Title: | Robust Periodogram and Periodicity Detection Methods |
---|---|
Description: | Calculates periodograms based on (robustly) fitting periodic functions to light curves (irregularly observed time series, possibly with measurement accuracies, occurring in astroparticle physics). Three main functions are included: RobPer() calculates the periodogram. Outlying periodogram bars (indicating a period) can be detected with betaCvMfit(). Artificial light curves can be generated using the function tsgen(). For more details see the corresponding article: Thieler, Fried and Rathjens (2016), Journal of Statistical Software 69(9), 1-36, <doi:10.18637/jss.v069.i09>. |
Authors: | Anita M. Thieler [aut], Jonathan Rathjens [aut, cre], Roland Fried [aut], Brenton R. Clarke [ctb] (function betaCvMfit()), Uwe Ligges [ctb] (function TK95()), Matias Salibian-Barrera [ctb] (functions FastS() and FastTau()), Gert Willems [ctb] (function FastTau()), Victor Yohai [ctb] (function FastS()) |
Maintainer: | Jonathan Rathjens <[email protected]> |
License: | GPL-3 |
Version: | 1.2.3 |
Built: | 2024-12-12 07:01:28 UTC |
Source: | CRAN |
Calculates periodograms based on (robustly) fitting periodic functions to light curves and other irregulary observed time series and detects high periodogram bars.
Package: | RobPer |
Type: | Package |
Version: | 1.2.2 |
Date: | 2016-03-27 |
License: | GPL-3 |
Light curves occur in astroparticle physics and are irregularly sampled times series
or
consisting of unequally
spaced observation times
, observed values
and possibly measurement accuracies
.
The pattern of the observation times
may be periodic with sampling period
.
The observed values
may possibly contain a periodic fluctuation
with
fluctuation period
. One is interested in finding
. The measurement
accuracies
give information about how precise the
were measured.
They can be interpreted as estimates for the standard deviations of the observed values.
For more details see Thieler et al. (2013) or Thieler, Fried and Rathjens (2016).
This package includes three main functions: RobPer
calculates the periodogram, possibly taking into account measurement accuracies. With betaCvMfit
, outlying periodogram bars (indicating a period) can be detected. This function bases on robustly fitting a distribution using Cramér-von-Mises (CvM) distance minimization (see also Clarke, McKinnon and Riley 2012). The function tsgen
can be used to generate artificial light curves. For more details about the implementation see Thieler, Fried and Rathjens (2016).
A preliminary version of this package is used in Thieler et al. (2013). The FastS
-function
and the FastTau
-function
presented here are slightly changed versions of R-Code published in Salibian-Barrera and Yohai (2006)
and Salibian-Barrera, Willems and Zamar (2008).
The financial support of the DFG (SFB 876 "Providing Information by Resource-Constrained Data Analysis", project C3, and GK 1032 "Statistische Modellbildung") is gratefully acknowledged. We thank the ITMC at TU Dortmund University for providing computer resources on LiDO.
Anita M. Thieler, Jonathan Rathjens and Roland Fried, with contributions from Brenton R. Clarke (see betaCvMfit
), Matias Salibian-Barrera, Gert Willems and Victor Yohai (see FastS
and FastTau
) and Uwe Ligges (see TK95
).
Maintainer: Jonathan Rathjens <[email protected]>
Clarke, B. R., McKinnon, P. L. and Riley, G. (2012): A Fast Robust Method for Fitting Gamma Distributions. Statistical Papers, 53 (4), 1001-1014
Salibian-Barrera, M. and Yohai, V. (2006): A Fast Algorithm for S-Regression Estimates. Journal of Computational and Graphical Statistics, 15 (2), 414-427
Salibian-Barrera, M., Willems, G. and Zamar, R. (2008): The Fast-tau Estimator for Regression. Journal of Computational and Graphical Statistics, 17 (3), 659-682
Thieler, A. M., Backes, M., Fried, R. and Rhode, W. (2013): Periodicity Detection in Irregularly Sampled Light Curves by Robust Regression and Outlier Detection. Statistical Analysis and Data Mining, 6 (1), 73-89
Thieler, A. M., Fried, R. and Rathjens, J. (2016): RobPer: An R Package to Calculate Periodograms for Light Curves Based on Robust Regression. Journal of Statistical Software, 69 (9), 1-36, <doi:10.18637/jss.v069.i09>
# Generate a disturbed light curve: set.seed(22) lightcurve <- tsgen(ttype="sine",ytype="peak" , pf=7, redpart=0.1, s.outlier.fraction=0.1, interval=TRUE, npoints=200, ncycles=25, ps=20, SNR=3, alpha=0) # Plotting the light curve (vertical bars show measurement accuracies) plot(lightcurve[,1], lightcurve[,2], pch=16, cex=0.5, xlab="t", ylab="y", main="a Light Curve") rect(lightcurve[,1], lightcurve[,2]+lightcurve[,3], lightcurve[,1], lightcurve[,2]-lightcurve[,3]) # The lightcurve has a period of 7: plot(lightcurve[,1]%%7, lightcurve[,2], pch=16, cex=0.5, xlab="t", ylab="y", main="Phase Diagram of a Light Curve") rect(lightcurve[,1]%%7, lightcurve[,2]+lightcurve[,3], lightcurve[,1]%%7, lightcurve[,2]-lightcurve[,3]) # Calculate a periodogram of a light curve: PP <- RobPer(lightcurve, model="splines", regression="huber", weighting=FALSE, var1=FALSE, periods=1:50) # Searching for extremely high periodogram bars: betavalues <- betaCvMfit(PP) crit.val <- qbeta((0.95)^(1/50),shape1=betavalues[1], shape2=betavalues[2]) hist(PP, breaks=20, freq=FALSE, ylim=c(0,100), xlim=c(0,0.08), col=8, main ="") betafun <- function(x) dbeta(x, shape1=betavalues[1], shape2=betavalues[2]) curve(betafun, add=TRUE, lwd=2) abline(v=crit.val, lwd=2) # alternatives for fitting beta distributions: # method of moments: par.mom <- betaCvMfit(PP, rob=FALSE, CvM=FALSE) myf.mom <- function(x) dbeta(x, shape1=par.mom[1], shape2=par.mom[2]) curve(myf.mom, add=TRUE, lwd=2, col="red") crit.mom <- qbeta((0.95)^(1/50),shape1=par.mom[1], shape2=par.mom[2]) abline(v=crit.mom, lwd=2, col="red") # robust method of moments par.rob <- betaCvMfit(PP, rob=TRUE, CvM=FALSE) myf.rob <- function(x) dbeta(x, shape1=par.rob[1], shape2=par.rob[2]) curve(myf.rob, add=TRUE, lwd=2, col="blue") crit.rob <- qbeta((0.95)^(1/50),shape1=par.rob[1], shape2=par.rob[2]) abline(v=crit.rob, lwd=2, col="blue") legend("topright", fill=c("black","red","blue"), legend=c("CvM", "moments", "robust moments"), bg="white") box() # Detect fluctuation period: plot(1:50, PP, xlab="Trial Period", ylab="Periodogram", type="l", main="Periodogram fitting periodic splines using M-regression (Huber function)") abline(h=crit.val, lwd=2) text(c(7,14), PP[c(7,14)], c(7,14), adj=1, pos=4) axis(1, at=7, labels=expression(p[f]==7)) # Comparison with non-robust periodogram # (see package vignette, section 5.1 for further graphical analysis) PP2 <- RobPer(lightcurve, model="splines", regression="L2", weighting=FALSE, var1=FALSE, periods=1:50) betavalues2 <- betaCvMfit(PP2) crit.val2 <- qbeta((0.95)^(1/50),shape1=betavalues2[1], shape2=betavalues2[2]) plot(1:50, PP2, xlab="Trial Period", ylab="Periodogram", type="l", main="Periodogram fitting periodic splines using L2-regression") abline(h=crit.val2, lwd=2)
# Generate a disturbed light curve: set.seed(22) lightcurve <- tsgen(ttype="sine",ytype="peak" , pf=7, redpart=0.1, s.outlier.fraction=0.1, interval=TRUE, npoints=200, ncycles=25, ps=20, SNR=3, alpha=0) # Plotting the light curve (vertical bars show measurement accuracies) plot(lightcurve[,1], lightcurve[,2], pch=16, cex=0.5, xlab="t", ylab="y", main="a Light Curve") rect(lightcurve[,1], lightcurve[,2]+lightcurve[,3], lightcurve[,1], lightcurve[,2]-lightcurve[,3]) # The lightcurve has a period of 7: plot(lightcurve[,1]%%7, lightcurve[,2], pch=16, cex=0.5, xlab="t", ylab="y", main="Phase Diagram of a Light Curve") rect(lightcurve[,1]%%7, lightcurve[,2]+lightcurve[,3], lightcurve[,1]%%7, lightcurve[,2]-lightcurve[,3]) # Calculate a periodogram of a light curve: PP <- RobPer(lightcurve, model="splines", regression="huber", weighting=FALSE, var1=FALSE, periods=1:50) # Searching for extremely high periodogram bars: betavalues <- betaCvMfit(PP) crit.val <- qbeta((0.95)^(1/50),shape1=betavalues[1], shape2=betavalues[2]) hist(PP, breaks=20, freq=FALSE, ylim=c(0,100), xlim=c(0,0.08), col=8, main ="") betafun <- function(x) dbeta(x, shape1=betavalues[1], shape2=betavalues[2]) curve(betafun, add=TRUE, lwd=2) abline(v=crit.val, lwd=2) # alternatives for fitting beta distributions: # method of moments: par.mom <- betaCvMfit(PP, rob=FALSE, CvM=FALSE) myf.mom <- function(x) dbeta(x, shape1=par.mom[1], shape2=par.mom[2]) curve(myf.mom, add=TRUE, lwd=2, col="red") crit.mom <- qbeta((0.95)^(1/50),shape1=par.mom[1], shape2=par.mom[2]) abline(v=crit.mom, lwd=2, col="red") # robust method of moments par.rob <- betaCvMfit(PP, rob=TRUE, CvM=FALSE) myf.rob <- function(x) dbeta(x, shape1=par.rob[1], shape2=par.rob[2]) curve(myf.rob, add=TRUE, lwd=2, col="blue") crit.rob <- qbeta((0.95)^(1/50),shape1=par.rob[1], shape2=par.rob[2]) abline(v=crit.rob, lwd=2, col="blue") legend("topright", fill=c("black","red","blue"), legend=c("CvM", "moments", "robust moments"), bg="white") box() # Detect fluctuation period: plot(1:50, PP, xlab="Trial Period", ylab="Periodogram", type="l", main="Periodogram fitting periodic splines using M-regression (Huber function)") abline(h=crit.val, lwd=2) text(c(7,14), PP[c(7,14)], c(7,14), adj=1, pos=4) axis(1, at=7, labels=expression(p[f]==7)) # Comparison with non-robust periodogram # (see package vignette, section 5.1 for further graphical analysis) PP2 <- RobPer(lightcurve, model="splines", regression="L2", weighting=FALSE, var1=FALSE, periods=1:50) betavalues2 <- betaCvMfit(PP2) crit.val2 <- qbeta((0.95)^(1/50),shape1=betavalues2[1], shape2=betavalues2[2]) plot(1:50, PP2, xlab="Trial Period", ylab="Periodogram", type="l", main="Periodogram fitting periodic splines using L2-regression") abline(h=crit.val2, lwd=2)
Robustly fits a Beta distribution to data
using Cramér-von-Mises (CvM) distance minimization.
betaCvMfit(data, CvM = TRUE, rob = TRUE)
betaCvMfit(data, CvM = TRUE, rob = TRUE)
data |
numeric vector: The sample, a Beta distribution is fitted to. |
CvM |
logical: If |
rob |
logical: If |
betaCvMfit
fits a Beta distribution to data
by minimizing the Cramér-von-Mises distance.
Moment estimates of the parameters of the Beta distribution, clipped to positive values, are used as
starting values for the optimization process. They are calculated using
These clipped moment estimates can be returned instead
of CvM-fitted parameters setting CvM = FALSE
.
The Cramér-von-Mises distance is defined as (see Clarke, McKinnon and Riley 2012)
where
is the ordered sample and
the
distribution function of Beta
.
numeric vector: Estimates for the Parameters of a Beta
distribution with mean
.
Adapted from R-Code from Brenton R. Clarke to fit a Gamma distribution (see Clarke, McKinnon and Riley 2012) using Cramér-von-Mises distance minimization. Used in Thieler et al. (2013). See also Thieler, Fried and Rathjens (2016).
Anita M. Thieler, with contributions from Brenton R. Clarke.
Clarke, B. R., McKinnon, P. L. and Riley, G. (2012): A Fast Robust Method for Fitting Gamma Distributions. Statistical Papers, 53 (4), 1001-1014
Thieler, A. M., Backes, M., Fried, R. and Rhode, W. (2013): Periodicity Detection in Irregularly Sampled Light Curves by Robust Regression and Outlier Detection. Statistical Analysis and Data Mining, 6 (1), 73-89
Thieler, A. M., Fried, R. and Rathjens, J. (2016): RobPer: An R Package to Calculate Periodograms for Light Curves Based on Robust Regression. Journal of Statistical Software, 69 (9), 1-36, <doi:10.18637/jss.v069.i09>
See RobPer-package
for an example applying betaCvMfit
to detect valid periods in a periodogram.
# data: set.seed(12) PP <- c(rbeta(45, shape1=4, shape2=15), runif(5, min=0.8, max=1)) hist(PP, freq=FALSE, breaks=30, ylim=c(0,7), xlab="Periodogram bar") # true parameters: myf.true <- function(x) dbeta(x, shape1=4, shape2=15) curve(myf.true, add=TRUE, lwd=2) # method of moments: par.mom <- betaCvMfit(PP, rob=FALSE, CvM=FALSE) myf.mom <- function(x) dbeta(x, shape1=par.mom[1], shape2=par.mom[2]) curve(myf.mom, add=TRUE, lwd=2, col="red") # robust method of moments par.rob <- betaCvMfit(PP, rob=TRUE, CvM=FALSE) myf.rob <- function(x) dbeta(x, shape1=par.rob[1], shape2=par.rob[2]) curve(myf.rob, add=TRUE, lwd=2, col="blue") # CvM distance minimization par.CvM <- betaCvMfit(PP, rob=TRUE, CvM=TRUE) myf.CvM <- function(x) dbeta(x, shape1=par.CvM[1], shape2=par.CvM[2]) curve(myf.CvM, add=TRUE, lwd=2, col="green") # Searching for outliers... abline(v=qbeta((0.95)^(1/50), shape1=par.CvM[1], shape2=par.CvM[2]), col="green") legend("topright", fill=c("black", "green","blue", "red"), legend=c("true", "CvM", "robust moments", "moments")) box()
# data: set.seed(12) PP <- c(rbeta(45, shape1=4, shape2=15), runif(5, min=0.8, max=1)) hist(PP, freq=FALSE, breaks=30, ylim=c(0,7), xlab="Periodogram bar") # true parameters: myf.true <- function(x) dbeta(x, shape1=4, shape2=15) curve(myf.true, add=TRUE, lwd=2) # method of moments: par.mom <- betaCvMfit(PP, rob=FALSE, CvM=FALSE) myf.mom <- function(x) dbeta(x, shape1=par.mom[1], shape2=par.mom[2]) curve(myf.mom, add=TRUE, lwd=2, col="red") # robust method of moments par.rob <- betaCvMfit(PP, rob=TRUE, CvM=FALSE) myf.rob <- function(x) dbeta(x, shape1=par.rob[1], shape2=par.rob[2]) curve(myf.rob, add=TRUE, lwd=2, col="blue") # CvM distance minimization par.CvM <- betaCvMfit(PP, rob=TRUE, CvM=TRUE) myf.CvM <- function(x) dbeta(x, shape1=par.CvM[1], shape2=par.CvM[2]) curve(myf.CvM, add=TRUE, lwd=2, col="green") # Searching for outliers... abline(v=qbeta((0.95)^(1/50), shape1=par.CvM[1], shape2=par.CvM[2]), col="green") legend("topright", fill=c("black", "green","blue", "red"), legend=c("true", "CvM", "robust moments", "moments")) box()
Disturbes a light curve replacing measurement accuracies by outliers and/or observed values by atypical values.
See RobPer-package
for more information about light curves.
disturber(tt, y, s, ps, s.outlier.fraction = 0, interval)
disturber(tt, y, s, ps, s.outlier.fraction = 0, interval)
tt |
numeric vector: Observation times |
y |
numeric vector: Observed values |
s |
numeric vector: Measurement accuracies |
ps |
positive value: Sampling period |
s.outlier.fraction |
numeric value in [0,1]: Defines the proportion of measurement accuracies that is replaced by outliers (see Details). A value of 0 means that no measurement accuracy is replaced by an outlier. |
interval |
logical: If |
This function disturbes the light curve given. It randomly chooses a proportion of
s.outlier.fraction
measurement accuracies and replaces them by
. In case of
interval=TRUE
a time interval within the intervall
is randomly chosen and all observed values belonging to this time interval are replaced by a peak function:
where denotes the density of a normal distribution with mean
and variance
at
.
In case of s.outlier.fraction=0
and interval=FALSE
, y
and s
are returned unchanged.
y |
numeric vector: New |
s |
numeric vector: New |
A former version of this function is used in Thieler et al. (2013). See also Thieler, Fried and Rathjens (2016).
Anita M. Thieler
Thieler, A. M., Backes, M., Fried, R. and Rhode, W. (2013): Periodicity Detection in Irregularly Sampled Light Curves by Robust Regression and Outlier Detection. Statistical Analysis and Data Mining, 6 (1), 73-89
Thieler, A. M., Fried, R. and Rathjens, J. (2016): RobPer: An R Package to Calculate Periodograms for Light Curves Based on Robust Regression. Journal of Statistical Software, 69 (9), 1-36, <doi:10.18637/jss.v069.i09>
Applied in tsgen
(see there for example).
Performs S-Regression using the Fast-S-Algorithm.
FastS(x, y, Scontrol=list(int = FALSE, N = 100, kk = 2, tt = 5, b= .5, cc = 1.547, seed=NULL), beta_gamma)
FastS(x, y, Scontrol=list(int = FALSE, N = 100, kk = 2, tt = 5, b= .5, cc = 1.547, seed=NULL), beta_gamma)
x |
numeric |
y |
numeric vector: |
Scontrol |
list of length seven: control parameters (see Details). |
beta_gamma |
numeric vector: Specifies one parameter candidate of length
|
The Fast-S-Algorithm to
efficiently perform S-Regression was published by
Salibian-Barrera and Yohai (2006). It bases on starting with a set
of N
parameter candidates, locally optimizing them, but
only with kk
iterations, optimizing the tt
best candidates to convergence and then choosing the best
parameter candidate. The rho-function used is the biweight
function with tuning parameter cc
, the value b
is
set to the expected value of the rho-function applied to the
residuals. The default cc=1.547
and b=.5
is
chosen following Rousseeuw and Yohai (1984) to obtain an
approximative breakdown point of 0.5. When setting int
to TRUE
,
this adds an intercept column to the design matrix. For more details see
Salibian-Barrera and Yohai (2006) or Thieler, Fried and Rathjens (2016).
The R-function FastS
used in RobPer
is a slightly
changed version of the R-code published in Salibian-Barrera and Yohai (2006). It was changed in order to work more efficiently,
especially when fitting step functions, and to specify one
parameter candidate in advance. For details see Thieler, Fried and Rathjens (2016).
beta |
numeric vector: Fitted parameter vector. |
scale |
numeric: Value of the objective function |
Matias Salibian-Barrera and Victor Yohai, modified by Anita M. Thieler
Rousseeuw, P. J. and Yohai, V. J. (1984): Robust Regression by Means of S-estimators. In Franke, J., Härdle, W. und Martin, D. (eds.): Robust and Nonlinear Time Series Analysis. Berlin New York: Springer, Lecture Notes in Statistics No. 26, 256-272
Salibian-Barrera, M. and Yohai, V. (2006): A Fast Algorithm for S-Regression Estimates. Journal of Computational and Graphical Statistics, 15 (2), 414-427
Thieler, A. M., Fried, R. and Rathjens, J. (2016): RobPer: An R Package to Calculate Periodograms for Light Curves Based on Robust Regression. Journal of Statistical Software, 69 (9), 1-36, <doi:10.18637/jss.v069.i09>
Applied in RobPer
. See FastTau
for example.
Performs tau-Regression using the Fast-tau-Algorithm.
FastTau(x, y, taucontrol = list(N = 500, kk = 2, tt = 5, rr = 2, approximate = 0), beta_gamma)
FastTau(x, y, taucontrol = list(N = 500, kk = 2, tt = 5, rr = 2, approximate = 0), beta_gamma)
x |
numeric |
y |
numeric vector: |
taucontrol |
list of four integer and one logical value: Control parameters (see Details). |
beta_gamma |
numeric vector: Specifies one parameter candidate of length |
The Fast-tau-Algorithm to efficiently perform tau-Regression was published by Salibian-Barrera, Willems and Zamar (2008).
It bases on starting with a set of N
parameter candidates,
locally optimizing them using kk
iterations,
then optimizing the tt
best candidates to convergence and finally choosing the best parameter candidate. Since calculation of the objective value is computationally expensive, it is possible to approximate it with rr
iteration steps when choosing approximate=TRUE
. For more details see Salibian-Barrera, Willems and Zamar (2008).
The R-function FastTau
used in RobPer
is a slightly changed version of the R-code published in Salibian-Barrera, Willems and Zamar (2008). It was changed in order to work more efficiently, especially when fitting step functions, and to specify one parameter candidate in advance. For details see Thieler, Fried and Rathjens (2016).
beta |
numeric vector: Fitted parameter vector. |
scale |
numeric: Value of the objective function |
Matias Salibian-Barrera and Gert Willems, modified by Anita M. Thieler
Salibian-Barrera, M., Willems, G. and Zamar, R. (2008): The Fast-tau Estimator for Regression. Journal of Computational and Graphical Statistics, 17 (3), 659-682
Thieler, A. M., Fried, R. and Rathjens, J. (2016): RobPer: An R Package to Calculate Periodograms for Light Curves Based on Robust Regression. Journal of Statistical Software, 69 (9), 1-36, <doi:10.18637/jss.v069.i09>
Applied in RobPer
.
set.seed(22) # Generate a disturbed light curve lightcurve <- tsgen(ttype="unif",ytype="sine" , pf=7, redpart=0.1, interval=TRUE, npoints=100, ncycles=10, ps=7, SNR=4, alpha=0) tt <- lightcurve[,1] y <- lightcurve[,2] s <- rep(1,100) # unweighted regression plot(tt, y, type="l", main="Fitting a sine to a disturbed lightcurve") # Fit the true model (a sine of period 7)... designmatrix: X <- Xgen(tt, n=100, s, pp=7, design="sine") # Robust tau-fit: beta_FastTau <- FastTau(X, y)$beta # Robust S-fit: beta_FastS <- FastS(X, y)$beta # Least squares fit: beta_lm <- lm(y~0+X)$coeff # Plot: sin7_fun <- function(t, beta) beta[1]+ beta[2]*sin(t*2*pi/7)+ beta[3]*cos(t*2*pi/7) sin_FastTau <- function(t) sin7_fun(t, beta_FastTau) sin_FastS <- function(t) sin7_fun(t, beta_FastS) sin_lm <- function(t) sin7_fun(t, beta_lm) curve(sin_FastTau, col="green", add=TRUE) curve(sin_FastS, col="blue", add=TRUE, lty=2) curve(sin_lm, col="red", add=TRUE) legend("topleft", fill=c("black", "red", "green", "blue"), legend=c("Light Curve (disturbed)", "Least Squares Fit", "FastTau Fit", "FastS Fit"))
set.seed(22) # Generate a disturbed light curve lightcurve <- tsgen(ttype="unif",ytype="sine" , pf=7, redpart=0.1, interval=TRUE, npoints=100, ncycles=10, ps=7, SNR=4, alpha=0) tt <- lightcurve[,1] y <- lightcurve[,2] s <- rep(1,100) # unweighted regression plot(tt, y, type="l", main="Fitting a sine to a disturbed lightcurve") # Fit the true model (a sine of period 7)... designmatrix: X <- Xgen(tt, n=100, s, pp=7, design="sine") # Robust tau-fit: beta_FastTau <- FastTau(X, y)$beta # Robust S-fit: beta_FastS <- FastS(X, y)$beta # Least squares fit: beta_lm <- lm(y~0+X)$coeff # Plot: sin7_fun <- function(t, beta) beta[1]+ beta[2]*sin(t*2*pi/7)+ beta[3]*cos(t*2*pi/7) sin_FastTau <- function(t) sin7_fun(t, beta_FastTau) sin_FastS <- function(t) sin7_fun(t, beta_FastS) sin_lm <- function(t) sin7_fun(t, beta_lm) curve(sin_FastTau, col="green", add=TRUE) curve(sin_FastS, col="blue", add=TRUE, lty=2) curve(sin_lm, col="red", add=TRUE) legend("topleft", fill=c("black", "red", "green", "blue"), legend=c("Light Curve (disturbed)", "Least Squares Fit", "FastTau Fit", "FastS Fit"))
Generates measurement accuracies, a white noise component depending on them and a second (possibly power law, i.e. red) noise component which does not depend on the measurement accuracies.
For more details see tsgen
or Thieler, Fried and Rathjens (2016).
See RobPer-package
for more information about light curves.
lc_noise(tt, sig, SNR, redpart, alpha = 1.5)
lc_noise(tt, sig, SNR, redpart, alpha = 1.5)
tt |
numeric vector: Observation times given. |
sig |
numeric vector of same length as |
SNR |
positive number: Defines the relation between signal and noise (see |
redpart |
numeric value in [0,1]: Proportion of the power law noise in noise components (see |
alpha |
numeric value: Power law index for the power law noise component (see |
y |
numeric vector: Observed values: signal + noise. |
s |
numeric vector: Measurement accuracies related to the white noise component. |
A former version of this function is used in Thieler et al. (2013).
Anita M. Thieler and Jonathan Rathjens
Thieler, A. M., Backes, M., Fried, R. and Rhode, W. (2013): Periodicity Detection in Irregularly Sampled Light Curves by Robust Regression and Outlier Detection. Statistical Analysis and Data Mining, 6 (1), 73-89
Thieler, A. M., Fried, R. and Rathjens, J. (2016): RobPer: An R Package to Calculate Periodograms for Light Curves Based on Robust Regression. Journal of Statistical Software, 69 (9), 1-36, <doi:10.18637/jss.v069.i09>
Applied in tsgen
(see there for an example), applies TK95_uneq
.
Gamma ray light curve from Markarian 421.
Mrk421
Mrk421
A data frame of three variables, with a time series of length 655 appropriate to RobPer
.
The data in Mrk421 and Mrk501 have been collected from various original sources, combined, and published by Tluczykont et al. (2010) of the Deutsches Elektronen-Synchrotron.
Their sources are data from the experiments:
Whipple (Kerrick et al. 1995; Schubnell et al. 1996; Buckley et al. 1996; Maraschi et al. 1999)
HEGRA (Aharonian et al. 1999a, 1999b; Krawczynski et al. 2001; Aharonian et al. 2001, 2002, 2003, 2004; Kestel 2003)
CAT (Piron 2000; Piron et al. 2001)
HESS (Aharonian et al. 2005, 2006)
MAGIC (Albert et al. 2008; Donnarumma et al. 2009)
VERITAS (Rebillot et al. 2006; Donnarumma et al. 2009)
See Vignette Section 5.3 for example.
Data kindly provided by the Deutsches Elektronen-Synchrotron, Gamma Astronomy group (see Details).
Tluczykont, M., Bernardini, E., Satalecka, K., Clavero, R., Shayduk, M. and Kalekin, O. (2010): Long-term lightcurves from combined united very high energy gamma-ray data. Astronomy & Astrophysics, 524, A48
Their data sources:
Aharonian, F., Akhperjanian, A., Barrio, J., et al. (1999a): The temporal characteristics of the TeV gamma-radiation from Mkn 501 in 1997: I. Data from the stereoscopic imaging atmospheric Cherenkov telescope system of HEGRA. Astronomy & Astrophysics, 342(1), 69
Aharonian, F., Akhperjanian, A., Barrio, J., et al. (1999b): The temporal characteristics of the TeV gamma-emission from Mkn 501 in 1997: II. Results from HEGRA CT1 and CT2. Astronomy & Astrophysics, 349(1), 29
Aharonian, F., Akhperjanian, A., Barrio, J., et al. (2001): The TeV Energy Spectrum of Markarian 501 Measured with the Stereoscopic Telescope System of HEGRA during 1998 and 1999. The Astrophysical Journal, 546(2), 898
Aharonian, F., Akhperjanian, A., Beilicke, M., et al. (2002): Variations of the TeV energy spectrum at different flux levels of Mkn 421 observed with the HEGRA system of Cherenkov telescopes. Astronomy & Astrophysics, 393(1), 89
Aharonian, F., Akhperjanian, A., Beilicke, M., et al. (2003): TeV gamma-ray light curve and energy spectrum of Mkn 421 during its 2001 flare as measured with HEGRA CT1. Astronomy & Astrophysics, 410(3), 813
Aharonian, F., Akhperjanian, A., Beilicke, M., et al. (2004): The Crab Nebula and Pulsar between 500 GeV and 80 TeV: Observations with the HEGRA Stereoscopic Air Cerenkov Telescopes. The Astrophysical Journal, 614(2), 897
Aharonian, F., Akhperjanian, A., Aye, K., et al. (2005): Observations of Mkn 421 in 2004 with HESS at large zenith angles. Astronomy & Astrophysics, 437(1), 95
Aharonian, F., Akhperjanian, A., Bazer-Bachi, A. R., et al. (2006): Observations of the Crab nebula with HESS. Astronomy & Astrophysics, 457(3), 899
Albert, J., Aliu, E., Anderhub, H., et al. (2008): VHE gamma-Ray Observation of the Crab Nebula and its Pulsar with the MAGIC Telescope. The Astrophysical Journal, 674(2), 1037
Buckley, J. H., Akerlof, C. W., Biller, S., et al. (1996): Gamma-Ray Variability of the BL Lacertae Object Markarian 421. The Astrophysical Journal, 472, L9
Donnarumma, I., Vittorini, V., Vercellone, S., et al. (2009): The June 2008 Flare of Markarian 421 from Optical to TeV Energies. The Astrophysical Journal, 691, L13
Kerrick, A. D., Akerlof, C. W., Biller, S. D., et al. (1995): Outburst of TeV photons from Markarian 421. The Astrophysical Journal, 438, L59
Kestel, M. (2003): TeV gamma-Flux and Spectrum of Markarian 421 in 1999/2000 with Hegra CT1 using refined Analysis Methods. Ph.D. Thesis, Technische Universit\"at M\"unchen
Krawczynski, H., Sambruna, R., Kohnle, A., et al. (2001): Simultaneous X-Ray and TeV Gamma-Ray Observation of the TeV Blazar Markarian 421 during 2000 February and May. The Astrophysical Journal, 559(1), 187
Maraschi, L., Fossati, G., Tavecchio, F., et al. (1999): Simultaneous X-Ray and TeV Observations of a Rapid Flare from Markarian 421. The Astrophysical Journal, 526, L81
Piron, F. (2000): \'Etude des propri\'et\'es spectrales et de la variabilit\'e de l'\'emission Gamma sup\'erieure \'e 250 GeV des blazars observ\'es entre Octobre 1996 et F\'evrier 2000 par le t\'elescope \'e effet Tcherenkov athmosph\'erique C.A.T. Ph.D. Thesis, Universit\'e de Paris-Sud
Piron, F., Djannati-Atai, A., Punch, M., et al. (2001): Temporal and spectral gamma-ray properties of Mkn 421 above 250 GeV from CAT observations between 1996 and 2000. Astronomy & Astrophysics, 374(3), 895
Rebillot, P. F., Badran, H. M., Blaylock, G., et al. (2006): Multiwavelength Observations of the Blazar Markarian 421 in 2002 December and 2003 January. The Astrophysical Journal, 641(2), 740
Schubnell, M. S., Akerlof, C. W., Biller, S., et al. (1996): Very High Energy Gamma-Ray Emission from the Blazar Markarian 421. The Astrophysical Journal, 460, 644
Gamma ray light curve from Markarian 501.
Mrk501
Mrk501
A data frame of three variables, with a time series of length 210 appropriate to RobPer
.
The data in Mrk421 and Mrk501 have been collected from various original sources, combined, and published by Tluczykont et al. (2010) of the Deutsches Elektronen-Synchrotron.
Their sources are data from the experiments:
Whipple (Kerrick et al. 1995; Schubnell et al. 1996; Buckley et al. 1996; Maraschi et al. 1999)
HEGRA (Aharonian et al. 1999a, 1999b; Krawczynski et al. 2001; Aharonian et al. 2001, 2002, 2003, 2004; Kestel 2003)
CAT (Piron 2000; Piron et al. 2001)
HESS (Aharonian et al. 2005, 2006)
MAGIC (Albert et al. 2008; Donnarumma et al. 2009)
VERITAS (Rebillot et al. 2006; Donnarumma et al. 2009)
See Vignette Section 5.3 for example.
Data kindly provided by the Deutsches Elektronen-Synchrotron, Gamma Astronomy group (see Details).
Tluczykont, M., Bernardini, E., Satalecka, K., Clavero, R., Shayduk, M. and Kalekin, O. (2010): Long-term lightcurves from combined united very high energy gamma-ray data. Astronomy & Astrophysics, 524, A48
Their data sources:
Aharonian, F., Akhperjanian, A., Barrio, J., et al. (1999a): The temporal characteristics of the TeV gamma-radiation from Mkn 501 in 1997: I. Data from the stereoscopic imaging atmospheric Cherenkov telescope system of HEGRA. Astronomy & Astrophysics, 342(1), 69
Aharonian, F., Akhperjanian, A., Barrio, J., et al. (1999b): The temporal characteristics of the TeV gamma-emission from Mkn 501 in 1997: II. Results from HEGRA CT1 and CT2. Astronomy & Astrophysics, 349(1), 29
Aharonian, F., Akhperjanian, A., Barrio, J., et al. (2001): The TeV Energy Spectrum of Markarian 501 Measured with the Stereoscopic Telescope System of HEGRA during 1998 and 1999. The Astrophysical Journal, 546(2), 898
Aharonian, F., Akhperjanian, A., Beilicke, M., et al. (2002): Variations of the TeV energy spectrum at different flux levels of Mkn 421 observed with the HEGRA system of Cherenkov telescopes. Astronomy & Astrophysics, 393(1), 89
Aharonian, F., Akhperjanian, A., Beilicke, M., et al. (2003): TeV gamma-ray light curve and energy spectrum of Mkn 421 during its 2001 flare as measured with HEGRA CT1. Astronomy & Astrophysics, 410(3), 813
Aharonian, F., Akhperjanian, A., Beilicke, M., et al. (2004): The Crab Nebula and Pulsar between 500 GeV and 80 TeV: Observations with the HEGRA Stereoscopic Air Cerenkov Telescopes. The Astrophysical Journal, 614(2), 897
Aharonian, F., Akhperjanian, A., Aye, K., et al. (2005): Observations of Mkn 421 in 2004 with HESS at large zenith angles. Astronomy & Astrophysics, 437(1), 95
Aharonian, F., Akhperjanian, A., Bazer-Bachi, A. R., et al. (2006): Observations of the Crab nebula with HESS. Astronomy & Astrophysics, 457(3), 899
Albert, J., Aliu, E., Anderhub, H., et al. (2008): VHE gamma-Ray Observation of the Crab Nebula and its Pulsar with the MAGIC Telescope. The Astrophysical Journal, 674(2), 1037
Buckley, J. H., Akerlof, C. W., Biller, S., et al. (1996): Gamma-Ray Variability of the BL Lacertae Object Markarian 421. The Astrophysical Journal, 472, L9
Donnarumma, I., Vittorini, V., Vercellone, S., et al. (2009): The June 2008 Flare of Markarian 421 from Optical to TeV Energies. The Astrophysical Journal, 691, L13
Kerrick, A. D., Akerlof, C. W., Biller, S. D., et al. (1995): Outburst of TeV photons from Markarian 421. The Astrophysical Journal, 438, L59
Kestel, M. (2003): TeV gamma-Flux and Spectrum of Markarian 421 in 1999/2000 with Hegra CT1 using refined Analysis Methods. Ph.D. Thesis, Technische Universit\"at M\"unchen
Krawczynski, H., Sambruna, R., Kohnle, A., et al. (2001): Simultaneous X-Ray and TeV Gamma-Ray Observation of the TeV Blazar Markarian 421 during 2000 February and May. The Astrophysical Journal, 559(1), 187
Maraschi, L., Fossati, G., Tavecchio, F., et al. (1999): Simultaneous X-Ray and TeV Observations of a Rapid Flare from Markarian 421. The Astrophysical Journal, 526, L81
Piron, F. (2000): \'Etude des propri\'et\'es spectrales et de la variabilit\'e de l'\'emission Gamma sup\'erieure \'e 250 GeV des blazars observ\'es entre Octobre 1996 et F\'evrier 2000 par le t\'elescope \'e effet Tcherenkov athmosph\'erique C.A.T. Ph.D. Thesis, Universit\'e de Paris-Sud
Piron, F., Djannati-Atai, A., Punch, M., et al. (2001): Temporal and spectral gamma-ray properties of Mkn 421 above 250 GeV from CAT observations between 1996 and 2000. Astronomy & Astrophysics, 374(3), 895
Rebillot, P. F., Badran, H. M., Blaylock, G., et al. (2006): Multiwavelength Observations of the Blazar Markarian 421 in 2002 December and 2003 January. The Astrophysical Journal, 641(2), 740
Schubnell, M. S., Akerlof, C. W., Biller, S., et al. (1996): Very High Energy Gamma-Ray Emission from the Blazar Markarian 421. The Astrophysical Journal, 460, 644
Calculates a periodogram by fitting a periodic function to a light curve, using a possibly robust regression technique and possibly taking into account measurement accuracies.
See RobPer-package
for more information about light curves. For a lot of more details see Thieler, Fried and Rathjens (2016) and Thieler et al. (2013).
RobPer(ts, weighting, periods, regression, model, steps = 10, tol = 1e-03, var1 = weighting, genoudcontrol = list(pop.size = 50, max.generations = 50, wait.generations = 5), LTSopt =TRUE, taucontrol = list(N = 100, kk = 2, tt = 5, rr = 2, approximate = FALSE), Scontrol=list(N = ifelse(weighting,200,50), kk = 2, tt = 5, b=.5, cc = 1.547, seed = NULL) )
RobPer(ts, weighting, periods, regression, model, steps = 10, tol = 1e-03, var1 = weighting, genoudcontrol = list(pop.size = 50, max.generations = 50, wait.generations = 5), LTSopt =TRUE, taucontrol = list(N = 100, kk = 2, tt = 5, rr = 2, approximate = FALSE), Scontrol=list(N = ifelse(weighting,200,50), kk = 2, tt = 5, b=.5, cc = 1.547, seed = NULL) )
ts |
dataframe or matrix with three (or two) numeric columns containing the light curve to be analyzed:
observation times (first column), observed values (second column), measurement accuracies (thirs column).
If it is intended to calculate the periodogram of a time series without measurement accuracies ( |
weighting |
logical: Should measurement accuracies be taken into account performing weighted regression? |
periods |
vector of positive numeric values: Trial periods. |
regression |
character string specifying the regression method used: Possible choices are
|
model |
character string specifying the periodic function fitted to the light curve: Possible choices are
|
steps |
integer value: Number of steps per cycle for the periodic step function(s). |
tol |
(small) positive number: Precision for convergence criteria. Used in case of |
var1 |
logical: Should variance estimate be set to 1 in case of weighted M-regression? |
genoudcontrol |
list of three integers |
LTSopt |
logical: In case of LTS-regression, should regression result of |
taucontrol |
list of four integer values |
Scontrol |
list of three integers |
For each trial period, a periodic function (defined by model
) is fitted to the light curve using regression technique regression
. The periodogram bar is the coefficient of determination. In case of model="2step"
, two different step functions with opposed jumping times are fitted separately and the periodogram bar is the mean of both coefficients of determination. For a lot of more details see Thieler, Fried and Rathjens (2016) and Thieler et al. (2013).
numeric vector: Periodogram bars related to the trial periods.
Performing weighting = FALSE
, regression="L2"
, model="sine"
on a equidistantly sampled time series is equivalent to calculating the standard periodogram of Fourier analysis, see Example.
Performing regression="L2"
, model="sine"
is equivalent to calculating a Generalized Lomb-Scargle periodogram (see Zechmeister and Kürster 2009).
Performing regression="L2"
, model="step"
is equivalent to calculating an Epoch Folding (Leahy et al. 1983) or Anaysis of Variance (Schwarzenberg-Czerny 1989) periodogram.
Performing regression="L2"
, model="2step"
is equivalent to calculating a Phase Dispersion Minimization periodogram (Stellingwerf 1978).
A former version of this function is used in Thieler et al. (2013). For more equivalences see there.
Anita M. Thieler, Jonathan Rathjens and Roland Fried
Leahy, D. A., Darbro, W., Elsner, R. F., Weisskopf, M. C., Kahn, S., Sutherland, P. G. and Grindlay, J. E. (1983): On Searches for Pulsed Emission with Application to Four Globular Cluster X-ray Sources-NGC 1851, 6441, 6624, and 6712. The Astrophysical Journal, 266 (1), 160-170
Mebane Jr., W. R. and Sekhon, J. S. (2011): Genetic Optimization Using Derivatives: The rgenoud Package for R. Journal of Statistical Software, 42 (11), 1-26
Salibian-Barrera, M. and Yohai, V. (2006): A Fast Algorithm for S-Regression Estimates. Journal of Computational and Graphical Statistics, 15 (2), 414-427
Salibian-Barrera, M., Willems, G. and Zamar, R. (2008): The Fast-tau Estimator for Regression. Journal of Computational and Graphical Statistics, 17 (3), 659-682
Stellingwerf, R. F. (1978): Period Determination Using Phase Dispersion Minimization. The Astrophysical Journal, 224, 953-960
Thieler, A. M., Backes, M., Fried, R. and Rhode, W. (2013): Periodicity Detection in Irregularly Sampled Light Curves by Robust Regression and Outlier Detection. Statistical Analysis and Data Mining, 6 (1), 73-89
Thieler, A. M., Fried, R. and Rathjens, J. (2016): RobPer: An R Package to Calculate Periodograms for Light Curves Based on Robust Regression. Journal of Statistical Software, 69 (9), 1-36, <doi:10.18637/jss.v069.i09>
Zechmeister, M. and Kürster, M. (2009): The Generalised Lomb-Scargle Periodogram. A New Formalism for the Floating-Mean and Keplerian Periodograms. Astronomy and Astrophysics, 496 (2), 577-584
Applies FastS
and FastTau
, Xgen
, examples in RobPer-package
and TK95_uneq
.
# For more examples see RobPer-package and TK95_uneq! # Example to show the equivalence between the periodogram from Fourier analysis # and the Lomb-Scargle periodogram in case of equidistant sampling and equal weighting: set.seed(7) n <- 120 # equidistant time series: zr <- tsgen(ttype="equi", ytype="const", pf=1, redpart= 0, s.outlier.fraction=0.2, interval=FALSE, npoints=n, ncycles=n, ps=1, SNR=1, alpha=1.5) # periodogram of Fourier analysis PP_konv <- spec.pgram(zr[,2], taper = 0,pad = 0, fast = FALSE, demean = TRUE, detrend = TRUE, plot = TRUE) # Lomb-Scargle periodogram - Note: Due to the regression ansatz, # RobPer is not able to compute period 2 in this case. PP_new <- RobPer(ts=zr, weighting=FALSE, periods=1/PP_konv$freq, regression="L2", model="sine") plot(PP_konv$freq, PP_konv$spec, ylab="periodogram", xlab="frequency", main="Comparison of RobPer(...regression='LS', model='sine') and spec.pgram") points(PP_konv$freq, PP_new*var(zr[,2])*n/2, type="l") legend("top",lty=c(1,0), pch=c(-5,1), legend=c("RobPer*var(y)*n/2", "spec.pgram")) # Due to different ways of computation, the scaled periodograms are not exactly # identical, but show very similar behavior.
# For more examples see RobPer-package and TK95_uneq! # Example to show the equivalence between the periodogram from Fourier analysis # and the Lomb-Scargle periodogram in case of equidistant sampling and equal weighting: set.seed(7) n <- 120 # equidistant time series: zr <- tsgen(ttype="equi", ytype="const", pf=1, redpart= 0, s.outlier.fraction=0.2, interval=FALSE, npoints=n, ncycles=n, ps=1, SNR=1, alpha=1.5) # periodogram of Fourier analysis PP_konv <- spec.pgram(zr[,2], taper = 0,pad = 0, fast = FALSE, demean = TRUE, detrend = TRUE, plot = TRUE) # Lomb-Scargle periodogram - Note: Due to the regression ansatz, # RobPer is not able to compute period 2 in this case. PP_new <- RobPer(ts=zr, weighting=FALSE, periods=1/PP_konv$freq, regression="L2", model="sine") plot(PP_konv$freq, PP_konv$spec, ylab="periodogram", xlab="frequency", main="Comparison of RobPer(...regression='LS', model='sine') and spec.pgram") points(PP_konv$freq, PP_new*var(zr[,2])*n/2, type="l") legend("top",lty=c(1,0), pch=c(-5,1), legend=c("RobPer*var(y)*n/2", "spec.pgram")) # Due to different ways of computation, the scaled periodograms are not exactly # identical, but show very similar behavior.
Generates irregularly sampled observation times with a periodic sampling pattern
sampler(ttype, npoints, ncycles, ps = 1)
sampler(ttype, npoints, ncycles, ps = 1)
ttype |
character string: Specifying the sampling pattern. Possible options: |
npoints |
integer: Sample size |
ncycles |
integer: Number of sampling cycles |
ps |
positive numeric value: Sampling period |
sampler
generates observation times with a periodic sampling of period
. Four distributions are possible:
In case of
ttype="equi"
, the are equidistantly sampled with
.
For
ttype="unif"
, the observation times are independently drawn form a uniform distribution on .
Both these sampling schemes are aperiodic, the sampling period
only influences the length
of the series of observation times.
For ttype="sine"
and ttype="trian"
, observation cycles are drawn from a uniform distribution on
and observation phases
are drawn from a density
(for ttype="sine"
) or
(for ttype="trian"
).
The unsorted observation times are then generated using
Separately sampling observation cycle and phase was proposed by Hall and Yin (2003). For more details see Thieler, Fried and Rathjens (2016) or Thieler et al. (2013).
numeric vector: Ordered observation times.
To sample from , the function
BBsolve
, package BB
, is used.
A former version of this function is used in Thieler et al. (2013).
Anita M. Thieler and Jonathan Rathjens
Hall, P. and Yin, J. (2003): Nonparametric Methods for Deconvolving Multiperiodic Functions. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65 (4), 869-886
Thieler, A. M., Backes, M., Fried, R. and Rhode, W. (2013): Periodicity Detection in Irregularly Sampled Light Curves by Robust Regression and Outlier Detection. Statistical Analysis and Data Mining, 6 (1), 73-89
Thieler, A. M., Fried, R. and Rathjens, J. (2016): RobPer: An R Package to Calculate Periodograms for Light Curves Based on Robust Regression. Journal of Statistical Software, 69 (9), 1-36, <doi:10.18637/jss.v069.i09>
Applied in tsgen
(see there for an example).
Calculates periodically varying values for given observation times.
signalgen(tt, ytype, pf = 1)
signalgen(tt, ytype, pf = 1)
tt |
numeric vector: Observation times |
ytype |
character string: Specifying the shape of the periodic fluctuation (see Details). Possible choices are |
pf |
positive numeric value: Fluctuation period |
The values with fluctuation period
and related to observation times
are generated using
Depending on ytype
(see above), is defined as:
with =
(t%%1)/pf
. means that there is no (periodic) fluctuation,
defines a sine function,
defines a triangular shaped periodic function and
a periodically repeating peak.
numeric vector: Values .
This function is used in Thieler et al. (2013). See also Thieler, Fried and Rathjens (2016).
Anita M. Thieler and Jonathan Rathjens
Thieler, A. M., Backes, M., Fried, R. and Rhode, W. (2013): Periodicity Detection in Irregularly Sampled Light Curves by Robust Regression and Outlier Detection. Statistical Analysis and Data Mining, 6 (1), 73-89
Thieler, A. M., Fried, R. and Rathjens, J. (2016): RobPer: An R Package to Calculate Periodograms for Light Curves Based on Robust Regression. Journal of Statistical Software, 69 (9), 1-36, <doi:10.18637/jss.v069.i09>
Applied in tsgen
(see there for an example).
Light curve for gamma ray emission of the source GROJ0422+32.
star_groj0422.32
star_groj0422.32
A matrix of three columns, with a time series of length 729 appropriate to RobPer
.
Data obtained by the BATSE Earth Occultation Monitoring project of the NSSTC, available from https://gammaray.nsstc.nasa.gov/batse/occultation/. The experiments are described in Harmon et al. (2002) and Harmon et al. (2004).
See Vignette Section 5.2 for example.
Data kindly provided by the National Aeronautics and Space Administration (NASA); National Space, Science, and Technology Center (NSSTC); Gamma-Ray Astrophysics Team (see Details).
Harmon, B. A., Fishman, G. J., Wilson, C. A., Paciesas, W. S., Zhang, S. N., Finger, M. H., Koshut, T. M., McCollough, M. L., Robinson, C. R. and Rubin, B. C. (2002): The Burst and Transient Source Experiment Earth Occultation Technique. The Astrophysical Journal Supplement Series, 138 (1), 149-183
Harmon, B. A., Wilson, C. A., Fishman, G. J., Connaughton, V., Henze, W., Paciesas, W. S., Finger, M. H., McCollough, M. L., Sahi, M., Peterson, B., Shrader, C. R., Grindlay, J. E. and Barret, D. (2004): The Burst and Transient Source Experiment (BATSE) Earth Occultation Catalog of Low-Energy Gamma-Ray Sources. The Astrophysical Journal Supplement Series, 154 (2), 585-622
Generates an equidistant time series of power law noise according to Timmer and König (1995).
TK95(N = 1000, alpha = 1.5)
TK95(N = 1000, alpha = 1.5)
N |
integer value: Length of the generated time series. |
alpha |
numeric value: Exponent of the power law. White noise has exponent 0, flicker noise (pink noise) has exponent 1, brown noise has exponent 2. |
numeric vector: The generated time series.
This function is used in Thieler et al. (2013). See also Thieler, Fried and Rathjens (2016).
Anita M. Thieler with contributions of Uwe Ligges
Thieler, A. M., Backes, M., Fried, R. and Rhode, W. (2013): Periodicity Detection in Irregularly Sampled Light Curves by Robust Regression and Outlier Detection. Statistical Analysis and Data Mining, 6 (1), 73-89
Thieler, A. M., Fried, R. and Rathjens, J. (2016): RobPer: An R Package to Calculate Periodograms for Light Curves Based on Robust Regression. Journal of Statistical Software, 69 (9), 1-36, <doi:10.18637/jss.v069.i09>
Timmer, J. and König, M. (1995) On Generating Power Law Noise. Astronomy and Astrophysics, 300, 707-710
Applied in tsgen
by TK95_uneq
.
set.seed(31) # Generate power law noise with exponent alpha=1.5: y <- TK95(N=2000, alpha=1.5) tt <- seq(along=y) # Show time series: plot(tt,y, type="l", main="Power Law Noise", xlab="t", ylab="y") # Plot Fourier periodogram with log-axes: temp <- spectrum(y, plot=FALSE) plot(log(temp$freq), log(temp$spec), main="log-log-Fourier periodogram", xlab="log(frequency)", ylab="log(periodogram)") # A line with slope -alpha for comparison abline(a=8, b=-1.5, col="red") text(-2, 12, expression(alpha==1.5), col="red")
set.seed(31) # Generate power law noise with exponent alpha=1.5: y <- TK95(N=2000, alpha=1.5) tt <- seq(along=y) # Show time series: plot(tt,y, type="l", main="Power Law Noise", xlab="t", ylab="y") # Plot Fourier periodogram with log-axes: temp <- spectrum(y, plot=FALSE) plot(log(temp$freq), log(temp$spec), main="log-log-Fourier periodogram", xlab="log(frequency)", ylab="log(periodogram)") # A line with slope -alpha for comparison abline(a=8, b=-1.5, col="red") text(-2, 12, expression(alpha==1.5), col="red")
Generates power law noise using TK95
according to Timmer and König (1995), with modifications proposed in Uttley, McHardy and Papadakis (2002) for given irregular observation times.
TK95_uneq(tt, alpha = 1.5)
TK95_uneq(tt, alpha = 1.5)
tt |
numeric vector: Observation times given. |
alpha |
numeric value: exponent of the power law. White noise has exponent 0, flicker noise (pink noise) has exponent 1, brown noise has exponent 2. |
numeric vector: Noise values related to the observation times.
This function is applied in Thieler et al. (2013). See also Thieler, Fried and Rathjens (2016).
Anita M. Thieler
Thieler, A. M., Backes, M., Fried, R. and Rhode, W. (2013): Periodicity Detection in Irregularly Sampled Light Curves by Robust Regression and Outlier Detection. Statistical Analysis and Data Mining, 6 (1), 73-89
Thieler, A. M., Fried, R. and Rathjens, J. (2016): RobPer: An R Package to Calculate Periodograms for Light Curves Based on Robust Regression. Journal of Statistical Software, 69 (9), 1-36, <doi:10.18637/jss.v069.i09>
Timmer, J. and König, M. (1995) On Generating Power Law Noise. Astronomy and Astrophysics, 300, 707-710
Uttley, P., McHardy, I. M. and Papadakis, I. E. (2002) Measuring the Broad-Band Power Spectra of Active Galactic Nuclei with RXTE. Monthly Notices of the Royal Astronomical Society, 332 (1), 231-250
Applies TK95
, applied in tsgen
.
# Compare with example in TK95 to see that the power law is much more clear in # equally sampled data! set.seed(31) # Generate power law noise with exponent alpha=1.5: tt <- sampler(ttype="unif", ps=1, ncycles=2000, npoints=2000) y <- TK95_uneq(tt, alpha=1.5) # Show time series: plot(tt,y, type="l", main="Irregular Power Law Noise", xlab="t", ylab="y") # Plot Lomb-Scargle periodogram with log-axes: temp <- RobPer(cbind(tt,y,1), weighting=FALSE, model="sine", regression="L2", periods=2000/seq(2, 1000, 2)) plot(log(seq(2, 1000, 2)/2000), log(temp), main="log-log-Fourier periodogram", xlab="log(frequency)", ylab="log(periodogram)") title(main= "Power Law not so obvious", cex.main=0.8, line=0.5) # A line with slope -alpha for comparison abline(a=-10, b=-1.5, col="red") text(-5, -1.5, expression(alpha==1.5), col="red")
# Compare with example in TK95 to see that the power law is much more clear in # equally sampled data! set.seed(31) # Generate power law noise with exponent alpha=1.5: tt <- sampler(ttype="unif", ps=1, ncycles=2000, npoints=2000) y <- TK95_uneq(tt, alpha=1.5) # Show time series: plot(tt,y, type="l", main="Irregular Power Law Noise", xlab="t", ylab="y") # Plot Lomb-Scargle periodogram with log-axes: temp <- RobPer(cbind(tt,y,1), weighting=FALSE, model="sine", regression="L2", periods=2000/seq(2, 1000, 2)) plot(log(seq(2, 1000, 2)/2000), log(temp), main="log-log-Fourier periodogram", xlab="log(frequency)", ylab="log(periodogram)") title(main= "Power Law not so obvious", cex.main=0.8, line=0.5) # A line with slope -alpha for comparison abline(a=-10, b=-1.5, col="red") text(-5, -1.5, expression(alpha==1.5), col="red")
This function generates light curves (special time series) with unequally sampled observation times, different periodicities both in sampling and observed values, with white and power law (red) noise in the observed values and possibly disturbed observations.
See RobPer-package
for more information about light curves and also Thieler, Fried and Rathjens (2016) for more details in general.
tsgen(ttype, ytype, pf, redpart, s.outlier.fraction = 0, interval, npoints, ncycles, ps, SNR, alpha = 1.5)
tsgen(ttype, ytype, pf, redpart, s.outlier.fraction = 0, interval, npoints, ncycles, ps, SNR, alpha = 1.5)
ttype |
character string: Specifying the sampling pattern. Possible choices are |
ytype |
character string: Specifying the shape of the periodic fluctuation with period |
pf |
positive number: Period |
redpart |
numeric value in [0,1]: Proportion of the power law noise in noise components (see Details). The generated measurement accuracies |
s.outlier.fraction |
numeric value in [0,1]: Fraction of measurement accuracies to be replaced by outliers. A value of 0 means that no measurement accuracy is replaced by an outlier (for more details see |
interval |
logical: If |
npoints |
integer value: Defines the sample size |
ncycles |
integer value: number |
ps |
positive number: Sampling period |
SNR |
positive number: Defines the relation between signal |
alpha |
numeric value: Power law index |
tsgen
generates an artificial light curve consisting of observation times , observation values
and measurement accuracies
. It calls several subfunctions (see there for details):
sampler
is used to sample observation times in the interval
with a possibly periodic sampling of period
.
signalgen
generates periodically varying values at time points
with fluctuation period
.
lc_noise
samples measurement accuracies
from a Gamma(3,10)-distribution and a white noise component
with from
distributions. A second noise component
does not depend on the
. It is generated as red noise, i.e. following a power law with power law index
. For white noise choose
, for flicker noise (pink noise)
, for brown noise
. The power law noise is generated using
TK95_uneq
and TK95
. The noise components are scaled so that the variance of the has approximately the proportion
redpart
in the overall noise variance and that SNR
is the ratio . The observed values are set to
.
disturber
disturbes the light curve replacing measurement accuracies
by outliers (if
s.outlier.fraction>0
) and observed values
by atypical values (if
interval=TRUE
).
In case of s.outlier.fraction=0
and interval=FALSE
, the function returns all values unchanged.
tt |
numeric vector: Generated observation times |
y |
numeric vector: Generated observation values |
s |
numeric vector: Generated measurement accuracies |
Note that the white noise components' variances are exactly , so the
are no estimates, but true values. In this sense, the measurement accuracies of a generated light curve are more informative than for real light curves, where the measurement accuracies are estimates, see Thieler et al. (2013), where also a former version of this function is applied.
To lower the informativity of the measurement accuracies, set redpart
to a strictly positive value, possibly with alpha=0
if no other noise components than white ones are required.
Anita M. Thieler and Jonathan Rathjens
Thieler, A. M., Backes, M., Fried, R. and Rhode, W. (2013): Periodicity Detection in Irregularly Sampled Light Curves by Robust Regression and Outlier Detection. Statistical Analysis and Data Mining, 6 (1), 73-89
Thieler, A. M., Fried, R. and Rathjens, J. (2016): RobPer: An R Package to Calculate Periodograms for Light Curves Based on Robust Regression. Journal of Statistical Software, 69 (9), 1-36, <doi:10.18637/jss.v069.i09>
Applies sampler
, signalgen
, lc_noise
, disturber
, TK95
, TK95_uneq
.
# Generate a light curve: set.seed(22) lightcurve<- tsgen(ttype="sine", ytype="peak" , pf=7, redpart=0.1, s.outlier.fraction=0, interval=FALSE, npoints=200, ncycles=100, ps=5, SNR=3, alpha=0) # Or do it step by step: # First sampling observation times: set.seed(22) tt <- sampler(ttype="sine", npoints=200, ncycles=100, ps=5) # show obviously irregular observation times as grey vertical bars on a red time line: plot(tt, tt*0, type="n", axes=FALSE, xlab="Observation Times", ylab="") abline(v=tt, col="grey") axis(1, pos=0, col="red", col.axis="red") # Sampling period is 5, look at observation times modulo 10: hist(tt%%5, xlab="Observation time modulo 5", main="Sine Distribution for the phase (tt modulo 5)", freq=FALSE) dsin <- function(tt) 0.2*(sin(2*pi*tt/5)+1) curve(dsin, add=TRUE) # Then generate periodic fluctuation yf <- signalgen(tt, ytype="peak", pf=7) plot(tt, yf, xlab="Observation Times", ylab="Periodic Fluctuation") plot(tt%%7, yf, main="Phase Diagram (time modulo 7)", xlab="Observation time modulo 7", ylab="Periodic Fluctuation") # Add noise and scale signal to the right SNR temp <- lc_noise(tt,sig=yf, SNR=3, redpart=0.1, alpha=0) y <- temp$y s <- temp$s # Plotting the light curve (vertical bars show measurement accuracies) plot(tt, y, pch=16, cex=0.5, xlab="t", ylab="y", main="a Light Curve") rect(tt, y+s, tt, y-s) # The lightcurve has period 7: plot(tt%%7, y, pch=16, cex=0.5, xlab="t", ylab="y", main="Phase Diagram of a Light Curve") rect(tt%%7, y+s, tt%%7, y-s) # replace measurement accuracies by tiny outliers or include a peak temp <- disturber(tt,y,s,ps=5, s.outlier.fraction=0, interval=FALSE) # Phase diagram (observation times modulo 10) plot(tt%%7, temp$y, pch=16, cex=0.5, xlab="t", ylab="y", main="Phase Diagram of a Light Curve") rect(tt%%7, temp$y+temp$s, tt%%7, temp$y-temp$s) # The result is the same: all(cbind(tt,temp$y,temp$s)==lightcurve)
# Generate a light curve: set.seed(22) lightcurve<- tsgen(ttype="sine", ytype="peak" , pf=7, redpart=0.1, s.outlier.fraction=0, interval=FALSE, npoints=200, ncycles=100, ps=5, SNR=3, alpha=0) # Or do it step by step: # First sampling observation times: set.seed(22) tt <- sampler(ttype="sine", npoints=200, ncycles=100, ps=5) # show obviously irregular observation times as grey vertical bars on a red time line: plot(tt, tt*0, type="n", axes=FALSE, xlab="Observation Times", ylab="") abline(v=tt, col="grey") axis(1, pos=0, col="red", col.axis="red") # Sampling period is 5, look at observation times modulo 10: hist(tt%%5, xlab="Observation time modulo 5", main="Sine Distribution for the phase (tt modulo 5)", freq=FALSE) dsin <- function(tt) 0.2*(sin(2*pi*tt/5)+1) curve(dsin, add=TRUE) # Then generate periodic fluctuation yf <- signalgen(tt, ytype="peak", pf=7) plot(tt, yf, xlab="Observation Times", ylab="Periodic Fluctuation") plot(tt%%7, yf, main="Phase Diagram (time modulo 7)", xlab="Observation time modulo 7", ylab="Periodic Fluctuation") # Add noise and scale signal to the right SNR temp <- lc_noise(tt,sig=yf, SNR=3, redpart=0.1, alpha=0) y <- temp$y s <- temp$s # Plotting the light curve (vertical bars show measurement accuracies) plot(tt, y, pch=16, cex=0.5, xlab="t", ylab="y", main="a Light Curve") rect(tt, y+s, tt, y-s) # The lightcurve has period 7: plot(tt%%7, y, pch=16, cex=0.5, xlab="t", ylab="y", main="Phase Diagram of a Light Curve") rect(tt%%7, y+s, tt%%7, y-s) # replace measurement accuracies by tiny outliers or include a peak temp <- disturber(tt,y,s,ps=5, s.outlier.fraction=0, interval=FALSE) # Phase diagram (observation times modulo 10) plot(tt%%7, temp$y, pch=16, cex=0.5, xlab="t", ylab="y", main="Phase Diagram of a Light Curve") rect(tt%%7, temp$y+temp$s, tt%%7, temp$y-temp$s) # The result is the same: all(cbind(tt,temp$y,temp$s)==lightcurve)
This function is used to create the designmatrices needed in RobPer
to fit periodic functions. See RobPer
or Thieler, Fried and Rathjens (2016) for Details.
Xgen(tt, n, s, pp, design, steps = 10)
Xgen(tt, n, s, pp, design, steps = 10)
tt |
real-valued vector of length |
n |
integer: Sample size. |
s |
numeric vector of length |
pp |
positive number: Trial period. |
design |
character string: Shape of the periodic function to be fitted, possible choices are |
steps |
Number of steps for the step functions |
numeric matrix: Designmatrix.
A former version of this function is used in Thieler et al. (2013).
Anita M. Thieler and Jonathan Rathjens
Thieler, A. M., Backes, M., Fried, R. and Rhode, W. (2013): Periodicity Detection in Irregularly Sampled Light Curves by Robust Regression and Outlier Detection. Statistical Analysis and Data Mining, 6 (1), 73-89
Thieler, A. M., Fried, R. and Rathjens, J. (2016): RobPer: An R Package to Calculate Periodograms for Light Curves Based on Robust Regression. Journal of Statistical Software, 69 (9), 1-36, <doi:10.18637/jss.v069.i09>
Applied in RobPer
, see FastTau
for an example.