instead of addition or subtrac-
tion (see note)

reOrder When TRUE (FALSE is default) output codes are ordered differently, more sim-
ilar to a usual model matrix ordering.

hierarchies List of hierarchies

data data

Details

DummyHierarchies is a user-friendly wrapper for the original function DummyHierarchy. Then,
the logical input parameters are vectors (possibly recycled). mapsInput and keepCodes can be
supplied as attributes. mapsInput will be generated when data is non-NULL.

Value

A sparse matrix with row and column and names

Note

With unionComplement = FALSE (default), the sign of each mapping specifies the contribution
as addition or subtraction. Thus, values above one and negative values in output can occur. With
unionComplement = TRUE, positive is treated as union and negative as complement. Then 0 and 1
are the only possible elements in the output matrix.

Author(s)

Øyvind Langsrud

Examples

A hierarchy table
h <- SSBtoolsData("FIFA2018ABCD")

DummyHierarchy(h$mapsFrom, h$mapsTo, h$sign, h$level)
DummyHierarchy(h$mapsFrom, h$mapsTo, h$sign, h$level, inputInOutput = TRUE)
DummyHierarchy(h$mapsFrom, h$mapsTo, h$sign, h$level, keepCodes = c("Portugal", "Spain"))

24 dummy_aggregate

Extend the hierarchy table to illustrate the effect of unionComplement
h2 <- rbind(data.frame(mapsFrom = c("EU", "Schengen"), mapsTo = "EUandSchengen",

sign = 1, level = 3), h)

DummyHierarchy(h2$mapsFrom, h2$mapsTo, h2$sign, h2$level)
DummyHierarchy(h2$mapsFrom, h2$mapsTo, h2$sign, h2$level, unionComplement = TRUE)

Extend mapsInput - leading to zero columns.
DummyHierarchy(h$mapsFrom, h$mapsTo, h$sign, h$level,

mapsInput = c(h$mapsFrom[!(h$mapsFrom %in% h$mapsTo)], "Norway", "Finland"))

DummyHierarchies
DummyHierarchies(FindHierarchies(SSBtoolsData("sprt_emp_withEU")[, c("geo", "eu", "age")]),

inputInOutput = c(FALSE, TRUE))

dummy_aggregate aggregate_multiple_fun using a dummy matrix

Description

Wrapper to aggregate_multiple_fun that uses a dummy matrix instead of the by parameter.
Functionality for non-dummy matrices as well.

Usage

dummy_aggregate(
data,
x,
vars,
fun = NULL,
dummy = TRUE,
when_non_dummy = warning,
keep_names = TRUE,
...

)

Arguments

data A data frame containing data to be aggregated

x A (sparse) dummy matrix

vars A named vector or list of variable names in data. The elements are named by
the names of fun. All the pairs of variable names and function names thus define
all the result variables to be generated.

• Parameter vars will converted to an internal standard by the function fix_vars_amf.
Thus, function names and also output variable names can be coded in differ-
ent ways. Multiple output variable names can be coded using multi_sep.
See examples and examples in fix_vars_amf. Indices instead of variable
names are allowed.

dummy_aggregate 25

• Omission of (some) names is possible since names can be omitted for one
function (see fun below).

• A special possible feature is the combination of a single unnamed variable
and all functions named. In this case, all functions are run and output vari-
able names will be identical to the function names.

fun A named list of functions. These names will be used as suffixes in output vari-
able names. Name can be omitted for one function. A vector of function as
strings is also possible. When unnamed, these function names will be used di-
rectly. See the examples of fix_fun_amf, which is the function used to convert
fun. Without specifying fun, the functions, as strings, are taken from the func-
tion names coded in vars.

dummy When TRUE, only 0s and 1s are assumed in x. When FALSE, non-0s in x are
passed as an additional first input parameter to the fun functions. Thus, the same
result as matrix multiplication is achieved with fun = function(x, y) sum(x *
y). In this case, the data will not be subjected to unlist. See aggregate_multiple_fun.

when_non_dummy Function to be called when dummy is TRUE and when x is non-dummy. Supply
NULL to do nothing.

keep_names When TRUE, output row names are inherited from column names in x.

... Further arguments passed to aggregate_multiple_fun

Details

Internally this function make use of the ind parameter to aggregate_multiple_fun

Value

data frame

See Also

aggregate_multiple_fun

Examples

Code that generates output similar to the
last example in aggregate_multiple_fun

d2 <- SSBtoolsData("d2")
set.seed(12)
d2$y <- round(rnorm(nrow(d2)), 2)
d <- d2[sample.int(nrow(d2), size = 20),]

x <- ModelMatrix(d, formula = ~main_income:k_group - 1)

with specified output variable names
my_range <- function(x) c(min = min(x), max = max(x))
dummy_aggregate(

data = d,
x = x,

26 Extend0

vars = list("freq", "y",
`freqmin,freqmax` = list(ra = "freq"),
yWmean = list(wmean = c("y", "freq"))),

fun = c(sum, ra = my_range, wmean = weighted.mean))

Make a non-dummy matrix
x2 <- x
x2[17, 2:5] <- c(-1, 3, 0, 10)
x2[, 4] <- 0

Now warning
Result is not same as t(x2) %*% d[["freq"]]
dummy_aggregate(data = d, x = x2, vars = "freq", fun = sum)

Now same as t(x2) %*% d[["freq"]]
dummy_aggregate(data = d, x = x2,

vars = "freq", dummy = FALSE,
fun = function(x, y) sum(x * y))

Same as t(x2) %*% d[["freq"]] + t(x2^2) %*% d[["y"]]
dummy_aggregate(data = d, x = x2,

vars = list(c("freq", "y")), dummy = FALSE,
fun = function(x, y1, y2) {sum(x * y1) + sum(x^2 * y2)})

Extend0 Add zero frequency rows

Description

Microdata or tabular frequency data is extended to contain all combinations of unique rows of
(hierarchical) groups of dimensional variables. Extra variables are extended by NA’s or 0’s.

Usage

Extend0(
data,
freqName = "freq",
hierarchical = TRUE,
varGroups = NULL,
dimVar = NULL,
extraVar = TRUE

)

Arguments

data data frame

Extend0 27

freqName Name of (existing) frequency variable

hierarchical Hierarchical variables treated atomatically when TRUE

varGroups List of variable groups, possibly with data (see details and examples).

dimVar The dimensional variables

extraVar Extra variables as variable names, TRUE (all remaining) or FALSE (none).

Details

With no frequency variable in input (microdata), the frequency variable in output consists of ones
and zeros. By default, all variables, except the frequencies, are considered as dimensional vari-
ables. By default, the grouping of dimensional variables is based on hierarchical relationships
(hierarchical = TRUE). With varGroups = NULL and hierarchical = FALSE, each dimensional
variable forms a separate group (as as.list(dimVar)). Parameter extraVar can be specified as
variable names. TRUE means all remaining variables and FALSE no variables.

When the contents of varGroups[[i]] is variable names, the data frame unique(data[varGroups[[i]]])
will be made as a building block within the function. A possibility is to supply such a data frame
instead of variable names. Then, the building block will be unique(varGroups[[i]]). Names and
data frames can be mixed.

Value

Extended data frame

See Also

Advanced possibilities by varGroups-attribute. See Extend0rnd1.

Examples

z <- SSBtoolsData("sprt_emp_withEU")[c(1, 4:6, 8, 11:15),]
z$age[z$age == "Y15-29"] <- "young"
z$age[z$age == "Y30-64"] <- "old"

Extend0(z[, -4])
Extend0(z, hierarchical = FALSE, dimVar = c("age", "geo", "eu"))
Extend0(z, hierarchical = FALSE, dimVar = c("age", "geo", "eu"), extraVar = "year")
Extend0(z, hierarchical = FALSE, dimVar = c("age", "geo", "eu"), extraVar = FALSE)
Extend0(z, varGroups = list(c("age", "geo", "year"), "eu"))
Extend0(MakeFreq(z[c(1, 1, 1, 2, 2, 3:10), -4]))
Extend0(z, "ths_per")

varGroups with data frames (same result as with names above)
Extend0(z, varGroups = list(z[c("age", "geo", "year")], z["eu"]))

varGroups with both names and data frame
Extend0(z, varGroups = list(c("year", "geo", "eu"), data.frame(age = c("middle", "old"))))

28 Extend0rnd1

Extend0rnd1 varGroups-attribute to Extend0, Example functions

Description

Setting attr(varGroups, "FunctionExtend0") to a function makes Extend0 behave differently

Usage

Extend0rnd1(data, varGroups, k = 1, rndSeed = 123)

Extend0rnd2(...)

Extend0rnd1b(...)

Arguments

data data.frame within Extend0

varGroups argument to Extend0

k Number of rows generated is approx. k*nrow(data)

rndSeed Internal random seed to be used

... Extra unused parameters

Details

The point is to create a function that takes data and varGroups as input and that returns a data
frame with a limited number of combinations of the elements in varGroups. The example function
here is limited to two varGroups elements.

Value

a data frame

Examples

z <- SSBtoolsData("sprt_emp_withEU")[c(1, 5, 8, 14),]
z$age[z$age == "Y15-29"] <- "young"
z$age[z$age == "Y30-64"] <- "old"

varGroups <- list(c("year", "geo", "eu"), data.frame(age = c("middle", "old")))
Extend0(z, varGroups = varGroups)

attr(varGroups, "FunctionExtend0") <- Extend0rnd1
Extend0(z, varGroups = varGroups)

attr(varGroups, "FunctionExtend0") <- Extend0rnd1b
Extend0(z, varGroups = varGroups)

FactorLevCorr 29

attr(varGroups, "FunctionExtend0") <- Extend0rnd2
Extend0(z, varGroups = varGroups)

To see what's going on internally. Data used only via nrow
varGroups <- list(data.frame(ab = rep(c("a", "b"), each = 4), abcd = c("a", "b", "c", "d")),

data.frame(AB = rep(c("A", "B"), each = 3), ABC = c("A", "B", "C")))
a <- Extend0rnd1(data.frame(1:5), varGroups)
table(a[[1]], a[[2]])
table(a[[3]], a[[4]])
a <- Extend0rnd1b(data.frame(1:5), varGroups)
table(a[[1]], a[[2]])
table(a[[3]], a[[4]])
a <- Extend0rnd2(data.frame(1:5), varGroups[2:1])
table(a[[1]], a[[2]])
table(a[[3]], a[[4]])
a <- Extend0rnd1(data.frame(1:100), varGroups)
table(a[[1]], a[[2]]) # Maybe smaller numbers than expected since duplicates were removed
table(a[[3]], a[[4]])

FactorLevCorr Factor level correlation

Description

A sort of correlation matrix useful to detect (hierarchical) relationships between the levels of factor
variables.

Usage

FactorLevCorr(x)

Arguments

x Input matrix or data frame containing the variables

Value

Output is a sort of correlation matrix.

Here we refer to ni as the number of present levels of variable i (the number of unique elements)
and we refer to mij as the number of present levels obtained by crossing variable i and variable j
(the number unique rows of x[,c(i,j)]).

The diagonal elements of the output matrix contains the number of present levels of each variable
(=ni).

The absolute values of off-diagonal elements:

0 when mij = ni*nj

1 when mij = max(ni,nj)

30 FindCommonCells

Other values Computed as (ni*nj-mij)/(ni*nj-max(ni,nj))

So 0 means that all possible level combinations exist in the data and 1 means that the two variables
are hierarchically related.

The sign of off-diagonal elements:

positive when ni<nj

negative when ni>nj

In cases where ni=nj elements will be positive above the diagonal and negative below.

Author(s)

Øyvind Langsrud

Examples

x <- rep(c("A","B","C"),3)
y <- rep(c(11,22,11),3)
z <- c(1,1,1,2,2,2,3,3,3)
zy <- paste(z,y,sep="")
m <- cbind(x,y,z,zy)
FactorLevCorr(m)

FindCommonCells Finding commonCells

Description

Finding lists defining common cells as needed for the input parameter commonCells to the function
protectLinkedTables in package sdcTable. The function handles two tables based on the same main
variables but possibly different aggregating variables.

Usage

FindCommonCells(dimList1, dimList2)

Arguments

dimList1 As input parameter dimList to the function makeProblem in package sdcTable.

dimList2 Another dimList with the same names and using the same level names.

Value

Output is a list according to the specifications in sdcTable.

FindDimLists 31

Author(s)

Øyvind Langsrud

Examples

x <- rep(c('A','B','C'),3)
y <- rep(c(11,22,11),3)
z <- c(1,1,1,2,2,2,3,3,3)
zy <- paste(z,y,sep='')
m <- cbind(x,y,z,zy)
fg <- FindTableGroup(m,findLinked=TRUE)
dimLists <- FindDimLists(m,fg$groupVarInd)
Using table1 and table2 in this example cause error,
but in other cases this may work well
try(FindCommonCells(dimLists[fg$table$table1],dimLists[fg$table$table2]))
FindCommonCells(dimLists[c(1,2)],dimLists[c(1,3)])

FindDimLists Finding dimList

Description

Finding lists of level-hierarchy as needed for the input parameter dimList to the function makeProb-
lem in package sdcTable

Usage

FindDimLists(
x,
groupVarInd = HierarchicalGroups(x = x),
addName = FALSE,
sep = ".",
xReturn = FALSE,
total = "Total"

)

Arguments

x Matrix or data frame containing the variables (micro data or cell counts data).

groupVarInd List of vectors of indices defining the hierarchical variable groups.

addName When TRUE the variable name is added to the level names, except for variables
with most levels.

sep A character string to separate when addName apply.

xReturn When TRUE x is also in output, possibly changed according to addName.

total String used to name totals. A vector of length ncol(x) is also possible (see
examples).

32 FindDisclosiveCells

Value

Output is a list according to the specifications in sdcTable. When xReturn is TRUE output has an
extra list level and x is the first element.

Author(s)

Øyvind Langsrud

Examples

dataset <- SSBtoolsData("example1")
FindDimLists(dataset[1:2])
FindDimLists(dataset[2:3])
FindDimLists(dataset[1:4])

FindDimLists(SSBtoolsData("magnitude1")[1:4],
total = c("TOTAL", "unused1", "Europe", "unused2"))

x <- rep(c('A','B','C'),3)
y <- rep(c(11,22,11),3)
z <- c(1,1,1,2,2,2,3,3,3)
zy <- paste(z,y,sep='')
m <- cbind(x,y,z,zy)
FindDimLists(m)
FindDimLists(m, total = paste0("A", 1:4))

FindDisclosiveCells Find directly disclosive cells

Description

Function for determining which cells in a frequency table can lead to direct disclosure of an iden-
tifiable individual, assuming an attacker has the background knowledge to place themselves (or a
coalition) in the table.

Usage

FindDisclosiveCells(
data,
freq,
crossTable,
primaryDims = names(crossTable),
unknowns = rep(NA, length(primaryDims)),
total = rep("Total", length(primaryDims)),
unknown.threshold = 0,
coalition = 1,
suppressSmallCells = FALSE,
...

)

FindDisclosiveCells 33

Arguments

data the data set

freq vector containing frequencies

crossTable cross table of key variables produced by ModelMatrix in parent function

primaryDims dimensions to be considered for direct disclosure.

unknowns vector of unknown values for each of the primary dimensions. If a primary
dimension does not contain unknown values, NA should be passed.

total string name for marginal values

unknown.threshold

numeric for specifying a percentage for calculating safety of cells. A cell is
"safe" in a row if the number of unknowns exceeds unknown.threshold percent
of the row total.

coalition maximum number of units in a possible coalition, default 1

suppressSmallCells

logical variable which determines whether small cells (<= coalition) or large
cells should be suppressed. Default FALSE.

... parameters from main suppression method

Details

This function does not work on data containing hierarchical variables.

Value

list with two named elements, the first ($primary) being a logical vector marking directly disclosive
cells, the second ($numExtra) a data.frame containing information regarding the dimensions in
which the cells are directly disclosive.

Examples

extable <- data.frame(v1 = rep(c('a', 'b', 'c'), times = 4),
v2 = c('i','i', 'i','h','h','h','i','i','i','h','h','h'),
v3 = c('y', 'y', 'y', 'y', 'y', 'y','z','z', 'z', 'z', 'z', 'z'),
freq = c(0,0,5,0,2,3,1,0,3,1,1,2))

ex_freq <- c(18,10,8,9,5,4,9,5,4,2,0,2,1,0,1,1,0,1,3,2,1,3,2,1,0,0,0,13,8,5,
5,3,2,8,5,3)

cross <- ModelMatrix(extable,
dimVar = 1:3,
crossTable = TRUE)$crossTable

FindDisclosiveCells(extable, ex_freq, cross)

34 FindHierarchies

FindHierarchies Finding hierarchies automatically from data

Description

FindDimLists and AutoHierarchies wrapped into a single function.

Usage

FindHierarchies(data, total = "Total")

Arguments

data Matrix or data frame containing the variables (micro data or cell counts data).

total String used to name totals. A vector of length ncol(data) is also possible (see
examples).

Value

List of hierarchies

Author(s)

Øyvind Langsrud

Examples

dataset <- SSBtoolsData("example1")
FindHierarchies(dataset[1:2])
FindHierarchies(dataset[2:3])
FindHierarchies(dataset[1:4])

FindHierarchies(SSBtoolsData("magnitude1")[1:4],
total = c("TOTAL", "unused1", "Europe", "unused2"))

x <- rep(c("A", "B", "C"), 3)
y <- rep(c(11, 22, 11), 3)
z <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
zy <- paste(z, y, sep = "")
m <- cbind(x, y, z, zy)
FindHierarchies(m)
FindHierarchies(m, total = paste0("A", 1:4))

FindTableGroup 35

FindTableGroup Finding table(s) of hierarchical variable groups

Description

A single table or two linked tables are found

Usage

FindTableGroup(
x = NULL,
findLinked = FALSE,
mainName = TRUE,
fCorr = FactorLevCorr(x),
CheckHandling = warning

)

Arguments

x Matrix or data frame containing the variables

findLinked When TRUE, two linked tables can be in output

mainName When TRUE the groupVarInd ouput is named according to first variable in
group.

fCorr When non-null x is not needed as input.

CheckHandling Function (warning or stop) to be used in problematic situations.

Value

Output is a list with items

groupVarInd List defining the hierarchical variable groups. First variable has most levels.

table List containing one or two tables. These tables are coded as indices referring to
elements of groupVarInd.

Author(s)

Øyvind Langsrud

Examples

x <- rep(c('A','B','C'),3)
y <- rep(c(11,22,11),3)
z <- c(1,1,1,2,2,2,3,3,3)
zy <- paste(z,y,sep='')
m <- cbind(x,y,z,zy)
FindTableGroup(m)
FindTableGroup(m,findLinked=TRUE)

36 FormulaSelection.default

FormulaSelection.default

Limit matrix or data frame to selected model terms

Description

For use with output from ModelMatrix or data frames derived from such output. It is a generic
function which means that methods for other input objects can be added.

Usage

Default S3 method:
FormulaSelection(x, formula, intercept = NA, logical = FALSE)

FormulaSelection(x, formula, intercept = NA, logical = FALSE)

formula_selection(x, formula, intercept = NA, logical = FALSE)

Arguments

x Model matrix or a data frame

formula Formula representing the limitation or character string(s) to be converted to a
formula (see details)

intercept Parameter that specifies whether a possible intercept term (overall total) should
be included in the output. Default is TRUE when a formula is input. Otherwise,
see details.

logical When TRUE, the logical selection vector is returned.

Details

The selection is based on startCol or startRow attribute in input x.

With formula as character:

• ~ is included: Input is converted by as.formula and default intercept is TRUE.

• ~ is not included: Internally, input data is converted to a formula by adding ~ and possibly +’s
when the length is >1. Default intercept is FALSE unless "1" or "(Intercept)" (is changed
internally to "1") is included.

Value

Limited model matrix or a data frame

Note

formula_selection and FormulaSelection are identical

FormulaSums 37

Examples

z <- SSBtoolsData("sprt_emp_withEU")
z$age[z$age == "Y15-29"] <- "young"
z$age[z$age == "Y30-64"] <- "old"

x <- ModelMatrix(z, formula = ~age * year)

FormulaSelection(x, "age")
FormulaSelection(x, ~year)
FormulaSelection(x, ~year:age)

x1, x2, x3, x4 and x4 are identical
x1 <- FormulaSelection(x, ~age)
x2 <- FormulaSelection(x, "~age")
x3 <- FormulaSelection(x, "age", intercept = TRUE)
x4 <- FormulaSelection(x, c("1", "age"))
x5 <- FormulaSelection(x, c("(Intercept)", "age"))

a <- ModelMatrix(z, formula = ~age * geo + year, crossTable = TRUE)
b <- cbind(as.data.frame(a$crossTable),

sum = (t(a$modelMatrix) %*% z$ths_per)[, 1],
max = DummyApply(a$modelMatrix,
z$ths_per, max))

rownames(b) <- NULL
attr(b, "startRow") <- attr(a$modelMatrix, "startCol", exact = TRUE)

FormulaSelection(b, ~geo * age)
FormulaSelection(b, "age:geo")
FormulaSelection(b, ~year - 1)
FormulaSelection(b, ~geo:age, logical = TRUE)

FormulaSums Sums (aggregates) and/or sparse model matrix with possible cross ta-
ble

Description

By default this function return sums if the formula contains a response part and a model matrix
otherwise

Usage

FormulaSums(
data,
formula,
makeNames = TRUE,
crossTable = FALSE,
total = "Total",

38 FormulaSums

printInc = FALSE,
dropResponse = FALSE,
makeModelMatrix = NULL,
sep = "-",
sepCross = ":",
avoidHierarchical = FALSE,
includeEmpty = FALSE,
NAomit = TRUE,
rowGroupsPackage = "base",
viaSparseMatrix = TRUE,
...

)

Formula2ModelMatrix(data, formula, dropResponse = TRUE, ...)

Arguments

data data frame

formula A model formula

makeNames Column/row names made when TRUE

crossTable Cross table in output when TRUE

total String used to name totals

printInc Printing "..." to console when TRUE

dropResponse When TRUE response part of formula ignored.
makeModelMatrix

Make model matrix when TRUE. NULL means automatic.

sep String to separate when creating column names

sepCross String to separate when creating column names involving crossing
avoidHierarchical

Whether to avoid treating of hierarchical variables. Instead of logical, variables
can be specified.

includeEmpty When TRUE, empty columns of the model matrix (only zeros) are included.
This is not implemented when a response term is included in the formula and
dropResponse = FALSE (error will be produced).

NAomit When TRUE, NAs in the grouping variables are omitted in output and not in-
cluded as a separate category. Technically, this parameter is utilized through the
function RowGroups.

rowGroupsPackage

Parameter pkg to the function RowGroups. Default is "base". Setting this pa-
rameter to "data.table" can improve speed.

viaSparseMatrix

When TRUE, the model matrix is constructed by a single call to sparseMatrix.
Setting it to FALSE reverts to the previous behavior. This parameter is included
for testing purposes and will likely be removed in future versions.

... Further arguments to be passed to FormulaSums

formula_utils 39

Details

In the original version of the function the model matrix was constructed by calling fac2sparse
repeatedly. Now this is replaced by a single call to sparseMatrix. The sums are computed by call-
ing aggregate repeatedly. Hierarchical variables handled when constructing cross table. Column
names constructed from the cross table. The returned model matrix includes the attribute startCol
(see last example line).

Value

A matrix of sums, a sparse model matrix or a list of two or three elements (model matrix and cross
table and sums when relevant).

Author(s)

Øyvind Langsrud

See Also

ModelMatrix

Examples

x <- SSBtoolsData("sprt_emp_withEU")

FormulaSums(x, ths_per ~ year*geo + year*eu)
FormulaSums(x, ~ year*age*eu)
FormulaSums(x, ths_per ~ year*age*geo + year*age*eu, crossTable = TRUE, makeModelMatrix = TRUE)
FormulaSums(x, ths_per ~ year:age:geo -1)
m <- Formula2ModelMatrix(x, ~ year*geo + year*eu)
print(m[1:3,], col.names = TRUE)
attr(m, "startCol")

formula_utils Functions for formula manipulation

Description

Functions for formula manipulation

Details

• combine_formulas: Combine formulas

• formula_from_vars: Generate model formula by specifying which variables have totals or
not

• formula_include_hierarchies: Replace variables in formula with sum of other variables

40 GaussIndependent

GaussIndependent Linearly independent rows and columns by Gaussian elimination

Description

The function is written primarily for large sparse matrices with integers and even more correctly it
is primarily written for dummy matrices (0s and 1s in input matrix).

Usage

GaussIndependent(
x,
printInc = FALSE,
tolGauss = (.Machine$double.eps)^(1/2),
testMaxInt = 0,
allNumeric = FALSE

)

GaussRank(x, printInc = FALSE)

Arguments

x A (sparse) matrix

printInc Printing "..." to console when TRUE

tolGauss A tolerance parameter for sparse Gaussian elimination and linear dependency.
This parameter is used only in cases where integer calculation cannot be used.

testMaxInt Parameter for testing: The Integer overflow situation will be forced when test-
MaxInt is exceeded

allNumeric Parameter for testing: All calculations use numeric algorithm (as integer over-
flow) when TRUE

Details

GaussRank returns the rank

Value

List of logical vectors specifying independent rows and columns

Note

The main algorithm is based on integers and exact calculations. When integers cannot be used
(because of input or overflow), the algorithm switches. With printInc = TRUE as a parameter,
..... change to ----- when switching to numeric algorithm. With numeric algorithm, a kind of
tolerance for linear dependency is included. This tolerance is designed having in mind that the input
matrix is a dummy matrix.

GaussIterationFunction 41

Examples

x <- ModelMatrix(SSBtoolsData("z2"), formula = ~fylke + kostragr * hovedint - 1)

GaussIndependent(x)
GaussRank(x)
GaussRank(t(x))

Not run:
For comparison, qr-based rank may not work
rankMatrix(x, method = "qr")

Dense qr works
qr(as.matrix(x))$rank

End(Not run)

GaussIterationFunction

An iFunction argument to GaussSuppression

Description

Use this function as iFunction or write your own using the same seven first parameters and also
using

Usage

GaussIterationFunction(i, I, j, J, true, false, na, filename = NULL, ...)

Arguments

i Number of candidates processed (columns of x)
I Total number of candidates to be processed (columns of x)
j Number of eliminated dimensions (rows of x)
J Total number of dimensions (rows of x)
true Candidates decided to be suppressed
false Candidates decided to be not suppressed
na Candidates not decided
filename When non-NULL, the above arguments will be saved to this file. Note that

GaussSuppression passes this parameter via
... Extra parameters

Details

The number of candidates decided (true and false) may differ from the number of candidates
processed (i) due to parameter removeDuplicated and because the decision for some unprocessed
candidates can be found due to empty columns.

42 GaussSuppression

Value

NULL

GaussSuppression Secondary suppression by Gaussian elimination

Description

Sequentially the secondary suppression candidates (columns in x) are used to reduce the x-matrix
by Gaussian elimination. Candidates who completely eliminate one or more primary suppressed
cells (columns in x) are omitted and made secondary suppressed. This ensures that the primary sup-
pressed cells do not depend linearly on the non-suppressed cells. How to order the input candidates
is an important choice. The singleton problem and the related problem of zeros are also handled.

Usage

GaussSuppression(
x,
candidates = 1:ncol(x),
primary = NULL,
forced = NULL,
hidden = NULL,
singleton = rep(FALSE, nrow(x)),
singletonMethod = "anySum",
printInc = TRUE,
tolGauss = (.Machine$double.eps)^(1/2),
whenEmptySuppressed = warning,
whenEmptyUnsuppressed = message,
whenPrimaryForced = warning,
removeDuplicated = TRUE,
iFunction = GaussIterationFunction,
iWait = Inf,
xExtraPrimary = NULL,
unsafeAsNegative = FALSE,
...

)

Arguments

x Matrix that relates cells to be published or suppressed to inner cells. yPublish =
crossprod(x,yInner)

candidates Indices of candidates for secondary suppression

primary Indices of primary suppressed cells

forced Indices forced to be not suppressed. forced has precedence over primary. See
whenPrimaryForced below.

GaussSuppression 43

hidden Indices to be removed from the above candidates input (see details)

singleton Logical or integer vector of length nrow(x) specifying inner cells for singleton
handling. Normally, for frequency tables, this means cells with 1s when 0s are
non-suppressed and cells with 0s when 0s are suppressed. For some singleton
methods, integer values representing the unique magnitude table contributors
are needed. For all other singleton methods, only the values after conversion
with as.logical matter.

singletonMethod

Method for handling the problem of singletons and zeros: "anySum" (default),
"anySum0", "anySumNOTprimary", "subSum", "subSpace", "sub2Sum", "none"
or a NumSingleton method (see details).

printInc Printing "..." to console when TRUE

tolGauss A tolerance parameter for sparse Gaussian elimination and linear dependency.
This parameter is used only in cases where integer calculation cannot be used.

whenEmptySuppressed

Function to be called when empty input to primary suppressed cells is problem-
atic. Supply NULL to do nothing.

whenEmptyUnsuppressed

Function to be called when empty input to candidate cells may be problematic.
Supply NULL to do nothing.

whenPrimaryForced

Function to be called if any forced cells are primary suppressed (suppression
will be ignored). Supply NULL to do nothing. The same function will also be
called when there are forced cells marked as singletons (will be ignored).

removeDuplicated

Whether to remove duplicated columns in x before running the main algorithm.

iFunction A function to be called during the iterations. See the default function, GaussIterationFunction,
for description of parameters.

iWait The minimum number of seconds between each call to iFunction. Whenever
iWait<Inf, iFunction will also be called after last iteration.

xExtraPrimary Extra x-matrix that defines extra primary suppressed cells in addition to those
defined by other inputs.

unsafeAsNegative

When TRUE, unsafe primary cells due to forced cells are included in the output
vector as negative indices.

... Extra unused parameters

Details

It is possible to specify too many (all) indices as candidates. Indices specified as primary or
hidded will be removed. Hidden indices (not candidates or primary) refer to cells that will not be
published, but do not need protection.

• Singleton methods for frequency tables: All singleton methods, except "sub2Sum" and the
NumSingleton methods, have been implemented with frequency tables in mind. The single-
ton method "subSum" makes new virtual primary suppressed cells, which are the sum of the

44 GaussSuppression

singletons within each group. The "subSpace" method is conservative and ignores the sin-
gleton dimensions when looking for linear dependency. The default method, "anySum", is
between the other two. Instead of making virtual cells of sums within groups, the aim is to
handle all possible sums, also across groups. In addition, "subSumSpace" and "subSumAny"
are possible methods, primarily for testing. These methods are similar to "subSpace" and
"anySum", and additional cells are created as in "subSum". It is believed that the extra cells
are redundant. Note that in order to give information about unsafe cells, "anySum" is in-
ternally changed to "subSumAny" when there are forced cells. All the above methods as-
sume that any published singletons are primary suppressed. If this is not the case, either
"anySumNOTprimary" or "anySum0" must be used. Notably, "anySum0" is an enhancement
of "anySumNOTprimary" for situations where zeros are singletons. Using that method avoids
suppressing a zero marginal along with only one of its children.

• Singleton methods for magnitude tables: The singleton method "sub2Sum" makes new
virtual primary suppressed cells, which are the sum of two inner cells. This is done when a
group contains exactly two primary suppressed inner cells provided that at least one of them
is singleton. This was the first method implemented. Other magnitude methods follow the
coding according to NumSingleton. The "sub2Sum" method is equivalent to "numFFT". Also
note that "num", "numFFF" and "numFTF" are equivalent to "none".

• Combined: For advanced use, singleton can be a two-element list with names "freq" and
"num". Then singletonMethod must be a corresponding named two-element vector. For
example: singletonMethod = c(freq = "anySumNOTprimary", num = "sub2Sum")

Value

Secondary suppression indices

References

Langsrud, Ø. (2024): “Secondary Cell Suppression by Gaussian Elimination: An Algorithm Suit-
able for Handling Issues with Zeros and Singletons”. Presented at: Privacy in statistical databases,
Antibes, France. September 25-27, 2024. doi:10.1007/9783031696510_6

Examples

Input data
df <- data.frame(values = c(1, 1, 1, 5, 5, 9, 9, 9, 9, 9, 0, 0, 0, 7, 7),

var1 = rep(1:3, each = 5),
var2 = c("A", "B", "C", "D", "E"), stringsAsFactors = FALSE)

Make output data frame and x
fs <- FormulaSums(df, values ~ var1 * var2, crossTable = TRUE, makeModelMatrix = TRUE)
x <- fs$modelMatrix
datF <- data.frame(fs$crossTable, values = as.vector(fs$allSums))

Add primary suppression
datF$primary <- datF$values
datF$primary[datF$values < 5 & datF$values > 0] <- NA
datF$suppressedA <- datF$primary
datF$suppressedB <- datF$primary
datF$suppressedC <- datF$primary

https://doi.org/10.1007/978-3-031-69651-0_6

HierarchicalGroups 45

zero secondary suppressed
datF$suppressedA[GaussSuppression(x, primary = is.na(datF$primary))] <- NA

zero not secondary suppressed by first in ordering
datF$suppressedB[GaussSuppression(x, c(which(datF$values == 0), which(datF$values > 0)),

primary = is.na(datF$primary))] <- NA

with singleton
datF$suppressedC[GaussSuppression(x, c(which(datF$values == 0), which(datF$values > 0)),

primary = is.na(datF$primary), singleton = df$values == 1)] <- NA

datF

HierarchicalGroups Finding hierarchical variable groups

Description

According to the (factor) levels of the variables

Usage

HierarchicalGroups(
x = NULL,
mainName = TRUE,
eachName = FALSE,
fCorr = FactorLevCorr(x)

)

Arguments

x Matrix or data frame containing the variables

mainName When TRUE output list is named according to first variable in group.

eachName When TRUE variable names in output instead of indices.

fCorr When non-null, x is not needed as input.

Value

Output is a list containing the groups. First variable has most levels.

Author(s)

Øyvind Langsrud

46 HierarchicalWildcardGlobbing

Examples

dataset <- SSBtoolsData("example1")
HierarchicalGroups(dataset[1:2], eachName = TRUE)
HierarchicalGroups(dataset[2:3])
HierarchicalGroups(dataset[1:4], eachName = TRUE)

HierarchicalGroups(SSBtoolsData("magnitude1")[1:4])

x <- rep(c("A","B","C"),3)
y <- rep(c(11,22,11),3)
z <- c(1,1,1,2,2,2,3,3,3)
zy <- paste(z,y,sep="")
m <- cbind(x,y,z,zy)
HierarchicalGroups(m)

HierarchicalWildcardGlobbing

Find variable combinations by advanced wildcard/globbing specifica-
tions.

Description

Find combinations present in an input data frame or, when input is a list, find all possible combina-
tions that meet the requirements.

Usage

HierarchicalWildcardGlobbing(
z,
wg,
useUnique = NULL,
useFactor = FALSE,
makeWarning = TRUE,
printInfo = FALSE,
useMatrixToDataFrame = TRUE

)

Arguments

z list or data.frame

wg data.frame with data globbing and wildcards

useUnique Logical variable about recoding within the algorithm. By default (NULL) an
automatic decision is made.

useFactor When TRUE, internal factor recoding is used.

makeWarning When TRUE, warning is made in cases of unused variables. Only variables
common to z and wg are used.

HierarchicalWildcardGlobbing 47

printInfo When TRUE, information is printed during the process.
useMatrixToDataFrame

When TRUE, special functions (DataFrameToMatrix/MatrixToDataFrame) for
improving speed and memory is utilized.

Details

The final variable combinations must meet the requirements in each positive sign group and must
not match the requirements in the negative sign groups.The function is implemented by calling
WildcardGlobbing several times within an algorithm that uses hierarchical clustering (hclust).

Value

data.frame

Author(s)

Øyvind Langsrud

Examples

useUnique=NULL betyr valg ut fra antall rader i kombinasjonsfil
data(precip)
data(mtcars)
codes <- as.character(c(100, 200, 300, 600, 700, 101, 102, 103, 104, 134, 647, 783,

13401, 13402, 64701, 64702))

Create list input
zList <- list(car = rownames(mtcars), wt = as.character(1000 * mtcars$wt),

city = names(precip), code = codes)

Create data.frame input
m <- cbind(car = rownames(mtcars), wt = as.character(1000 * mtcars$wt))
zFrame <- data.frame(m[rep(1:NROW(m), each = 35),],

city = names(precip), code = codes, stringsAsFactors = FALSE)

Create globbing/wildcards input
wg <- data.frame(rbind(c("Merc*", "" , "" , "?00"),

c("F*" , "" , "" , "?????"),
c("" , "???0", "C*" , ""),
c("" , "" , "!Co*", ""),
c("" , "" , "?i*" , "????2"),
c("" , "" , "?h*" , "????1")),

sign = c("+", "+", "+", "+", "-", "-"), stringsAsFactors = FALSE)
names(wg)[1:4] <- names(zList)

===
Finding unique combinations present in the input data frame
===

48 Hierarchies2ModelMatrix

Using first row of wg. Combinations of car starting with Merc
and three-digit code ending with 00
HierarchicalWildcardGlobbing(zFrame[, c(1, 4)], wg[1, c(1, 4, 5)])

Using first row of wg. Combinations of all four variables
HierarchicalWildcardGlobbing(zFrame, wg[1,])

More combinations when using second row also
HierarchicalWildcardGlobbing(zFrame, wg[1:2,])

Less combinations when using third row also
since last digit of wt must be 0 and only cities starting with C
HierarchicalWildcardGlobbing(zFrame, wg[1:3,])

Less combinations when using fourth row also since city cannot start with Co
HierarchicalWildcardGlobbing(zFrame, wg[1:4,])

Less combinations when using fourth row also
since specific combinations of city and code are removed
HierarchicalWildcardGlobbing(zFrame, wg)

===
Using list input to create all possible combinations
===

dim(HierarchicalWildcardGlobbing(zList, wg))

same result with as.list since same unique values of each variable
dim(HierarchicalWildcardGlobbing(as.list(zFrame), wg))

Hierarchies2ModelMatrix

Model matrix representing crossed hierarchies

Description

Make a model matrix, x, that corresponds to data and represents all hierarchies crossed. This means
that aggregates corresponding to numerical variables can be computed as t(x) %*% y, where y is a
matrix with one column for each numerical variable.

Usage

Hierarchies2ModelMatrix(
data,
hierarchies,
inputInOutput = TRUE,

Hierarchies2ModelMatrix 49

crossTable = FALSE,
total = "Total",
hierarchyVarNames = c(mapsFrom = "mapsFrom", mapsTo = "mapsTo", sign = "sign", level =

"level"),
unionComplement = FALSE,
reOrder = TRUE,
select = NULL,
removeEmpty = FALSE,
selectionByMultiplicationLimit = 10^7,
makeColnames = TRUE,
verbose = FALSE,
...

)

Arguments

data Matrix or data frame with data containing codes of relevant variables

hierarchies List of hierarchies, which can be converted by AutoHierarchies. Thus, the
variables can also be coded by "rowFactor" or "", which correspond to using
the categories in the data.

inputInOutput Logical vector (possibly recycled) for each element of hierarchies. TRUE means
that codes from input are included in output. Values corresponding to "rowFactor"
or "" are ignored. Also see note.

crossTable Cross table in output when TRUE

total See AutoHierarchies
hierarchyVarNames

Variable names in the hierarchy tables as in HierarchyFix

unionComplement

Logical vector (possibly recycled) for each element of hierarchies. When TRUE,
sign means union and complement instead of addition or subtraction. Values
corresponding to "rowFactor" and "colFactor" are ignored.

reOrder When TRUE (default) output codes are ordered in a way similar to a usual model
matrix ordering.

select Data frame specifying variable combinations for output or a named list specify-
ing code selections for each variable (see details).

removeEmpty When TRUE and when select is not a data frame, empty columns (only zeros)
are not included in output.

selectionByMultiplicationLimit

With non-NULL select and when the number of elements in the model matrix
exceeds this limit, the computation is performed by a slower but more memory
efficient algorithm.

makeColnames Colnames included when TRUE (default).

verbose Whether to print information during calculations. FALSE is default.

... Extra unused parameters

50 Hierarchies2ModelMatrix

Details

This function makes use of AutoHierarchies and HierarchyCompute via HierarchyComputeDummy.
Since the dummy matrix is transposed in comparison to HierarchyCompute, the parameter rowSelect
is renamed to select and makeRownames is renamed to makeColnames.

The select parameter as a list can be partially specified in the sense that not all hierarchy names
have to be included. The parameter inputInOutput will only apply to hierarchies that are not in
the select list (see note).

Value

A sparse model matrix or a list of two elements (model matrix and cross table)

Note

The select as a list is run via a special coding of the inputInOutput parameter. This parameter
is converted into a list (as.list) and select elements are inserted into this list. This is also an
additional option for users of the function.

Author(s)

Øyvind Langsrud

See Also

ModelMatrix, HierarchiesAndFormula2ModelMatrix

Examples

Create some input
z <- SSBtoolsData("sprt_emp_withEU")
ageHier <- SSBtoolsData("sprt_emp_ageHier")
geoDimList <- FindDimLists(z[, c("geo", "eu")], total = "Europe")[[1]]

First example has list output
Hierarchies2ModelMatrix(z, list(age = ageHier, geo = geoDimList), inputInOutput = FALSE,

crossTable = TRUE)

m1 <- Hierarchies2ModelMatrix(z, list(age = ageHier, geo = geoDimList), inputInOutput = FALSE)
m2 <- Hierarchies2ModelMatrix(z, list(age = ageHier, geo = geoDimList))
m3 <- Hierarchies2ModelMatrix(z, list(age = ageHier, geo = geoDimList, year = ""),

inputInOutput = FALSE)
m4 <- Hierarchies2ModelMatrix(z, list(age = ageHier, geo = geoDimList, year = "allYears"),

inputInOutput = c(FALSE, FALSE, TRUE))

Illustrate the effect of unionComplement, geoHier2 as in the examples of HierarchyCompute
geoHier2 <- rbind(data.frame(mapsFrom = c("EU", "Spain"), mapsTo = "EUandSpain", sign = 1),

SSBtoolsData("sprt_emp_geoHier")[, -4])
m5 <- Hierarchies2ModelMatrix(z, list(age = ageHier, geo = geoHier2, year = "allYears"),

inputInOutput = FALSE) # Spain is counted twice

HierarchiesAndFormula2ModelMatrix 51

m6 <- Hierarchies2ModelMatrix(z, list(age = ageHier, geo = geoHier2, year = "allYears"),
inputInOutput = FALSE, unionComplement = TRUE)

Compute aggregates
ths_per <- as.matrix(z[, "ths_per", drop = FALSE]) # matrix with the values to be aggregated
t(m1) %*% ths_per # crossprod(m1, ths_per) is equivalent and faster
t(m2) %*% ths_per
t(m3) %*% ths_per
t(m4) %*% ths_per
t(m5) %*% ths_per
t(m6) %*% ths_per

Example using the select parameter as a data frame
select <- data.frame(age = c("Y15-64", "Y15-29", "Y30-64"), geo = c("EU", "nonEU", "Spain"))
m2a <- Hierarchies2ModelMatrix(z, list(age = ageHier, geo = geoDimList), select = select)

Same result by slower alternative
m2B <- Hierarchies2ModelMatrix(z, list(age = ageHier, geo = geoDimList), crossTable = TRUE)
m2b <- m2B$modelMatrix[, Match(select, m2B$crossTable), drop = FALSE]
t(m2b) %*% ths_per

Examples using the select parameter as a list
Hierarchies2ModelMatrix(z, list(age = ageHier, geo = geoDimList),

inputInOutput = FALSE,
select = list(geo = c("nonEU", "Portugal")))

Hierarchies2ModelMatrix(z, list(age = ageHier, geo = geoDimList),
select = list(geo = c("nonEU", "Portugal"), age = c("Y15-64", "Y15-29")))

HierarchiesAndFormula2ModelMatrix

Model matrix representing crossed hierarchies according to a formula

Description

How to cross the hierarchies are defined by a formula. The formula is automatically simplified
when totals are involved.

Usage

HierarchiesAndFormula2ModelMatrix(
data,
hierarchies,
formula,
inputInOutput = TRUE,
makeColNames = TRUE,
crossTable = FALSE,

52 HierarchiesAndFormula2ModelMatrix

total = "Total",
simplify = TRUE,
hierarchyVarNames = c(mapsFrom = "mapsFrom", mapsTo = "mapsTo", sign = "sign", level =

"level"),
unionComplement = FALSE,
removeEmpty = FALSE,
reOrder = TRUE,
sep = "-",
...

)

Arguments

data Matrix or data frame with data containing codes of relevant variables

hierarchies List of hierarchies, which can be converted by AutoHierarchies. Thus, the
variables can also be coded by "rowFactor" or "", which correspond to using
the categories in the data.

formula A model formula

inputInOutput Logical vector (possibly recycled) for each element of hierarchies. TRUE means
that codes from input are included in output. Values corresponding to "rowFactor"
or "" are ignored.

makeColNames Colnames included when TRUE (default).

crossTable Cross table in output when TRUE

total Vector of total codes (possibly recycled) used when running Hrc2DimList

simplify When TRUE (default) the model can be simplified when total codes are found
in the hierarchies (see examples).

hierarchyVarNames

Variable names in the hierarchy tables as in HierarchyFix

unionComplement

Logical vector (possibly recycled) for each element of hierarchies. When TRUE,
sign means union and complement instead of addition or subtraction. Values
corresponding to "rowFactor" and "colFactor" are ignored.

removeEmpty When TRUE, empty columns (only zeros) are not included in output.

reOrder When TRUE (default) output codes are ordered in a way similar to a usual model
matrix ordering.

sep String to separate when creating column names

... Extra unused parameters

Value

A sparse model matrix or a list of two elements (model matrix and cross table)

Author(s)

Øyvind Langsrud

Hierarchy2Formula 53

See Also

ModelMatrix, Hierarchies2ModelMatrix, Formula2ModelMatrix.

Examples

Create some input
z <- SSBtoolsData("sprt_emp_withEU")
ageHier <- SSBtoolsData("sprt_emp_ageHier")
geoDimList <- FindDimLists(z[, c("geo", "eu")], total = "Europe")[[1]]

Shorter function name
H <- HierarchiesAndFormula2ModelMatrix

Small dataset example. Two dimensions.
s <- z[z$geo == "Spain",]
geoYear <- list(geo = geoDimList, year = "")
m <- H(s, geoYear, ~geo * year, inputInOutput = c(FALSE, TRUE))
print(m, col.names = TRUE)
attr(m, "total") # Total code 'Europe' is found
attr(m, "startCol") # Two model terms needed

Another model and with crossTable in output
H(s, geoYear, ~geo + year, crossTable = TRUE)

Without empty columns
H(s, geoYear, ~geo + year, crossTable = TRUE, removeEmpty = TRUE)

Three dimensions
ageGeoYear <- list(age = ageHier, geo = geoDimList, year = "allYears")
m <- H(z, ageGeoYear, ~age * geo + geo * year)
head(colnames(m))
attr(m, "total")
attr(m, "startCol")

With simplify = FALSE
m <- H(z, ageGeoYear, ~age * geo + geo * year, simplify = FALSE)
head(colnames(m))
attr(m, "total")
attr(m, "startCol")

Compute aggregates
m <- H(z, ageGeoYear, ~geo * age, inputInOutput = c(TRUE, FALSE, TRUE))
t(m) %*% z$ths_per

Without hierarchies. Only factors.
ageGeoYearFactor <- list(age = "", geo = "", year = "")
t(H(z, ageGeoYearFactor, ~geo * age + year:geo))

Hierarchy2Formula Hierarchy2Formula

54 Hierarchy2Formula

Description

Conversion between to-from coded hierarchy and formulas written with =, - and +.

Usage

Hierarchy2Formula(
x,
hierarchyVarNames = c(mapsFrom = "mapsFrom", mapsTo = "mapsTo", sign = "sign", level =

"level")
)

Formula2Hierarchy(s)

Hierarchies2Formulas(x, ...)

Arguments

x Data frame with to-from coded hierarchy
hierarchyVarNames

Variable names in the hierarchy tables as in HierarchyFix.

s Character vector of formulas written with =, - and +.

... Extra parameters. Only hierarchyVarNames is relevant.

Value

See Arguments

Note

Hierarchies2Formulas is a wrapper for lapply(x, Hierarchy2Formula, ...)

Author(s)

Øyvind Langsrud

See Also

DimList2Hierarchy, DimList2Hrc, AutoHierarchies.

Examples

x <- SSBtoolsData("sprt_emp_geoHier")
s <- Hierarchy2Formula(x)
s
Formula2Hierarchy(s)

Demonstrate Hierarchies2Formulas and problems
hi <- FindHierarchies(SSBtoolsData("sprt_emp_withEU")[, c("geo", "eu", "age")])
hi

HierarchyCompute 55

Hierarchies2Formulas(hi) # problematic formula since minus sign in coding
AutoHierarchies(Hierarchies2Formulas(hi)) # Not same as hi because of problems

Change coding to avoid problems
hiagemapsFrom <- gsub("-", "_", hiagemapsFrom)
hi
Hierarchies2Formulas(hi)
AutoHierarchies(Hierarchies2Formulas(hi))

HierarchyCompute Hierarchical Computations

Description

This function computes aggregates by crossing several hierarchical specifications and factorial vari-
ables.

Usage

HierarchyCompute(
data,
hierarchies,
valueVar,
colVar = NULL,
rowSelect = NULL,
colSelect = NULL,
select = NULL,
inputInOutput = FALSE,
output = "data.frame",
autoLevel = TRUE,
unionComplement = FALSE,
constantsInOutput = NULL,
hierarchyVarNames = c(mapsFrom = "mapsFrom", mapsTo = "mapsTo", sign = "sign", level =

"level"),
selectionByMultiplicationLimit = 10^7,
colNotInDataWarning = TRUE,
useMatrixToDataFrame = TRUE,
handleDuplicated = "sum",
asInput = FALSE,
verbose = FALSE,
reOrder = FALSE,
reduceData = TRUE,
makeRownames = NULL

)

56 HierarchyCompute

Arguments

data The input data frame

hierarchies A named (names in data) list with hierarchies. Variables can also be coded by
"rowFactor" and "colFactor".

valueVar Name of the variable(s) to be aggregated.

colVar When non-NULL, the function HierarchyCompute2 is called. See its documen-
tation for more information.

rowSelect Data frame specifying variable combinations for output. The colFactor variable
is not included. In addition rowSelect="removeEmpty" removes combinations
corresponding to empty rows (only zeros) of dataDummyHierarchy.

colSelect Vector specifying categories of the colFactor variable for output.

select Data frame specifying variable combinations for output. The colFactor variable
is included.

inputInOutput Logical vector (possibly recycled) for each element of hierarchies. TRUE means
that codes from input are included in output. Values corresponding to "rowFactor"
and "colFactor" are ignored.

output One of "data.frame" (default), "dummyHierarchies", "outputMatrix", "dataD-
ummyHierarchy", "valueMatrix", "fromCrossCode", "toCrossCode", "crossCode"
(as toCrossCode), "outputMatrixWithCrossCode", "matrixComponents", "dataD-
ummyHierarchyWithCodeFrame", "dataDummyHierarchyQuick". The latter two
do not require valueVar (reduceData set to FALSE).

autoLevel Logical vector (possibly recycled) for each element of hierarchies. When TRUE,
level is computed by automatic method as in HierarchyFix. Values correspond-
ing to "rowFactor" and "colFactor" are ignored.

unionComplement

Logical vector (possibly recycled) for each element of hierarchies. When TRUE,
sign means union and complement instead of addition or subtraction as in DummyHierarchy.
Values corresponding to "rowFactor" and "colFactor" are ignored.

constantsInOutput

A single row data frame to be combine by the other output.
hierarchyVarNames

Variable names in the hierarchy tables as in HierarchyFix.
selectionByMultiplicationLimit

With non-NULL rowSelect and when the number of elements in dataDummyHierarchy
exceeds this limit, the computation is performed by a slower but more memory
efficient algorithm.

colNotInDataWarning

When TRUE, warning produced when elements of colSelect are not in data.
useMatrixToDataFrame

When TRUE (default) special functionality for saving time and memory is used.
handleDuplicated

Handling of duplicated code rows in data. One of: "sum" (default), "sumByAg-
gregate", "sumWithWarning", "stop" (error), "single" or "singleWithWarning".
With no colFactor sum and sumByAggregate/sumWithWarning are different

HierarchyCompute 57

(original values or aggregates in "valueMatrix"). When single, only one of the
values is used (by matrix subsetting).

asInput When TRUE (FALSE is default) output matrices match input data. Thus valueMatrix
= Matrix(data[, valueVar],ncol=1). Only possible when no colFactor.

verbose Whether to print information during calculations. FALSE is default.

reOrder When TRUE (FALSE is default) output codes are ordered differently, more sim-
ilar to a usual model matrix ordering.

reduceData When TRUE (default) unnecessary (for the aggregated result) rows of valueMatrix
are allowed to be removed.

makeRownames When TRUE dataDummyHierarchy contains rownames. By default, this is de-
cided based on the parameter output.

Details

A key element of this function is the matrix multiplication: outputMatrix = dataDummyHierarchy
%*% valueMatrix. The matrix, valueMatrix is a re-organized version of the valueVar vector from
input. In particular, if a variable is selected as colFactor, there is one column for each level
of that variable. The matrix, dataDummyHierarchy is constructed by crossing dummy coding of
hierarchies (DummyHierarchy) and factorial variables in a way that matches valueMatrix. The
code combinations corresponding to rows and columns of dataDummyHierarchy can be obtained as
toCrossCode and fromCrossCode. In the default data frame output, the outputMatrix is stacked
to one column and combined with the code combinations of all variables.

Value

As specified by the parameter output

Author(s)

Øyvind Langsrud

See Also

Hierarchies2ModelMatrix, AutoHierarchies.

Examples

Data and hierarchies used in the examples
x <- SSBtoolsData("sprt_emp") # Employment in sport in thousand persons from Eurostat database
geoHier <- SSBtoolsData("sprt_emp_geoHier")
ageHier <- SSBtoolsData("sprt_emp_ageHier")

Two hierarchies and year as rowFactor
HierarchyCompute(x, list(age = ageHier, geo = geoHier, year = "rowFactor"), "ths_per")

Same result with year as colFactor (but columns ordered differently)
HierarchyCompute(x, list(age = ageHier, geo = geoHier, year = "colFactor"), "ths_per")

Internally the computations are different as seen when output='matrixComponents'

58 HierarchyCompute2

HierarchyCompute(x, list(age = ageHier, geo = geoHier, year = "rowFactor"), "ths_per",
output = "matrixComponents")

HierarchyCompute(x, list(age = ageHier, geo = geoHier, year = "colFactor"), "ths_per",
output = "matrixComponents")

Include input age groups by setting inputInOutput = TRUE for this variable
HierarchyCompute(x, list(age = ageHier, geo = geoHier, year = "colFactor"), "ths_per",

inputInOutput = c(TRUE, FALSE))

Only input age groups by switching to rowFactor
HierarchyCompute(x, list(age = "rowFactor", geo = geoHier, year = "colFactor"), "ths_per")

Select some years (colFactor) including a year not in input data (zeros produced)
HierarchyCompute(x, list(age = ageHier, geo = geoHier, year = "colFactor"), "ths_per",

colSelect = c("2014", "2016", "2018"))

Select combinations of geo and age including a code not in data or hierarchy (zeros produced)
HierarchyCompute(x, list(age = ageHier, geo = geoHier, year = "colFactor"), "ths_per",

rowSelect = data.frame(geo = "EU", age = c("Y0-100", "Y15-64", "Y15-29")))

Select combinations of geo, age and year
HierarchyCompute(x, list(age = ageHier, geo = geoHier, year = "colFactor"), "ths_per",

select = data.frame(geo = c("EU", "Spain"), age = c("Y15-64", "Y15-29"), year = 2015))

Extend the hierarchy table to illustrate the effect of unionComplement
Omit level since this is handled by autoLevel
geoHier2 <- rbind(data.frame(mapsFrom = c("EU", "Spain"), mapsTo = "EUandSpain", sign = 1),

geoHier[, -4])

Spain is counted twice
HierarchyCompute(x, list(age = ageHier, geo = geoHier2, year = "colFactor"), "ths_per")

Can be seen in the dataDummyHierarchy matrix
HierarchyCompute(x, list(age = ageHier, geo = geoHier2, year = "colFactor"), "ths_per",

output = "matrixComponents")

With unionComplement=TRUE Spain is not counted twice
HierarchyCompute(x, list(age = ageHier, geo = geoHier2, year = "colFactor"), "ths_per",

unionComplement = TRUE)

With constantsInOutput
HierarchyCompute(x, list(age = ageHier, geo = geoHier, year = "colFactor"), "ths_per",

constantsInOutput = data.frame(c1 = "AB", c2 = "CD"))

More that one valueVar
x$y <- 10*x$ths_per
HierarchyCompute(x, list(age = ageHier, geo = geoHier), c("y", "ths_per"))

HierarchyCompute2 Extended Hierarchical Computations

HierarchyCompute2 59

Description

Extended variant of HierarchyCompute with several column variables (not just "colFactor"). Pa-
rameter colVar splits the hierarchy variables in two groups and this variable overrides the difference
between "rowFactor" and "colFactor".

Usage

HierarchyCompute2(
data,
hierarchies,
valueVar,
colVar,
rowSelect = NULL,
colSelect = NULL,
select = NULL,
output = "data.frame",
...

)

Arguments

data The input data frame

hierarchies A named list with hierarchies

valueVar Name of the variable(s) to be aggregated

colVar Name of the column variable(s)

rowSelect Data frame specifying variable combinations for output

colSelect Data frame specifying variable combinations for output

select Data frame specifying variable combinations for output

output One of "data.frame" (default), "outputMatrix", "matrixComponents".

... Further parameters sent to HierarchyCompute

Details

Within this function, HierarchyCompute is called two times. By specifying output as "matrixComponents",
output from the two runs are retuned as a list with elements hcRow and hcCol. The matrix multi-
plication in HierarchyCompute is extended to outputMatrix = hcRow$dataDummyHierarchy %*%
hcRow$valueMatrix %*% t(hcCol$dataDummyHierarchy). This is modified in cases with more
than a single valueVar.

Value

As specified by the parameter output

Note

There is no need to call HierarchyCompute2 directly. The main function HierarchyCompute can
be used instead.

60 LSfitNonNeg

Author(s)

Øyvind Langsrud

See Also

Hierarchies2ModelMatrix, AutoHierarchies.

Examples

x <- SSBtoolsData("sprt_emp")
geoHier <- SSBtoolsData("sprt_emp_geoHier")
ageHier <- SSBtoolsData("sprt_emp_ageHier")

HierarchyCompute(x, list(age = ageHier, geo = geoHier, year = "rowFactor"), "ths_per",
colVar = c("age", "year"))

HierarchyCompute(x, list(age = ageHier, geo = geoHier, year = "rowFactor"), "ths_per",
colVar = c("age", "geo"))

HierarchyCompute(x, list(age = ageHier, geo = geoHier, year = "rowFactor"), "ths_per",
colVar = c("age", "year"), output = "matrixComponents")

HierarchyCompute(x, list(age = ageHier, geo = geoHier, year = "rowFactor"), "ths_per",
colVar = c("age", "geo"), output = "matrixComponents")

LSfitNonNeg Non-negative regression fits with a sparse overparameterized model
matrix

Description

Assuming z = t(x) %*% y + noise, a non-negatively modified least squares estimate of t(x) %*% y
is made.

Usage

LSfitNonNeg(x, z, limit = 1e-10, viaQR = FALSE, printInc = TRUE)

Arguments

x A matrix

z A single column matrix

limit Lower limit for non-zero fits. Set to NULL or -Inf to avoid the non-zero restric-
tion.

viaQR Least squares fits obtained using qr when TRUE.

printInc Printing "..." to console when TRUE.

MakeHierFormula 61

Details

The problem is first reduced by elimination some rows of x (elements of y) using GaussIndependent.
Thereafter least squares fits are obtained using solve or qr. Possible negative fits will be forced to
zero in the next estimation iteration(s).

Value

A fitted version of z

Author(s)

Øyvind Langsrud

Examples

set.seed(123)
data2 <- SSBtoolsData("z2")
x <- ModelMatrix(data2, formula = ~fylke + kostragr * hovedint - 1)
z <- t(x) %*% data2$ant + rnorm(ncol(x), sd = 3)
LSfitNonNeg(x, z)
LSfitNonNeg(x, z, limit = NULL)

Not run:
mf <- ~region*mnd + hovedint*mnd + fylke*hovedint*mnd + kostragr*hovedint*mnd
data4 <- SSBtoolsData("sosialFiktiv")
x <- ModelMatrix(data4, formula = mf)
z <- t(x) %*% data4$ant + rnorm(ncol(x), sd = 3)
zFit <- LSfitNonNeg(x, z)

End(Not run)

MakeHierFormula Make model formula from data taking into account hierarchical vari-
ables

Description

Make model formula from data taking into account hierarchical variables

Usage

MakeHierFormula(
data = NULL,
hGroups = HierarchicalGroups2(data),
n = length(hGroups),
sim = TRUE

)

62 Match

Arguments

data data frame

hGroups Output from HierarchicalGroups2()

n Interaction level or 0 (all levels)

sim Include "~" when TRUE

Value

Formula as character string

Author(s)

Øyvind Langsrud

Examples

x <- SSBtoolsData("sprt_emp_withEU")[, -4]
MakeHierFormula(x)
MakeHierFormula(x, n = 2)
MakeHierFormula(x, n = 0)

Match Matching rows in data frames

Description

The algorithm is based on converting variable combinations to whole numbers. The final matching
is performed using match.

Usage

Match(x, y)

Arguments

x data frame

y data frame

Details

When the result of multiplying together the number of unique values in each column of x exceeds
9E15 (largest value stored exactly by the numeric data type), the algorithm is recursive.

Value

An integer vector giving the position in y of the first match if there is a match, otherwise NA.

matlabColon 63

Author(s)

Øyvind Langsrud

Examples

a <- data.frame(x = c("a", "b", "c"), y = c("A", "B"), z = 1:6)
b <- data.frame(x = c("b", "c"), y = c("B", "K", "A", "B"), z = c(2, 3, 5, 6))

Match(a, b)
Match(b, a)

Slower alternative
match(data.frame(t(a), stringsAsFactors = FALSE), data.frame(t(b), stringsAsFactors = FALSE))
match(data.frame(t(b), stringsAsFactors = FALSE), data.frame(t(a), stringsAsFactors = FALSE))

More comprehensive example (n, m and k may be changed)
n <- 10^4
m <- 10^3
k <- 10^2
data(precip)
data(mtcars)
y <- data.frame(car = sample(rownames(mtcars), n, replace = TRUE),

city = sample(names(precip), n, replace = TRUE),
n = rep_len(1:k, n), a = rep_len(c("A", "B", "C", "D"), n),
b = rep_len(as.character(rnorm(1000)), n),
d = sample.int(k + 10, n, replace = TRUE),
e = paste(sample.int(k * 2, n, replace = TRUE),

rep_len(c("Green", "Red", "Blue"), n), sep = "_"),
r = rnorm(k)^99)

x <- y[sample.int(n, m),]
row.names(x) <- NULL
ix <- Match(x, y)

matlabColon Simulate Matlab’s ’:’

Description

Functions to generate increasing sequences

Usage

matlabColon(from, to)

SeqInc(from, to)

Arguments

from numeric. The start value
to numeric. The end value.

64 Matrix2list

Details

matlabColon(a,b) returns a:b (R’s version) unless a > b, in which case it returns integer(0). Se-
qInc(a,b) is similar, but results in error when the calculated length of the sequence (1+to-from) is
negative.

Value

A numeric vector, possibly empty.

Author(s)

Bjørn-Helge Mevik (matlabColon) and Øyvind Langsrud (SeqInc)

See Also

seq

Examples

identical(3:5, matlabColon(3, 5)) ## => TRUE
3:1 ## => 3 2 1
matlabColon(3, 1) ## => integer(0)
try(SeqInc(3, 1)) ## => Error
SeqInc(3, 2) ## => integer(0)

Matrix2list Convert matrix to sparse list

Description

Convert matrix to sparse list

Usage

Matrix2list(x)

Matrix2listInt(x)

Arguments

x Input matrix

Details

Within the function, the input matrix is first converted to a dgTMatrix matrix (Matrix package).

Value

A two-element list: List of row numbers (r) and a list of numeric or integer values (x)

Mipf 65

Note

Matrix2listInt convers the values to integers by as.integer and no checking is performed.
Thus, zeros are possible.

Author(s)

Øyvind Langsrud

Examples

m = matrix(c(0.5, 1.1, 3.14, 0, 0, 0, 0, 4, 5), 3, 3)
Matrix2list(m)
Matrix2listInt(m)

Mipf Iterative proportional fitting from matrix input

Description

The linear equation, z = t(x) %*% y, is (hopefully) solved for y by iterative proportional fitting

Usage

Mipf(
x,
z = NULL,
iter = 100,
yStart = matrix(1, nrow(x), 1),
eps = 0.01,
tol = 1e-10,
reduceBy0 = FALSE,
reduceByColSums = FALSE,
reduceByLeverage = FALSE,
returnDetails = FALSE,
y = NULL

)

Arguments

x a matrix

z a single column matrix

iter maximum number of iterations

yStart a starting estimate of y

eps stopping criterion. Maximum allowed value of max(abs(z - t(x) %*% yHat))

tol Another stopping criterion. Maximum absolute difference between two itera-
tions.

66 Mipf

reduceBy0 When TRUE, Reduce0exact used within the function
reduceByColSums

Parameter to Reduce0exact (when TRUE)
reduceByLeverage

Parameter to Reduce0exact (when TRUE)

returnDetails More output when TRUE.

y It is possible to set z to NULL and supply original y instead (z = t(x) %*% y)

Details

The algorithm will work similar to loglin when the input x-matrix is a overparameterized model
matrix – as can be created by ModelMatrix and FormulaSums. See Examples.

Value

yHat, the estimate of y

Author(s)

Øyvind Langsrud

Examples

Not run:
data2 <- SSBtoolsData("z2")
x <- ModelMatrix(data2, formula = ~fylke + kostragr * hovedint - 1)
z <- t(x) %*% data2$ant # same as FormulaSums(data2, ant~fylke + kostragr * hovedint -1)
yHat <- Mipf(x, z)

#############################
loglm comparison
#############################

if (require(MASS)){

Increase accuracy
yHat <- Mipf(x, z, eps = 1e-04)

Run loglm and store fitted values in a data frame
outLoglm <- loglm(ant ~ fylke + kostragr * hovedint, data2, eps = 1e-04, iter = 100)
dfLoglm <- as.data.frame.table(fitted(outLoglm))

Problem 1: Variable region not in output, but instead the variable .Within.
Problem 2: Extra zeros since hierarchy not treated. Impossible combinations in output.

By sorting data, it becomes clear that the fitted values are the same.
max(abs(sort(dfLoglm$Freq, decreasing = TRUE)[1:nrow(data2)] - sort(yHat, decreasing = TRUE)))

Modify so that region is in output. Problem 1 avoided.
x <- ModelMatrix(data2, formula = ~region + kostragr * hovedint - 1)
z <- t(x) %*% data2$ant # same as FormulaSums(data2, ant~fylke + kostragr * hovedint -1)

Mipf 67

yHat <- Mipf(x, z, eps = 1e-04)
outLoglm <- loglm(ant ~ region + kostragr * hovedint, data2, eps = 1e-04, iter = 100)
dfLoglm <- as.data.frame.table(fitted(outLoglm))

Now it is possible to merge data
merg <- merge(cbind(data2, yHat), dfLoglm)

Identical output
max(abs(merg$yHat - merg$Freq))

}

End(Not run)

#############################
loglin comparison
#############################

Generate input data for loglin
n <- 5:9
tab <- array(sample(1:prod(n)), n)

Input parameters
iter <- 20
eps <- 1e-05

Estimate yHat by loglin
out <- loglin(tab, list(c(1, 2), c(1, 3), c(1, 4), c(1, 5), c(2, 3, 4), c(3, 4, 5)),

fit = TRUE, iter = iter, eps = eps)
yHatLoglin <- matrix(((out$fit)), ncol = 1)

Transform the data for input to Mipf
df <- as.data.frame.table(tab)
names(df)[1:5] <- c("A", "B", "C", "D", "E")
x <- ModelMatrix(df, formula = ~A:B + A:C + A:D + A:E + B:C:D + C:D:E - 1)
z <- t(x) %*% df$Freq

Estimate yHat by Mipf
yHatPMipf <- Mipf(x, z, iter = iter, eps = eps)

Maximal absolute difference
max(abs(yHatPMipf - yHatLoglin))

Note: loglin reports one iteration extra

Another example. Only one iteration needed.
max(abs(Mipf(x = FormulaSums(df, ~A:B + C - 1),

z = FormulaSums(df, Freq ~ A:B + C -1))
- matrix(loglin(tab, list(1:2, 3), fit = TRUE)$fit, ncol = 1)))

###

68 Mipf

Examples utilizing Reduce0exact
###

z3 <- SSBtoolsData("z3")
x <- ModelMatrix(z3, formula = ~region + kostragr * hovedint + region * mnd2 + fylke * mnd +

mnd * hovedint + mnd2 * fylke * hovedint - 1)

reduceBy0, but no iteration improvement. Identical results.
t <- 360
y <- z3$ant
y[round((1:t) * 432/t)] <- 0
z <- t(x) %*% y
a1 <- Mipf(x, z, eps = 0.1)
a2 <- Mipf(x, z, reduceBy0 = TRUE, eps = 0.1)
a3 <- Mipf(x, z, reduceByColSums = TRUE, eps = 0.1)
max(abs(a1 - a2))
max(abs(a1 - a3))

Not run:
Improvement by reduceByColSums. Changing eps and iter give more similar results.
t <- 402
y <- z3$ant
y[round((1:t) * 432/t)] <- 0
z <- t(x) %*% y
a1 <- Mipf(x, z, eps = 1)
a2 <- Mipf(x, z, reduceBy0 = TRUE, eps = 1)
a3 <- Mipf(x, z, reduceByColSums = TRUE, eps = 1)
max(abs(a1 - a2))
max(abs(a1 - a3))

Improvement by ReduceByLeverage. Changing eps and iter give more similar results.
t <- 378
y <- z3$ant
y[round((1:t) * 432/t)] <- 0
z <- t(x) %*% y
a1 <- Mipf(x, z, eps = 1)
a2 <- Mipf(x, z, reduceBy0 = TRUE, eps = 1)
a3 <- Mipf(x, z, reduceByColSums = TRUE, eps = 1)
a4 <- Mipf(x, z, reduceByLeverage = TRUE, eps = 1)
max(abs(a1 - a2))
max(abs(a1 - a3))
max(abs(a1 - a4))

Example with small eps and "Iteration stopped since tol reached"
t <- 384
y <- z3$ant
y[round((1:t) * 432/t)] <- 0
z <- t(x) %*% y
a1 <- Mipf(x, z, eps = 1e-14)
a2 <- Mipf(x, z, reduceBy0 = TRUE, eps = 1e-14)

ModelMatrix 69

a3 <- Mipf(x, z, reduceByColSums = TRUE, eps = 1e-14)
max(abs(a1 - a2))
max(abs(a1 - a3))

End(Not run)

All y-data found by reduceByColSums (0 iterations).
t <- 411
y <- z3$ant
y[round((1:t) * 432/t)] <- 0
z <- t(x) %*% y
a1 <- Mipf(x, z)
a2 <- Mipf(x, z, reduceBy0 = TRUE)
a3 <- Mipf(x, z, reduceByColSums = TRUE)
max(abs(a1 - y))
max(abs(a2 - y))
max(abs(a3 - y))

ModelMatrix Model matrix from hierarchies and/or a formula

Description

A common interface to Hierarchies2ModelMatrix, Formula2ModelMatrix and HierarchiesAndFormula2ModelMatrix

Usage

ModelMatrix(
data,
hierarchies = NULL,
formula = NULL,
inputInOutput = TRUE,
crossTable = FALSE,
sparse = TRUE,
viaOrdinary = FALSE,
total = "Total",
removeEmpty = !is.null(formula) & is.null(hierarchies),
modelMatrix = NULL,
dimVar = NULL,
select = NULL,
...

)

NamesFromModelMatrixInput(
data = NULL,
hierarchies = NULL,
formula = NULL,
dimVar = NULL,
...

)

70 ModelMatrix

Arguments

data Matrix or data frame with data containing codes of relevant variables

hierarchies List of hierarchies, which can be converted by AutoHierarchies. Thus, the
variables can also be coded by "rowFactor" or "", which correspond to using
the categories in the data.

formula A model formula

inputInOutput Logical vector (possibly recycled) for each element of hierarchies. TRUE means
that codes from input are included in output. Values corresponding to "rowFactor"
or "" are ignored.

crossTable Cross table in output when TRUE

sparse Sparse matrix in output when TRUE (default)

viaOrdinary When TRUE, output is generated by model.matrix or sparse.model.matrix.
Since these functions omit a factor level, an empty factor level is first added.

total String(s) used to name totals

removeEmpty When TRUE, empty columns (only zeros) are not included in output. Default is
TRUE with formula input without hierarchy and otherwise FALSE (see details).

modelMatrix The model matrix as input (same as output)

dimVar The main dimensional variables and additional aggregating variables. This pa-
rameter can be useful when hierarchies and formula are unspecified.

select Data frame specifying variable combinations for output or a named list specify-
ing code selections for each variable (see details).

... Further arguments to Hierarchies2ModelMatrix, Formula2ModelMatrix or
HierarchiesAndFormula2ModelMatrix

Details

The default value of removeEmpty corresponds to the default settings of the underlying func-
tions. The functions Hierarchies2ModelMatrix and HierarchiesAndFormula2ModelMatrix
have removeEmpty as an explicit parameter with FALSE as default. The function Formula2ModelMatrix
is a wrapper for FormulaSums, which has a parameter includeEmpty with FALSE as default. Thus,
ModelMatrix makes a call to Formula2ModelMatrix with includeEmpty = !removeEmpty.

NamesFromModelMatrixInput returns the names of the data columns involved in creating the
model matrix. Note that data must be non-NULL to convert dimVar as indices to names.

The select parameter is forwarded to Hierarchies2ModelMatrix unless removeEmpty = TRUE is
combined with select as a data frame. In all other cases, select is handled outside the underlying
functions by making selections in the result. Empty columns can be added to the model matrix
when removeEmpty = FALSE (with warning).

Value

A (sparse) model matrix or a list of two elements (model matrix and cross table)

Author(s)

Øyvind Langsrud

ModelMatrix 71

See Also

formula_utils

Examples

Create some input
z <- SSBtoolsData("sp_emp_withEU")
ageHier <- data.frame(mapsFrom = c("young", "old"), mapsTo = "Total", sign = 1)
geoDimList <- FindDimLists(z[, c("geo", "eu")], total = "Europe")[[1]]

Small dataset example. Two dimensions.
s <- z[z$geo == "Spain" & z$year != 2016,]
rownames(s) <- NULL
s

via Hierarchies2ModelMatrix() and converted to ordinary matrix (not sparse)
ModelMatrix(s, list(age = ageHier, year = ""), sparse = FALSE)

Hierarchies generated automatically. Then via Hierarchies2ModelMatrix()
ModelMatrix(s[, c(1, 4)])

via Formula2ModelMatrix()
ModelMatrix(s, formula = ~age + year)

via model.matrix() after adding empty factor levels
ModelMatrix(s, formula = ~age + year, sparse = FALSE, viaOrdinary = TRUE)

via sparse.model.matrix() after adding empty factor levels
ModelMatrix(s, formula = ~age + year, viaOrdinary = TRUE)

via HierarchiesAndFormula2ModelMatrix() and using different data and parameter settings
ModelMatrix(s, list(age = ageHier, geo = geoDimList, year = ""), formula = ~age * geo + year,

inputInOutput = FALSE, removeEmpty = TRUE, crossTable = TRUE)
ModelMatrix(s, list(age = ageHier, geo = geoDimList, year = ""), formula = ~age * geo + year,

inputInOutput = c(TRUE, FALSE), removeEmpty = FALSE, crossTable = TRUE)
ModelMatrix(z, list(age = ageHier, geo = geoDimList, year = ""), formula = ~age * year + geo,

inputInOutput = c(FALSE, TRUE), crossTable = TRUE)

via Hierarchies2ModelMatrix() using unnamed list element. See AutoHierarchies.
colnames(ModelMatrix(z, list(age = ageHier, c(Europe = "geo", Allyears = "year", "eu"))))
colnames(ModelMatrix(z, list(age = ageHier, c("geo", "year", "eu")), total = c("t1", "t2")))

Example using the select parameter as a data frame
select <- data.frame(age = c("Total", "young", "old"), geo = c("EU", "nonEU", "Spain"))
ModelMatrix(z, list(age = ageHier, geo = geoDimList),

select = select, crossTable = TRUE)$crossTable

Examples using the select parameter as a list
ModelMatrix(z, list(age = ageHier, geo = geoDimList), inputInOutput = FALSE,

select = list(geo = c("nonEU", "Portugal")), crossTable = TRUE)$crossTable
ModelMatrix(z, list(age = ageHier, geo = geoDimList),

select = list(geo = c("nonEU", "Portugal"), age = c("Total", "young")),

72 model_aggregate

crossTable = TRUE)$crossTable

Using NAomit parameter avalable in Formula2ModelMatrix()
s$age[1] <- NA
ModelMatrix(s, formula = ~age + year)
ModelMatrix(s, formula = ~age + year, NAomit = FALSE)

model_aggregate Hierarchical aggregation via model specification

Description

Internally a dummy/model matrix is created according to the model specification. This model ma-
trix is used in the aggregation process via matrix multiplication and/or the function aggregate_multiple_fun.

Usage

model_aggregate(
data,
sum_vars = NULL,
fun_vars = NULL,
fun = NULL,
hierarchies = NULL,
formula = NULL,
dim_var = NULL,
remove_empty = NULL,
preagg_var = NULL,
dummy = TRUE,
pre_aggregate = dummy,
list_return = FALSE,
pre_return = FALSE,
verbose = TRUE,
mm_args = NULL,
...

)

Arguments

data A data frame containing data to be aggregated

sum_vars Variables to be summed. This will be done via matrix multiplication.

fun_vars Variables to be aggregated by supplied functions. This will be done via aggregate_multiple_fun
and dummy_aggregate and fun_vars is specified as the parameter vars.

fun The fun parameter to aggregate_multiple_fun

hierarchies The hierarchies parameter to ModelMatrix

formula The formula parameter to ModelMatrix

model_aggregate 73

dim_var The dimVar parameter to ModelMatrix

remove_empty When non-NULL, the removeEmpty parameter to ModelMatrix. Thus, the ac-
tual default value is TRUE with formula input without hierarchy and otherwise
FALSE (see ModelMatrix).

preagg_var Extra variables to be used as grouping elements in the pre-aggregate step

dummy The dummy parameter to dummy_aggregate. When TRUE, only 0s and 1s are
assumed in the generated model matrix. When FALSE, non-0s in this matrix are
passed as an additional first input parameter to the fun functions.

pre_aggregate Whether to pre-aggregate data to reduce the dimension of the model matrix.
Note that all original fun_vars observations are retained in the aggregated dataset
and pre_aggregate does not affect the final result. However, pre_aggregate
must be set to FALSE when the dummy_aggregate parameter dummy is set to
FALSE since then unlist will not be run. An exception to this is if the fun
functions are written to handle list data.

list_return Whether to return a list of separate components including the model matrix x.

pre_return Whether to return the pre-aggregate data as a two-component list. Can also be
combined with list_return (see examples).

verbose Whether to print information during calculations.

mm_args List of further arguments passed to ModelMatrix.

... Further arguments passed to dummy_aggregate.

Details

With formula input, limited output can be achieved by formula_selection (see example). An
attribute called startCol has been added to the output data frame to make this functionality work.

Value

A data frame or a list.

Examples

z <- SSBtoolsData("sprt_emp_withEU")
z$age[z$age == "Y15-29"] <- "young"
z$age[z$age == "Y30-64"] <- "old"
names(z)[names(z) == "ths_per"] <- "ths"
z$y <- 1:18

my_range <- function(x) c(min = min(x), max = max(x))

out <- model_aggregate(z,
formula = ~age:year + geo,
sum_vars = c("y", "ths"),
fun_vars = c(sum = "ths", mean = "y", med = "y", ra = "ths"),
fun = c(sum = sum, mean = mean, med = median, ra = my_range))

out

74 model_aggregate

Limited output can be achieved by formula_selection
formula_selection(out, ~geo)

Using the single unnamed variable feature.
model_aggregate(z, formula = ~age, fun_vars = "y",

fun = c(sum = sum, mean = mean, med = median, n = length))

To illustrate list_return and pre_return
for (pre_return in c(FALSE, TRUE)) for (list_return in c(FALSE, TRUE)) {

cat("\n=======================================\n")
cat("list_return =", list_return, ", pre_return =", pre_return, "\n\n")
out <- model_aggregate(z, formula = ~age:year,

sum_vars = c("ths", "y"),
fun_vars = c(mean = "y", ra = "y"),
fun = c(mean = mean, ra = my_range),
list_return = list_return,
pre_return = pre_return)

cat("\n")
print(out)

}

To illustrate preagg_var
model_aggregate(z, formula = ~age:year,
sum_vars = c("ths", "y"),
fun_vars = c(mean = "y", ra = "y"),
fun = c(mean = mean, ra = my_range),
preagg_var = "eu",
pre_return = TRUE)[["pre_data"]]

To illustrate hierarchies
geo_hier <- SSBtoolsData("sprt_emp_geoHier")
model_aggregate(z, hierarchies = list(age = "All", geo = geo_hier),

sum_vars = "y",
fun_vars = c(sum = "y"))

Special non-dummy cases illustrated below

Extend the hierarchy to make non-dummy model matrix
geo_hier2 <- rbind(data.frame(mapsFrom = c("EU", "Spain"),

mapsTo = "EUandSpain", sign = 1), geo_hier[, -4])

Warning since non-dummy
y and y_sum are different
model_aggregate(z, hierarchies = list(age = "All", geo = geo_hier2),

sum_vars = "y",
fun_vars = c(sum = "y"))

No warning since dummy since unionComplement = TRUE (see ?HierarchyCompute)
y and y_sum are equal

Number 75

model_aggregate(z, hierarchies = list(age = "All", geo = geo_hier2),
sum_vars = "y",
fun_vars = c(sum = "y"),
mm_args = list(unionComplement = TRUE))

Non-dummy again, but no warning since dummy = FALSE
Then pre_aggregate is by default set to FALSE (error when TRUE)
fun with extra argument needed (see ?dummy_aggregate)
y and y_sum2 are equal
model_aggregate(z, hierarchies = list(age = "All", geo = geo_hier2),

sum_vars = "y",
fun_vars = c(sum2 = "y"),
fun = c(sum2 = function(x, y) sum(x * y)),
dummy = FALSE)

Number Adding leading zeros

Description

Adding leading zeros

Usage

Number(n, width = 3)

Arguments

n numeric vector of whole numbers

width width

Value

Character vector

Author(s)

Øyvind Langsrud

Examples

Number(1:3)

76 NumSingleton

NumSingleton Decoding of singletonMethod

Description

A GaussSuppression singletonMethod starting with "num" is decoded into separate characters.
Part of the theory for interpreting the 3rd, 4th, and 5th characters is discussed in Langsrud (2024).
To utilize possibly duplicated contributor IDs, the 2nd character must be "T".

Usage

NumSingleton(singletonMethod)

Arguments

singletonMethod

String to be decoded. If necessary, the input string is extended with F’s.

Details

Any F means the feature is turned off. Other characters have the following meaning:

1. singleton2Primary (1st character):

• T: All singletons are forced to be primary suppressed.
• t: Non-published singletons are primary suppressed.

2. integerUnique (2nd character):

• T: Integer values representing the unique contributors are utilized. Error if singleton
not supplied as integer.

• t: As T above, but instead of error, the feature is turned off (as F) if singleton is not
supplied as integer.

3. sum2 (3rd character):

• T: Virtual primary suppressed cells are made, which are the sum of some suppressed inner
cells and which can be divided into two components. At least one component is singleton
contributor. The other component may be an inner cell.

• H: As T above. And in addition, the other component can be any primary suppressed
published cell. This method may be computationally demanding for big data.

4. elimination (4th character):

• t: The singleton problem will be handled by methodology implemented as a part of the
Gaussian elimination algorithm.

• m: As t above. And in addition, a message will be printed to inform about problematic
singletons. Actual reveals will be calculated when singleton2Primary = T (1st charac-
ter) and when singleton2Primary = t yield the same result as singleton2Primary =
T. Problematic singletons can appear since the algorithm is not perfect in the sense that
the elimination of rows may cause problems. Such problems can be a reason not to switch
off sum2.

quantile_weighted 77

• w: As m above, but warning instead of message.
• T, M and W: As t, m and w above. In addition, the gauss elimination routine is allowed to

run in parallel with different sortings so that the problem of eliminated singleton rows is
reduced.

• f: As F, which means that the elimination feature is turned off. However, when possible,
a message will provide information about actual reveals, similar to m above.

5. combinations (5th character):

• T: This is a sort of extension of singleton2Primary which is relevant when both integerUnique
and elimination are used. For each unique singleton contributor, the method seeks to
protect all linear combinations of singleton cells from the unique contributor. Instead of
construction new primary cells, protection is achieved as a part of the elimination pro-
cedure. Technically this is implemented by extending the above elimination method.
It cannot be guaranteed that all problems are solved, and this is a reason not to turn off
singleton2Primary. Best performance is achieved when elimination is T, M or W.

• t: As T, but without the added singleton protection. This means that protected linear com-
binations cannot be calculated linearly from non-suppressed cells. However, other con-
tributors may still be able to recalculate these combinations using their own suppressed
values.

Value

A character vector or NULL

References

Langsrud, Ø. (2024): “Secondary Cell Suppression by Gaussian Elimination: An Algorithm Suit-
able for Handling Issues with Zeros and Singletons”. Presented at: Privacy in statistical databases,
Antibes, France. September 25-27, 2024. doi:10.1007/9783031696510_6

Examples

NumSingleton("numTFF")
NumSingleton("numFtT")
NumSingleton("numttH")
NumSingleton("numTTFTT")

quantile_weighted Weighted quantiles

Description

The default method (type=2) corresponds to weighted percentiles in SAS.

https://doi.org/10.1007/978-3-031-69651-0_6

78 quantile_weighted

Usage

quantile_weighted(
x,
probs = (0:4)/4,
weights = rep(1, length(x)),
type = 2,
eps = 1e-09

)

Arguments

x Numeric vector

probs Numeric vector of probabilities

weights Numeric vector of weights of the same length as x

type An integer, 2 (default) or 5. Similar to types 2 and 5 in quantile.

eps Precision parameter used when type=2 so that numerical inaccuracy is accepted
(see details)

Details

When type=2, averaging is used in case of equal of probabilities. Equal probabilities (p[j]==probs[i])
is determined by abs(1-p[j]/probs[i])<eps with p=cumsum(w)/sum(w) where w=weights[order(x)].

With zero length of x, NAs are returned.

When all weights are zero and when when all x’s are not equal, NaNs are returned except for the 0%
and 100% quantiles.

Value

Quantiles as a named numeric vector.

Note

Type 2 similar to type 5 in DescTools::Quantile

Examples

x <- rnorm(27)/5 + 1:27
w <- (1:27)/27

quantile_weighted(x, (0:5)/5, weights = w)
quantile_weighted(x, (0:5)/5, weights = w, type = 5)

quantile_weighted(x) - quantile(x, type = 2)
quantile_weighted(x, type = 5) - quantile(x, type = 5)

RbindAll 79

RbindAll Combining several data frames when the columns don’t match

Description

Combining several data frames when the columns don’t match

Usage

RbindAll(...)

Arguments

... Several data frames as several input parameters or a list of data frames

Value

A single data frame

Note

The function is an extended version of rbind.all.columns at https://amywhiteheadresearch.
wordpress.com/2013/05/13/combining-dataframes-when-the-columns-dont-match/

Author(s)

Øyvind Langsrud

See Also

CbindIdMatch (same example data)

Examples

zA <- data.frame(idA = 1:10, idB = rep(10 * (1:5), 2), idC = rep(c(100, 200), 5),
idC2 = c(100, rep(200, 9)), idC3 = rep(100, 10),
idD = 99, x = round(rnorm(10), 3), xA = round(runif(10), 2))

zB <- data.frame(idB = 10 * (1:5), x = round(rnorm(5), 3), xB = round(runif(5), 2))
zC <- data.frame(idC = c(100, 200), x = round(rnorm(2), 3), xC = round(runif(2), 2))
zD <- data.frame(idD = 99, x = round(rnorm(1), 3), xD = round(runif(1), 2))
RbindAll(zA, zB, zC, zD)
RbindAll(list(zA, zB, zC, zD))

https://amywhiteheadresearch.wordpress.com/2013/05/13/combining-dataframes-when-the-columns-dont-match/
https://amywhiteheadresearch.wordpress.com/2013/05/13/combining-dataframes-when-the-columns-dont-match/

80 Reduce0exact

Reduce0exact Reducing a non-negative regression problem

Description

The linear equation problem, z = t(x) %*% y with y non-negative and x as a design (dummy) matrix,
is reduced to a smaller problem by identifying elements of y that can be found exactly from x and
z.

Usage

Reduce0exact(
x,
z = NULL,
reduceByColSums = FALSE,
reduceByLeverage = FALSE,
leverageLimit = 0.999999,
digitsRoundWhole = 9,
y = NULL,
yStart = NULL,
printInc = FALSE

)

Arguments

x A matrix

z A single column matrix

reduceByColSums

See Details
reduceByLeverage

See Details

leverageLimit Limit to determine perfect fit

digitsRoundWhole

RoundWhole parameter for fitted values (when leverageLimit and y not in in-
put)

y A single column matrix. With y in input, z in input can be omitted and estimat-
ing y (when leverageLimit) is avoided.

yStart A starting estimate when this function is combined with iterative proportional
fitting. Zeros in yStart will be used to reduce the problem.

printInc Printing iteration information to console when TRUE

Reduce0exact 81

Details

Exact elements can be identified in three ways in an iterative manner:

1. By zeros in z. This is always done.

2. By columns in x with a singe nonzero value. Done when reduceByColSums or reduceByLeverage
is TRUE.

3. By exact linear regression fit (when leverage is one). Done when reduceByLeverage is TRUE.
The leverages are computed by hat(as.matrix(x), intercept = FALSE), which can be very
time and memory consuming. Furthermore, without y in input, known values will be com-
puted by ginv.

Value

A list of five elements:

• x: A reduced version of input x

• z: Corresponding reduced z

• yKnown: Logical, specifying known values of y

• y: A version of y with known values correct and others zero

• zSkipped: Logical, specifying omitted columns of x

Author(s)

Øyvind Langsrud

Examples

Make a special data set
d <- SSBtoolsData("sprt_emp")
d$ths_per <- round(d$ths_per)
d <- rbind(d, d)
d$year <- as.character(rep(2014:2019, each = 6))
to0 <- rep(TRUE, 36)
to0[c(6, 14, 17, 18, 25, 27, 30, 34, 36)] <- FALSE
d$ths_per[to0] <- 0

Values as a single column matrix
y <- Matrix(d$ths_per, ncol = 1)

A model matrix using a special year hierarchy
x <- Hierarchies2ModelMatrix(d, hierarchies = list(geo = "", age = "", year =

c("y1418 = 2014+2015+2016+2017+2018", "y1519 = 2015+2016+2017+2018+2019",
"y151719 = 2015+2017+2019", "yTotal = 2014+2015+2016+2017+2018+2019")),
inputInOutput = FALSE)

Aggregates
z <- t(x) %*% y
sum(z == 0) # 5 zeros

82 RoundWhole

From zeros in z
a <- Reduce0exact(x, z)
sum(a$yKnown) # 17 zeros in y is known
dim(a$x) # Reduced x, without known y and z with zeros
dim(a$z) # Corresponding reduced z
sum(a$zSkipped) # 5 elements skipped
t(a$y) # Just zeros (known are 0 and unknown set to 0)

It seems that three additional y-values can be found directly from z
sum(colSums(a$x) == 1)

But it is the same element of y (row 18)
a$x[18, colSums(a$x) == 1]

Make use of ones in colSums
a2 <- Reduce0exact(x, z, reduceByColSums = TRUE)
sum(a2$yKnown) # 18 values in y is known
dim(a2$x) # Reduced x
dim(a2$z) # Corresponding reduced z
a2$y[which(a2$yKnown)] # The known values of y (unknown set to 0)

Six ones in leverage values
Thus six extra elements in y can be found by linear estimation
hat(as.matrix(a2$x), intercept = FALSE)

Make use of ones in leverages (hat-values)
a3 <- Reduce0exact(x, z, reduceByLeverage = TRUE)
sum(a3$yKnown) # 26 values in y is known (more than 6 extra)
dim(a3$x) # Reduced x
dim(a3$z) # Corresponding reduced z
a3$y[which(a3$yKnown)] # The known values of y (unknown set to 0)

More than 6 extra is caused by iteration
Extra checking of zeros in z after reduction by leverages
Similar checking performed also after reduction by colSums

RoundWhole Round values that are close two whole numbers

Description

Round values that are close two whole numbers

Usage

RoundWhole(x, digits = 9, onlyZeros = FALSE)

RowGroups 83

Arguments

x vector or matrix

digits parameter to round

onlyZeros Only round values close to zero

Details

When digits is NA, Inf or NULL, input is returned unmodified. When there is more than one
element in digits or onlyZeros, rounding is performed column-wise.

Value

Modified x

Author(s)

Øyvind Langsrud

Examples

x <- c(0.0002, 1.00003, 3.00014)
RoundWhole(x) # No values rounded
RoundWhole(x, 4) # One value rounded
RoundWhole(x, 3) # All values rounded
RoundWhole(x, NA) # No values rounded (always)
RoundWhole(x, 3, TRUE) # One value rounded
RoundWhole(cbind(x, x, x), digits = c(3, 4, NA))
RoundWhole(cbind(x, x), digits = 3, onlyZeros = c(FALSE, TRUE))

RowGroups Create numbering according to unique rows

Description

Create numbering according to unique rows

Usage

RowGroups(
x,
returnGroups = FALSE,
returnGroupsId = FALSE,
NAomit = FALSE,
pkg = "base"

)

84 SortRows

Arguments

x Data frame or matrix

returnGroups When TRUE unique rows are returned

returnGroupsId When TRUE Index of unique rows are returned

NAomit When TRUE, rows containing NAs are omitted, and the corresponding index
numbers are set to NA.

pkg A character string indicating which package to use. Must be either "base" for
base R or "data.table" for data.table. Default is "base".

Value

A vector with the numbering or, according to the arguments, a list with more output.

Author(s)

Øyvind Langsrud

Examples

a <- data.frame(x = c("a", "b"), y = c("A", "B", "A"), z = rep(1:4, 3))
RowGroups(a)
RowGroups(a, TRUE)
RowGroups(a[, 1:2], TRUE, TRUE)
RowGroups(a[, 1, drop = FALSE], TRUE)

SortRows Sorting rows of a matrix or data frame

Description

Sorting rows of a matrix or data frame

Usage

SortRows(m, cols = 1:dim(m)[2], index.return = FALSE)

Arguments

m matrix or data frame

cols Indexes of columns, in the desired order, used for sorting.

index.return logical indicating if the ordering index vector should be returned instead of
sorted input.

Value

sorted m or a row index vector

SSBtoolsData 85

Author(s)

Øyvind Langsrud

Examples

d <- SSBtoolsData("d2w")
SortRows(d[4:7])
SortRows(d, cols = 4:7)
SortRows(d, cols = c(2, 4))

SortRows(matrix(sample(1:3,15,TRUE),5,3))

SSBtoolsData Function that returns a dataset

Description

Function that returns a dataset

Usage

SSBtoolsData(dataset)

Arguments

dataset Name of data set within the SSBtools package

Details

FIFA2018ABCD: A hierarchy table based on countries within groups A-D in the football champi-
onship, 2018 FIFA World Cup.

sprt_emp: Employment in sport in thousand persons. Data from Eurostat database.

sprt_emp_geoHier: Country hierarchy for the employment in sport data.

sprt_emp_ageHier: Age hierarchy for the employment in sport data.

sprt_emp_withEU: The data set sprt_emp extended with a EU variable.

sp_emp_withEU: As sprt_emp_withEU, but coded differently.

example1 Example data similar to sp_emp_withEU.

magnitude1: Example data for magnitude tabulation. Same countries as above.

my_km2: Fictitious grid data.

mun_accidents: Fictitious traffic accident by municipality data.

sosialFiktiv, z1, z1w, z2, z2w, z3, z3w, z3wb: See sosialFiktiv.

d4, d1, d1w, d2, d2w, d3, d3w, d3wb: English translation of the datasets above.

d2s, d2ws: d2 and d2w modified to smaller/easier data.

power10to1, power10to2, . . .: power10toi is hierarchical data with 10i rows and 2 ∗ i columns.
Tip: Try FindDimLists(SSBtoolsData("power10to3"))

86 Stack

Value

data frame

Author(s)

Øyvind Langsrud and Daniel Lupp

Examples

SSBtoolsData("FIFA2018ABCD")
SSBtoolsData("sprt_emp")
SSBtoolsData("sprt_emp_geoHier")
SSBtoolsData("sprt_emp_ageHier")
SSBtoolsData("sprt_emp_withEU")
SSBtoolsData("d1w")

Stack Stack columns from a data frame and include variables.

Description

Stack columns from a data frame and include variables.

Usage

Stack(
data,
stackVar = 1:NCOL(data),
blockVar = integer(0),
rowData = data.frame(stackVar)[, integer(0), drop = FALSE],
valueName = "values",
indName = "ind"

)

Arguments

data A data frame

stackVar Indices of variables to be stacked

blockVar Indices of variables to be replicated

rowData A separate data frame where NROW(rowData)=length(stackVar) such that each
row may contain multiple information of each stackVar variable. The output
data frame will contain an extended variant of rowData.

valueName Name of the stacked/concatenated output variable

indName Name of the output variable with information of which vector in x the observa-
tion originated. When indName is NULL this variable is not included in output.

UniqueSeq 87

Value

A data frame where the variable ordering corresponds to: blockVar, rowData, valueName, indName

Author(s)

Øyvind Langsrud

See Also

Unstack

Examples

z <- data.frame(n=c(10,20,30), ssb=c('S','S','B'),
Ayes=1:3,Ano=4:6,Byes=7:9,Bno=10:12)
zRow <- data.frame(letter=c('A','A','B','B'),answer=c('yes','no','yes','no'))

x <- Stack(z,3:6,1:2,zRow)

Unstack(x,6,3:4,numeric(0),1:2)
Unstack(x,6,5,numeric(0),1:2)
Unstack(x,6,3:4,5,1:2)

UniqueSeq Sequence within unique values

Description

Sequence within unique values

Usage

UniqueSeq(x, sortdata = matrix(1L, length(x), 0))

Arguments

x vector

sortdata matrix or vector to determine sequence order

Value

integer vector

Author(s)

Øyvind Langsrud

88 Unstack

Examples

1:4 within A and 1:2 within B
UniqueSeq(c("A", "A", "B", "B", "A", "A"))

Ordered differently
UniqueSeq(c("A", "A", "B", "B", "A", "A"), c(4, 5, 20, 10, 3, 0))

Unstack Unstack a column from a data frame and include additional variables.

Description

Unstack a column from a data frame and include additional variables.

Usage

Unstack(
data,
mainVar = 1,
stackVar = (1:NCOL(data))[-mainVar],
extraVar = integer(0),
blockVar = integer(0),
sep = "_",
returnRowData = TRUE,
sorted = FALSE

)

Arguments

data A data frame

mainVar Index of the variable to be unstacked

stackVar Index of variables defining the unstack grouping

extraVar Indices of within-replicated variables to be added to the rowData output

blockVar Indices of between-replicated variables to be added to the data output

sep A character string to separate when creating variable names

returnRowData When FALSE output is no list, but only data

sorted When TRUE the created variables is in sorted order. Otherwise input order is
used.

Value

When returnRowData=TRUE output is list of two elements.

data Unstacked data

rowData A separate data frame with one row for each unstack grouping composed of the
stackVar variables

WildcardGlobbing 89

Author(s)

Øyvind Langsrud

See Also

Stack (examples)

WildcardGlobbing Row selection by wildcard/globbing

Description

The selected rows match combined requirements for all variables.

Usage

WildcardGlobbing(x, wg, sign = TRUE, invert = "!")

Arguments

x data.frame with character data

wg data.frame with wildcard/globbing

sign When FALSE, the result is inverted.

invert Character to invert each single selection.

Details

This function is used by HierarchicalWildcardGlobbing and WildcardGlobbingVector and
make use of grepl and glob2rx.

Value

Logical vector defining subset of rows.

Author(s)

Øyvind Langsrud

Examples

Create data input
data(precip)
data(mtcars)
x <- data.frame(car = rownames(mtcars)[rep(1:NROW(mtcars), each = 35)], city = names(precip),

stringsAsFactors = FALSE)

Create globbing/wildcards input

90 WildcardGlobbingVector

wg <- data.frame(rbind(c("Merc*", "C*"), c("F*", "??????"), c("!?????????*", "!???????*")),
stringsAsFactors = FALSE)

names(wg) <- names(x)

Select the following combinations:
- Cars starting with Merc and cities starting with C
- Cars starting with F and six-letter cities
- Cars with less than nine letters and cities with less than seven letters
x[WildcardGlobbing(x, wg),]

WildcardGlobbingVector

Selection of elements by wildcard/globbing

Description

Selection of elements by wildcard/globbing

Usage

WildcardGlobbingVector(x, wg, negSign = "-", invert = "!")

Arguments

x Character vector
wg Character vector with wildcard/globbing
negSign Character representing selection to be removed
invert Character to invert each single selection.

Value

vector with selected elements of x

Author(s)

Øyvind Langsrud

Examples

data(precip)
x <- names(precip)

Select the cities starting with B, C and Sa.
WildcardGlobbingVector(x, c("B*", "C*", "Sa*"))

Remove from the selection cities with o and t in position 2 and 4, respectively.
WildcardGlobbingVector(x, c("B*", "C*", "Sa*", "-?o*", "-???t*"))

Add to the selection cities not having six or more letters.
WildcardGlobbingVector(x, c("B*", "C*", "Sa*", "-?o*", "-???t*", "!??????*"))

Index

AddLeadingZeros, 3
aggregate, 5–7, 20, 39
aggregate_by_pkg, 4
aggregate_multiple_fun, 5, 24, 25, 72
As_TsparseMatrix, 9
AutoHierarchies, 10, 19, 34, 49, 50, 52, 54,

57, 60, 70
AutoSplit, 13

CbindIdMatch, 14, 79
check_input (CheckInput), 15
CheckInput, 15
combine_formulas, 39

DataDummyHierarchies
(DataDummyHierarchy), 17

DataDummyHierarchy, 17
DimList2Hierarchy, 11, 18, 19, 54
DimList2Hrc, 11, 19, 19, 54
dummy_aggregate, 7, 24, 72, 73
DummyApply, 20
DummyDuplicated, 21
DummyHierarchies, 11, 18
DummyHierarchies (DummyHierarchy), 22
DummyHierarchy, 17, 22, 56, 57

Extend0, 26, 28
Extend0rnd1, 27, 28
Extend0rnd1b (Extend0rnd1), 28
Extend0rnd2 (Extend0rnd1), 28

fac2sparse, 39
FactorLevCorr, 29
FindCommonCells, 30
FindDimLists, 10, 11, 31, 34
FindDisclosiveCells, 32
FindHierarchies, 11, 34
FindTableGroup, 35
fix_fun_amf, 6, 25
fix_vars_amf, 6, 24

Formula2Hierarchy (Hierarchy2Formula),
53

Formula2ModelMatrix, 53, 69, 70
Formula2ModelMatrix (FormulaSums), 37
formula_from_vars, 39
formula_include_hierarchies, 39
formula_selection, 73
formula_selection

(FormulaSelection.default), 36
formula_utils, 39, 71
FormulaSelection

(FormulaSelection.default), 36
FormulaSelection.default, 36
FormulaSums, 37, 66, 70

GaussIndependent, 40, 61
GaussIterationFunction, 41, 43
GaussRank (GaussIndependent), 40
GaussSuppression, 41, 42, 76
ginv, 81
glob2rx, 89
grepl, 89

hclust, 47
HierarchicalGroups, 45
HierarchicalWildcardGlobbing, 46, 89
Hierarchies2Formulas

(Hierarchy2Formula), 53
Hierarchies2ModelMatrix, 10, 48, 53, 57,

60, 69, 70
HierarchiesAndFormula2ModelMatrix, 50,

51, 69, 70
Hierarchy2Formula, 11, 19, 53
HierarchyCompute, 11, 50, 55, 59
HierarchyCompute2, 56, 58
HierarchyComputeDummy, 50
HierarchyFix, 10, 49, 52, 54, 56
Hrc2DimList, 10, 52
Hrc2DimList (DimList2Hrc), 19

91

92 INDEX

inc_default, 7

loglin, 66
LSfitNonNeg, 60

MakeHierFormula, 61
Match, 62
match, 62
matlabColon, 63
Matrix2list, 64
Matrix2listInt (Matrix2list), 64
Mipf, 65
model.matrix, 70
model_aggregate, 72
ModelMatrix, 36, 39, 50, 53, 66, 69, 72, 73

NamesFromModelMatrixInput
(ModelMatrix), 69

Number, 75
NumSingleton, 43, 44, 76

qr, 60, 61
quantile, 78
quantile_weighted, 77

RbindAll, 15, 79
Reduce0exact, 66, 80
round, 83
RoundWhole, 80, 82
RowGroups, 38, 83

seq, 64
SeqInc (matlabColon), 63
solve, 61
SortRows, 84
sosialFiktiv, 85
sparse.model.matrix, 70
sparseMatrix, 38, 39
SSBtoolsData, 85
Stack, 86, 89

UniqueSeq, 87
unlist, 7, 73
unmatrix, 7
Unstack, 87, 88

WildcardGlobbing, 47, 89
WildcardGlobbingVector, 89, 90

	AddLeadingZeros
	aggregate_by_pkg
	aggregate_multiple_fun
	As_TsparseMatrix
	AutoHierarchies
	AutoSplit
	CbindIdMatch
	CheckInput
	DataDummyHierarchy
	DimList2Hierarchy
	DimList2Hrc
	DummyApply
	DummyDuplicated
	DummyHierarchy
	dummy_aggregate
	Extend0
	Extend0rnd1
	FactorLevCorr
	FindCommonCells
	FindDimLists
	FindDisclosiveCells
	FindHierarchies
	FindTableGroup
	FormulaSelection.default
	FormulaSums
	formula_utils
	GaussIndependent
	GaussIterationFunction
	GaussSuppression
	HierarchicalGroups
	HierarchicalWildcardGlobbing
	Hierarchies2ModelMatrix
	HierarchiesAndFormula2ModelMatrix
	Hierarchy2Formula
	HierarchyCompute
	HierarchyCompute2
	LSfitNonNeg
	MakeHierFormula
	Match
	matlabColon
	Matrix2list
	Mipf
	ModelMatrix
	model_aggregate
	Number
	NumSingleton
	quantile_weighted
	RbindAll
	Reduce0exact
	RoundWhole
	RowGroups
	SortRows
	SSBtoolsData
	Stack
	UniqueSeq
	Unstack
	WildcardGlobbing
	WildcardGlobbingVector
	Index

