Title: | Robust Bayesian T-Test |
---|---|
Description: | An implementation of Bayesian model-averaged t-tests that allows users to draw inferences about the presence versus absence of an effect, variance heterogeneity, and potential outliers. The 'RoBTT' package estimates ensembles of models created by combining competing hypotheses and applies Bayesian model averaging using posterior model probabilities. Users can obtain model-averaged posterior distributions and inclusion Bayes factors, accounting for uncertainty in the data-generating process (Maier et al., 2024, <doi:10.3758/s13423-024-02590-5>). The package also provides a truncated likelihood version of the model-averaged t-test, enabling users to exclude potential outliers without introducing bias (Godmann et al., 2024, <doi:10.31234/osf.io/j9f3s>). Users can specify a wide range of informative priors for all parameters of interest. The package offers convenient functions for summary, visualization, and fit diagnostics. |
Authors: | František Bartoš [aut, cre] , Maximilian Maier [aut] , Henrik R Godmann [aut] |
Maintainer: | František Bartoš <[email protected]> |
License: | GPL-3 |
Version: | 1.3.1 |
Built: | 2024-11-11 13:13:05 UTC |
Source: | CRAN |
RoBTT: Bayesian model-averaged t-test extends the Bayesian t-test by incorporating inference about heterogeneity of variances and outliers.
See Maier et al. (2024) for details regarding the RoBTT methodology.
More details regarding customization of the Bayesian model-averaged t-test are provided in Introduction to RoBTT vignette. Please, use the "Issues" section in the GitHub repository to ask any further questions.
František Bartoš [email protected]
Maier M, Bartoš F, Quintana DS, van den Bergh D, Marsman M, Ly A, Wagenmakers E (2024). “Model-averaged Bayesian t-tests.” Psychonomic Bulletin & Review. doi:10.3758/s13423-024-02590-5.
Useful links:
Checks fitted 'RoBTT' object for warnings and errors and prints them to the console.
check_RoBTT(fit)
check_RoBTT(fit)
fit |
a fitted 'RoBTT' object. |
check_RoBTT
returns a vector of error and
warning messages.
"RoBTT"
ensemble implied by the specified priorscheck_setup
prints summary of "RoBTT"
ensemble
implied by the specified prior distributions. It is useful for checking
the ensemble configuration prior to fitting all of the models.
check_setup( prior_delta = prior(distribution = "cauchy", parameters = list(location = 0, scale = sqrt(2)/2)), prior_rho = prior(distribution = "beta", parameters = list(alpha = 1, beta = 1)), prior_nu = prior(distribution = "exp", parameters = list(rate = 1)), prior_delta_null = prior(distribution = "spike", parameters = list(location = 0)), prior_rho_null = prior(distribution = "spike", parameters = list(location = 0.5)), prior_nu_null = prior_none(), prior_mu = NULL, prior_sigma2 = NULL, truncation = NULL, models = FALSE, silent = FALSE )
check_setup( prior_delta = prior(distribution = "cauchy", parameters = list(location = 0, scale = sqrt(2)/2)), prior_rho = prior(distribution = "beta", parameters = list(alpha = 1, beta = 1)), prior_nu = prior(distribution = "exp", parameters = list(rate = 1)), prior_delta_null = prior(distribution = "spike", parameters = list(location = 0)), prior_rho_null = prior(distribution = "spike", parameters = list(location = 0.5)), prior_nu_null = prior_none(), prior_mu = NULL, prior_sigma2 = NULL, truncation = NULL, models = FALSE, silent = FALSE )
prior_delta |
prior distributions for the effect size |
prior_rho |
prior distributions for the precision allocation |
prior_nu |
prior distribution for the degrees of freedom + 2 |
prior_delta_null |
prior distribution for the |
prior_rho_null |
prior distribution for the |
prior_nu_null |
prior distribution for the |
prior_mu |
prior distribution for the grand mean parameter. Defaults to |
prior_sigma2 |
prior distribution for the grand variance parameter. Defaults to |
truncation |
an optional list specifying truncation applied to the data.
Defaults to
|
models |
should the models' details be printed. |
silent |
do not print the results. |
check_setup
invisibly returns list of summary tables.
diagnostics
creates visual
checks of individual models convergence. Numerical
overview of individual models can be obtained by
summary(object, type = "models", diagnostics = TRUE)
,
or even more detailed information by
summary(object, type = "individual")
.
diagnostics( fit, parameter, type, show_models = NULL, lags = 30, title = is.null(show_models) | length(show_models) > 1, ... ) diagnostics_autocorrelation( fit, parameter = NULL, show_models = NULL, lags = 30, title = is.null(show_models) | length(show_models) > 1, ... ) diagnostics_trace( fit, parameter = NULL, show_models = NULL, title = is.null(show_models) | length(show_models) > 1, ... ) diagnostics_density( fit, parameter = NULL, show_models = NULL, title = is.null(show_models) | length(show_models) > 1, ... )
diagnostics( fit, parameter, type, show_models = NULL, lags = 30, title = is.null(show_models) | length(show_models) > 1, ... ) diagnostics_autocorrelation( fit, parameter = NULL, show_models = NULL, lags = 30, title = is.null(show_models) | length(show_models) > 1, ... ) diagnostics_trace( fit, parameter = NULL, show_models = NULL, title = is.null(show_models) | length(show_models) > 1, ... ) diagnostics_density( fit, parameter = NULL, show_models = NULL, title = is.null(show_models) | length(show_models) > 1, ... )
fit |
a fitted RoBTT object |
parameter |
a parameter to be plotted. Either
|
type |
type of MCMC diagnostic to be plotted.
Options are |
show_models |
MCMC diagnostics of which models should be
plotted. Defaults to |
lags |
number of lags to be shown for
|
title |
whether the model number should be displayed in title.
Defaults to |
... |
additional arguments to be passed to
par if |
The visualization functions are based on stan_plot function and its color schemes.
diagnostics
returns either NULL
if plot_type = "base"
or an object/list of objects (depending on the number of parameters to be plotted)
of class 'ggplot2' if plot_type = "ggplot2"
.
## Not run: # using the example data from Darwin data("fertilization", package = "RoBTT") fit <- RoBTT( x1 = fertilization$Self, x2 = fertilization$Crossed, prior_delta = prior("cauchy", list(0, 1/sqrt(2))), prior_rho = prior("beta", list(3, 3)), seed = 1, chains = 1, warmup = 1000, iter = 2000, control = set_control(adapt_delta = 0.95) ) ### ggplot2 version of all of the plots can be obtained by adding 'model_type = "ggplot" # diagnostics function allows to visualize diagnostics of a fitted RoBTT object, for example, # the trace plot for the mean parameter in each model model diagnostics(fit, parameter = "delta", type = "chain") # in order to show the trace plot only for the 11th model, add show_models parameter diagnostics(fit, parameter = "delta", type = "chain", show_models = 11) # furthermore, the autocorrelations diagnostics(fit, parameter = "delta", type = "autocorrelation") # and overlying densities for each plot can also be visualize diagnostics(fit, parameter = "delta", type = "densities") ## End(Not run)
## Not run: # using the example data from Darwin data("fertilization", package = "RoBTT") fit <- RoBTT( x1 = fertilization$Self, x2 = fertilization$Crossed, prior_delta = prior("cauchy", list(0, 1/sqrt(2))), prior_rho = prior("beta", list(3, 3)), seed = 1, chains = 1, warmup = 1000, iter = 2000, control = set_control(adapt_delta = 0.95) ) ### ggplot2 version of all of the plots can be obtained by adding 'model_type = "ggplot" # diagnostics function allows to visualize diagnostics of a fitted RoBTT object, for example, # the trace plot for the mean parameter in each model model diagnostics(fit, parameter = "delta", type = "chain") # in order to show the trace plot only for the 11th model, add show_models parameter diagnostics(fit, parameter = "delta", type = "chain", show_models = 11) # furthermore, the autocorrelations diagnostics(fit, parameter = "delta", type = "autocorrelation") # and overlying densities for each plot can also be visualize diagnostics(fit, parameter = "delta", type = "densities") ## End(Not run)
The data set contains heights of self fertilized and cross fertilized plants as coded by Darwin.
fertilization
fertilization
A data.frame with 2 columns and 15 observations.
a data.frame.
interpret
creates a brief textual summary
of a fitted 'RoBTT' object.
interpret(object)
interpret(object)
object |
a fitted 'RoBTT' object |
interpret
returns a character.
Reports whether x is a 'RoBTT' object
is.RoBTT(x)
is.RoBTT(x)
x |
an object to test |
is.RoBTT
returns a boolean.
plot.RoBTT
allows to visualize
different "RoBTT"
object parameters in various
ways. See type
for the different model types.
## S3 method for class 'RoBTT' plot( x, parameter = "mu", transform_rho = FALSE, conditional = FALSE, plot_type = "base", prior = FALSE, dots_prior = NULL, ... )
## S3 method for class 'RoBTT' plot( x, parameter = "mu", transform_rho = FALSE, conditional = FALSE, plot_type = "base", prior = FALSE, dots_prior = NULL, ... )
x |
a fitted 'RoBTT' object |
parameter |
a parameter to be plotted. Defaults to
|
transform_rho |
whether rho parameter should be translated into log standard deviation ratio |
conditional |
whether conditional estimates should be
plotted. Defaults to |
plot_type |
whether to use a base plot |
prior |
whether prior distribution should be added to
figure. Defaults to |
dots_prior |
list of additional graphical arguments
to be passed to the plotting function of the prior
distribution. Supported arguments are |
... |
list of additional graphical arguments
to be passed to the plotting function. Supported arguments
are |
plot.RoBTT
returns either NULL
if plot_type = "base"
or an object object of class 'ggplot2' if plot_type = "ggplot2"
.
## Not run: data("fertilization", package = "RoBTT") fit <- RoBTT( x1 = fertilization$Self, x2 = fertilization$Crossed, prior_delta = prior("cauchy", list(0, 1/sqrt(2))), prior_rho = prior("beta", list(3, 3)), seed = 1, chains = 1, warmup = 1000, iter = 2000, control = set_control(adapt_delta = 0.95) ) # plot the model-averaged effect size estimate plot(fit, parameter = "delta") # plot prior and posterior of the conditional effect size estimate plot(fit, parameter = "delta", conditional = TRUE, prior = TRUE) ## End(Not run)
## Not run: data("fertilization", package = "RoBTT") fit <- RoBTT( x1 = fertilization$Self, x2 = fertilization$Crossed, prior_delta = prior("cauchy", list(0, 1/sqrt(2))), prior_rho = prior("beta", list(3, 3)), seed = 1, chains = 1, warmup = 1000, iter = 2000, control = set_control(adapt_delta = 0.95) ) # plot the model-averaged effect size estimate plot(fit, parameter = "delta") # plot prior and posterior of the conditional effect size estimate plot(fit, parameter = "delta", conditional = TRUE, prior = TRUE) ## End(Not run)
Prints a fitted 'RoBTT' object
## S3 method for class 'RoBTT' print(x, ...)
## S3 method for class 'RoBTT' print(x, ...)
x |
a fitted 'RoBTT' object. |
... |
additional arguments. |
print.RoBTT
invisibly returns the print statement.
Prints summary object for 'RoBTT' method
## S3 method for class 'summary.RoBTT' print(x, ...)
## S3 method for class 'summary.RoBTT' print(x, ...)
x |
a summary of a 'RoBTT' object |
... |
additional arguments |
print.summary.RoBTT
invisibly returns the print statement.
prior
creates a prior distribution.
The prior can be visualized by the plot
function.
prior( distribution, parameters, truncation = list(lower = -Inf, upper = Inf), prior_weights = 1 )
prior( distribution, parameters, truncation = list(lower = -Inf, upper = Inf), prior_weights = 1 )
distribution |
name of the prior distribution. The possible options are
|
parameters |
list of appropriate parameters for a given
|
truncation |
list with two elements, |
prior_weights |
prior odds associated with a given distribution. The value is passed into the model fitting function, which creates models corresponding to all combinations of prior distributions for each of the model parameters and sets the model priors odds to the product of its prior distributions. |
prior
and prior_none
return an object of class 'prior'.
A named list containing the distribution name, parameters, and prior weights.
plot.prior()
, Normal, Lognormal, Cauchy,
Beta, Exponential,
LocationScaleT, InvGamma.
# create a standard normal prior distribution p1 <- prior(distribution = "normal", parameters = list(mean = 1, sd = 1)) # create a half-normal standard normal prior distribution p2 <- prior(distribution = "normal", parameters = list(mean = 1, sd = 1), truncation = list(lower = 0, upper = Inf)) # the prior distribution can be visualized using the plot function # (see ?plot.prior for all options) plot(p1)
# create a standard normal prior distribution p1 <- prior(distribution = "normal", parameters = list(mean = 1, sd = 1)) # create a half-normal standard normal prior distribution p2 <- prior(distribution = "normal", parameters = list(mean = 1, sd = 1), truncation = list(lower = 0, upper = Inf)) # the prior distribution can be visualized using the plot function # (see ?plot.prior for all options) plot(p1)
prior
creates a prior distribution.
The prior can be visualized by the plot
function.
prior_none(prior_weights = 1)
prior_none(prior_weights = 1)
prior_weights |
prior odds associated with a given distribution. The value is passed into the model fitting function, which creates models corresponding to all combinations of prior distributions for each of the model parameters and sets the model priors odds to the product of its prior distributions. |
prior
and prior_none
return an object of class 'prior'.
A named list containing the distribution name, parameters, and prior weights.
plot.prior()
, Normal, Lognormal, Cauchy,
Beta, Exponential,
LocationScaleT, InvGamma.
# create a standard normal prior distribution p1 <- prior(distribution = "normal", parameters = list(mean = 1, sd = 1)) # create a half-normal standard normal prior distribution p2 <- prior(distribution = "normal", parameters = list(mean = 1, sd = 1), truncation = list(lower = 0, upper = Inf)) # the prior distribution can be visualized using the plot function # (see ?plot.prior for all options) plot(p1)
# create a standard normal prior distribution p1 <- prior(distribution = "normal", parameters = list(mean = 1, sd = 1)) # create a half-normal standard normal prior distribution p2 <- prior(distribution = "normal", parameters = list(mean = 1, sd = 1), truncation = list(lower = 0, upper = Inf)) # the prior distribution can be visualized using the plot function # (see ?plot.prior for all options) plot(p1)
A list containing the transformation function, inverse transformation function, and the jacobian function.
rho2logsdr
rho2logsdr
An object of class list
of length 3.
a list with the corresponding functions
RoBTT
is used to estimate a robust Bayesian
t-test or truncated Bayesian t-test (if truncation
is used).
The input either requires the vector of observations for
each group, x1, x2
, or the summary statistics (only if the normal
likelihood models are used).
RoBTT( x1 = NULL, x2 = NULL, mean1 = NULL, mean2 = NULL, sd1 = NULL, sd2 = NULL, N1 = NULL, N2 = NULL, truncation = NULL, prior_delta = prior(distribution = "cauchy", parameters = list(location = 0, scale = sqrt(2)/2)), prior_rho = prior(distribution = "beta", parameters = list(alpha = 1, beta = 1)), prior_nu = if (is.null(truncation)) prior(distribution = "exp", parameters = list(rate = 1)), prior_delta_null = prior(distribution = "spike", parameters = list(location = 0)), prior_rho_null = prior(distribution = "spike", parameters = list(location = 0.5)), prior_nu_null = prior_none(), prior_mu = NULL, prior_sigma2 = NULL, chains = 4, iter = 10000, warmup = 5000, thin = 1, parallel = FALSE, control = set_control(), convergence_checks = set_convergence_checks(), save = "all", seed = NULL, silent = TRUE, ... )
RoBTT( x1 = NULL, x2 = NULL, mean1 = NULL, mean2 = NULL, sd1 = NULL, sd2 = NULL, N1 = NULL, N2 = NULL, truncation = NULL, prior_delta = prior(distribution = "cauchy", parameters = list(location = 0, scale = sqrt(2)/2)), prior_rho = prior(distribution = "beta", parameters = list(alpha = 1, beta = 1)), prior_nu = if (is.null(truncation)) prior(distribution = "exp", parameters = list(rate = 1)), prior_delta_null = prior(distribution = "spike", parameters = list(location = 0)), prior_rho_null = prior(distribution = "spike", parameters = list(location = 0.5)), prior_nu_null = prior_none(), prior_mu = NULL, prior_sigma2 = NULL, chains = 4, iter = 10000, warmup = 5000, thin = 1, parallel = FALSE, control = set_control(), convergence_checks = set_convergence_checks(), save = "all", seed = NULL, silent = TRUE, ... )
x1 |
vector of observations of the first group |
x2 |
vector of observations of the second group |
mean1 |
mean of the first group |
mean2 |
mean of the first group |
sd1 |
standard deviation of the first group |
sd2 |
standard deviation of the first group |
N1 |
sample size of the first group |
N2 |
sample size of the first group |
truncation |
an optional list specifying truncation applied to the data.
Defaults to
|
prior_delta |
prior distributions for the effect size |
prior_rho |
prior distributions for the precision allocation |
prior_nu |
prior distribution for the degrees of freedom + 2 |
prior_delta_null |
prior distribution for the |
prior_rho_null |
prior distribution for the |
prior_nu_null |
prior distribution for the |
prior_mu |
prior distribution for the grand mean parameter. Defaults to |
prior_sigma2 |
prior distribution for the grand variance parameter. Defaults to |
chains |
a number of chains of the MCMC algorithm. |
iter |
a number of sampling iterations of the MCMC algorithm.
Defaults to |
warmup |
a number of warmup iterations of the MCMC algorithm.
Defaults to |
thin |
a thinning of the chains of the MCMC algorithm. Defaults to
|
parallel |
whether the individual models should be fitted in parallel.
Defaults to |
control |
allows to pass control settings with the
|
convergence_checks |
automatic convergence checks to assess the fitted
models, passed with |
save |
whether all models posterior distributions should be kept
after obtaining a model-averaged result. Defaults to |
seed |
a seed to be set before model fitting, marginal likelihood
computation, and posterior mixing for reproducibility of results. Defaults
to |
silent |
whether all print messages regarding the fitting process
should be suppressed. Defaults to |
... |
additional arguments. |
See Maier et al. (2024) for more details
regarding the robust Bayesian t-test methodology and the corresponding
vignette (vignette("Introduction_to_RoBTT", package = "RoBTT")
).
See Godmann et al. (2024) for more details
regarding the truncated Bayesian t-test methodology and the corresponding
vignette (vignette("Truncated_t_test", package = "RoBTT")
).
Generic summary.RoBTT()
, print.RoBTT()
, and plot.RoBTT()
functions are provided to facilitate manipulation with the ensemble.
RoBTT
returns an object of class "RoBTT"
.
Godmann HR, Bartoš F, Wagenmakers E (2024).
“Truncating the Likelihood Allows Outlier Exclusion Without Overestimating the Evidence in the Bayes Factor t-Test.”
doi:10.31234/osf.io/j9f3s, PsyArxiv Preprint.
Maier M, Bartoš F, Quintana DS, van den Bergh D, Marsman M, Ly A, Wagenmakers E (2024).
“Model-averaged Bayesian t-tests.”
Psychonomic Bulletin & Review.
doi:10.3758/s13423-024-02590-5.
## Not run: # using the example data from Darwin data("fertilization", package = "RoBTT") fit <- RoBTT( x1 = fertilization$Self, x2 = fertilization$Crossed, prior_delta = prior("cauchy", list(0, 1/sqrt(2))), prior_rho = prior("beta", list(3, 3)), seed = 1, chains = 1, warmup = 1000, iter = 2000, control = set_control(adapt_delta = 0.95) ) # summary can provide many details about the model summary(fit) ## End(Not run)
## Not run: # using the example data from Darwin data("fertilization", package = "RoBTT") fit <- RoBTT( x1 = fertilization$Self, x2 = fertilization$Crossed, prior_delta = prior("cauchy", list(0, 1/sqrt(2))), prior_rho = prior("beta", list(3, 3)), seed = 1, chains = 1, warmup = 1000, iter = 2000, control = set_control(adapt_delta = 0.95) ) # summary can provide many details about the model summary(fit) ## End(Not run)
Set values for the convergence checks of the fitting process.
set_convergence_checks(max_Rhat = 1.05, min_ESS = 500) set_control(adapt_delta = 0.8, max_treedepth = 15, bridge_max_iter = 1000)
set_convergence_checks(max_Rhat = 1.05, min_ESS = 500) set_control(adapt_delta = 0.8, max_treedepth = 15, bridge_max_iter = 1000)
max_Rhat |
maximum value of the R-hat diagnostic.
Defaults to |
min_ESS |
minimum estimated sample size.
Defaults to |
adapt_delta |
tuning parameter of HMC.
Defaults to |
max_treedepth |
tuning parameter of HMC.
Defaults to |
bridge_max_iter |
maximum number of iterations for the
bridge_sampler function. Defaults to |
set_control
returns a list of control settings
and set_convergence_checks
returns a list of convergence checks settings.
A placeholder object and functions for the 'RoBTT' package. (adapted from the runjags R package).
RoBTT.options(...) RoBTT.get_option(name)
RoBTT.options(...) RoBTT.get_option(name)
... |
named option(s) to change - for a list of available options, see details below. |
name |
the name of the option to get the current value of - for a list of available options, see details below. |
The current value of all available 'RoBTT' options (after applying any changes specified) is returned invisibly as a named list.
summary.RoBTT
creates summary tables for a
RoBTT object.
## S3 method for class 'RoBTT' summary( object, type = "ensemble", conditional = FALSE, group_estimates = FALSE, probs = c(0.025, 0.975), logBF = FALSE, BF01 = FALSE, short_name = FALSE, remove_spike_0 = FALSE, ... )
## S3 method for class 'RoBTT' summary( object, type = "ensemble", conditional = FALSE, group_estimates = FALSE, probs = c(0.025, 0.975), logBF = FALSE, BF01 = FALSE, short_name = FALSE, remove_spike_0 = FALSE, ... )
object |
a fitted 'RoBTT' object |
type |
whether to show the overall 'RoBTT' results ( |
conditional |
show the conditional estimates (assuming that the
alternative is true). Defaults to |
group_estimates |
show the model-averaged mean and standard deviation estimates for each group. |
probs |
quantiles of the posterior samples to be displayed.
Defaults to |
logBF |
show log of Bayes factors. Defaults to |
BF01 |
show Bayes factors in support of the null hypotheses. Defaults to
|
short_name |
whether priors names should be shortened to the first
(couple) of letters. Defaults to |
remove_spike_0 |
whether spike prior distributions with location at zero should
be omitted from the summary. Defaults to |
... |
additional arguments |
summary.RoBTT
returns a list of tables of class 'BayesTools_table'.
## Not run: # using the example data from Darwin data("fertilization", package = "RoBTT") fit <- RoBTT( x1 = fertilization$Self, x2 = fertilization$Crossed, prior_delta = prior("cauchy", list(0, 1/sqrt(2))), prior_rho = prior("beta", list(3, 3)), seed = 1, chains = 1, warmup = 1000, iter = 2000, control = set_control(adapt_delta = 0.95) ) # summary can provide many details about the model summary(fit) # estimates from the conditional models can be obtained with summary(fit, conditional = TRUE) # overview of the models and their prior and posterior probability, marginal likelihood, # and inclusion Bayes factor can be obtained with summary(fit, type = "models") # diagnostics overview, containing the maximum R-hat, minimum ESS, maximum MCMC error, and # maximum MCMC error / sd across parameters for each individual model can be obtained with summary(fit, type = "diagnostics") # summary of individual models and their parameters can be further obtained by summary(fit, type = "individual") ## End(Not run)
## Not run: # using the example data from Darwin data("fertilization", package = "RoBTT") fit <- RoBTT( x1 = fertilization$Self, x2 = fertilization$Crossed, prior_delta = prior("cauchy", list(0, 1/sqrt(2))), prior_rho = prior("beta", list(3, 3)), seed = 1, chains = 1, warmup = 1000, iter = 2000, control = set_control(adapt_delta = 0.95) ) # summary can provide many details about the model summary(fit) # estimates from the conditional models can be obtained with summary(fit, conditional = TRUE) # overview of the models and their prior and posterior probability, marginal likelihood, # and inclusion Bayes factor can be obtained with summary(fit, type = "models") # diagnostics overview, containing the maximum R-hat, minimum ESS, maximum MCMC error, and # maximum MCMC error / sd across parameters for each individual model can be obtained with summary(fit, type = "diagnostics") # summary of individual models and their parameters can be further obtained by summary(fit, type = "individual") ## End(Not run)
update.RoBTT
can be used to
change the prior odds of fitted models by specifying a vector
prior_weights
of the same length as the fitted models,
refitting models that failed to converge with updated settings of control parameters,
or changing the convergence criteria and recalculating the ensemble
results by specifying new control
argument and setting
refit_failed == FALSE
.
## S3 method for class 'RoBTT' update( object, refit_failed = TRUE, prior_weights = NULL, chains = NULL, iter = NULL, warmup = NULL, thin = NULL, parallel = NULL, control = NULL, convergence_checks = NULL, save = "all", seed = NULL, silent = TRUE, ... )
## S3 method for class 'RoBTT' update( object, refit_failed = TRUE, prior_weights = NULL, chains = NULL, iter = NULL, warmup = NULL, thin = NULL, parallel = NULL, control = NULL, convergence_checks = NULL, save = "all", seed = NULL, silent = TRUE, ... )
object |
a fitted RoBTT object |
refit_failed |
whether failed models should be refitted. Relevant only
|
prior_weights |
either a single value specifying prior model weight of a newly specified model using priors argument, or a vector of the same length as already fitted models to update their prior weights. |
chains |
a number of chains of the MCMC algorithm. |
iter |
a number of sampling iterations of the MCMC algorithm.
Defaults to |
warmup |
a number of warmup iterations of the MCMC algorithm.
Defaults to |
thin |
a thinning of the chains of the MCMC algorithm. Defaults to
|
parallel |
whether the individual models should be fitted in parallel.
Defaults to |
control |
allows to pass control settings with the
|
convergence_checks |
automatic convergence checks to assess the fitted
models, passed with |
save |
whether all models posterior distributions should be kept
after obtaining a model-averaged result. Defaults to |
seed |
a seed to be set before model fitting, marginal likelihood
computation, and posterior mixing for reproducibility of results. Defaults
to |
silent |
whether all print messages regarding the fitting process
should be suppressed. Defaults to |
... |
additional arguments. |
See RoBTT()
for more details.
RoBTT
returns an object of class 'RoBTT'.
RoBTT()
, summary.RoBTT()
, prior()
, check_setup()