Package 'SMMA'

Title: Soft Maximin Estimation for Large Scale Array-Tensor Models
Description: Efficient design matrix free procedure for solving a soft maximin problem for large scale array-tensor structured models, see Lund, Mogensen and Hansen (2019) <arXiv:1805.02407>. Currently Lasso and SCAD penalized estimation is implemented.
Authors: Adam Lund
Maintainer: Adam Lund <[email protected]>
License: GPL (>= 2)
Version: 1.0.3
Built: 2024-12-16 06:48:24 UTC
Source: CRAN

Help Index


Make Prediction From a SMMA Object

Description

Given new covariate data this function computes the linear predictors based on the estimated model coefficients in an object produced by the function softmaximin. Note that the data can be supplied in two different formats: i) as a n×pn' \times p matrix (pp is the number of model coefficients and nn' is the number of new data points) or ii) as a list of two or three matrices each of size ni×pi,i=1,2,3n_i' \times p_i, i = 1, 2, 3 (nin_i' is the number of new marginal data points in the iith dimension).

Usage

## S3 method for class 'SMMA'
predict(object, x = NULL, X = NULL, ...)

Arguments

object

An object of class SMMA, produced with softmaximin

x

a matrix of size n×pn' \times p with nn' is the number of new data points.

X

a list containing the data matrices each of size ni×pin'_{i} \times p_i, where nin'_{i} is the number of new data points in the iith dimension.

...

ignored

Value

A list of length nlambda containing the linear predictors for each model. If new covariate data is supplied in one n×pn' \times p matrix x each item is a vector of length nn'. If the data is supplied as a list of matrices each of size ni×pin'_{i} \times p_i, each item is an array of size n1××ndn'_1 \times \cdots \times n'_d, with d{1,2,3}d\in \{1,2,3\}.

Author(s)

Adam Lund

Examples

##size of example
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4

##marginal design matrices (Kronecker components)
X1 <- matrix(rnorm(n1 * p1, 0, 0.5), n1, p1)
X2 <- matrix(rnorm(n2 * p2, 0, 0.5), n2, p2)
X3 <- matrix(rnorm(n3 * p3, 0, 0.5), n3, p3)
X <- list(X1, X2, X3)

component <- rbinom(p1 * p2 * p3, 1, 0.1)
Beta1 <- array(rnorm(p1 * p2 * p3, 0, .1) + component, c(p1 , p2, p3))
Beta2 <- array(rnorm(p1 * p2 * p3, 0, .1) + component, c(p1 , p2, p3))
mu1 <- RH(X3, RH(X2, RH(X1, Beta1)))
mu2 <- RH(X3, RH(X2, RH(X1, Beta2)))
Y1 <- array(rnorm(n1 * n2 * n3, mu1), dim = c(n1, n2, n3))
Y2 <- array(rnorm(n1 * n2 * n3, mu2), dim = c(n1, n2, n3))

Y <- array(NA, c(dim(Y1), 2))
Y[,,, 1] <- Y1; Y[,,, 2] <- Y2;

fit <- softmaximin(X, Y, zeta = 10, penalty = "lasso", alg = "npg")

##new data in matrix form
x <- matrix(rnorm(p1 * p2 * p3), nrow = 1)
predict(fit, x = x)[[15]]

##new data in tensor component form
X1 <- matrix(rnorm(p1), nrow = 1)
X2 <- matrix(rnorm(p2), nrow = 1)
X3 <- matrix(rnorm(p3), nrow = 1)
predict(fit, X = list(X1, X2, X3))[[15]]

Print Function for objects of Class SMMA

Description

This function will print some information about the SMMA object.

Usage

## S3 method for class 'SMMA'
print(x, ...)

Arguments

x

a SMMA object

...

ignored

Author(s)

Adam Lund

Examples

##size of example 
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4

##marginal design matrices (Kronecker components)
X1 <- matrix(rnorm(n1 * p1, 0, 0.5), n1, p1) 
X2 <- matrix(rnorm(n2 * p2, 0, 0.5), n2, p2) 
X3 <- matrix(rnorm(n3 * p3, 0, 0.5), n3, p3) 
X <- list(X1, X2, X3)

component <- rbinom(p1 * p2 * p3, 1, 0.1) 
Beta1 <- array(rnorm(p1 * p2 * p3, 0, .1) + component, c(p1 , p2, p3))
Beta2 <- array(rnorm(p1 * p2 * p3, 0, .1) + component, c(p1 , p2, p3))
mu1 <- RH(X3, RH(X2, RH(X1, Beta1)))
mu2 <- RH(X3, RH(X2, RH(X1, Beta2)))
Y1 <- array(rnorm(n1 * n2 * n3, mu1), dim = c(n1, n2, n3))
Y2 <- array(rnorm(n1 * n2 * n3, mu2), dim = c(n1, n2, n3))

Y <- array(NA, c(dim(Y1), 2))
Y[,,, 1] <- Y1; Y[,,, 2] <- Y2;

fit <- softmaximin(X, Y, zeta = 10, penalty = "lasso", alg = "npg")
fit

The Rotated H-transform of a 3d Array by a Matrix

Description

This function is an implementation of the ρ\rho-operator found in Currie et al 2006. It forms the basis of the GLAM arithmetic.

Usage

RH(M, A)

Arguments

M

a n×p1n \times p_1 matrix.

A

a 3d array of size p1×p2×p3p_1 \times p_2 \times p_3.

Details

For details see Currie et al 2006. Note that this particular implementation is not used in the routines underlying the optimization procedure.

Value

A 3d array of size p2×p3×np_2 \times p_3 \times n.

Author(s)

Adam Lund

References

Currie, I. D., M. Durban, and P. H. C. Eilers (2006). Generalized linear array models with applications to multidimensional smoothing. Journal of the Royal Statistical Society. Series B. 68, 259-280. url = http://dx.doi.org/10.1111/j.1467-9868.2006.00543.x.

Examples

n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4

##marginal design matrices (Kronecker components)
X1 <- matrix(rnorm(n1 * p1), n1, p1)
X2 <- matrix(rnorm(n2 * p2), n2, p2)
X3 <- matrix(rnorm(n3 * p3), n3, p3)

Beta <- array(rnorm(p1 * p2 * p3, 0, 1), c(p1 , p2, p3))
max(abs(c(RH(X3, RH(X2, RH(X1, Beta)))) - kronecker(X3, kronecker(X2, X1)) %*% c(Beta)))

Soft Maximin Estimation for Large Scale Array Data with Known Groups

Description

Efficient design matrix free procedure for solving a soft maximin problem for large scale array-tensor structured models, see Lund et al., 2020. Currently Lasso and SCAD penalized estimation is implemented.

Usage

softmaximin(X,
            Y,
            zeta,
            penalty = c("lasso", "scad"),
            alg = c("npg", "fista"),
            nlambda = 30,
            lambda.min.ratio = 1e-04,
            lambda = NULL,
            penalty.factor = NULL,
            reltol = 1e-05,
            maxiter = 15000,
            steps = 1,
            btmax = 100,
            c = 0.0001,
            tau = 2,
            M = 4,
            nu = 1,
            Lmin = 0,
            log = TRUE)

Arguments

X

list containing the Kronecker components (1, 2 or 3) of the Kronecker design matrix. These are matrices of sizes ni×pin_i \times p_i.

Y

array of size n1××nd×Gn_1 \times\cdots\times n_d \times G containing the response values.

zeta

strictly positive float controlling the softmaximin approximation accuracy.

penalty

string specifying the penalty type. Possible values are "lasso", "scad".

alg

string specifying the optimization algorithm. Possible values are "npg", "fista".

nlambda

positive integer giving the number of lambda values. Used when lambda is not specified.

lambda.min.ratio

strictly positive float giving the smallest value for lambda, as a fraction of λmax\lambda_{max}; the (data dependent) smallest value for which all coefficients are zero. Used when lambda is not specified.

lambda

sequence of strictly positive floats used as penalty parameters.

penalty.factor

array of size p1××pdp_1 \times \cdots \times p_d of positive floats. Is multiplied with each element in lambda to allow differential penalization on the coefficients.

reltol

strictly positive float giving the convergence tolerance for the inner loop.

maxiter

positive integer giving the maximum number of iterations allowed for each lambda value, when summing over all outer iterations for said lambda.

steps

strictly positive integer giving the number of steps used in the multi-step adaptive lasso algorithm for non-convex penalties. Automatically set to 1 when penalty = "lasso".

btmax

strictly positive integer giving the maximum number of backtracking steps allowed in each iteration. Default is btmax = 100.

c

strictly positive float used in the NPG algorithm. Default is c = 0.0001.

tau

strictly positive float used to control the stepsize for NPG. Default is tau = 2.

M

positive integer giving the look back for the NPG. Default is M = 4.

nu

strictly positive float used to control the stepsize. A value less that 1 will decrease the stepsize and a value larger than one will increase it. Default is nu = 1.

Lmin

non-negative float used by the NPG algorithm to control the stepsize. For the default Lmin = 0 the maximum step size is the same as for the FISTA algorithm.

log

logical variable indicating whether to use log-loss. TRUE is default and yields the loss below.

Details

Following Lund et al., 2020 this package solves the optimization problem for a linear model for heterogeneous dd-dimensional array data (d=1,2,3d=1,2,3) organized in GG known groups, and with identical tensor structured design matrix XX across all groups. Specifically n=idnin = \prod_i^d n_i is the number of observations in each group, YgY_g the n1××ndn_1\times \cdots \times n_d response array for group g{1,,G}g \in \{1,\ldots,G\}, and XX a n×pn\times p design matrix, with tensor structure

X=i=1dXi.X = \bigotimes_{i=1}^d X_i.

For d=1,2,3d =1,2,3, X1,,XdX_1,\ldots, X_d are the marginal ni×pin_i\times p_i design matrices (Kronecker components). Using the GLAM framework the model equation for group g{1,,G}g\in \{1,\ldots,G\} is expressed as

Yg=ρ(Xd,ρ(Xd1,,ρ(X1,Bg)))+Eg,Y_g = \rho(X_d,\rho(X_{d-1},\ldots,\rho(X_1,B_g))) + E_g,

where ρ\rho is the so called rotated HH-transfrom (see Currie et al., 2006), BgB_g for each gg is a (random) p1××pdp_1\times\cdots\times p_d parameter array and EgE_g is a n1××ndn_1\times \cdots \times n_d error array.

This package solves the penalized soft maximin problem from Lund et al., 2020, given by

minβ1ζlog(g=1Gexp(ζV^g(β)))+λβ1,ζ>0,λ0\min_{\beta}\frac{1}{\zeta}\log\bigg(\sum_{g=1}^G \exp(-\zeta \hat V_g(\beta))\bigg) + \lambda \Vert\beta\Vert_1, \quad \zeta > 0,\lambda \geq 0

for the setup described above. Note that

V^g(β):=1n(2βXvec(Yg)βXXβ),\hat V_g(\beta):=\frac{1}{n}(2\beta^\top X^\top vec(Y_g)-\beta^\top X^\top X\beta),

is the empirical explained variance from Meinshausen and Buhlmann, 2015. See Lund et al., 2020 for more details and references.

For d=1,2,3d=1,2,3, using only the marginal matrices X1,X2,X_1,X_2,\ldots (for d=1d=1 there is only one marginal), the function softmaximin solves the soft maximin problem for a sequence of penalty parameters λmax>>λmin>0\lambda_{max}>\ldots >\lambda_{min}>0.

Two optimization algorithms are implemented, a non-monotone proximal gradient (NPG) algorithm and a fast iterative soft thresholding algorithm (FISTA). We note that this package also solves the problem above with the penalty given by the SCAD penalty, using the multiple step adaptive lasso procedure to loop over the proximal algorithm.

Value

An object with S3 Class "SMMA".

spec

A string indicating the array dimension (1, 2 or 3) and the penalty.

coef

A p1pd×p_1\cdots p_d \times nlambda matrix containing the estimates of the model coefficients (beta) for each lambda-value.

lambda

A vector containing the sequence of penalty values used in the estimation procedure.

Obj

A matrix containing the objective values for each iteration and each model.

df

The number of nonzero coefficients for each value of lambda.

dimcoef

A vector giving the dimension of the model coefficient array β\beta.

dimobs

A vector giving the dimension of the observation (response) array Y.

Iter

A list with 4 items: bt_iter is total number of backtracking steps performed, bt_enter is the number of times the backtracking is initiated, and iter_mat is a vector containing the number of iterations for each lambda value and iter is total number of iterations i.e. sum(Iter).

Author(s)

Adam Lund

Maintainer: Adam Lund, [email protected]

References

Lund, A., S. W. Mogensen and N. R. Hansen (2020). Soft Maximin Estimation for Heterogeneous Array Data. Preprint.

Meinshausen, N and P. Buhlmann (2015). Maximin effects in inhomogeneous large-scale data. The Annals of Statistics. 43, 4, 1801-1830. url = https://doi.org/10.1214/15-AOS1325.

Currie, I. D., M. Durban, and P. H. C. Eilers (2006). Generalized linear array models with applications to multidimensional smoothing. Journal of the Royal Statistical Society. Series B. 68, 259-280. url = http://dx.doi.org/10.1111/j.1467-9868.2006.00543.x.

Examples

##size of example
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4

##marginal design matrices (Kronecker components)
X1 <- matrix(rnorm(n1 * p1), n1, p1)
X2 <- matrix(rnorm(n2 * p2), n2, p2)
X3 <- matrix(rnorm(n3 * p3), n3, p3)
X <- list(X1, X2, X3)

component <- rbinom(p1 * p2 * p3, 1, 0.1)
Beta1 <- array(rnorm(p1 * p2 * p3, 0, 0.1) + component, c(p1 , p2, p3))
mu1 <- RH(X3, RH(X2, RH(X1, Beta1)))
Y1 <- array(rnorm(n1 * n2 * n3), dim = c(n1, n2, n3)) + mu1
Beta2 <- array(rnorm(p1 * p2 * p3, 0, 0.1) + component, c(p1 , p2, p3))
mu2 <- RH(X3, RH(X2, RH(X1, Beta2)))
Y2 <- array(rnorm(n1 * n2 * n3), dim = c(n1, n2, n3)) + mu2
Beta3 <- array(rnorm(p1 * p2 * p3, 0, 0.1) + component, c(p1 , p2, p3))
mu3 <- RH(X3, RH(X2, RH(X1, Beta3)))
Y3 <- array(rnorm(n1 * n2 * n3), dim = c(n1, n2, n3)) + mu3
Beta4 <- array(rnorm(p1 * p2 * p3, 0, 0.1) + component, c(p1 , p2, p3))
mu4 <- RH(X3, RH(X2, RH(X1, Beta4)))
Y4 <- array(rnorm(n1 * n2 * n3), dim = c(n1, n2, n3)) + mu4
Beta5 <- array(rnorm(p1 * p2 * p3, 0, 0.1) + component, c(p1 , p2, p3))
mu5 <- RH(X3, RH(X2, RH(X1, Beta5)))
Y5 <- array(rnorm(n1 * n2 * n3), dim = c(n1, n2, n3)) + mu5

Y <- array(NA, c(dim(Y1), 5))
Y[,,, 1] <- Y1; Y[,,, 2] <- Y2; Y[,,, 3] <- Y3; Y[,,, 4] <- Y4; Y[,,, 5] <- Y5;

fit <- softmaximin(X, Y, zeta = 10, penalty = "lasso", alg = "npg")
Betafit <- fit$coef

modelno <- 15
m <- min(Betafit[ , modelno], c(component))
M <- max(Betafit[ , modelno], c(component))
plot(c(component), type="l", ylim = c(m, M))
lines(Betafit[ , modelno], col = "red")