Package 'SI'

Title: Stochastic Integrating
Description: An implementation of four stochastic methods of integrating in R, including: 1. Stochastic Point Method (or Monte Carlo Method); 2. Mean Value Method; 3. Important Sampling Method; 4. Stratified Sampling Method. It can be used to estimate one-dimension or multi-dimension integration by Monte Carlo methods. And the estimated variance (precision) is given. Reference: Caflisch, R. E. (1998) <doi:10.1017/S0962492900002804>.
Authors: Jinhong Du
Maintainer: Jinhong Du <[email protected]>
License: GPL
Version: 0.2.0
Built: 2024-12-09 06:46:23 UTC
Source: CRAN

Help Index


Important Sampling Method

Description

Important Sampling Method

Usage

SI.ISM(h, g, G_inv, N, min_G = 0, max_G = 1)

Arguments

h

Density function to be integrated

g

Sampling density function

G_inv

The inverse function of sampling distribution function

N

The number of trials

min_G

The min value of G

max_G

The max value of G

Value

I

Approximated integration

Var

Estimated variance

Examples

## To integrate exp(x) from -1 to 1
## Use the sampling density (3/2+x)/3
set.seed(0)
h <- function(x){
    exp(x)
}
N <- 100000
g <- function(x){return((3/2+x)/3)}
G_inv <- function(y){return(sqrt(6*y+1/4)-3/2)}
ISMresult <- SI.ISM(h,g,G_inv,N)
I3 <- ISMresult[[1]]
VarI3 <- ISMresult[[2]]

Mean Value Method

Description

Mean Value Method

Usage

SI.MVM(h, from, to, N)

Arguments

h

Density function to be integrated

from

The start point

to

The end point

N

The number of trials

Value

I

Approximated integration

Var

Estimated variance

Examples

## To integrate exp(x) from -1 to 1
set.seed(0)
h <- function(x){
    exp(x)
}
N <- 100000
MVMresult <- SI.MVM(h,-1,1,N)
I2 <- MVMresult[[1]]
VarI2 <- MVMresult[[2]]

Stochastic Point Method

Description

Stochastic Point Method

Usage

SI.SPM(h, from, to, M, N)

Arguments

h

Density function to be integrated

from

The start point

to

The end point

M

The upper bound of h(x) in [from,to]

N

The number of trials

Value

I

Approximated integration

Var

Estimated variance

Examples

## To integrate exp(x) from -1 to 1
set.seed(0)
h <- function(x){
    exp(x)
}
N <- 100000
SPMresult <- SI.SPM(h,-1,1,exp(1),N)
I1 <- SPMresult[[1]]
VarI1 <- SPMresult[[2]]

Stratified Sampling Method

Description

Stratified Sampling Method

Usage

SI.SSM(h, from, to, level, N)

Arguments

h

Density function to be integrated

from

The start point

to

The end point

level

Stratification, number of intervals

N

The number of trials

Value

I

Approximated integration

Var

Estimated variance

Examples

## To integrate exp(x) from -1 to 1
set.seed(0)
h <- function(x){
    exp(x)
}
N <- 100000
SSMresult <- SI.SSM(h,-1,1,10,N)
I4 <- SSMresult[[1]]
VarI4 <- SSMresult[[2]]