
Package: Rlinsolve (via r-universe)
October 16, 2024

Type Package

Title Iterative Solvers for (Sparse) Linear System of Equations

Version 0.3.2

Description Solving a system of linear equations is one of the most
fundamental computational problems for many fields of
mathematical studies, such as regression problems from
statistics or numerical partial differential equations. We
provide basic stationary iterative solvers such as Jacobi,
Gauss-Seidel, Successive Over-Relaxation and SSOR methods.
Nonstationary, also known as Krylov subspace methods are also
provided. Sparse matrix computation is also supported in that
solving large and sparse linear systems can be manageable using
'Matrix' package along with 'RcppArmadillo'. For a more
detailed description, see a book by Saad (2003)
<doi:10.1137/1.9780898718003>.

License MIT + file LICENSE

Encoding UTF-8

Imports Rcpp (>= 0.12.4), Matrix, Rdpack, stats, utils

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.1.1

RdMacros Rdpack

NeedsCompilation yes

Author Kisung You [aut, cre] (<https://orcid.org/0000-0002-8584-459X>)

Maintainer Kisung You <kisungyou@outlook.com>

Repository CRAN

Date/Publication 2021-08-21 15:40:10 UTC

Contents
aux.fisch . 2
lsolve.bicg . 3

1

https://doi.org/10.1137/1.9780898718003
https://orcid.org/0000-0002-8584-459X

2 aux.fisch

lsolve.bicgstab . 4
lsolve.cg . 6
lsolve.cgs . 7
lsolve.cheby . 9
lsolve.gmres . 10
lsolve.gs . 11
lsolve.jacobi . 13
lsolve.qmr . 14
lsolve.sor . 15
lsolve.ssor . 17
Rlinsolve . 18

Index 20

aux.fisch Generate a 2-dimensional discrete Poisson matrix

Description

Poisson equation is one of most well-known elliptic partial differential equations. In order to give
a concrete example, a discrete Poisson matrix is generated, assuming we have N number of grid
points for each dimension under square domain. fisch is a German word for Poisson.

Usage

aux.fisch(N, sparse = FALSE)

Arguments

N the number of grid points for each direction.

sparse a logical; TRUE for returning sparse matrix, FALSE otherwise.

Value

an (N2 ×N2) matrix having block banded structure.

References

Golub, G. H. and Van Loan, C. F. (1996) Matrix Computations, 3rd Ed., pages 177–180.

Examples

generate dense and sparse Poisson matrix of size 25 by 25.
A = aux.fisch(5, sparse=FALSE)
B = aux.fisch(5, sparse=TRUE)
(all(A==B)) # TRUE if two matrices are equal.

lsolve.bicg 3

lsolve.bicg Biconjugate Gradient method

Description

Biconjugate Gradient(BiCG) method is a modification of Conjugate Gradient for nonsymmetric
systems using evaluations with respect to AT as well as A in matrix-vector multiplications. For
an overdetermined system where nrow(A)>ncol(A), it is automatically transformed to the normal
equation. Underdetermined system - nrow(A)<ncol(A) - is not supported. Preconditioning matrix
M , in theory, should be symmetric and positive definite with fast computability for inverse, though
it is not limited until the solver level.

Usage

lsolve.bicg(
A,
B,
xinit = NA,
reltol = 1e-05,
maxiter = 10000,
preconditioner = diag(ncol(A)),
verbose = TRUE

)

Arguments

A an (m× n) dense or sparse matrix. See also sparseMatrix.

B a vector of length m or an (m×k) matrix (dense or sparse) for solving k systems
simultaneously.

xinit a length-n vector for initial starting point. NA to start from a random initial point
near 0.

reltol tolerance level for stopping iterations.

maxiter maximum number of iterations allowed.

preconditioner an (n× n) preconditioning matrix; default is an identity matrix.

verbose a logical; TRUE to show progress of computation.

Value

a named list containing

x solution; a vector of length n or a matrix of size (n× k).

iter the number of iterations required.

errors a vector of errors for stopping criterion.

4 lsolve.bicgstab

References

Fletcher R (1976). “Conjugate gradient methods for indefinite systems.” In Watson GA (ed.),
Numerical Analysis, volume 506, 73–89. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN
978-3-540-07610-0 978-3-540-38129-7.

Voevodin VV (1983). “The question of non-self-adjoint extension of the conjugate gradients method
is closed.” USSR Computational Mathematics and Mathematical Physics, 23(2), 143–144. ISSN
00415553.

Examples

Overdetermined System
set.seed(100)
A = matrix(rnorm(10*5),nrow=10)
x = rnorm(5)
b = A%*%x

out1 = lsolve.cg(A,b)
out2 = lsolve.bicg(A,b)
matout = cbind(matrix(x),out1$x, out2$x);
colnames(matout) = c("true x","CG result", "BiCG result")
print(matout)

lsolve.bicgstab Biconjugate Gradient Stabilized Method

Description

Biconjugate Gradient Stabilized(BiCGSTAB) method is a stabilized version of Biconjugate Gradi-
ent method for nonsymmetric systems using evaluations with respect to AT as well as A in matrix-
vector multiplications. For an overdetermined system where nrow(A)>ncol(A), it is automatically
transformed to the normal equation. Underdetermined system - nrow(A)<ncol(A) - is not sup-
ported. Preconditioning matrix M , in theory, should be symmetric and positive definite with fast
computability for inverse, though it is not limited until the solver level.

Usage

lsolve.bicgstab(
A,
B,
xinit = NA,
reltol = 1e-05,
maxiter = 1000,
preconditioner = diag(ncol(A)),
verbose = TRUE

)

lsolve.bicgstab 5

Arguments

A an (m× n) dense or sparse matrix. See also sparseMatrix.

B a vector of length m or an (m×k) matrix (dense or sparse) for solving k systems
simultaneously.

xinit a length-n vector for initial starting point. NA to start from a random initial point
near 0.

reltol tolerance level for stopping iterations.

maxiter maximum number of iterations allowed.

preconditioner an (n× n) preconditioning matrix; default is an identity matrix.

verbose a logical; TRUE to show progress of computation.

Value

a named list containing

x solution; a vector of length n or a matrix of size (n× k).

iter the number of iterations required.

errors a vector of errors for stopping criterion.

References

van der Vorst HA (1992). “Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the
Solution of Nonsymmetric Linear Systems.” SIAM Journal on Scientific and Statistical Computing,
13(2), 631–644. ISSN 0196-5204, 2168-3417.

Examples

Overdetermined System
set.seed(100)
A = matrix(rnorm(10*5),nrow=10)
x = rnorm(5)
b = A%*%x

out1 = lsolve.cg(A,b)
out2 = lsolve.bicg(A,b)
out3 = lsolve.bicgstab(A,b)
matout = cbind(matrix(x),out1$x, out2$x, out3$x);
colnames(matout) = c("true x","CG result", "BiCG result", "BiCGSTAB result")
print(matout)

6 lsolve.cg

lsolve.cg Conjugate Gradient method

Description

Conjugate Gradient(CG) method is an iterative algorithm for solving a system of linear equations
where the system is symmetric and positive definite. For a square matrix A, it is required to be
symmetric and positive definite. For an overdetermined system where nrow(A)>ncol(A), it is
automatically transformed to the normal equation. Underdetermined system - nrow(A)<ncol(A) -
is not supported. Preconditioning matrix M , in theory, should be symmetric and positive definite
with fast computability for inverse, though it is not limited until the solver level.

Usage

lsolve.cg(
A,
B,
xinit = NA,
reltol = 1e-05,
maxiter = 10000,
preconditioner = diag(ncol(A)),
adjsym = TRUE,
verbose = TRUE

)

Arguments

A an (m× n) dense or sparse matrix. See also sparseMatrix.
B a vector of length m or an (m×k) matrix (dense or sparse) for solving k systems

simultaneously.
xinit a length-n vector for initial starting point. NA to start from a random initial point

near 0.
reltol tolerance level for stopping iterations.
maxiter maximum number of iterations allowed.
preconditioner an (n× n) preconditioning matrix; default is an identity matrix.
adjsym a logical; TRUE to symmetrize the system by transforming the system into normal

equation, FALSE otherwise.
verbose a logical; TRUE to show progress of computation.

Value

a named list containing

x solution; a vector of length n or a matrix of size (n× k).
iter the number of iterations required.
errors a vector of errors for stopping criterion.

lsolve.cgs 7

References

Hestenes MR, Stiefel E (1952). “Methods of conjugate gradients for solving linear systems.” Jour-
nal of Research of the National Bureau of Standards, 49(6), 409. ISSN 0091-0635.

Examples

Overdetermined System
set.seed(100)
A = matrix(rnorm(10*5),nrow=10)
x = rnorm(5)
b = A%*%x

out1 = lsolve.sor(A,b,w=0.5)
out2 = lsolve.cg(A,b)
matout = cbind(matrix(x),out1$x, out2$x);
colnames(matout) = c("true x","SSOR result", "CG result")
print(matout)

lsolve.cgs Conjugate Gradient Squared method

Description

Conjugate Gradient Squared(CGS) method is an extension of Conjugate Gradient method where
the system is symmetric and positive definite. It aims at achieving faster convergence using an idea
of contraction operator twice. For a square matrix A,it is required to be symmetric and positive
definite. For an overdetermined system where nrow(A)>ncol(A), it is automatically transformed
to the normal equation. Underdetermined system - nrow(A)<ncol(A) - is not supported. Precondi-
tioning matrix M , in theory, should be symmetric and positive definite with fast computability for
inverse, though it is not limited until the solver level.

Usage

lsolve.cgs(
A,
B,
xinit = NA,
reltol = 1e-05,
maxiter = 10000,
preconditioner = diag(ncol(A)),
adjsym = TRUE,
verbose = TRUE

)

8 lsolve.cgs

Arguments

A an (m× n) dense or sparse matrix. See also sparseMatrix.

B a vector of length m or an (m×k) matrix (dense or sparse) for solving k systems
simultaneously.

xinit a length-n vector for initial starting point. NA to start from a random initial point
near 0.

reltol tolerance level for stopping iterations.

maxiter maximum number of iterations allowed.

preconditioner an (n× n) preconditioning matrix; default is an identity matrix.

adjsym a logical; TRUE to symmetrize the system by transforming the system into normal
equation, FALSE otherwise.

verbose a logical; TRUE to show progress of computation.

Value

a named list containing

x solution; a vector of length n or a matrix of size (n× k).

iter the number of iterations required.

errors a vector of errors for stopping criterion.

References

Sonneveld P (1989). “CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems.” SIAM
Journal on Scientific and Statistical Computing, 10(1), 36–52. ISSN 0196-5204, 2168-3417.

Examples

Overdetermined System
set.seed(100)
A = matrix(rnorm(10*5),nrow=10)
x = rnorm(5)
b = A%*%x

out1 = lsolve.cg(A,b)
out2 = lsolve.cgs(A,b)
matout = cbind(matrix(x),out1$x, out2$x);
colnames(matout) = c("true x","CG result", "CGS result")
print(matout)

lsolve.cheby 9

lsolve.cheby Chebyshev Method

Description

Chebyshev method - also known as Chebyshev iteration - avoids computation of inner product, en-
abling distributed-memory computation to be more efficient at the cost of requiring a priori knowl-
edge on the range of spectrum for matrix A.

Usage

lsolve.cheby(
A,
B,
xinit = NA,
reltol = 1e-05,
maxiter = 10000,
preconditioner = diag(ncol(A)),
adjsym = TRUE,
verbose = TRUE

)

Arguments

A an (m× n) dense or sparse matrix. See also sparseMatrix.

B a vector of length m or an (m×k) matrix (dense or sparse) for solving k systems
simultaneously.

xinit a length-n vector for initial starting point. NA to start from a random initial point
near 0.

reltol tolerance level for stopping iterations.

maxiter maximum number of iterations allowed.

preconditioner an (n× n) preconditioning matrix; default is an identity matrix.

adjsym a logical; TRUE to symmetrize the system by transforming the system into normal
equation, FALSE otherwise.

verbose a logical; TRUE to show progress of computation.

Value

a named list containing

x solution; a vector of length n or a matrix of size (n× k).

iter the number of iterations required.

errors a vector of errors for stopping criterion.

10 lsolve.gmres

References

Gutknecht MH, Röllin S (2002). “The Chebyshev iteration revisited.” Parallel Computing, 28(2),
263–283. ISSN 01678191.

Examples

Overdetermined System
set.seed(100)
A = matrix(rnorm(10*5),nrow=10)
x = rnorm(5)
b = A%*%x

out1 = lsolve.sor(A,b,w=0.5)
out2 = lsolve.cheby(A,b)
matout = cbind(x, out1$x, out2$x);
colnames(matout) = c("original x","SOR result", "Chebyshev result")
print(matout)

lsolve.gmres Generalized Minimal Residual method

Description

GMRES is a generic iterative solver for a nonsymmetric system of linear equations. As its name
suggests, it approximates the solution using Krylov vectors with minimal residuals.

Usage

lsolve.gmres(
A,
B,
xinit = NA,
reltol = 1e-05,
maxiter = 1000,
preconditioner = diag(ncol(A)),
restart = (ncol(A) - 1),
verbose = TRUE

)

Arguments

A an (m× n) dense or sparse matrix. See also sparseMatrix.

B a vector of length m or an (m×k) matrix (dense or sparse) for solving k systems
simultaneously.

xinit a length-n vector for initial starting point. NA to start from a random initial point
near 0.

lsolve.gs 11

reltol tolerance level for stopping iterations.
maxiter maximum number of iterations allowed.
preconditioner an (n× n) preconditioning matrix; default is an identity matrix.
restart the number of iterations before restart.
verbose a logical; TRUE to show progress of computation.

Value

a named list containing

x solution; a vector of length n or a matrix of size (n× k).
iter the number of iterations required.
errors a vector of errors for stopping criterion.

References

Saad Y, Schultz MH (1986). “GMRES: A Generalized Minimal Residual Algorithm for Solving
Nonsymmetric Linear Systems.” SIAM Journal on Scientific and Statistical Computing, 7(3), 856–
869. ISSN 0196-5204, 2168-3417.

Examples

Overdetermined System
set.seed(100)
A = matrix(rnorm(10*5),nrow=10)
x = rnorm(5)
b = A%*%x

out1 = lsolve.cg(A,b)
out3_1 = lsolve.gmres(A,b,restart=2)
out3_2 = lsolve.gmres(A,b,restart=3)
out3_3 = lsolve.gmres(A,b,restart=4)
matout = cbind(matrix(x),out1$x, out3_1$x, out3_2$x, out3_3$x);
colnames(matout) = c("true x","CG", "GMRES(2)", "GMRES(3)", "GMRES(4)")
print(matout)

lsolve.gs Gauss-Seidel method

Description

Gauss-Seidel(GS) method is an iterative algorithm for solving a system of linear equations, with a
decomposition A = D+L+U where D is a diagonal matrix and L and U are strictly lower/upper
triangular matrix respectively. For a square matrix A, it is required to be diagonally dominant
or symmetric and positive definite. For an overdetermined system where nrow(A)>ncol(A), it is
automatically transformed to the normal equation. Underdetermined system - nrow(A)<ncol(A) -
is not supported.

12 lsolve.gs

Usage

lsolve.gs(
A,
B,
xinit = NA,
reltol = 1e-05,
maxiter = 1000,
adjsym = TRUE,
verbose = TRUE

)

Arguments

A an (m× n) dense or sparse matrix. See also sparseMatrix.
B a vector of length m or an (m×k) matrix (dense or sparse) for solving k systems

simultaneously.
xinit a length-n vector for initial starting point. NA to start from a random initial point

near 0.
reltol tolerance level for stopping iterations.
maxiter maximum number of iterations allowed.
adjsym a logical; TRUE to symmetrize the system by transforming the system into normal

equation, FALSE otherwise.
verbose a logical; TRUE to show progress of computation.

Value

a named list containing

x solution; a vector of length n or a matrix of size (n× k).
iter the number of iterations required.
errors a vector of errors for stopping criterion.

References

Demmel JW (1997). Applied Numerical Linear Algebra. Society for Industrial and Applied Math-
ematics. ISBN 978-0-89871-389-3 978-1-61197-144-6.

Examples

Overdetermined System
set.seed(100)
A = matrix(rnorm(10*5),nrow=10)
x = rnorm(5)
b = A%*%x

out = lsolve.gs(A,b)
matout = cbind(matrix(x),out$x); colnames(matout) = c("true x","est from GS")
print(matout)

lsolve.jacobi 13

lsolve.jacobi Jacobi method

Description

Jacobi method is an iterative algorithm for solving a system of linear equations, with a decomposi-
tion A = D+R where D is a diagonal matrix. For a square matrix A, it is required to be diagonally
dominant. For an overdetermined system where nrow(A)>ncol(A), it is automatically transformed
to the normal equation. Underdetermined system - nrow(A)<ncol(A) - is not supported.

Usage

lsolve.jacobi(
A,
B,
xinit = NA,
reltol = 1e-05,
maxiter = 1000,
weight = 2/3,
adjsym = TRUE,
verbose = TRUE

)

Arguments

A an (m× n) dense or sparse matrix. See also sparseMatrix.

B a vector of length m or an (m×k) matrix (dense or sparse) for solving k systems
simultaneously.

xinit a length-n vector for initial starting point. NA to start from a random initial point
near 0.

reltol tolerance level for stopping iterations.

maxiter maximum number of iterations allowed.

weight a real number in (0, 1]; 1 for native Jacobi.

adjsym a logical; TRUE to symmetrize the system by transforming the system into normal
equation, FALSE otherwise.

verbose a logical; TRUE to show progress of computation.

Value

a named list containing

x solution; a vector of length n or a matrix of size (n× k).

iter the number of iterations required.

errors a vector of errors for stopping criterion.

14 lsolve.qmr

References

Demmel JW (1997). Applied Numerical Linear Algebra. Society for Industrial and Applied Math-
ematics. ISBN 978-0-89871-389-3 978-1-61197-144-6.

Examples

Overdetermined System
set.seed(100)
A = matrix(rnorm(10*5),nrow=10)
x = rnorm(5)
b = A%*%x

out1 = lsolve.jacobi(A,b,weight=1,verbose=FALSE) # unweighted
out2 = lsolve.jacobi(A,b,verbose=FALSE) # weight of 0.66
out3 = lsolve.jacobi(A,b,weight=0.5,verbose=FALSE) # weight of 0.50
print("* lsolve.jacobi : overdetermined case example")
print(paste("* error for unweighted Jacobi case : ",norm(out1$x-x)))
print(paste("* error for 0.66 weighted Jacobi case : ",norm(out2$x-x)))
print(paste("* error for 0.50 weighted Jacobi case : ",norm(out3$x-x)))

lsolve.qmr Quasi Minimal Residual Method

Description

Quasia-Minimal Resudial(QMR) method is another remedy of the BiCG which shows rather irreg-
ular convergence behavior. It adapts to solve the reduced tridiagonal system in a least squares sense
and its convergence is known to be quite smoother than BiCG.

Usage

lsolve.qmr(
A,
B,
xinit = NA,
reltol = 1e-05,
maxiter = 1000,
preconditioner = diag(ncol(A)),
verbose = TRUE

)

Arguments

A an (m× n) dense or sparse matrix. See also sparseMatrix.

B a vector of length m or an (m×k) matrix (dense or sparse) for solving k systems
simultaneously.

lsolve.sor 15

xinit a length-n vector for initial starting point. NA to start from a random initial point
near 0.

reltol tolerance level for stopping iterations.
maxiter maximum number of iterations allowed.
preconditioner an (n× n) preconditioning matrix; default is an identity matrix.
verbose a logical; TRUE to show progress of computation.

Value

a named list containing

x solution; a vector of length n or a matrix of size (n× k).
iter the number of iterations required.
errors a vector of errors for stopping criterion.

References

Freund RW, Nachtigal NM (1991). “QMR: a quasi-minimal residual method for non-Hermitian
linear systems.” Numerische Mathematik, 60(1), 315–339. ISSN 0029-599X, 0945-3245.

Examples

Not run:
Overdetermined System
set.seed(100)
A = matrix(rnorm(10*5),nrow=10)
x = rnorm(5)
b = A%*%x

out1 = lsolve.cg(A,b)
out2 = lsolve.bicg(A,b)
out3 = lsolve.qmr(A,b)
matout = cbind(matrix(x),out1$x, out2$x, out3$x);
colnames(matout) = c("true x","CG result", "BiCG result", "QMR result")
print(matout)

End(Not run)

lsolve.sor Successive Over-Relaxation method

Description

Successive Over-Relaxation(SOR) method is a variant of Gauss-Seidel method for solving a system
of linear equations, with a decomposition A = D + L + U where D is a diagonal matrix and L
and U are strictly lower/upper triangular matrix respectively. For a square matrix A, it is required
to be diagonally dominant or symmetric and positive definite like GS method. For an overdeter-
mined system where nrow(A)>ncol(A), it is automatically transformed to the normal equation.
Underdetermined system - nrow(A)<ncol(A) - is not supported.

16 lsolve.sor

Usage

lsolve.sor(
A,
B,
xinit = NA,
reltol = 1e-05,
maxiter = 1000,
w = 1,
adjsym = TRUE,
verbose = TRUE

)

Arguments

A an (m× n) dense or sparse matrix. See also sparseMatrix.

B a vector of length m or an (m×k) matrix (dense or sparse) for solving k systems
simultaneously.

xinit a length-n vector for initial starting point. NA to start from a random initial point
near 0.

reltol tolerance level for stopping iterations.

maxiter maximum number of iterations allowed.

w a weight value in (0, 2).; w=1 leads to Gauss-Seidel method.

adjsym a logical; TRUE to symmetrize the system by transforming the system into normal
equation, FALSE otherwise.

verbose a logical; TRUE to show progress of computation.

Value

a named list containing

x solution; a vector of length n or a matrix of size (n× k).

iter the number of iterations required.

errors a vector of errors for stopping criterion.

References

Demmel JW (1997). Applied Numerical Linear Algebra. Society for Industrial and Applied Math-
ematics. ISBN 978-0-89871-389-3 978-1-61197-144-6.

Examples

Overdetermined System
set.seed(100)
A = matrix(rnorm(10*5),nrow=10)
x = rnorm(5)
b = A%*%x

lsolve.ssor 17

out1 = lsolve.sor(A,b)
out2 = lsolve.sor(A,b,w=0.5)
out3 = lsolve.sor(A,b,w=1.5)
matout = cbind(matrix(x),out1$x, out2$x, out3$x);
colnames(matout) = c("true x","SOR 1 = GS", "SOR w=0.5", "SOR w=1.5")
print(matout)

lsolve.ssor Symmetric Successive Over-Relaxation method

Description

Symmetric Successive Over-Relaxation(SSOR) method is a variant of Gauss-Seidel method for
solving a system of linear equations, with a decomposition A = D+L+U where D is a diagonal
matrix and L and U are strictly lower/upper triangular matrix respectively. For a square matrix A,
it is required to be diagonally dominant or symmetric and positive definite like GS method. For
an overdetermined system where nrow(A)>ncol(A), it is automatically transformed to the normal
equation. Underdetermined system - nrow(A)<ncol(A) - is not supported.

Usage

lsolve.ssor(
A,
B,
xinit = NA,
reltol = 1e-05,
maxiter = 1000,
w = 1,
adjsym = TRUE,
verbose = TRUE

)

Arguments

A an (m× n) dense or sparse matrix. See also sparseMatrix.

B a vector of length m or an (m×k) matrix (dense or sparse) for solving k systems
simultaneously.

xinit a length-n vector for initial starting point. NA to start from a random initial point
near 0.

reltol tolerance level for stopping iterations.

maxiter maximum number of iterations allowed.

w a weight value in (0, 2).; w=1 leads to Gauss-Seidel method.

adjsym a logical; TRUE to symmetrize the system by transforming the system into normal
equation, FALSE otherwise.

verbose a logical; TRUE to show progress of computation.

18 Rlinsolve

Value

a named list containing

x solution; a vector of length n or a matrix of size (n× k).
iter the number of iterations required.
errors a vector of errors for stopping criterion.

References

Demmel JW (1997). Applied Numerical Linear Algebra. Society for Industrial and Applied Math-
ematics. ISBN 978-0-89871-389-3 978-1-61197-144-6.

Examples

Overdetermined System
set.seed(100)
A = matrix(rnorm(10*5),nrow=10)
x = rnorm(5)
b = A%*%x

out1 = lsolve.ssor(A,b)
out2 = lsolve.ssor(A,b,w=0.5)
out3 = lsolve.ssor(A,b,w=1.5)
matout = cbind(matrix(x),out1$x, out2$x, out3$x);
colnames(matout) = c("true x","SSOR w=1", "SSOR w=0.5", "SSOR w=1.5")
print(matout)

Rlinsolve A Collection of Iterative Solvers for (Sparse) Linear System of Equa-
tions

Description

Solving a system of linear equations is one of the most fundamental computational problems for
many fields of mathematical studies, such as regression from statistics or numerical partial differ-
ential equations. We provide a list of both stationary and nonstationary solvers. Sparse matrix class
from Matrix is also supported for large sparse system.

Non-square matrix

For a matrix A of size (m-by-n), we say the system is overdetermined if m>n, underdetermined
if m<n, or squared if m=n. In the current version, underdetermined system is not supported; it will
later appear with sparse constraints. For an overdetermined system, it automatically transforms the
problem into normal equation, i.e.,

Ax = b → ATAx = AT b

even though if suffers from worse condition number while having desirable property of a system to
be symmetric and positive definite.

Rlinsolve 19

Sparsity

RcppArmadillo is extensively used in the package. In order for bullet-proof transition between
dense and sparse matrix, only 3 of 12 RcppArmadillo-supported sparse matrix formats have access
to our algorithms; "dgCMatrix","dtCMatrix" and "dsCMatrix". Please see the vignette on sparse
matrix support from RcppArmadillo. If either of two inputs A or b is sparse, all matrices involved
are automatically transformed into sparse matrices.

Composition of the Package

Following is a list of stationary methods,

lsolve.jacobi Jacobi method

lsolve.gs Gauss-Seidel method

lsolve.sor Successive Over-Relaxation method

lsolve.ssor Symmetric Successive Over-Relaxation method

as well as nonstationary (or, Krylov subspace) methods,

lsolve.bicg Bi-Conjugate Gradient method

lsolve.bicgstab Bi-Conjugate Gradient Stabilized method

lsolve.cg Conjugate Gradient method

lsolve.cgs Conjugate Gradient Squared method

lsolve.cheby Chebyshev method

lsolve.gmres Generalized Minimal Residual method

lsolve.qmr Quasi-Minimal Residual method

Also, aux.fisch is provided to generate a sparse system of discrete Poisson matrix from finite
difference approximation scheme of Poisson equation on 2-dimensional square domain.

References

Demmel, J.W. (1997) Applied Numerical Linear Algebra, 1st ed., SIAM.

Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R.,
Romine, C., and van der Vorst, H. (1994) Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, 2nd ed. Philadelphia, SIAM.

https://CRAN.R-project.org/package=RcppArmadillo/vignettes/RcppArmadillo-sparseMatrix.pdf

Index

aux.fisch, 2, 19

lsolve.bicg, 3, 19
lsolve.bicgstab, 4, 19
lsolve.cg, 6, 19
lsolve.cgs, 7, 19
lsolve.cheby, 9, 19
lsolve.gmres, 10, 19
lsolve.gs, 11, 19
lsolve.jacobi, 13, 19
lsolve.qmr, 14, 19
lsolve.sor, 15, 19
lsolve.ssor, 17, 19

Rlinsolve, 18

sparseMatrix, 3, 5, 6, 8–10, 12–14, 16, 17

20

	aux.fisch
	lsolve.bicg
	lsolve.bicgstab
	lsolve.cg
	lsolve.cgs
	lsolve.cheby
	lsolve.gmres
	lsolve.gs
	lsolve.jacobi
	lsolve.qmr
	lsolve.sor
	lsolve.ssor
	Rlinsolve
	Index

