Package 'Rlabkey'

Title: Data Exchange Between R and 'LabKey' Server
Description: The 'LabKey' client library for R makes it easy for R users to load live data from a 'LabKey' Server, <https://www.labkey.com/>, into the R environment for analysis, provided users have permissions to read the data. It also enables R users to insert, update, and delete records stored on a 'LabKey' Server, provided they have appropriate permissions to do so.
Authors: Peter Hussey [aut], Cory Nathe [cre]
Maintainer: Cory Nathe <[email protected]>
License: Apache License 2.0
Version: 3.4.1
Built: 2024-12-12 06:44:28 UTC
Source: CRAN

Help Index


Exchange data between LabKey Server and R

Description

This package allows the transfer of data between a LabKey Server and an R session. Data can be retrieved from LabKey into a data frame in R by specifying the query schema information (labkey.selectRows and getRows) or by using sql commands (labkey.executeSql). From an R session, existing data can be updated (labkey.updateRows), new data can be inserted (labkey.insertRows and labkey.importRows) or data can be deleted from the LabKey database (labkey.deleteRows). Interactive R users can discover available data via schema objects (labkey.getSchema).

Details

Package: Rlabkey
Type: Package
Version: 3.4.1
Date: 2024-11-08
License: Apache License 2.0
LazyLoad: yes

The user must have appropriate authorization on the LabKey Server in order to access or modify data using these functions. All access to secure content on LabKey Server requires authentication via an api key (see labkey.setDefaults for more details) or a properly configured netrc file that includes the user's login information.

The netrc file is a standard mechanism for conveying configuration and autologin information to the File Transfer Protocol client (ftp) and other programs such as CURL. On a Linux or Mac system this file should be named .netrc (dot netrc) and on Windows it should be named _netrc (underscore netrc). The file should be located in the user's home directory and the permissions on the file should be unreadable for everybody except the owner.

To create the _netrc on a Windows machine, first create an environment variable called 'HOME' set to your home directory (e.g., c:/Users/<User-Name> on recent versions of Windows) or any directory you want to use. In that directory, create a text file named _netrc (note that it's underscore netrc, not dot netrc like it is on Linux/Mac).

The following three lines must be included in the .netrc or _netrc file either separated by white space (spaces, tabs, or newlines) or commas.

machine <remote-machine-name>
login <user-email>
password <user-password>

One example would be:
machine localhost
login [email protected]
password mypassword

Another example would be:
machine atlas.scharp.org login [email protected] password mypassword

Multiple such blocks can exist in one file.

Author(s)

Valerie Obenchain

References

http://www.omegahat.net/RCurl/,
https://www.labkey.org/home/project-begin.view

See Also

labkey.selectRows, labkey.executeSql, makeFilter, labkey.insertRows, labkey.importRows,
labkey.updateRows, labkey.deleteRows


Returns the folder path associated with a session

Description

Returns the current folder path for a LabKey session

Usage

getFolderPath(session)

Arguments

session

the session key returned from getSession

Details

Returns a string containing the current folder path for the passed in LabKey session

Value

A character array containing the folder path, relative to the root.

Author(s)

Peter Hussey

References

https://www.labkey.org/Documentation/wiki-page.view?name=projects

See Also

getSession lsFolders

Examples

## Not run: 

# library(Rlabkey)

lks<- getSession("https://www.labkey.org", "/home")
getFolderPath(lks)  #returns "/home"


## End(Not run)

Get related data fields that are available to include in a query on a given query object

Description

Retrieve a related query object referenced by a lookup column in the current query

Usage

getLookups(session, lookupField)

Arguments

session

the session key returned from getSession

lookupField

an object representing a lookup field on LabKey Server, a named member of a query object.

Details

Lookup fields in LabKey Server are the equivalent of declared foreign keys

Value

A query object representing the related data set. The fields of a lookup query object are usually added to the colSelect parameter in getRows, If a lookup query object is used as the query parameter in getRows, the call will return all of the base query columns and all of the lookup query columns. A lookup query object is very similar to base query objects that are named elemenets of a schema object, A lookup query object, however, does not have a parent schema object, it is only returned by getLookups. Also, the field names in a lookup query object are compound names relative to the base query object used in getLookups.

Author(s)

Peter Hussey

References

https://www.labkey.org/Documentation/wiki-page.view?name=propertyFields

See Also

getSession, getRows getSchema

Examples

## Not run: 

##  get fields from lookup tables and add to query
# library(Rlabkey)

s<- getSession(baseUrl="http://localhost:8080/labkey",
    folderPath="/apisamples")
 
scobj <- getSchema(s, "lists")

# can add fields from related queries
lucols <- getLookups(s, scobj$AllTypes$Category)

# keep going to other tables
lucols2 <- getLookups(s, lucols[["Category/Group"]])

cols <- c(names(scobj$AllTypes)[2:6], names(lucols)[2:4])

getRows(s, scobj$AllTypes, colSelect=paste(cols, sep=","))


## End(Not run)

Retrieve data from LabKey Server

Description

Retrive rows from a LabKey Server given a session and query object

Usage

getRows(session, query, maxRows=NULL, colNameOpt='fieldname', ...)

Arguments

session

the session key returned from getSession

query

an object representing a query on LabKey Server, a child object of the object returned by getSchema()

maxRows

(optional) an integer specifying how many rows of data to return. If no value is specified, all rows are returned.

colNameOpt

(optional) controls the name source for the columns of the output dataframe, with valid values of 'caption', 'fieldname', and 'rname'

...

Any of the remaining options to link{labkey.selectRows}

Details

This function works as a shortcut wrapper to labkey.selectRows. All of the arguments are the same as documented in labkey.selectRows.

See labkey.selectRows for a discussion of the valid options and defaults for colNameOpt. Note in particular that with getRows the default is 'fieldname' instead of 'caption'.

Value

A data frame containing the query results corresponding to the default view of the specified query.

Author(s)

Peter Hussey

See Also

getSession, getSchema, getLookups, saveResults labkey.selectRows

Examples

## Not run: 

## simple example of getting data using schema objects
# library(Rlabkey)

s<-getSession(baseUrl="http://localhost:8080/labkey",
    folderPath="/apisamples")
s  # shows schemas

scobj <- getSchema(s, "lists")
scobj   # shows available queries

scobj$AllTypes  ## this is the query object

getRows(s, scobj$AllTypes)
	

## End(Not run)

Returns an object representing a LabKey schema

Description

Creates and returns an object representing a LabKey schema, containing child objects representing LabKey queries

Usage

getSchema(session, schemaIndex)

Arguments

session

the session key returned from getSession

schemaIndex

the name of the schema that contains the table on which you want to base a query, or the number of that schema as displayed by print(session)

Details

Creates and returns an object representing a LabKey schema, containing child objects representing LabKey queries. This compound object is created by calling labkey.getQueries on the requested schema and labkey.getQueryDetails on each returned query. The information returned in the schema objects is essentially the same as the schema and query objects shown in the Schema Browser on LabKey Server.

Value

an object representing the schema. The named elements of a schema are the queries within that schema.

Author(s)

Peter Hussey

References

https://www.labkey.org/Documentation/wiki-page.view?name=querySchemaBrowser

See Also

getSession

Examples

## Not run: 

## the basics of using session, schema, and query objects
# library(Rlabkey)

s<- getSession(baseUrl="http://localhost:8080/labkey",
    folderPath="/apisamples")

sch<- getSchema(s, "lists")

# can walk down the populataed schema tree from schema node or query node
sch$AllTypes$Category
sch$AllTypes$Category$caption
sch$AllTypes$Category$type

# can add fields from related queries
lucols <- getLookups(s, sch$AllTypes$Category)

cols <- c(names(sch$AllTypes[2:6]), names(lucols)[2:4])

getRows(s, sch$AllTypes, colSelect=cols)


## End(Not run)

Creates and returns a LabKey Server session

Description

The session object holds server address and folder context for a user working with LabKey Server. The session-based model supports more efficient interactive use of LabKey Server from R.

Usage

getSession(baseUrl, folderPath="/home",
    curlOptions=NULL, lkOptions=NULL)

Arguments

baseUrl

a string specifying the address of the LabKey Server, including the context root

folderPath

a string specifying the hierarchy of folders to the current folder (container) for the operation, starting with the project folder

curlOptions

(optional) a list of curlOptions to be set on connections to the LabKey Server, see details

lkOptions

(optional) a list of settings for default behavior on naming of objects, see details

Details

Creates a session key that is passed to all the other session-based functions. Associated with the key are a baseUrl and a folderPath which determine the security context.

curlOptions

The curlOptions parameter gives a mechanism to pass control options down to the RCurl library used by Rlabkey. This can be very useful for debugging problems or setting proxy server properties. See example for debugging.

lkOptions

The lkOptions parameter gives a mechanism to change default behavior in the objects returned by Rlabkey. Currently the only available options are colNameOpt, which affects the names of columns in the data frames returned by getRows(), and maxRows, which sets a default value for this parameter when calling getRows()

Value

getSession returns a session object that represents a specific user within a specific project folder within the LabKey Server identified by the baseUrl. The combination of user, server and project/folder determines the security context of the client program.

Author(s)

Peter Hussey

See Also

getRows, getSchema, getLookups saveResults

Examples

## Not run: 

# library(Rlabkey)

s <- getSession("https://www.labkey.org", "/home")
s   #shows schemas

## using the curlOptions for generating debug tracesof network traffic
d<- debugGatherer()
copt <- curlOptions(debugfunction=d$update, verbose=TRUE,
    cookiefile='/cooks.txt')
sdbg<- getSession(baseUrl="http://localhost:8080/labkey",
    folderPath="/apisamples", curlOptions=copt)
getRows(sdbg, scobj$AllTypes)
strwrap(d$value(), 100)


## End(Not run)

Convenience method to configure Rlabkey connections to accept self-signed certificates

Description

Rlabkey uses the package RCurl to connect to the LabKey Server. This is equivalent to executing the function: labkey.setCurlOptions(ssl_verifyhost=0, ssl_verifypeer=FALSE)

Usage

labkey.acceptSelfSignedCerts()

Returns the current set of Curl options that are being used in the existing session

Description

Rlabkey uses the package RCurl to connect to the LabKey Server.

Usage

labkey.curlOptions()

Delete rows of data from a LabKey database

Description

Specify rows of data to be deleted from the LabKey Server

Usage

labkey.deleteRows(baseUrl, folderPath,
    schemaName, queryName, toDelete,
    provenanceParams=NULL, options=NULL)

Arguments

baseUrl

a string specifying the baseUrlfor LabKey server

folderPath

a string specifying the folderPath

schemaName

a string specifying the schemaName for the query

queryName

a string specifying the queryName

toDelete

a data frame containing a single column of data containing the data identifiers of the rows to be deleted

provenanceParams

the provenance parameter object which contains the options to include as part of a provenance recording. This is a premium feature and requires the Provenance LabKey module to function correctly, if it is not present this parameter will be ignored.

options

(optional) a list containing options specific to the insert action of the query

Details

A single row or multiple rows of data can be deleted. For the toDelete data frame, version 0.0.5 or later accepts either a single column of data containing the data identifiers (e.g., key or lsid) or the entire row of data to be deleted. The names of the data in the data frame must be the column names from the LabKey Server. The data frame must be created with the stringsAsFactors set to FALSE.

NOTE: Each variable in a dataset has both a column label and a column name. The column label is visible at the top of each column on the web page and is longer and more descriptive. The column name is shorter and is used “behind the scenes” for database manipulation. It is the column name that must be used in the Rlabkey functions when a column name is expected. To identify a particular column name in a dataset on a web site, use the “export to R script” option available as a drop down option under the “views” tab for each dataset.

The list of valid options for each query will vary, but some common examples include:

  • auditBehavior (string) : Can be used to override the audit behavior for the table the query is acting on. The set of types include: NONE, SUMMARY, and DETAILED.

  • auditUserComment (string) : Can be used to provide a comment from the user that will be attached to certain detailed audit log records.

Value

A list is returned with named categories of command, rowsAffected, rows, queryName, containerPath and schemaName. The schemaName, queryName and containerPath properties contain the same schema, query and folder path used in the request. The rowsAffected property indicates the number of rows affected by the API action. This will typically be the same number as passed in the request. The rows property contains a list of rows corresponding to the rows deleted.

Author(s)

Valerie Obenchain

See Also

labkey.selectRows, labkey.executeSql, makeFilter, labkey.insertRows, labkey.importRows,
labkey.updateRows, labkey.moveRows,
labkey.provenance.createProvenanceParams, labkey.provenance.startRecording, labkey.provenance.addRecordingStep, labkey.provenance.stopRecording

Examples

## Not run: 

## Insert, update and delete
## Note that users must have the necessary permissions in the LabKey Server
## to be able to modify data through the use of these functions
# library(Rlabkey)

newrow <- data.frame(
	DisplayFld="Inserted from R"
	, TextFld="how its done"
	, IntFld= 98 
	, DoubleFld = 12.345
	, DateTimeFld = "03/01/2010"
	, BooleanFld= FALSE
	, LongTextFld = "Four score and seven years ago"
#	, AttachmentFld = NA    #attachment fields not supported 
	, RequiredText = "Veni, vidi, vici"
	, RequiredInt = 0
	, Category = "LOOKUP2"
	, stringsAsFactors=FALSE)

insertedRow <- labkey.insertRows("http://localhost:8080/labkey",
    folderPath="/apisamples", schemaName="lists",
    queryName="AllTypes", toInsert=newrow)
newRowId <- insertedRow$rows[[1]]$RowId

selectedRow<-labkey.selectRows("http://localhost:8080/labkey",
    folderPath="/apisamples", schemaName="lists", queryName="AllTypes",
    colFilter=makeFilter(c("RowId", "EQUALS", newRowId)))
selectedRow

updaterow=data.frame(
	RowId=newRowId
	, DisplayFld="Updated from R"
	, TextFld="how to update"
	, IntFld= 777 
	, stringsAsFactors=FALSE)

updatedRow <- labkey.updateRows("http://localhost:8080/labkey",
    folderPath="/apisamples", schemaName="lists",
    queryName="AllTypes", toUpdate=updaterow)
selectedRow<-labkey.selectRows("http://localhost:8080/labkey",
    folderPath="/apisamples", schemaName="lists", queryName="AllTypes",
    colFilter=makeFilter(c("RowId", "EQUALS", newRowId)))
selectedRow

deleterow <- data.frame(RowId=newRowId, stringsAsFactors=FALSE)
result <- labkey.deleteRows(baseUrl="http://localhost:8080/labkey",
    folderPath="/apisamples", schemaName="lists",
    queryName="AllTypes",  toDelete=deleterow)
result


## End(Not run)

Create a new LabKey domain

Description

Create a domain of the type specified by the domainKind and the domainDesign. A LabKey domain represents a table in a specific schema.

Usage

labkey.domain.create(baseUrl=NULL, folderPath,
    domainKind=NULL, domainDesign=NULL, options=NULL,
    module=NULL, domainGroup=NULL, domainTemplate=NULL,
    createDomain=TRUE, importData=TRUE)

Arguments

baseUrl

a string specifying the baseUrl for the labkey server

folderPath

a string specifying the folderPath

domainKind

(optional) a string specifying the type of domain to create

domainDesign

(optional) a list containing the domain design to create

options

(optional) a list containing options specific to the domain kind

module

(optional) the name of the module that contains the domain template group

domainGroup

(optional) the name of a domain template group

domainTemplate

(optional) the name of a domain template within the domain group

createDomain

(optional) when using a domain template, create the domain. Defaults to TRUE

importData

(optional) when using a domain template, import initial data asociated in the template. Defaults to TRUE

Details

When creating a domain using a domainKind parameter, the domainDesign parameter will be required. If a domain template is being used, then module, domainGroup, and domainTemplate are required.

Will create a domain of the specified domain type, valid types are

  • "IntList": A list with an integer key field

  • "VarList": A list with a string key field

  • "StudyDatasetVisit": A dataset in a visit based study

  • "StudyDatasetDate": A dataset in a date based study

  • "IssueDefinition": An issue list domain

  • "SampleSet": Sample set

  • "DataClass": Data class

The domain design parameter describes the set of fields in the domain, see labkey.domain.createDesign for the helper function that can be used to construct this data structure. The options parameter should contain a list of attributes that are specific to the domain kind specified. The list of valid options for each domain kind are:

  • IntList and VarList

    • keyName (required) : The name of the field in the domain design which identifies the key field

  • StudyDatasetVisit and StudyDatasetDate

    • datasetId : Specifies a dataset ID to use, the default is to auto generate an ID

    • categoryId : Specifies an existing category ID

    • categoryName : Specifies an existing category name

    • demographics : (TRUE | FALSE) Determines whether the dataset is created as demographic

    • keyPropertyName : The name of an additional key field to be used in conjunction with participantId and (visitId or date) to create unique records

    • useTimeKeyField : (TRUE | FALSE) Specifies to use the time portion of the date field as an additional key

    • isManagedField : (TRUE | FALSE) Specifies whether the field from keyPropertyName should be managed by LabKey.

  • IssueDefinition

    • providerName : The type of issue list to create (IssueDefinition (default) or AssayRequestDefinition)

    • singularNoun : The singular name to use for items in the issue definition (defaults to issue)

    • pluralNoun : The plural name (defaults to issues)

  • SampleSet

    • idCols : The columns to use when constructing the concatenated unique ID. Can be up to 3 numeric IDs which represent the zero-based position of the fields in the domain.

    • parentCol : The column to represent the parent identifier in the sample set. This is a numeric value representing the zero-based position of the field in the domain.

    • nameExpression : The name expression to use for creating unique IDs

  • DataClass

    • sampleSet : The ID of the sample set if this data class is associated with a sample set.

    • nameExpression : The name expression to use for creating unique IDs

Value

A list containing elements describing the newly created domain.

Author(s)

Karl Lum

See Also

labkey.domain.get, labkey.domain.inferFields, labkey.domain.createDesign, labkey.domain.createIndices, labkey.domain.save, labkey.domain.drop, labkey.domain.createConditionalFormat, labkey.domain.createConditionalFormatQueryFilter, labkey.domain.FILTER_TYPES

Examples

## Not run: 

## create a data frame and infer it's fields, then create a domain design from it
library(Rlabkey)

df <- data.frame(ptid=c(1:3), age = c(10,20,30), sex = c("f", "m", "f"))
fields <- labkey.domain.inferFields(baseUrl="http://labkey/", folderPath="home", df=df)
dd <- labkey.domain.createDesign(name="test list", fields=fields)

## create a new list with an integer key field
labkey.domain.create(baseUrl="http://labkey/", folderPath="home",
    domainKind="IntList", domainDesign=dd, options=list(keyName = "ptid"))

## create a domain using a domain template
labkey.domain.create(baseUrl="http://labkey/", folderPath="home",
    domainTemplate="Priority", module="simpletest", domainGroup="todolist")

## End(Not run)

Create a new LabKey domain and load data

Description

Create a domain of the type specified by the domainKind. A LabKey domain represents a table in a specific schema. Once the domain is created the data from the data frame will be imported.

Usage

labkey.domain.createAndLoad(baseUrl=NULL, folderPath,
    name, description="", df, domainKind, options=NULL, schemaName=NULL)

Arguments

baseUrl

a string specifying the baseUrl for the labkey server

folderPath

a string specifying the folderPath

name

a string specifying the name of the domain to create

description

(optional) a string specifying the domain description

df

a data frame specifying fields to infer. The data frame must have column names as well as row data to infer the type of the field from.

domainKind

a string specifying the type of domain to create

options

(optional) a list containing options specific to the domain kind

schemaName

(optional) a string specifying the schema name to import the data into

Details

Will create a domain of the specified domain type, valid types are

  • "IntList": A list with an integer key field

  • "VarList": A list with a string key field

  • "StudyDatasetVisit": A dataset in a visit based study

  • "StudyDatasetDate": A dataset in a date based study

  • "IssueDefinition": An issue list domain

  • "SampleSet": Sample set

  • "DataClass": Data class

The options parameter should contain a list of attributes that are specific to the domain kind specified. The list of valid options for each domain kind are:

  • IntList and VarList

    • keyName (required) : The name of the field in the domain design which identifies the key field

  • StudyDatasetVisit and StudyDatasetDate

    • datasetId : Specifies a dataset ID to use, the default is to auto generate an ID

    • categoryId : Specifies an existing category ID

    • categoryName : Specifies an existing category name

    • demographics : (TRUE | FALSE) Determines whether the dataset is created as demographic

    • keyPropertyName : The name of an additional key field to be used in conjunction with participantId and (visitId or date) to create unique records

    • useTimeKeyField : (TRUE | FALSE) Specifies to use the time portion of the date field as an additional key

  • IssueDefinition

    • providerName : The type of issue list to create (IssueDefinition (default) or AssayRequestDefinition)

    • singularNoun : The singular name to use for items in the issue definition (defaults to issue)

    • pluralNoun : The plural name (defaults to issues)

  • SampleSet

    • idCols : The columns to use when constructing the concatenated unique ID. Can be up to 3 numeric IDs which represent the zero-based position of the fields in the domain.

    • parentCol : The column to represent the parent identifier in the sample set. This is a numeric value representing the zero-based position of the field in the domain.

    • nameExpression : The name expression to use for creating unique IDs

  • DataClass

    • sampleSet : The ID of the sample set if this data class is associated with a sample set.

    • nameExpression : The name expression to use for creating unique IDs

Value

A list containing the newly uploaded data frame rows.

Author(s)

Karl Lum

See Also

labkey.domain.get, labkey.domain.inferFields, labkey.domain.createDesign, labkey.domain.createIndices, labkey.domain.save, labkey.domain.drop

Examples

## Not run: 

library(Rlabkey)

## Prepare a data.frame
participants = c("0001","0001","0002","0002","0007","0008")
Visit = c("V1", "V2", "V2", "V1", "V2", "V1")
IntValue = c(256:261)
dataset = data.frame("ParticipantID" = participants, Visit,
    "IntegerValue" = IntValue, check.names = FALSE)

## Create the dataset and import
labkey.domain.createAndLoad(baseUrl="http://labkey", folderPath="home",
    name="demo dataset", df=dataset, domainKind="StudyDatasetVisit")

## End(Not run)

Create a conditional format data frame

Description

Create a conditional format data frame.

Usage

labkey.domain.createConditionalFormat(queryFilter, bold=FALSE, italic=FALSE,
    strikeThrough=FALSE, textColor="", backgroundColor="")

Arguments

queryFilter

a string specifying what logical filter should be applied

bold

a boolean for if the text display should be formatted in bold

italic

a boolean for if the text display should be formatted in italic

strikeThrough

a boolean for if the text display should be formatted with a strikethrough

textColor

a string specifying the hex code of the text color for display

backgroundColor

a string specifying the hex code of the text background color for display

Details

This function can be used to construct a conditional format data frame intended for use within a domain design's conditionalFormats component while creating or updating a domain. The queryFilter parameter can be used in conjunction with labkey.domain.createConditionalFormatQueryFilter for convenient construction of a query filter string. Multiple conditional formats can be applied to one field, where each format specified constitutes a new row of the field's conditionalFormats data frame. If text formatting options are not specified, the default is to display the value as black text on a white background.

Value

The data frame containing values describing a conditional format.

Author(s)

Rosaline Pyktel

See Also

labkey.domain.get, labkey.domain.create, labkey.domain.createDesign, labkey.domain.inferFields, labkey.domain.save, labkey.domain.drop, labkey.domain.createConditionalFormatQueryFilter, labkey.domain.FILTER_TYPES

Examples

## Not run: 

library(Rlabkey)

domain <- labkey.domain.get(baseUrl="http://labkey/", folderPath="home",
    schemaName="lists", queryName="test list")

## update the third field to use two conditional formats
qf <- labkey.domain.FILTER_TYPES
cf1 = labkey.domain.createConditionalFormat(labkey.domain.createConditionalFormatQueryFilter(qf$GT,
      100), bold=TRUE, text_color="D33115", background_color="333333")
cf2 = labkey.domain.createConditionalFormat(labkey.domain.createConditionalFormatQueryFilter(
      qf$LESS_THAN, 400), italic=TRUE, text_color="68BC00")
domain$fields$conditionalFormats[[3]] = rbind(cf1,cf2)

labkey.domain.save(baseUrl="http://labkey/", folderPath="home",
    schemaName="lists", queryName="test list", domainDesign=domain)


## End(Not run)

Create a conditional format query filter

Description

Create a conditional format query filter string.

Usage

labkey.domain.createConditionalFormatQueryFilter(filterType, value,
    additionalFilter=NULL, additionalValue=NULL)

Arguments

filterType

a string specifying a permitted relational operator

value

a string specifying a comparand

additionalFilter

a string specifying a second relational operator

additionalValue

a string specifying a second comparand

Details

This function can be used to as a convenience wrapper to construct a query filter string for conditional formats. Two relational expressions may be formed, one with the first two parameters (for instance, parameter values '50' and 'eq' for value and filter respectively would create a condition of 'equals 50') and the second with the remaining two optional parameters. If both conditions are created, they are conjunct with a logical AND, and a value would have to pass both conditions to clear the filter. This function can be used in conjunction with labkey.domain.FILTER_TYPES for easy access to the set of permitted relational operators.

Value

The string specifying a query filter in LabKey filter URL format.

Author(s)

Rosaline Pyktel

See Also

labkey.domain.get, labkey.domain.create, labkey.domain.createDesign, labkey.domain.inferFields, labkey.domain.save, labkey.domain.drop, labkey.domain.createConditionalFormat, labkey.domain.FILTER_TYPES

Examples

## Not run: 

library(Rlabkey)

qf <- labkey.domain.FILTER_TYPES

# Filters for values equal to 750
qf1 <- labkey.domain.createConditionalFormatQueryFilter(qf$EQUAL, 750)
# Filters for values greater than 500, but less than 1000
qf2 <- labkey.domain.createConditionalFormatQueryFilter(qf$GREATER_THAN, 500, qf$LESS_THAN, 1000)


## End(Not run)

Helper function to create a domain design data structure

Description

Create a domain design data structure which can then be used by labkey.domain.create or labkey.domain.save

Usage

labkey.domain.createDesign(name, description = NULL, fields, indices = NULL)

Arguments

name

a string specifying the name of the domain

description

(optional) a string specifying domain description

fields

a list containing the fields of the domain design, this should be in the same format as returned by labkey.inferFields.

indices

(optional) a list of indices definitions to be used for this domain design on creation

Details

This is a function which can be used to create a domain design data structure. Domain designs are used both when creating a new domain or updating an existing domain.

Value

A list containing elements describing the domain design. Any of the APIs which take a domain design parameter can accept this data structure.

Author(s)

Karl Lum

See Also

labkey.domain.get, labkey.domain.inferFields, labkey.domain.createIndices, labkey.domain.create, labkey.domain.save, labkey.domain.drop, labkey.domain.createConditionalFormat, labkey.domain.createConditionalFormatQueryFilter, labkey.domain.FILTER_TYPES

Examples

## Not run: 

## create a data frame and infer it's fields, then create a domain design from it
library(Rlabkey)

df <- data.frame(ptid=c(1:3), age = c(10,20,30), sex = c("f", "m", "f"))
fields <- labkey.domain.inferFields(baseUrl="http://labkey/", folderPath="home", df=df)
indices = labkey.domain.createIndices(list("ptid", "age"), TRUE)
indices = labkey.domain.createIndices(list("age"), FALSE, indices)
dd <- labkey.domain.createDesign(name="test list", fields=fields, indices=indices)


## End(Not run)

Helper function to create a domain design indices list

Description

Create a list of indices definitions which can then be used by labkey.domain.createDesign

Usage

labkey.domain.createIndices(colNames, asUnique, existingIndices = NULL)

Arguments

colNames

a list of string column names for the index

asUnique

a logical TRUE or FALSE value for if a UNIQUE index should be used

existingIndices

a list of previously created indices definitions to append to

Details

This helper function can be used to construct the list of indices definitions for a domain design structure. Each call to this function takes in the column names from the domain to use in the index and a parameter indicating if this should be a UNIQUE index. A third parameter can be used to build up more then one indices definitions.

Value

The data frame containing the list of indices definitions, concatenated with the existingIndices object if provided.

Author(s)

Cory Nathe

See Also

labkey.domain.get, labkey.domain.create, labkey.domain.createDesign, labkey.domain.inferFields, labkey.domain.save, labkey.domain.drop

Examples

## Not run: 

## create a list of indices definitions to use for a domain design
library(Rlabkey)

indices = labkey.domain.createIndices(list("intKey", "customInt"), TRUE)
indices = labkey.domain.createIndices(list("customInt"), FALSE, indices)


## End(Not run)

Delete a LabKey domain

Description

Delete an existing domain.

Usage

labkey.domain.drop(baseUrl=NULL, folderPath, schemaName, queryName)

Arguments

baseUrl

a string specifying the baseUrlfor the labkey server

folderPath

a string specifying the folderPath

schemaName

a string specifying the name of the schema of the domain

queryName

a string specifying the query name

Details

This function will delete an existing domain along with any data that may have been uploaded to it.

Author(s)

Karl Lum

See Also

labkey.domain.get, labkey.domain.inferFields, labkey.domain.createDesign, labkey.domain.createIndices, labkey.domain.save, labkey.domain.create

Examples

## Not run: 

## delete an existing domain
library(Rlabkey)

labkey.domain.drop(baseUrl="http://labkey/", folderPath="home",
    schemaName="lists", queryName="test list")

## End(Not run)

Provide comparator access

Description

A list specifying permitted validator comparators.

Usage

labkey.domain.FILTER_TYPES

Details

This constant contains a list specifying the set of permitted validator operators, using names to map conventional terms to the expressions used by LabKey filter URL formats. The values are intended to be used in conjunction with conditional formats or property validators.

Value

A named list of strings.

Author(s)

Rosaline Pyktel

See Also

labkey.domain.get, labkey.domain.create, labkey.domain.createDesign, labkey.domain.inferFields, labkey.domain.save, labkey.domain.drop, labkey.domain.createConditionalFormat, labkey.domain.createConditionalFormatQueryFilter

Examples

## Not run: 
library(Rlabkey)

qf <- labkey.domain.FILTER_TYPES

# Example of available comparators
comparator1 <- qf$EQUAL
comparator2 <- qf$GREATER_THAN
comparator3 <- qf$DATE_LESS_THAN_OR_EQUAL
comparator4 <- qf$STARTS_WITH
comparator5 <- qf$CONTAINS_ONE_OF


## End(Not run)

Returns the metadata for an existing LabKey domain

Description

Get the data structure for a domain.

Usage

labkey.domain.get(baseUrl=NULL, folderPath, schemaName, queryName)

Arguments

baseUrl

a string specifying the baseUrlfor the labkey server

folderPath

a string specifying the folderPath

schemaName

a string specifying the name of the schema of the domain

queryName

a string specifying the query name

Details

Returns the domain design of an existing domain. The returned domain design can be used for reporting purposes or it can be modified and used to create a new domain or update the domain source.

Value

A list containing elements describing the domain. The structure is the same as a domain design created by labkey.createDomainDesign

Author(s)

Karl Lum

See Also

labkey.domain.create, labkey.domain.inferFields, labkey.domain.createDesign, labkey.domain.createIndices, labkey.domain.save, labkey.domain.drop

Examples

## Not run: 

## retrieve an existing domain
library(Rlabkey)

labkey.domain.get(baseUrl="http://labkey/", folderPath="home",
    schemaName="lists", queryName="test list")

## End(Not run)

Infer field metadata from a data frame

Description

Generate field information from the specified data frame. The resulting list can be used to create or edit a domain using the labkey.domain.create or labkey.domain.save APIs.

Usage

labkey.domain.inferFields(baseUrl = NULL, folderPath, df)

Arguments

baseUrl

a string specifying the baseUrl for the labkey server

folderPath

a string specifying the folderPath

df

a data frame specifying fields to infer. The data frame must have column names as well as row data to infer the type of the field from.

Details

Field information can be generated from a data frame by introspecting the data associated with it along with other properties about that column. The data frame is posted to the server endpoint where the data is analyzed and returned as a list of fields each with it's associated list of properties and values. This list can be edited and/or used to create a domain on the server.

Value

The inferred metadata will be returned as a list with an element called : "fields" which contains the list of fields inferred from the data frame. Each field will contain the list of attributes and values for that field definition.

Author(s)

Karl Lum

See Also

labkey.domain.get, labkey.domain.create, labkey.domain.createDesign, labkey.domain.createIndices, labkey.domain.save, labkey.domain.drop

Examples

## Not run: 

## create a data frame and infer it's fields
library(Rlabkey)

df <- data.frame(ptid=c(1:3), age = c(10,20,30), sex = c("f", "m", "f"))
fields <- labkey.domain.inferFields(baseUrl="http://labkey/", folderPath="home", df=df)


## End(Not run)

Updates an existing LabKey domain

Description

Modify an existing domain with the specified domain design.

Usage

labkey.domain.save(baseUrl=NULL, folderPath, schemaName, queryName, domainDesign)

Arguments

baseUrl

a string specifying the baseUrlfor the labkey server

folderPath

a string specifying the folderPath

schemaName

a string specifying the name of the schema of the domain

queryName

a string specifying the query name

domainDesign

a list data structure with the domain design to update to

Value

A list containing elements describing the domain after the update. The structure is the same as a domain design created by labkey.createDomainDesign

Author(s)

Karl Lum

See Also

labkey.domain.get, labkey.domain.inferFields, labkey.domain.createDesign, labkey.domain.createIndices, labkey.domain.create, labkey.domain.drop, labkey.domain.createConditionalFormat, labkey.domain.createConditionalFormatQueryFilter, labkey.domain.FILTER_TYPES

Examples

## Not run: 

library(Rlabkey)
## change the type of one of the columns
domain <- labkey.domain.get(baseUrl="http://labkey/", folderPath="home",
    schemaName="lists", queryName="test list")

domain$fields[3,]$rangeURI = "xsd:string"
domain$fields[3,]$name = "changed to string"

labkey.domain.save(baseUrl="http://labkey/", folderPath="home",
    schemaName="lists", queryName="test list", domainDesign=domain)

## End(Not run)

Retrieve data from a LabKey Server using SQL commands

Description

Use Sql commands to specify data to be imported into R. Prior to import, data can be manipulated through standard SQL commands supported in LabKey SQL.

Usage

labkey.executeSql(baseUrl, folderPath, schemaName, sql,
    maxRows = NULL, rowOffset = NULL, colSort=NULL,
    showHidden = FALSE, colNameOpt='caption',
    containerFilter=NULL, parameters=NULL)

Arguments

baseUrl

a string specifying the baseUrlfor the labkey server

folderPath

a string specifying the folderPath

schemaName

a string specifying the schemaName for the query

sql

a string containing the sql commands to be executed

maxRows

(optional) an integer specifying the maximum number of rows to return. If no value is specified, all rows are returned.

rowOffset

(optional) an integer specifying which row of data should be the first row in the retrieval. If no value is specified, rows will begin at the start of the result set.

colSort

(optional) a string including the name of the column to sort preceeded by a “+” or “-” to indicate sort direction

showHidden

(optional) a logical value indicating whether or not to return data columns that would normally be hidden from user view. Defaults to FALSE if no value provided.

colNameOpt

(optional) controls the name source for the columns of the output dataframe, with valid values of 'caption', 'fieldname', and 'rname' See labkey.selectRows for more details.

containerFilter

(optional) Specifies the containers to include in the scope of selectRows request. A value of NULL is equivalent to "Current". Valid values are

  • "Current": Include the current folder only

  • "CurrentAndSubfolders": Include the current folder and all subfolders

  • "CurrentPlusProject": Include the current folder and the project that contains it

  • "CurrentAndParents": Include the current folder and its parent folders

  • "CurrentPlusProjectAndShared": Include the current folder plus its project plus any shared folders

  • "AllFolders": Include all folders for which the user has read permission

parameters

(optional) List of name/value pairs for the parameters if the SQL references underlying queries that are parameterized. For example, parameters=c("X=1", "Y=2").

Details

A full dataset or any portion of a dataset can be imported into an R data frame using the labkey.executeSql function. Function arguments are components of the url that identify the location of the data and the SQL actions that should be taken on the data prior to import.

See labkey.selectRows for a discussion of the valid options and defaults for colNameOpt.

Value

The requested data are returned in a data frame with stringsAsFactors set to FALSE. Column names are set as determined by the colNameOpt parameter.

Author(s)

Valerie Obenchain

See Also

labkey.selectRows, makeFilter, labkey.insertRows, labkey.importRows, labkey.updateRows,
labkey.deleteRows, getRows

Examples

## Not run: 

## Example of an expicit join and use of group by and aggregates
# library(Rlabkey)

sql<- "SELECT AllTypesCategories.Category AS Category, 
    SUM(AllTypes.IntFld) AS SumOfIntFld,
    AVG(AllTypes.DoubleFld) AS AvgOfDoubleFld
    FROM AllTypes LEFT JOIN AllTypesCategories
    ON (AllTypes.Category = AllTypesCategories.TextKey)
    WHERE AllTypes.Category IS NOT NULL
    GROUP BY AllTypesCategories.Category"

sqlResults <- labkey.executeSql(
    baseUrl="http://localhost:8080/labkey",
    folderPath="/apisamples",
    schemaName="lists",
    sql = sql)

sqlResults


## End(Not run)

Create an experiment data object

Description

Create an experiment data object.

Usage

labkey.experiment.createData(config,
    dataClassId = NULL, dataClassName = NULL, dataFileUrl = NULL)

Arguments

config

a list of base experiment object properties

dataClassId

(optional) a integer specifying the data class row ID

dataClassName

(optional) a string specifying the name of the data class

dataFileUrl

(optional) a string specifying the local file url of the uploaded file

Details

Create an experiment data object which can be used as either input or output datas for an experiment run.

Value

Returns the object representation of the experiment data object.

Author(s)

Karl Lum

See Also

labkey.experiment.saveBatch, labkey.experiment.createMaterial, labkey.experiment.createRun

Examples

## Not run: 

library(Rlabkey)

## create a non-assay backed run with data classes as data inputs and outputs

d1 <- labkey.experiment.createData(
        list(name = "dc-01"), dataClassId = 400)
d2 <- labkey.experiment.createData(
        list(name = "dc-02"), dataClassId = 402)
run <- labkey.experiment.createRun(
        list(name="new run"), dataInputs = d1, dataOutputs = d2)
labkey.experiment.saveBatch(baseUrl="http://labkey/", folderPath="home",
        protocolName=labkey.experiment.SAMPLE_DERIVATION_PROTOCOL, runList=run)

## End(Not run)

Create an experiment material object

Description

Create an experiment material object.

Usage

labkey.experiment.createMaterial(config, sampleSetId = NULL, sampleSetName = NULL)

Arguments

config

a list of base experiment object properties

sampleSetId

(optional) a integer specifying the sample set row ID

sampleSetName

(optional) a string specifying the name of the sample set

Details

Create an experiment material object which can be used as either input or output materials for an experiment run.

Value

Returns the object representation of the experiment material object.

Author(s)

Karl Lum

See Also

labkey.experiment.saveBatch, labkey.experiment.createData, labkey.experiment.createRun

Examples

## Not run: 

library(Rlabkey)

## create a non-assay backed run with samples as material inputs and outputs

m1 <- labkey.experiment.createMaterial(
        list(name = "87444063.2604.626"), sampleSetName = "Study Specimens")
m2 <- labkey.experiment.createMaterial(
        list(name = "87444063.2604.625"), sampleSetName = "Study Specimens")
run <- labkey.experiment.createRun(
        list(name="new run"), materialInputs = m1, materialOutputs = m2)
labkey.experiment.saveBatch(baseUrl="http://labkey/", folderPath="home",
        protocolName=labkey.experiment.SAMPLE_DERIVATION_PROTOCOL, runList=run)

## End(Not run)

Create an experiment run object

Description

Create an experiment run object.

Usage

labkey.experiment.createRun(config,
    dataInputs = NULL, dataOutputs = NULL, dataRows = NULL,
    materialInputs = NULL, materialOutputs = NULL)

Arguments

config

a list of base experiment object properties

dataInputs

(optional) a list of experiment data objects to be used as data inputs to the run

dataOutputs

(optional) a list of experiment data objects to be used as data outputs to the run

dataRows

(optional) a data frame containing data rows to be uploaded to the assay backed run

materialInputs

(optional) a list of experiment material objects to be used as material inputs to the run

materialOutputs

(optional) a list of experiment material objects to be used as material outputs to the run

Details

Create an experiment run object which can be used in the saveBatch function.

Value

Returns the object representation of the experiment run object.

Author(s)

Karl Lum

See Also

labkey.experiment.saveBatch, labkey.experiment.createData, labkey.experiment.createMaterial

Examples

## Not run: 

library(Rlabkey)

## create a non-assay backed run with samples as material inputs and outputs

m1 <- labkey.experiment.createMaterial(
        list(name = "87444063.2604.626"), sampleSetName = "Study Specimens")
m2 <- labkey.experiment.createMaterial(
        list(name = "87444063.2604.625"), sampleSetName = "Study Specimens")
run <- labkey.experiment.createRun(
        list(name="new run"), materialInputs = m1, materialOutputs = m2)
labkey.experiment.saveBatch(baseUrl="http://labkey/", folderPath="home",
        protocolName=labkey.experiment.SAMPLE_DERIVATION_PROTOCOL, runList=run)


## End(Not run)

Get lineage parent/child relationships for experiment objects

Description

Get lineage parent/child relationships and information for exp objects by LSID(s)

Usage

labkey.experiment.lineage(baseUrl=NULL, folderPath,
    lsids, options = NULL)

Arguments

baseUrl

A string specifying the baseUrl for the labkey server.

folderPath

A string specifying the folderPath to be renamed. Additionally, the container entity id is also valid.

lsids

One or more LSID seed values for the experiment objects to retrieve lineage information for.

options

(optional) A list containing optional parameters specific to the lineage action.

Details

This function retrieves lineage parent/child relationships and information for experiment objects by LSID(s).

Optional parameters (passed via options) include:

  • parents (boolean) : include parent objects in the lineage

  • children (boolean) : include child objects in the lineage

  • depth (integer) : the depth of the lineage to retrieve

  • expType (string) : the type of experiment objects to retrieve lineage for

  • cpasType (string) : the type of CPAS object to retrieve lineage for

  • runProtocolLsid (string) : the LSID of the run protocol to retrieve lineage for

  • includeProperties (boolean) : include properties in the lineage response

  • includeInputsAndOutputs (boolean) : include inputs and outputs in the lineage response

  • includeRunSteps (boolean) : include run steps in the lineage response

Value

Returns a lineage response object based on the LSID seed values provided. The response object contains:

  • seeds : the LSID of the object(s) requested

  • nodes : an object with LSID keys for each lineage node and values containing the lineage information

Author(s)

Cory Nathe

Examples

## Not run: 

library(Rlabkey)

labkey.experiment.lineage(
  baseUrl="http://labkey/",
  folderPath = "/home/OriginalFolder",
  lsids=c("urn:lsid:labkey.com:Sample.519.Blood:23", "urn:lsid:labkey.com:Sample.519.Blood:12"),
  options=list(
    parents=TRUE,
    children=TRUE,
    depth=10,
    expType="Material",
    includeProperties=TRUE,
    includeInputsAndOutputs=FALSE,
    includeRunSteps=FALSE
  )
)


## End(Not run)

Constant for the Simple Derivation Protocol

Description

Simple Derivation Protocol constant.

Details

This value can be used in the labkey.experiment.saveBatch function when creating runs that aren't backed by an assay protocol.

Author(s)

Karl Lum

See Also

labkey.experiment.saveBatch


Saves a modified experiment batch

Description

Saves a modified experiment batch.

Usage

labkey.experiment.saveBatch(baseUrl=NULL, folderPath,
    assayConfig = NULL, protocolName = NULL,
    batchPropertyList = NULL, runList)

Arguments

baseUrl

(optional) a string specifying the baseUrl for the labkey server

folderPath

a string specifying the folderPath

assayConfig

(optional) a list specifying assay configuration information

protocolName

(optional) a string specifying the protocol name of the protocol to use

batchPropertyList

(optional) a list of batch properties

runList

a list of experiment run objects

Details

Saves a modified batch. Runs within the batch may refer to existing data and material objects, either inputs or outputs, by ID or LSID. Runs may also define new data and materials objects by not specifying an ID or LSID in their properties.

Runs can be created for either assay or non-assay backed protocols. For an assay backed protocol, either the assayId or the assayName and providerName name must be specified in the assayConfig parameter. If a non-assay backed protocol is to be used, specify the protocolName string value, note that currently only the simple : labkey.experiment.SAMPLE_DERIVATION_PROTOCOL is supported.

Refer to the labkey.experiment.createData, labkey.experiment.createMaterial, and labkey.experiment.createRun helper functions to assemble the data structure that saveBatch expects.

Value

Returns the object representation of the experiment batch.

Author(s)

Karl Lum

See Also

labkey.experiment.createData, labkey.experiment.createMaterial, labkey.experiment.createRun

Examples

## Not run: 

library(Rlabkey)

## uploads data to an existing assay

df <- data.frame(participantId=c(1:3), visitId = c(10,20,30), sex = c("f", "m", "f"))
bprops <- list(LabNotes="this is a simple demo")
bpl <- list(name=paste("Batch ", as.character(date())),properties=bprops)
run <- labkey.experiment.createRun(list(name="new assay run"), dataRows = df)
labkey.experiment.saveBatch(baseUrl="http://labkey/", folderPath="home",
    assayConfig=list(assayName="GPAT", providerName="General"),
    batchPropertyList=bpl, runList=run)

## create a non-assay backed run with samples as material inputs and outputs

m1 <- labkey.experiment.createMaterial(
        list(name = "87444063.2604.626"), sampleSetName = "Study Specimens")
m2 <- labkey.experiment.createMaterial(
        list(name = "87444063.2604.625"), sampleSetName = "Study Specimens")
run <- labkey.experiment.createRun(
        list(name="new run"), materialInputs = m1, materialOutputs = m2)
labkey.experiment.saveBatch(baseUrl="http://labkey/", folderPath="home",
        protocolName=labkey.experiment.SAMPLE_DERIVATION_PROTOCOL, runList=run)


## End(Not run)

Saves Runs.

Description

Saves experiment runs.

Usage

labkey.experiment.saveRuns(baseUrl=NULL, folderPath,
    protocolName, runList)

Arguments

baseUrl

(optional) a string specifying the baseUrl for the labkey server

folderPath

a string specifying the folderPath

protocolName

a string specifying the protocol name of the protocol to use

runList

a list of experiment run objects

Details

Saves experiment runs. Runs may refer to existing data and material objects, either inputs or outputs, by ID or LSID. Runs may also define new data and materials objects by not specifying an ID or LSID in their properties.

Refer to the labkey.experiment.createData, labkey.experiment.createMaterial, and labkey.experiment.createRun helper functions to assemble the data structure that saveRuns expects.

Value

Returns the object representation of the experiment run.

Author(s)

Ankur Juneja

See Also

labkey.experiment.createData, labkey.experiment.createMaterial, labkey.experiment.createRun

Examples

## Not run: 

library(Rlabkey)

## example with materialInputs and materialOutputs

m1 <- labkey.experiment.createMaterial(
        list(name = "87444063.2604.626"), sampleSetName = "Study Specimens")
m2 <- labkey.experiment.createMaterial(
        list(name = "87444063.2604.625"), sampleSetName = "Study Specimens")
run <- labkey.experiment.createRun(
        list(name="new run"), materialInputs = m1, materialOutputs = m2)
labkey.experiment.saveRuns(baseUrl="http://labkey/", folderPath="home",
        protocolName=labkey.experiment.SAMPLE_DERIVATION_PROTOCOL, runList=run)

## End(Not run)

Get the default baseUrl parameter used for all http or https requests

Description

Use this function to get "baseUrl" package environment variables to be used for all http or https requests.

Usage

labkey.getBaseUrl(baseUrl=NULL)

Arguments

baseUrl

server location including context path, if any. e.g. https://www.labkey.org/

Details

The function takes an optional baseUrl parameter. When non empty parameter is passed in and if baseUrl has not been previously set, the function will remember the baseUrl value in package environment variables and return the formatted baseUrl. Skip baseUrl parameter to get previously set baseUrl.

Examples

## Not run: 
## Example of getting previously set baseUrl
library(Rlabkey)
labkey.setDefaults(apiKey="abcdef0123456789abcdef0123456789",
    baseUrl="http://labkey/")
labkey.getBaseUrl()


## End(Not run)

Retrieve the fields of a LabKey query view

Description

Fetch a list of output fields and their attributes that are avaialble from the default view of a given query

Usage

labkey.getDefaultViewDetails(baseUrl, folderPath,
    schemaName, queryName)

Arguments

baseUrl

a string specifying the baseUrlfor the labkey server

folderPath

a string specifying the folderPath

schemaName

a string specifying the schemaName for the query

queryName

a string specifying the queryName

Details

Queries have a default “views” associeated with them. A query view can describe a subset or superset of the fields defined by the query. A query view is defined by using the “Customize View” button option on a LabKey data grid page. getDefaultViewDetails has the same arguments and returns the same shape of result data frame as getQueryDetails.The default view is the what you will get back on calling labkey.selectRows or getRows.

Value

The output field attributes of the default view are returned as a data frame. See labkey.getQueryDetails for a description.

Author(s)

Peter Hussey, [email protected]

See Also

labkey.selectRows, makeFilter, labkey.executeSql, labkey.updateRows, labkey.insertRows, labkey.importRows, labkey.deleteRows, labkey.getSchemas, labkey.getQueries, labkey.getQueryViews, labkey.getQueryDetails, labkey.getLookupDetails

Examples

## Not run: 

## Details  of fields of a default query view
# library(Rlabkey)

queryDF <- labkey.getDefaultViewDetails(
	baseUrl="http://localhost:8080/labkey",
	folderPath="/apisamples",
	schemaName="lists",
	queryName="AllTypes")
	
queryDF


## End(Not run)

Retrieve a list of folders accessible to the current user

Description

Fetch a list of all folders accessible to the current user, starting from a given folder.

Usage

labkey.getFolders(baseUrl, folderPath,
        includeEffectivePermissions=TRUE,
        includeSubfolders=FALSE, depth=50,
        includeChildWorkbooks=TRUE,
        includeStandardProperties=TRUE)

Arguments

baseUrl

a string specifying the address of the LabKey Server, including the context root

folderPath

the starting point for the search.

includeEffectivePermissions

If set to false, the effective permissions for this container resource will not be included. (defaults to TRUE).

includeSubfolders

whether the search for subfolders should recurse down the folder hierarchy

depth

maximum number of subfolder levels to show if includeSubfolders=TRUE

includeChildWorkbooks

If true, include child containers of type workbook in the response (defaults to TRUE).

includeStandardProperties

If true, include the standard container properties like title, formats, etc. in the response (defaults to TRUE).

Details

Folders are a hierarchy of containers for data and files. The are the place where permissions are set in LabKey Server. The top level in a folder hierarchy is the project. Below the project is an arbitrary hierarchy of folders that can be used to partition data for reasons of security, visibility, and organization.

Folders cut across schemas. Some schemas, like the lists schema are not visible in a folder that has no list objects defined in it. Other schemas are visible in all folders.

Value

The available folders are returned as a three-column data frame containing

name

the name of the folder

folderPath

the full path of the folder from the project root

effectivePermissions

the current user's effective permissions for the given folder

Author(s)

Peter Hussey, [email protected]

See Also

labkey.getQueries, labkey.getQueryViews, labkey.getQueryDetails, labkey.getDefaultViewDetails, labkey.getLookupDetails, labkey.security.getContainers, labkey.security.createContainer, labkey.security.deleteContainer, labkey.security.moveContainer labkey.security.renameContainer

Examples

## Not run: 

## List of folders 
# library(Rlabkey)

folders <- labkey.getFolders("https://www.labkey.org", "/home")
folders


## End(Not run)

Retrieve detailed information on a LabKey query

Description

Fetch a list of output columns and their attributes from the query referenced by a lookup field

Usage

labkey.getLookupDetails(baseUrl, folderPath,
    schemaName, queryName, lookupKey)

Arguments

baseUrl

a string specifying the address of the LabKey Server, including the context root

folderPath

a string specifying the hierarchy of folders to the current folder (container) for the operation, starting with the project folder

schemaName

a string specifying the schema name in which the query object is defined

queryName

a string specifying the name the query

lookupKey

a string specifying the qualified name of a lookup field (foreign key) relative to the query specified by queryName

Details

When getQueryDetails returns non-NA values for the lookupQueryName, the getLookupDetails function can be called to enumerate the fields from the query referenced by the lookup. These lookup fields can be added to the colSelect list of selectRows.

Value

The available schemas are returned as a data frame, with the same columns as detailed in labkey.getQueryDetails

Author(s)

Peter Hussey, [email protected]

See Also

labkey.selectRows, makeFilter, labkey.executeSql, labkey.updateRows, labkey.insertRows, labkey.importRows, labkey.deleteRows, labkey.getSchemas, labkey.getQueries, labkey.getQueryViews, labkey.getQueryDetails, labkey.getDefaultViewDetails

Examples

## Not run: 

## Details  of fields of a query referenced by a lookup field
# library(Rlabkey)

lu1  <- labkey.getLookupDetails(
	baseUrl="http://localhost:8080/labkey",
	folderPath="/apisamples",
	schemaName="lists",
	queryName="AllTypes",
	lookupKey="Category"
)
lu1

## When a lookup field points to a query object that itself has a lookup
## field, use a compound fieldkey consisting of the lookup fields from
## the base query object to the target lookupDetails, separated by
## forward slashes
lu2<- labkey.getLookupDetails(
	baseUrl="http://localhost:8080/labkey",
	folderPath="/apisamples",
	schemaName="lists",
	queryName="AllTypes",
	lookupKey="Category/Group"
)
lu2

## Now select a result set containing a field from the base query, a
## field from the 1st level of lookup, and one from the 2nd
rows<- labkey.selectRows(
	baseUrl="http://localhost:8080/labkey",
	folderPath="/apisamples",
	schemaName="lists",
	queryName="AllTypes",
	colSelect=c("DisplayFld","Category/Category","Category/Group/GroupName"), 
	colFilter = makeFilter(c("Category/Group/GroupName",
	   "NOT_EQUALS","TypeRange")), maxRows=20
 )
 rows


## End(Not run)

Get effective module property value

Description

Get a specific effective module property value for folder

Usage

labkey.getModuleProperty(baseUrl=NULL, folderPath, moduleName, propName)

Arguments

baseUrl

server location including context path, if any. e.g. https://www.labkey.org/

folderPath

a string specifying the folderPath

moduleName

name of the module

propName

The module property name

Examples

## Not run: 
library(Rlabkey)
labkey.getModuleProperty(baseUrl="http://labkey/", folderPath="flowProject",
    moduleName="flow", propName="ExportToScriptFormat")


## End(Not run)

Retrieve a list of available queries for a specified LabKey schema

Description

Fetch a list of queries available to the current user within in a specified folder context and specified schema

Usage

labkey.getQueries(baseUrl, folderPath, schemaName)

Arguments

baseUrl

a string specifying the address of the LabKey Server, including the context root

folderPath

a string specifying the hierarchy of folders to the current folder (container) for the operation, starting with the project folder

schemaName

a string specifying the schema name in which the query object is defined

Details

“Query” is the LabKey term for a data container that acts like a relational table within LabKey Server. Queries include lists, assay data results, user-defined queries, built-in SQL tables in individual modules, and tables or table-like objects in external schemas, For a specific queriable object, the data that is visible depends on the current user's permissions in a given folder. Function arguments identify the location of the server and the folder path.

Value

The available queries are returned as a three-column data frame containing one row for each field for each query in the specified schema. The three columns are

queryName

the name of the query object, repeated once for every field defined as output of the query.


fieldName

the name of a query output field


caption

the caption of the named field as shown in the column header of a data grid, also known as a label


Author(s)

Peter Hussey, [email protected]

References

http://www.omegahat.net/RCurl/,
https://www.labkey.org/home/project-begin.view

See Also

labkey.selectRows, makeFilter, labkey.executeSql, labkey.updateRows, labkey.insertRows, labkey.importRows, labkey.deleteRows, labkey.getSchemas, labkey.getQueryViews, labkey.getQueryDetails, labkey.getDefaultViewDetails, labkey.getLookupDetails

Examples

## Not run: 

## List of queries in a schema
# library(Rlabkey)

queriesDF <- labkey.getQueries(
	baseUrl="https://www.labkey.org",
	folderPath="/home",
	schemaName="lists"
)
queriesDF


## End(Not run)

Retrieve detailed information on a LabKey query

Description

Fetch a list of output columns and their attributes that are avaialble from a given query

Usage

labkey.getQueryDetails(baseUrl, folderPath, schemaName, queryName)

Arguments

baseUrl

a string specifying the address of the LabKey Server, including the context root

folderPath

a string specifying the hierarchy of folders to the current folder (container) for the operation, starting with the project folder

schemaName

a string specifying the schema name in which the query object is defined

queryName

a string specifying the name of the query

Details

Queries have a default output list of fields defined by the "default view" of the query. To retrieve that set of fields with their detailed properties such as type and nullability, use labkey.getQueryDetails function. Function arguments are the components of the url that identify the location of the server, the folder path, the schema, and the name of the query.

The results from getQueryDetails describe the “field names” that are used to build the colSelect, colFilter and colSort parameters to selectRows. Each column in the data frame returned from selectRows corresponds to a field in the colSelect list.
There are two types of fieldNames that will be reported by the server in the output of this function. For fields that are directly defined in the query corresponding the queryName parameter for this function, the fieldName is simply the name assigned by the query. Because selectRows returns the results specified by the default view, however, there may be cases where this default view incorporates data from other queries that have a defined 1-M relationship with the table designated by the queryName. Such fields in related tables are referred to as “lookup” fields. Lookup fields have multi-part names using a forward slash as the delimiter. For example, in a samples data set, if the ParticipantId identifies the source of the sample, ParticipantId/CohortId/CohortName could be a reference to a CohortName field in a Cohorts data set.

These lookup fieldNames can appear in the default view and show up in the selectRows result. If a field from a lookup table is not in the default view, it can still be added to the output column list of labkey.selectRows. Use the labkey.getLookups to discover what additional fields are available via lookups, and then put their multipart fieldName values into the colSelect list. Lookup fields have the semantics of a LEFT JOIN in SQL, such that every record from the target queryName appears in the output whether or not there is a matching lookup field value.

Value

The available schemas are returned as a data frame:

queryName

the name of the query, repeated n times, where n is the number of output fields from the query


fieldName

the fully qualified name of the field, relative to the specified queryName.


caption

a more readable label for the data field, appears as a column header in grids


fieldKey

the name part that identifies this field within its containing table, independent of its use as a lookup target.


type

a string specifying the field type, e.g. Text, Number, Date, Integer


isNullable

TRUE if the field can be left empty (null)


isKeyField

TRUE if the field is part of the primary key


isAutoIncrement

TRUE if the system will automatically assign a sequential integer in this on inserting a record


isVersionField

TRUE if the field issued to detect changes since last read


isHidden

TRUE if the field is not displayed by default


isSelectable

reserved for future use.


isUserEditable

reserved for future use.


isReadOnly

reserved for future use


isMvEnabled

reserved for future use


lookupKeyField

for a field defined as a lookup the primary key column of the query referenced by the lookup field; NA for non-lookup fields


lookupSchemaName

the schema of the query referenced by the lookup field; NA for non-lookup fields


lookupDisplayField

the field from the query referenced by the lookup field that is shown by default in place of the lookup field; NA for non-lookup fields


lookupQueryName

the query referenced by the lookup field; NA for non-lookup fields. A non-NA value indicates that you can use this field in a call to getLookups


lookupIsPublic

reserved for future use


Author(s)

Peter Hussey, [email protected]

See Also

labkey.selectRows, makeFilter, labkey.executeSql, labkey.updateRows, labkey.insertRows, labkey.importRows, labkey.deleteRows, labkey.getSchemas, labkey.getQueries, labkey.getQueryViews, labkey.getDefaultViewDetails, labkey.getLookupDetails

Examples

## Not run: 

## Details  of fields of a query
# library(Rlabkey)

queryDF<-labkey.getQueryDetails(
	baseUrl="http://localhost:8080/labkey",
	folderPath="/apisamples",
	schemaName="lists",
	queryName="AllTypes")


## End(Not run)

Retrieve a list of available named views defined on a query in a schema

Description

Fetch a list of named query views available to the current user in a specified folder context, schema and query

Usage

labkey.getQueryViews(baseUrl, folderPath, schemaName, queryName)

Arguments

baseUrl

a string specifying the address of the LabKey Server, including the context root

folderPath

a string specifying the hierarchy of folders to the current folder (container) for the operation, starting with the project folder

schemaName

a string specifying the schema name in which the query object is defined

queryName

a string specifying the name the query

Details

Queries have a default “view” associeated with them, and can also have any number of named views. A named query view is created by using the “Customize View” button option on a LabKey data grid page. Use getDefaultViewDetails to get inforation about the default (unnamed) view.

Value

The available views for a query are returned as a three-column data frame, with one row per view output field.

viewName

The name of the view, or NA for the default view.


fieldName

The name of a field within the view, as defined in the query object to which the field belongs


key

The name of the field relative to the base query, Use this value in the colSelect parameter of labkey.selectRows().


Author(s)

Peter Hussey, [email protected]

References

https://www.labkey.org/Documentation/wiki-page.view?name=savingViews

See Also

labkey.selectRows, makeFilter, labkey.executeSql, labkey.updateRows, labkey.insertRows, labkey.importRows, labkey.deleteRows, labkey.getSchemas, labkey.getQueries, labkey.getQueryDetails, labkey.getDefaultViewDetails, labkey.getLookupDetails

Examples

## Not run: 

## List of views defined for a query in a schema
# library(Rlabkey)

viewsDF <- labkey.getQueryViews(
	baseUrl="http://localhost:8080/labkey",
	folderPath="/apisamples",
	schemaName="lists",
	queryName="AllTypes"
)


## End(Not run)

Helper function to get the HTTP request options for a specific method type.

Description

The internal functions for labkey.get() and labkey.post() use this labkey.getRequestOptions() helper to build up the HTTP request options for things like CSRF, CURL options, and authentication properties. This function is also exposed for general use if you would like to make your own HTTP request but need to use those request options as set in your session context.

Usage

labkey.getRequestOptions(method = 'GET', encoding = NULL)

Arguments

method

a string specifying the HTTP method for the request options you want to get

encoding

a string specifying the type of encoding to add to the header properties, defaults to UTF-8 when NULL

Author(s)

Cory Nathe

Examples

## Not run: 

library(Rlabkey)
labkey.getRequestOptions()


## End(Not run)

Retrieve a list of available schemas from a labkey database

Description

Fetch a list of schemas available to the current user in a specified folder context

Usage

labkey.getSchemas(baseUrl, folderPath)

Arguments

baseUrl

a string specifying the address of the LabKey Server, including the context root

folderPath

a string specifying the hierarchy of folders to the current folder (container) for the operation, starting with the project folder

Details

Schemas act as the name space for query objects in LabKey Server. Schemas are generatlly associated with a LabKey Server "module" that provides some specific functionality. Within a queriable object, the specific data that is visible depends on the current user's permissions in a given folder. Function arguments are the components of the url that identify the location of the server and the folder path.

Value

The available schemas are returned as a single-column data frame.

Author(s)

Peter Hussey, [email protected]

References

http://www.omegahat.net/RCurl/,
https://www.labkey.org/home/project-begin.view

See Also

labkey.selectRows, makeFilter, labkey.executeSql, labkey.updateRows, labkey.insertRows, labkey.importRows, labkey.deleteRows, labkey.getQueries, labkey.getQueryViews, labkey.getQueryDetails, labkey.getDefaultViewDetails, labkey.getLookupDetails,

Examples

## Not run: 

## List of schemas
# library(Rlabkey)

schemasDF <- labkey.getSchemas(
	baseUrl="http://localhost:8080/labkey",
	folderPath="/apisamples"
)


## End(Not run)

Import rows of data into a LabKey Server

Description

Bulk import rows of data into the database.

Usage

labkey.importRows(baseUrl, folderPath,
    schemaName, queryName, toImport, na)

Arguments

baseUrl

a string specifying the baseUrlfor the labkey server

folderPath

a string specifying the folderPath

schemaName

a string specifying the schemaName for the query

queryName

a string specifying the queryName

toImport

a data frame containing rows of data to be imported

na

(optional) the value to convert NA's to, defaults to NULL

Details

Multiple rows of data can be imported in bulk. The toImport data frame must contain values for each column in the dataset and must be created with the stringsAsFactors option set to FALSE. The names of the data in the data frame must be the column names from the LabKey Server. To import a value of NULL, use an empty string ("") in the data frame (regardless of the database column type). Also, when importing data into a study dataset, the sequence number must be specified.

Value

A list is returned with named categories of command, rowsAffected, queryName, containerPath and schemaName. The schemaName, queryName and containerPath properties contain the same schema, query and folder path used in the request. The rowsAffected property indicates the number of rows affected by the API action. This will typically be the same number as passed in the request.

Author(s)

Cory Nathe

See Also

labkey.selectRows, labkey.executeSql, makeFilter, labkey.insertRows, labkey.updateRows, labkey.deleteRows, labkey.query.import

Examples

## Not run: 

## Note that users must have the necessary permissions in the database
## to be able to modify data through the use of these functions
# library(Rlabkey)

newrows <- data.frame(
	DisplayFld="Imported from R"
	, RequiredText="abc"
	, RequiredInt=1
	, stringsAsFactors=FALSE)
newrows = newrows[rep(1:nrow(newrows),each=5),]

importedInfo <- labkey.importRows("http://localhost:8080/labkey",
    folderPath="/apisamples", schemaName="lists", queryName="AllTypes",
    toImport=newrows)

importedInfo$rowsAffected


## End(Not run)

Insert new rows of data into a LabKey Server

Description

Insert new rows of data into the database.

Usage

labkey.insertRows(baseUrl, folderPath,
    schemaName, queryName, toInsert, na,
    provenanceParams=NULL, options=NULL)

Arguments

baseUrl

a string specifying the baseUrlfor the labkey server

folderPath

a string specifying the folderPath

schemaName

a string specifying the schemaName for the query

queryName

a string specifying the queryName

toInsert

a data frame containing rows of data to be inserted

na

(optional) the value to convert NA's to, defaults to NULL

provenanceParams

the provenance parameter object which contains the options to include as part of a provenance recording. This is a premium feature and requires the Provenance LabKey module to function correctly, if it is not present this parameter will be ignored.

options

(optional) a list containing options specific to the insert action of the query

Details

A single row or multiple rows of data can be inserted. The toInsert data frame must contain values for each column in the dataset and must be created with the stringsAsFactors option set to FALSE. The names of the data in the data frame must be the column names from the LabKey Server.To insert a value of NULL, use an empty string ("") in the data frame (regardless of the database column type). Also, when inserting data into a study dataset, the sequence number must be specified.

The list of valid options for each query will vary, but some common examples include:

  • auditBehavior (string) : Can be used to override the audit behavior for the table the query is acting on. The set of types include: NONE, SUMMARY, and DETAILED.

  • auditUserComment (string) : Can be used to provide a comment from the user that will be attached to certain detailed audit log records.

Value

A list is returned with named categories of command, rowsAffected, rows, queryName, containerPath and schemaName. The schemaName, queryName and containerPath properties contain the same schema, query and folder path used in the request. The rowsAffected property indicates the number of rows affected by the API action. This will typically be the same number as passed in the request. The rows property contains a list of row objects corresponding to the rows inserted.

Author(s)

Valerie Obenchain

See Also

labkey.selectRows, labkey.executeSql, makeFilter, labkey.importRows, labkey.updateRows,
labkey.deleteRows, labkey.moveRows,
labkey.query.import, labkey.provenance.createProvenanceParams, labkey.provenance.startRecording, labkey.provenance.addRecordingStep, labkey.provenance.stopRecording

Examples

## Not run: 

## Insert, update and delete
## Note that users must have the necessary permissions in the database
## to be able to modify data through the use of these functions
# library(Rlabkey)

newrow <- data.frame(
	DisplayFld="Inserted from R"
	, TextFld="how its done"
	, IntFld= 98 
	, DoubleFld = 12.345
	, DateTimeFld = "03/01/2010"
	, BooleanFld= FALSE
	, LongTextFld = "Four score and seven years ago"
#	, AttachmentFld = NA    #attachment fields not supported 
	, RequiredText = "Veni, vidi, vici"
	, RequiredInt = 0
	, Category = "LOOKUP2"
	, stringsAsFactors=FALSE)

insertedRow <- labkey.insertRows("http://localhost:8080/labkey",
    folderPath="/apisamples", schemaName="lists", queryName="AllTypes",
    toInsert=newrow, options=list(auditBehavior="DETAILED",
    auditUserComment="testing audit comment for insert"))
newRowId <- insertedRow$rows[[1]]$RowId

selectedRow<-labkey.selectRows("http://localhost:8080/labkey",
    folderPath="/apisamples", schemaName="lists", queryName="AllTypes",
    colFilter=makeFilter(c("RowId", "EQUALS", newRowId)))
updaterow=data.frame(
	RowId=newRowId
	, DisplayFld="Updated from R"
	, TextFld="how to update"
	, IntFld= 777 
	, stringsAsFactors=FALSE)

updatedRow <- labkey.updateRows("http://localhost:8080/labkey",
    folderPath="/apisamples", schemaName="lists", queryName="AllTypes",
    toUpdate=updaterow, options=list(auditBehavior="DETAILED",
    auditUserComment="testing audit comment for update"))
selectedRow<-labkey.selectRows("http://localhost:8080/labkey",
    folderPath="/apisamples", schemaName="lists", queryName="AllTypes",
    colFilter=makeFilter(c("RowId", "EQUALS", newRowId)))

deleterow <- data.frame(RowId=newRowId, stringsAsFactors=FALSE)
result <- labkey.deleteRows(baseUrl="http://localhost:8080/labkey",
    folderPath="/apisamples", schemaName="lists", queryName="AllTypes",
    toDelete=deleterow)

## Example of creating a provenance run with an initial step with material inputs, a second step
## with provenance mapping to link existing samples with newly inserted samples, and a final step
## with a data output
##
mi <- data.frame(lsid=c("urn:lsid:labkey.com:Sample.251.MySamples:sample1",
        "urn:lsid:labkey.com:Sample.251.MySamples:sample2"))
p <- labkey.provenance.createProvenanceParams(name="step1", description="initial step",
        materialInputs=mi)
ra <- labkey.provenance.startRecording(baseUrl="https://labkey.org/labkey/",
        folderPath = "Provenance", provenanceParams=p)

rows <- fromJSON(txt='[{
        "name" : "sample3",
        "protein" : "p3",
        "prov:objectInputs" : [
            "urn:lsid:labkey.com:Sample.251.MySamples:sample21",
            "urn:lsid:labkey.com:Sample.251.MySamples:sample22"
        ]
    },{
        "name" : "sample4",
        "protein" : "p4",
        "prov:objectInputs" : [
            "urn:lsid:labkey.com:Sample.251.MySamples:sample21",
            "urn:lsid:labkey.com:Sample.251.MySamples:sample22"
        ]
    }
]')

labkey.insertRows(baseUrl="https://labkey.org/labkey/", folderPath = "Provenance",
    schemaName="samples", queryName="MySamples", toInsert=rows,
    provenanceParams=labkey.provenance.createProvenanceParams(name="query step",
        recordingId=ra$recordingId))
labkey.provenance.stopRecording(baseUrl="https://labkey.org/labkey/", folderPath = "Provenance",
    provenanceParams=labkey.provenance.createProvenanceParams(name="final step",
    recordingId=ra$recordingId, dataOutputs=do))

## End(Not run)

Build a file path to data on a remote machine

Description

Replaces a local root with a remote root given a full path

Usage

labkey.makeRemotePath(localRoot, remoteRoot, fullPath)

Arguments

localRoot

local root part of the fullPath

remoteRoot

remote root that will replace the local root of the fullPath

fullPath

the full path to make remote

Details

A helper function to translate a file path on a LabKey web server to a path accessible by a remote machine. For example, if an R script is run on an R server that is a different machine than the LabKey server and that script references data files on the LabKey server, a remote path needs to be created to correctly reference these files. The local and remote roots of the data pipeline are included by LabKey in the prolog of an R View report script. Note that the data pipeline root references are only included if an administrator has enabled the Rserve Reports experimental feature on the LabKey server. If the remoteRoot is empty or the fullPath does not contain the localRoot then the fullPath is returned without its root being changed.

Value

A character array containing the full path.

Author(s)

Dax Hawkins

Examples

# library(Rlabkey)

labkey.pipeline.root <- "c:/data/fcs"
labkey.remote.pipeline.root <- "/volumes/fcs"
fcsFile <- "c:/data/fcs/runA/aaa.fcs"

# returns "/volumes/fcs/runA/aaa.fcs
labkey.makeRemotePath(
	localRoot=labkey.pipeline.root,
	remoteRoot=labkey.remote.pipeline.root,
	fullPath=fcsFile);

Move rows of data from a LabKey database

Description

Specify rows of data to be moved from the LabKey Server

Usage

labkey.moveRows(baseUrl, folderPath, targetFolderPath,
    schemaName, queryName, toMove, options=NULL)

Arguments

baseUrl

a string specifying the baseUrlfor LabKey server

folderPath

a string specifying the folderPath for the source container of the rows

targetFolderPath

a string specifying the targetFolderPath where the rows should be moved

schemaName

a string specifying the schemaName for the query

queryName

a string specifying the queryName

toMove

a data frame containing a single column of data containing the data identifiers of the rows to be moved

options

(optional) a list containing options specific to the move action of the query

Details

Move a set of rows from the source container to a target container for a table. Note that this is not implemented for all tables.

The list of valid options for each query will vary, but some common examples include:

  • auditBehavior (string) : Can be used to override the audit behavior for the table the query is acting on. The set of types include: NONE, SUMMARY, and DETAILED.

  • auditUserComment (string) : Can be used to provide a comment from the user that will be attached to certain detailed audit log records.

Value

A list is returned with named categories of command, rowsAffected, schemaName, queryName, containerPath and updateCounts. The containerPath will be the target container path where the rows were moved. The rowsAffected property indicates the number of rows affected by the API action. This will typically be the same number as passed in the request. The updateCounts property is a list of the number of items moved for various related items.

Author(s)

Cory Nathe

See Also

labkey.deleteRows,
labkey.importRows,
labkey.importRows,
labkey.updateRows,

Examples

## Not run: 

## Note that users must have the necessary permissions in the LabKey Server
## to be able to modify data through the use of these functions
# library(Rlabkey)

newrow <- data.frame(
	DisplayFld="Inserted from R"
	, IntFld= 98
	, DateTimeFld = "03/01/2010"
	, stringsAsFactors=FALSE)

insertedRow <- labkey.insertRows("http://localhost:8080/labkey",
    folderPath="/apisamples", schemaName="samples",
    queryName="Blood", toInsert=newrow)
newRowId <- insertedRow$rows[[1]]$RowId

result <- labkey.moveRows(baseUrl="http://localhost:8080/labkey",
    folderPath="/apisamples", folderPath="/apisamples/subA", schemaName="samples",
    queryName="Blood",  toMove=data.frame(RowId=c(newRowId)),
    options = list(auditUserComment="testing comment from API call", auditBehavior="DETAILED"))
result


## End(Not run)

Gets the protocol file status for a pipeline

Description

Gets the status of analysis using a particular protocol for a particular pipeline.

Usage

labkey.pipeline.getFileStatus(baseUrl=NULL, folderPath,
        taskId, protocolName, path, files)

Arguments

baseUrl

a string specifying the baseUrl for the LabKey server

folderPath

a string specifying the folderPath

taskId

a string identifier for the pipeline

protocolName

a string name of the analysis protocol

path

a string for the relative path from the folder's pipeline root

files

a list of names of the files within the subdirectory described by the path property

Value

The response will contain a list of file status objects, i.e. files, each of which will have the following properties:

  • "name": name of the file

  • "status": status of the file

The response will also include the name of the action that would be performed on the files if the user initiated processing, i.e. submitType.

Author(s)

Cory Nathe

See Also

labkey.pipeline.getPipelineContainer, labkey.pipeline.getProtocols, labkey.pipeline.startAnalysis

Examples

## Not run: 

labkey.pipeline.getFileStatus(
    baseUrl="http://labkey/",
    folderPath="home",
    taskId = "pipelinetest:pipeline:r-copy",
    path = "r-copy",
    protocolName = "Test protocol name",
    files = list("sample.txt", "result.txt")
)


## End(Not run)

Gets the container in which the pipeline is defined

Description

Gets the container in which the pipeline for this container is defined. This may be the container in which the request was made, or a parent container if the pipeline was defined there.

Usage

labkey.pipeline.getPipelineContainer(baseUrl=NULL, folderPath)

Arguments

baseUrl

a string specifying the baseUrl for the LabKey server

folderPath

a string specifying the folderPath

Value

The response will contain the following:

  • "containerPath": The container path in which the pipeline is defined. If no pipeline has been defined in this container hierarchy, then the value of this property will be null.

  • "webDavURL": The WebDavURL for the pipeline root.

Author(s)

Cory Nathe

See Also

labkey.pipeline.getProtocols, labkey.pipeline.getFileStatus, labkey.pipeline.startAnalysis

Examples

## Not run: 

labkey.pipeline.getPipelineContainer(
    baseUrl="http://labkey/",
    folderPath="home"
)


## End(Not run)

Gets the protocols that have been saved for a particular pipeline

Description

Gets the protocols that have been saved for a particular pipeline.

Usage

labkey.pipeline.getProtocols(baseUrl=NULL, folderPath,
        taskId, path, includeWorkbooks = FALSE)

Arguments

baseUrl

a string specifying the baseUrl for the LabKey server

folderPath

a string specifying the folderPath

taskId

a string identifier for the pipeline

path

a string for the relative path from the folder's pipeline root

includeWorkbooks

(optional) If true, protocols from workbooks under the selected container will also be included. Defaults to FALSE.

Value

The response will contain a list of protocol objects, each of which will have the following properties:

  • "name": Name of the saved protocol.

  • "description": Description of the saved protocol, if provided.

  • "xmlParameters": Bioml representation of the parameters defined by this protocol.

  • "jsonParameters": A list representation of the parameters defined by this protocol.

  • "containerPath": The container path where this protocol was saved.

The response will also include a defaultProtocolName property representing which of the protocol names is the default.

Author(s)

Cory Nathe

See Also

labkey.pipeline.getPipelineContainer, labkey.pipeline.getFileStatus, labkey.pipeline.startAnalysis

Examples

## Not run: 

labkey.pipeline.getProtocols(
    baseUrl="http://labkey/",
    folderPath="home",
    taskId = "pipelinetest:pipeline:r-copy",
    path = "r-copy",
    includeWorkbooks = FALSE
)


## End(Not run)

Start an analysis of a set of files using a pipeline

Description

Starts analysis of a set of files using a particular protocol definition with a particular pipeline.

Usage

labkey.pipeline.startAnalysis(baseUrl=NULL, folderPath,
    taskId, protocolName, path, files, fileIds = list(),
    pipelineDescription = NULL, protocolDescription = NULL,
    jsonParameters = NULL, xmlParameters = NULL,
    allowNonExistentFiles = FALSE, saveProtocol = TRUE)

Arguments

baseUrl

a string specifying the baseUrl for the LabKey server

folderPath

a string specifying the folderPath

taskId

a string identifier for the pipeline

protocolName

a string name of the analysis protocol

path

a string for the relative path from the folder's pipeline root

files

a list of names of the files within the subdirectory described by the path property

fileIds

(optional) list of data IDs of files to be used as inputs for this pipeline. These correspond to the rowIds from the table ext.data. They do not need to be located within the file path provided. The user does need read access to the container associated with each file.

pipelineDescription

(optional) a string description displayed in the pipeline

protocolDescription

(optional) a string description of the analysis protocol

jsonParameters

(optional) a list of key / value pairs, or a JSON string representation, for the protocol description. Not allowed if a protocol with the same name has already been saved. If no protocol with the same name exists, either this property or xmlParameters must be specified.

xmlParameters

(optional) a string XML representation of the protocol description. Not allowed if a protocol with the same name has already been saved. If no protocol with the same name exists, either this property or jsonParameters must be specified.

allowNonExistentFiles

(optional) a boolean indicating if the pipeline should allow non existent files. Defaults to false.

saveProtocol

(optional) a boolean indicating if no protocol with this name already exists, whether or not to save this protocol definition for future use. Defaults to true.

Value

On success, the response will contain the jobGUID string value for the newly created pipeline job.

Author(s)

Cory Nathe

See Also

labkey.pipeline.getPipelineContainer, labkey.pipeline.getProtocols, labkey.pipeline.getFileStatus

Examples

## Not run: 

labkey.pipeline.startAnalysis(
    baseUrl="http://labkey/",
    folderPath="home",
    taskId = "pipelinetest:pipeline:r-copy",
    protocolName = "Test protocol name",
    path="r-copy",
    files = list("sample.txt", "result.txt"),
    protocolDescription = "Test protocol description",
    pipelineDescription = "test pipeline description",
    jsonParameters = list(assay = "Test assay name", comment = "Test assay comment"),
    saveProtocol = TRUE
)


## End(Not run)

Add a step to a provenance recording

Description

Function to add a step to a previously created provenance recording session. Note: this function is in beta and not yet final, changes should be expected so exercise caution when using it.

Usage

labkey.provenance.addRecordingStep(baseUrl=NULL, folderPath, provenanceParams = NULL)

Arguments

baseUrl

a string specifying the baseUrl for the labkey server

folderPath

a string specifying the folderPath

provenanceParams

the provenance parameter object which contains the options to include in this recording step

Details

Function to add a step to a previously created provenance recording. The recording ID that was obtained from a previous startRecording function call must be passed into the provenanceParams config. This is a premium feature and requires the Provenance LabKey module to function correctly.

Value

The generated recording ID which can be used in subsequent steps (or queries that support provenance).

Author(s)

Karl Lum

See Also

labkey.provenance.createProvenanceParams, labkey.provenance.startRecording, labkey.provenance.stopRecording

Examples

## Not run: 

## start a provenance recording and add a recording step
library(Rlabkey)

mi <- data.frame(lsid=c("urn:lsid:labkey.com:Sample.251.MySamples:sample1",
        "urn:lsid:labkey.com:Sample.251.MySamples:sample2"))

p <- labkey.provenance.createProvenanceParams(name="step1", description="initial step",
        materialInputs=mi)
r <- labkey.provenance.startRecording(baseUrl="https://labkey.org/labkey/",
        folderPath = "Provenance", provenanceParams=p)
do <- data.frame(
        lsid="urn:lsid:labkey.com:AssayRunTSVData.Folder-251:12c70994-7ce5-1038-82f0-9c1487dbd334")

labkey.provenance.addRecordingStep(baseUrl="https://labkey.org/labkey/", folderPath = "Provenance",
    provenanceParams=labkey.provenance.createProvenanceParams(name="additional step",
        recordingId=r$recordingId, dataOutputs=do))

## End(Not run)

Create provenance parameter object

Description

Helper function to create the data structure that can be used in provenance related APIs. Note: this function is in beta and not yet final, changes should be expected so exercise caution when using it.

Usage

labkey.provenance.createProvenanceParams(recordingId=NULL, name=NULL, description=NULL,
        runName=NULL, materialInputs=NULL, materialOutputs=NULL, dataInputs=NULL,
        dataOutputs=NULL, inputObjectUriProperty=NULL, outputObjectUriProperty=NULL,
        objectInputs=NULL, objectOutputs=NULL, provenanceMap=NULL,
        params=NULL, properties=NULL)

Arguments

recordingId

(optional) the recording ID to associate with other steps using the same ID

name

(optional) the name of this provenance step

description

(optional) the description of this provenance step

runName

(optional) the name of the provenance run, if none specified a default run name will be created

materialInputs

(optional) the list of materials (samples) to be used as the provenance run input. The data structure should be a dataframe with the column name describing the data type (lsid, id)

materialOutputs

(optional) the list of materials (samples) to be used as the provenance run output. The data structure should be a dataframe with the column name describing the data type (lsid, id)

dataInputs

(optional) the list of data inputs to be used for the run provenance map

dataOutputs

(optional) the list of data outputs to be used for the run provenance map

inputObjectUriProperty

(optional) for incoming data rows, the column name to interpret as the input to the provenance map. Defaults to : 'prov:objectInputs'

outputObjectUriProperty

(optional) for provenance mapping, the column name to interpret as the output to the provenance map. Defaults to : 'lsid'

objectInputs

(optional) the list of object inputs to be used for the run provenance map

objectOutputs

(optional) the list of object outputs to be used for the run provenance map

provenanceMap

(optional) the provenance map to be used directly for the run step. The data structure should be a dataframe with the column names of 'from' and 'to' to indicate which sides of the mapping the identifiers refer to

params

(optional) the list of initial run step parameters. Parameters supported in the parameter list such as name, description, runName, can be specified in this data structure as well as other run step parameters not available in the parameter list

properties

(optional) custom property values to associate with the run step. The data structure should be a dataframe with the property URIs as column names and the column value to associate with the property. The Vocabulary domain and fields must have been created prior to using

Details

This function can be used to generate a provenance parameter object which can then be used as an argument in the other provenance related functions to assemble provenance runs. This is a premium feature and requires the Provenance LabKey module to function correctly.

Value

A list containing elements describing the passed in provenance parameters.

Author(s)

Karl Lum

See Also

labkey.provenance.startRecording, labkey.provenance.addRecordingStep, labkey.provenance.stopRecording

Examples

## Not run: 

## create provenance params with material inputs and data outputs
library(Rlabkey)

mi <- data.frame(lsid=c("urn:lsid:labkey.com:Sample.251.MySamples:sample1",
        "urn:lsid:labkey.com:Sample.251.MySamples:sample2"))
do <- data.frame(
        lsid="urn:lsid:labkey.com:AssayRunTSVData.Folder-251:12c70994-7ce5-1038-82f0-9c1487dbd334")

p <- labkey.provenance.createProvenanceParams(name="step1", description="initial step",
        materialInputs=mi, dataOutputs=do)

## create provenance params with object inputs (from an assay run)
oi <- labkey.selectRows(baseUrl="https://labkey.org/labkey/", folderPath = "Provenance",
        schemaName="assay.General.titer",
        queryName="Data",
        colSelect= c("LSID"),
        colFilter=makeFilter(c("Run/RowId","EQUAL","253")))
mi <- data.frame(lsid=c("urn:lsid:labkey.com:Sample.251.MySamples:sample1",
        "urn:lsid:labkey.com:Sample.251.MySamples:sample2"))

p <- labkey.provenance.createProvenanceParams(name="step1", description="initial step",
        objectInputs=oi[["LSID"]], materialInputs=mi)

## add run step properties and custom properties to the provenance params
props <- data.frame(
    "urn:lsid:labkey.com:Vocabulary.Folder-996:ProvenanceDomain#version"=c(22.3),
    "urn:lsid:labkey.com:Vocabulary.Folder-996:ProvenanceDomain#instrumentName"=c("NAb reader"),
    check.names=FALSE)
params <- list()
params$comments <- "adding additional step properties"
params$activityDate <- "2022-3-21"
params$startTime <- "2022-3-21 12:35:00"
params$endTime <- "2022-3-22 02:15:30"
params$recordCount <- 2
p <- labkey.provenance.createProvenanceParams(recordingId=ra$recordingId, name="step2",
    properties=props, params=params)


## End(Not run)

Start a provenance recording

Description

Function to start a provenance recording session, if successful a provenance recording ID is returned which can be used to add additional steps to the provenance run. Note: this function is in beta and not yet final, changes should be expected so exercise caution when using it.

Usage

labkey.provenance.startRecording(baseUrl=NULL, folderPath, provenanceParams = NULL)

Arguments

baseUrl

a string specifying the baseUrl for the labkey server

folderPath

a string specifying the folderPath

provenanceParams

the provenance parameter object which contains the options to include in this recording step

Details

Function to start a provenance recording. A provenance recording can contain an arbitrary number of steps to create a provenance run, but stopRecording must be called to finish the recording and create the run. If successful this will return a recording ID which is needed for subsequent steps. This is a premium feature and requires the Provenance LabKey module to function correctly.

Value

The generated recording ID which can be used in subsequent steps (or queries that support provenance).

Author(s)

Karl Lum

See Also

labkey.provenance.createProvenanceParams, labkey.provenance.addRecordingStep, labkey.provenance.stopRecording

Examples

## Not run: 

## create provenance params with material inputs and data outputs and start a recording
library(Rlabkey)

mi <- data.frame(lsid=c("urn:lsid:labkey.com:Sample.251.MySamples:sample1",
        "urn:lsid:labkey.com:Sample.251.MySamples:sample2"))
do <- data.frame(
        lsid="urn:lsid:labkey.com:AssayRunTSVData.Folder-251:12c70994-7ce5-1038-82f0-9c1487dbd334")

p <- labkey.provenance.createProvenanceParams(name="step1", description="initial step",
        materialInputs=mi, dataOutputs=do)
labkey.provenance.startRecording(baseUrl="https://labkey.org/labkey/",
        folderPath = "Provenance", provenanceParams=p)

## End(Not run)

Stop a provenance recording

Description

Function to end a provenance recording and create and save the provenance run on the server. Note: this function is in beta and not yet final, changes should be expected so exercise caution when using it.

Usage

labkey.provenance.stopRecording(baseUrl=NULL, folderPath, provenanceParams = NULL)

Arguments

baseUrl

a string specifying the baseUrl for the labkey server

folderPath

a string specifying the folderPath

provenanceParams

the provenance parameter object which contains the options to include in this recording step, including the recording ID

Details

Function to stop the provenance recording associated with the recording ID, this will create a provenance run using all the steps (with inputs and outputs) associated with the recording ID. The recording ID that was obtained from a previous startRecording function call must be passed into the provenanceParams config. This is a premium feature and requires the Provenance LabKey module to function correctly.

Value

The serialized provenance run that was created.

Author(s)

Karl Lum

See Also

labkey.provenance.createProvenanceParams, labkey.provenance.startRecording, labkey.provenance.addRecordingStep

Examples

## Not run: 

library(Rlabkey)

## object inputs (from an assay run) and material inputs
##
oi <- labkey.selectRows(baseUrl="https://labkey.org/labkey/", folderPath = "Provenance",
        schemaName="assay.General.titer",
        queryName="Data",
        colSelect= c("LSID"),
        colFilter=makeFilter(c("Run/RowId","EQUAL","253")))
mi <- data.frame(lsid=c("urn:lsid:labkey.com:Sample.251.MySamples:sample1",
        "urn:lsid:labkey.com:Sample.251.MySamples:sample2"))

p <- labkey.provenance.createProvenanceParams(name="step1", description="initial step",
        objectInputs=oi[["LSID"]], materialInputs=mi)
r <- labkey.provenance.startRecording(baseUrl="https://labkey.org/labkey/",
        folderPath = "Provenance", provenanceParams=p)
run <- labkey.provenance.stopRecording(baseUrl="https://labkey.org/labkey/",
        folderPath = "Provenance",
        provenanceParams=labkey.provenance.createProvenanceParams(name="final step",
            recordingId=r$recordingId))

## End(Not run)

Bulk import an R data frame into a LabKey Server table using file import.

Description

Bulk import an R data frame into a LabKey Server table using file import.

Usage

labkey.query.import(baseUrl, folderPath,
    schemaName, queryName, toImport, options = NULL)

Arguments

baseUrl

a string specifying the baseUrlfor the labkey server

folderPath

a string specifying the folderPath

schemaName

a string specifying the schemaName for the query

queryName

a string specifying the queryName

toImport

a data frame containing rows of data to be imported

options

(optional) a list containing options specific to the import action of the query

Details

This command mimics the "Import bulk data" option that you see in the LabKey server UI for a table/query. It takes the passed in toImport data frame and writes it to a temp file to be posted to the import action for the given LabKey query. It is very similar to the labkey.importRows command but will be much more performant.

Multiple rows of data can be imported in bulk using the toImport data frame. The names of the data in the data frame must be the column names from the LabKey Server.

LabKey data types support different import options. The list of valid options for each query will vary, but some common examples include:

  • insertOption (string) : Whether the import action should be done as an insert, creating new rows for each provided row of the data frame, or a merge. When merging during import, any data you provide for the rows representing records that already exist will replace the previous values. Note that when updating an existing record, you only need to provide the columns you wish to update, existing data for other columns will be left as is. Available options are "INSERT" and "MERGE". Defaults to "INSERT".

  • auditBehavior (string) : Set the level of auditing details for this import action. Available options are "SUMMARY" and "DETAILED". SUMMARY - Audit log reflects that a change was made, but does not mention the nature of the change. DETAILED - Provides full details on what change was made, including values before and after the change. Defaults to the setting as specified by the LabKey query.

  • importLookupByAlternateKey (boolean) : Allows lookup target rows to be resolved by values rather than the target's primary key. This option will only be available for lookups that are configured with unique column information. Defaults to FALSE.

Value

A list is returned with the row count for the number of affected rows. If options are provided, additional details may be included in the response object related to those options.

Author(s)

Cory Nathe

See Also

labkey.insertRows, labkey.updateRows, labkey.importRows

Examples

## Not run: 

## Note that users must have the necessary permissions in the database
## to be able to modify data through the use of these functions
# library(Rlabkey)

df <- data.frame(
    name=c("test1","test2","test3"),
    customInt=c(1:3),
    customString=c("aaa", "bbb", "ccc")
)

importedInfo <- labkey.query.import(
    "http://localhost:8080/labkey",
    folderPath="/apisamples", schemaName="samples", queryName="SampleType1",
    toImport=df, options=list(insertOption = "MERGE", auditBehavior = "DETAILED")
)

importedInfo$rowCount


## End(Not run)

Initialize a RStudio session for LabKey R report source editing

Description

LabKey-RStudio integration helper. Not intended for use outside RStudio.

Usage

labkey.rstudio.initReport(apiKey = "", baseUrl = "", folderPath,
  reportEntityId, skipViewer = FALSE, skipEdit = FALSE)

Arguments

apiKey

session key from your server

baseUrl

server location including context path, if any. e.g. https://www.labkey.org/

folderPath

a string specifying the folderPath

reportEntityId

LabKey report's entityId

skipViewer

(TRUE | FALSE) TRUE to skip setting up LabKey schema viewer in RStudio

skipEdit

(TRUE | FALSE) TRUE to open file in editor

Examples

## Not run: 
## RStudio console only
library(Rlabkey)
labkey.rstudio.initReport(apiKey="abcdef0123456789abcdef0123456789",
    baseUrl="http://labkey/", folderPath="home",
    reportEntityId="0123456a-789b-1000-abcd-01234567abcde")


## End(Not run)

Initialize a RStudio session for LabKey integration

Description

LabKey-RStudio integration helper. Not intended for use outside RStudio.

Usage

labkey.rstudio.initRStudio(apiKey = "", baseUrl = "", folderPath, skipViewer = FALSE)

Arguments

apiKey

session key from your server

baseUrl

server location including context path, if any. e.g. https://www.labkey.org/

folderPath

a string specifying the folderPath

skipViewer

(TRUE | FALSE) TRUE to skip setting up LabKey schema viewer in RStudio

Examples

## Not run: 
## RStudio console only
library(Rlabkey)
labkey.rstudio.initRStudio(apiKey="abcdef0123456789abcdef0123456789",
    baseUrl="http://labkey/", folderPath="home")


## End(Not run)

Initialize a RStudio session for LabKey integration using a time one request id

Description

LabKey-RStudio integration helper. Not intended for use outside RStudio.

Usage

labkey.rstudio.initSession(requestId, baseUrl)

Arguments

requestId

A one time request id generated by LabKey server for initializing RStudio

baseUrl

server location including context path, if any. e.g. https://www.labkey.org/

Examples

## Not run: 
## RStudio console only
library(Rlabkey)
labkey.rstudio.initSession(requestId="a60228c8-9448-1036-a7c5-ab541dc15ee9",
    baseUrl="http://labkey/")


## End(Not run)

Check valid rlabkey session

Description

LabKey-RStudio integration helper. Not intended for use outside RStudio.

Usage

labkey.rstudio.isInitialized()

Examples

## Not run: 
## RStudio console only
library(Rlabkey)
labkey.rstudio.isInitialized()


## End(Not run)

Update RStudio report source back to LabKey

Description

LabKey-RStudio integration helper. Not intended for use outside RStudio.

Usage

labkey.rstudio.saveReport(folderPath, reportEntityId, reportFilename,
  useWarning = FALSE)

Arguments

folderPath

a string specifying the folderPath

reportEntityId

LabKey report's entityId

reportFilename

The filename to save

useWarning

(TRUE | FALSE) TRUE to prompt user choices to save

Examples

## Not run: 
## RStudio console only
library(Rlabkey)
labkey.rstudio.saveReport(folderPath="home",
    reportEntityId="0123456a-789b-1000-abcd-01234567abcde",
    reportFilename="knitrReport.Rhtml", useWarning=TRUE)


## End(Not run)

Save an assay batch object to a labkey database

Description

Save an assay batch object to a labkey database

Usage

labkey.saveBatch(baseUrl, folderPath, assayName, resultDataFrame,
    batchPropertyList=NULL, runPropertyList=NULL)

Arguments

baseUrl

a string specifying the baseUrlfor the labkey server

folderPath

a string specifying the folderPath

assayName

a string specifying the name of the assay instance

resultDataFrame

a data frame containing rows of data to be inserted

batchPropertyList

a list of batch Properties

runPropertyList

a list of run Properties

Details

This function has been deprecated and will be removed in a future release, please use labkey.experiment.saveBatch instead as it supports the newer options for saving batch objects.

To save an R data.frame an assay results sets, you must create a named assay using the "General" assay provider. Note that saveBatch currently supports only a single run with one result set per batch.

Value

Returns the object representation of the Assay batch.

Author(s)

Peter Hussey

References

https://www.labkey.org/Documentation/wiki-page.view?name=createDatasetViaAssay

See Also

labkey.selectRows, labkey.executeSql, makeFilter, labkey.updateRows,
labkey.deleteRows, labkey.experiment.saveBatch

Examples

## Not run: 

## Very simple example of an analysis flow:  query some data, calculate
## some stats, then save the calculations as an assay result set in
## LabKey Server
##  Note this example expects to find an assay named "SimpleMeans" in
##  the apisamples project
# library(Rlabkey)

simpledf <- labkey.selectRows(
	baseUrl="http://localhost:8080/labkey",
	folderPath="/apisamples",
	schemaName="lists", 
	queryName="AllTypes")

## some dummy calculations to produce and example analysis result
testtable <- simpledf[,3:4]
colnames(testtable) <- c("IntFld", "DoubleFld")
row <- c(list("Measure"="colMeans"), colMeans(testtable, na.rm=TRUE))
results <- data.frame(row, row.names=NULL, stringsAsFactors=FALSE)
row <- c(list("Measure"="colSums"), colSums(testtable, na.rm=TRUE))
results <- rbind(results, as.vector(row))

bprops <- list(LabNotes="this is a simple demo")
bpl <- list(name=paste("Batch ", as.character(date())),properties=bprops) 
rpl <- list(name=paste("Assay Run ", as.character(date())))

assayInfo<- labkey.saveBatch(
	baseUrl="http://localhost:8080/labkey",
	folderPath="/apisamples",
	"SimpleMeans", 
	results, 
	batchPropertyList=bpl,
	runPropertyList=rpl
)


## End(Not run)

Creates a new container, which may be a project, folder, or workbook, on the server

Description

Create a new container, which may be a project, folder, or workbook, on the LabKey server with parameters to control the containers name, title, description, and folder type.

Usage

labkey.security.createContainer(baseUrl=NULL, parentPath, name = NULL, title = NULL,
    description = NULL, folderType = NULL, isWorkbook = FALSE)

Arguments

baseUrl

A string specifying the baseUrl for the labkey server.

parentPath

A string specifying the parentPath for the new container.

name

The name of the container, required for projects or folders.

title

The title of the container, used primarily for workbooks.

description

The description of the container, used primarily for workbooks.

folderType

The name of the folder type to be applied (ex. Study or Collaboration).

isWorkbook

Whether this a workbook should be created. Defaults to false.

Details

This function allows for users with proper permissions to create a new container, which may be a project, folder, or workbook, on the LabKey server with parameters to control the containers name, title, description, and folder type. If the container already exists or the user does not have permissions, an error message will be returned.

Value

Returns information about the newly created container.

Author(s)

Cory Nathe

See Also

labkey.getFolders, labkey.security.getContainers, labkey.security.deleteContainer, labkey.security.moveContainer labkey.security.renameContainer

Examples

## Not run: 

library(Rlabkey)

labkey.security.createContainer(baseUrl="http://labkey/", parentPath = "/home",
    name = "NewFolder", description = "My new folder has this description",
    folderType = "Collaboration"
)


## End(Not run)

Deletes an existing container, which may be a project, folder, or workbook

Description

Deletes an existing container, which may be a project, folder, or workbook, and all of its children from the Labeky server.

Usage

labkey.security.deleteContainer(baseUrl=NULL, folderPath)

Arguments

baseUrl

A string specifying the baseUrl for the labkey server.

folderPath

A string specifying the folderPath to be deleted.

Details

This function allows for users with proper permissions to delete an existing container, which may be a project, folder, or workbook, from the LabKey server. This will also remove all subfolders of the container being deleted. If the container does not exist or the user does not have permissions, an error message will be returned.

Value

Returns a success message for the container deletion action.

Author(s)

Cory Nathe

See Also

labkey.getFolders, labkey.security.getContainers, labkey.security.createContainer, labkey.security.moveContainer labkey.security.renameContainer

Examples

## Not run: 

library(Rlabkey)

labkey.security.deleteContainer(baseUrl="http://labkey/", folderPath = "/home/FolderToDelete")


## End(Not run)

Returns information about the specified container

Description

Returns information about the specified container, including the user's current permissions within that container. If the includeSubfolders config option is set to true, it will also return information about all descendants the user is allowed to see.

Usage

labkey.security.getContainers(baseUrl=NULL, folderPath,
    includeEffectivePermissions=TRUE, includeSubfolders=FALSE, depth=50,
    includeChildWorkbooks=TRUE, includeStandardProperties = TRUE)

Arguments

baseUrl

A string specifying the baseUrl for the labkey server.

folderPath

A string specifying the folderPath.

includeEffectivePermissions

If set to false, the effective permissions for this container resource will not be included (defaults to true).

includeSubfolders

If set to true, the entire branch of containers will be returned. If false, only the immediate children of the starting container will be returned (defaults to false).

depth

May be used to control the depth of recursion if includeSubfolders is set to true.

includeChildWorkbooks

If true, include child containers of type workbook in the response (defaults to TRUE).

includeStandardProperties

If true, include the standard container properties like title, formats, etc. in the response (defaults to TRUE).

Details

This function returns information about the specified container, including the user's current permissions within that container. If the includeSubfolders config option is set to true, it will also return information about all descendants the user is allowed to see. The depth of the results for the included subfolders can be controlled with the depth parameter.

Value

The data frame containing the container properties for the current folder and subfolders, including name, title, id, path, type, folderType, and effectivePermissions.

Author(s)

Cory Nathe

See Also

labkey.getFolders, labkey.security.createContainer, labkey.security.deleteContainer, labkey.security.moveContainer labkey.security.renameContainer

Examples

## Not run: 

library(Rlabkey)

labkey.security.getContainers(
    baseUrl="http://labkey/", folderPath = "home",
    includeEffectivePermissions = FALSE, includeSubfolders = TRUE, depth = 2,
    includeChildWorkbooks = FALSE, includeStandardProperties = FALSE
)


## End(Not run)

Start impersonating a user

Description

For site-admins or project-admins only, start impersonating a user based on the userId or email address.

Usage

labkey.security.impersonateUser(baseUrl=NULL, folderPath,
    userId=NULL, email=NULL)

Arguments

baseUrl

A string specifying the baseUrl for the LabKey server.

folderPath

A string specifying the folderPath in which to impersonate the user.

userId

The id of the user to be impersonated. Either this or email is required.

email

The email of the user to be impersonated. Either this or userID is required.

Details

Admins may impersonate other users to perform actions on their behalf. Site admins may impersonate any user in any project. Project admins must execute this command in a project in which they have admin permission and may impersonate only users that have access to the project.

To finish an impersonation session use labkey.security.stopImpersonating.

Value

Returns a success message based on a call to labkey.whoAmI.

Author(s)

Cory Nathe

See Also

labkey.whoAmI, labkey.security.stopImpersonating

Examples

## Not run: 

library(Rlabkey)

labkey.security.impersonateUser(baseUrl="http://labkey/", folderPath = "/home",
    email = "[email protected]"
)


## End(Not run)

Moves an existing container, which may be a folder or workbook

Description

Moves an existing container, which may be a folder or workbook, to be the subfolder of another folder and/or project on the LabKey server.

Usage

labkey.security.moveContainer(baseUrl=NULL, folderPath,
    destinationParent, addAlias = TRUE)

Arguments

baseUrl

A string specifying the baseUrl for the labkey server.

folderPath

A string specifying the folderPath to be moved. Additionally, the container entity id is also valid.

destinationParent

The container path of destination parent. Additionally, the destination parent entity id is also valid.

addAlias

Add alias of current container path to container that is being moved (defaults to true).

Details

This function moves an existing container, which may be a folder or workbook, to be the subfolder of another folder and/or project on the LabKey server. Projects and the root container can not be moved. If the target or destination container does not exist or the user does not have permissions, an error message will be returned.

Value

Returns a success message for the container move action with the new path.

Author(s)

Cory Nathe

See Also

labkey.getFolders, labkey.security.getContainers, labkey.security.createContainer, labkey.security.deleteContainer labkey.security.renameContainer

Examples

## Not run: 

library(Rlabkey)

labkey.security.moveContainer(baseUrl="http://labkey/", folderPath = "/home/FolderToMove",
    destinationParent = "/OtherProject", addAlias = TRUE
)


## End(Not run)

Rename an existing container at the given container path

Description

Renames an existing container at the given container path. This action allows for updating the container name, title, or both.

Usage

labkey.security.renameContainer(baseUrl=NULL, folderPath,
    name=NULL, title=NULL, addAlias=TRUE)

Arguments

baseUrl

A string specifying the baseUrl for the labkey server.

folderPath

A string specifying the folderPath to be renamed. Additionally, the container entity id is also valid.

name

The new container name. If not specified, the container name will not be changed.

title

The new container title. If not specified, the container name will be used.

addAlias

Add alias of current container path for the current container name (defaults to true).

Details

This function renames an existing container at the given container path on the LabKey server. A new container name and/or title must be specified. If a new name is provided but not a title, the name will also be set as the container title.

Value

Returns a success message for the container rename action.

Author(s)

Cory Nathe

See Also

labkey.getFolders, labkey.security.getContainers, labkey.security.createContainer, labkey.security.deleteContainer labkey.security.moveContainer

Examples

## Not run: 

library(Rlabkey)

labkey.security.renameContainer(baseUrl="http://labkey/", folderPath = "/home/OriginalFolder",
    name = "NewFolderName", title = "New Folder Title", addAlias = TRUE
)


## End(Not run)

Stop impersonating a user

Description

Stop impersonating a user while keeping the original user logged in.

Usage

labkey.security.stopImpersonating(baseUrl=NULL)

Arguments

baseUrl

A string specifying the baseUrl for the LabKey server.

Details

If you are currently impersonating a user in this session, you can use this function to stop the impersonation and return back to the original user logged in.

To start an impersonation session use labkey.security.impersonateUser.

Value

Returns a success message based on a call to labkey.whoAmI.

Author(s)

Cory Nathe

See Also

labkey.whoAmI, labkey.security.impersonateUser

Examples

## Not run: 

library(Rlabkey)

labkey.security.stopImpersonating(baseUrl="http://labkey/")


## End(Not run)

Retrieve data from a labkey database

Description

Import full datasets or selected rows into R. The data can be sorted and filtered prior to import.

Usage

labkey.selectRows(baseUrl = NULL, folderPath, schemaName, queryName,
    viewName = NULL, colSelect = NULL, maxRows = NULL,
    rowOffset = NULL, colSort = NULL, colFilter = NULL,
    showHidden = FALSE, colNameOpt="caption",
    containerFilter = NULL, parameters = NULL,
    includeDisplayValues = FALSE, method = "POST")

Arguments

baseUrl

a string specifying the baseUrlfor the labkey server

folderPath

a string specifying the folderPath

schemaName

a string specifying the schemaName for the query

queryName

a string specifying the queryName

viewName

(optional) a string specifying the viewName associated with the query. If not specified, the default view determines the rowset returned.

colSelect

(optional) a vector of strings specifying which columns of a dataset or view to import.

  • The wildcard character ("*") may also be used here to get all columns including those not in the default view.

  • If you include a column that is a lookup (foreign key) the value of the primary key for that target will be returned.

  • Use a backslash character ("/") to include non-primary key columns from a lookup target (foreign key), e.g "LookupColumnName/targetColumn".

  • When using a string to specify the colSelect set, the column names must be separated by a comma and not include spaces between the names.

maxRows

(optional) an integer specifying how many rows of data to return. If no value is specified, all rows are returned.

rowOffset

(optional) an integer specifying which row of data should be the first row in the retrieval. If no value is specified, the retrieval starts with the first row.

colSort

(optional) a string including the name of the column to sort preceded by a “+” or “-” to indicate sort direction

colFilter

(optional) a vector or array object created by the makeFilter function which contains the column name, operator and value of the filter(s) to be applied to the retrieved data.

showHidden

(optional) a logical value indicating whether or not to return data columns that would normally be hidden from user view. Defaults to FALSE if no value provided.

colNameOpt

(optional) controls the name source for the columns of the output dataframe, with valid values of 'caption', 'fieldname', and 'rname'

containerFilter

(optional) Specifies the containers to include in the scope of selectRows request. A value of NULL is equivalent to "Current". Valid values are

  • "Current": Include the current folder only

  • "CurrentAndSubfolders": Include the current folder and all subfolders

  • "CurrentPlusProject": Include the current folder and the project that contains it

  • "CurrentAndParents": Include the current folder and its parent folders

  • "CurrentPlusProjectAndShared": Include the current folder plus its project plus any shared folders

  • "AllFolders": Include all folders for which the user has read permission

parameters

(optional) List of name/value pairs for the parameters if the SQL references underlying queries that are parameterized. For example, parameters=c("X=1", "Y=2").

includeDisplayValues

(optional) a logical value indicating if display values should be included in the response object for lookup fields.

method

(optional) HTTP method to use for the request, defaults to POST.

Details

A full dataset or any portion of a dataset can be downloaded into an R data frame using the labkey.selectRows function. Function arguments are the components of the url that identify the location of the data and what actions should be taken on the data prior to import (ie, sorting, selecting particular columns or maximum number of rows, etc.).

Stored queries in LabKey Server have an associated default view and may have one or more named views. Views determine the column set of the return data frame. View columns can be a subset or superset of the columns of the underlying query (a subset if columns from the query are left out of the view, and a superset if lookup columns in the underlying query are used to include columns from related queries). Views can also include filter and sort properties that will make their result set different from the underlying query. If no view is specified, the columns and rows returned are determined by the default view, which may not be the same as the result rows of the underlying query. Please see the topic on Saving Views in the LabKey online documentation.

In the returned data frame, there are three different ways to have the columns named: colNameOpt='caption' uses the caption value, and is the default option for backward compatibility. It may be the best option for displaying to another user, but may make scripting more difficult. colNameOpt='fieldname' uses the field name value, so that the data frame colnames are the same names that are used as arguments to labkey function calls. It is the default for the new getRows session-based function. colNameOpt='rname' transforms the field name value into valid R names by substituting an underscore for both spaces and forward slash (/) characters and lower casing the entire name. This option is the way a data frame is passed to a script running in a LabKey server in the R View feature of the data grid. If you are writing scripts for running in an R view on the server, or if you prefer to work with legal r names in the returned grid, this option may be useful.

For backward compatibility, column names returned by labkey.executeSql and labkey.selectRows are field captions by default. The getRows function has the same colNameOpt parameter but defaults to field names instead of captions.

Value

The requested data are returned in a data frame with stringsAsFactors set to FALSE. Column names are set as determined by the colNameOpt parameter.

Author(s)

Valerie Obenchain

References

https://www.labkey.org/Documentation/wiki-page.view?name=savingViews

See Also

makeFilter, labkey.executeSql, labkey.updateRows, labkey.insertRows, labkey.importRows, labkey.deleteRows, labkey.getSchemas, labkey.getQueries, labkey.getQueryViews, labkey.getQueryDetails, labkey.getDefaultViewDetails, labkey.getLookupDetails

Examples

## Not run: 

## select from a list named AllTypes
# library(Rlabkey)

rows <- labkey.selectRows(
	baseUrl="http://localhost:8080/labkey",
	folderPath="/apisamples",
	schemaName="lists", 
	queryName="AllTypes")
	
## select from a view on that list
viewrows <- labkey.selectRows(baseUrl="http://localhost:8080/labkey",
    folderPath="/apisamples", schemaName="Lists", queryName="AllTypes",
    viewName="rowbyrow")

## select a subset of columns
colSelect=c("TextFld", "IntFld")
subsetcols <- labkey.selectRows(baseUrl="http://localhost:8080/labkey",
    folderPath="/apisamples", schemaName="lists", queryName="AllTypes",
    colSelect=colSelect)

## including columns from a lookup (foreign key) field
lookupcols <- labkey.selectRows(baseUrl="http://localhost:8080/labkey",
    folderPath="/apisamples", schemaName="lists", queryName="AllTypes",
    colSelect="TextFld,IntFld,IntFld/LookupValue")


## End(Not run)

Modify the current set of Curl options that are being used in the existing session

Description

Rlabkey uses the package httr to connect to the LabKey Server.

Arguments

options args

a variable list of arguments to set the RCurl options

ssl_verifyhost

check the existence of a common name and also verify that it matches the hostname provided

ssl_verifypeer

specifies whether curl will verify the peer's certificate

followlocation

specify is curl should follow any location header that is sent in the HTTP request

sslversion

the SSL version to use

Details

This topic explains how to configure Rlabkey to work with a LabKey Server running SSL.

Rlabkey uses the package httr to connect to the LabKey Server. On Windows, the httr package is not configured for SSL by default. In order to connect to a HTTPS enabled LabKey Server, you will need to perform the following steps:

1. Create or download a "ca-bundle" file.

We recommend using ca-bundle file that is published by Mozilla. See http://curl.haxx.se/docs/caextract.html. You have two options:

Download the ca-bundle.crt file from the link named "HTTPS from github:" on http://curl.haxx.se/docs/caextract.html
Create your own ca-bundle.crt file using the instructions provided on http://curl.haxx.se/docs/caextract.html

2. Copy the ca-bundle.crt file to a location on your hard-drive.
If you will be the only person using the Rlabkey package on your computer, we recommend that you

create a directory named 'labkey' in your home directory
copy the ca-bundle.crt into the 'labkey' directory

If you are installing this file on a server where multiple users will use may use the Rlabkey package, we recommend that you create a directory named 'c:labkey'

copy the ca-bundle.crt into the 'c:labkey' directory

3. Create a new Environment variable named 'RLABKEY_CAINFO_FILE'

On Windows 7, Windows Server 2008 and earlier

Select Computer from the Start menu.
Choose System Properties from the context menu.
Click Advanced system settings > Advanced tab.
Click on Environment Variables.
Under System Variables click on the new button.
For Variable Name: enter RLABKEY_CAINFO_FILE
For Variable Value: enter the path of the ca-bundle.crt you created above.
Hit the Ok buttons to close all the windows.
On Windows 8, Windows 2012 and above
Drag the Mouse pointer to the Right bottom corner of the screen.
Click on the Search icon and type: Control Panel.
Click on -> Control Panel -> System and Security.
Click on System -> Advanced system settings > Advanced tab.
In the System Properties Window, click on Environment Variables.
Under System Variables click on the new button.
For Variable Name: enter RLABKEY_CAINFO_FILE
For Variable Value: enter the path of the ca-bundle.crt you created above.
Hit the Ok buttons to close all the windows.
Now you can start R and begin working.

This command can also be used to provide an alternate location / path to your .netrc file. Example:
labkey.setCurlOptions(NETRC_FILE = '/path/to/alternate/_netrc')


Helper function to enable/disable debug mode.

Description

When debug mode is enabled, the GET/POST calls with output information about the request being made and will output a raw string version of the response object.

Usage

labkey.setDebugMode(debug = FALSE)

Arguments

debug

a boolean specifying if debug mode is enabled or disabled

Author(s)

Cory Nathe

Examples

## Not run: 

library(Rlabkey)
labkey.setDebugMode(TRUE)
labkey.executeSql(
    baseUrl="http://localhost:8080/labkey",
    folderPath="/home",
    schemaName="core",
    sql = "select * from containers")


## End(Not run)

Set the default parameters used for all http or https requests

Description

Use this function to set the default baseUrl and authentication parameters as package environment variables to be used for all http or https requests. You can also use labkey.setDefaults() without any parameters to reset/clear these settings.

Usage

labkey.setDefaults(apiKey="", baseUrl="", email="", password="")

Arguments

apiKey

api or session key from your server

baseUrl

server location including context path, if any. e.g. https://www.labkey.org/

email

user email address

password

user password

Details

An API key can be used to authorize Rlabkey functions that access secure content on LabKey Server. Using an API key avoids copying and storing credentials on the client machine. An API key can be revoked and set to expire. It also acts as a credential for those who sign in using a single sign-on authentication mechanism such as CAS or SAML.

A site administrator must first enable the use of API keys on that LabKey Server. Once enabled, any logged in user can generate an API key by clicking their display name (upper right) and selecting "External Tool Access". The API Key page creates and displays keys that can be copied and pasted into a labkey.setDefaults() statement to give an Rlabkey session the permissions of the corresponding user.

If an API key is not provided, you can also use this function for basic authentication via email and password. Note that both email and password must be set via a labkey.setDefaults() call. If an API key is also set, that will be given preference and the email/password will not be used for authentication.

On servers that enable them, a session key can be used in place of an API key. A session key ties all Rlabkey access to a user's current browser session, which means the code runs in the same context as the browser (e.g. same user, same authorizations, same declared terms of use and PHI level, same impersonation state, etc.). Session keys can be useful in certain compliance scenarios.

Once valid credentials are provided to labkey.setDefaults(), subsequent labkey.get or labkey.post API calls will authenticate using those credentials.

Examples

## Example of setting and clearing email/password, API key, and Session key
# library(Rlabkey)

labkey.setDefaults(email="[email protected]", password="password")

## Functions invoked at this point respect the role assignments and
## other authorizations of the specified user

## A user can create an API key via the LabKey UI and set it as follows:

labkey.setDefaults(apiKey="abcdef0123456789abcdef0123456789")

## Functions invoked at this point respect the role assignments and
## other authorizations of the user who created the API key

## A user can create a session key via the LabKey UI and set it as follows:

labkey.setDefaults(apiKey="0123456789abcdef0123456789abcdef")

## Functions invoked at this point share authorization
## and session information with the user's browser session

labkey.setDefaults() # called without any parameters will reset/clear the environment variables

Set module property value

Description

Set module property value for a specific folder or as site wide (with folderPath '/')

Usage

labkey.setModuleProperty(baseUrl=NULL, folderPath, moduleName, propName, propValue)

Arguments

baseUrl

server location including context path, if any. e.g. https://www.labkey.org/

folderPath

a string specifying the folderPath

moduleName

name of the module

propName

The module property name

propValue

The module property value to save

Examples

## Not run: 
library(Rlabkey)
labkey.setModuleProperty(baseUrl="http://labkey/", folderPath="flowProject",
    moduleName="flow", propName="ExportToScriptFormat", propValue="zip")


## End(Not run)

Helper function to enable/disable wafEncoding mode.

Description

By default, this command encodes the SQL parameter to allow it to pass through web application firewalls. This is compatible with LabKey Server v23.9.0 and above. If targeting an earlier server, pass FALSE to this method.

Usage

labkey.setWafEncoding(wafEncode = TRUE)

Arguments

wafEncode

a boolean specifying if wafEncode mode is enabled or disabled

Author(s)

Cory Nathe

Examples

## Not run: 

library(Rlabkey)
labkey.setWafEncoding(FALSE)
labkey.executeSql(
    baseUrl="http://localhost:8080/labkey",
    folderPath="/home",
    schemaName="core",
    sql = "select * from containers")


## End(Not run)

Create a new LabKey Freezer Manager storage item

Description

Create a new LabKey Freezer Manager storage item that can be used in the creation of a storage hierarchy. Storage items can be of the following types: Physical Location, Freezer, Primary Storage, Shelf, Rack, Canister, Storage Unit Type, or Terminal Storage Location.

Usage

labkey.storage.create(baseUrl=NULL, folderPath, type, props)

Arguments

baseUrl

a string specifying the baseUrlfor the LabKey server

folderPath

a string specifying the folderPath

type

a string specifying the type of storage item to create

props

a list properties for the storage item (i.e. name, description, etc.)

Value

A list containing a data element with the property values for the newly created storage item.

Author(s)

Cory Nathe

See Also

labkey.storage.update, labkey.storage.delete

Examples

## Not run: 

library(Rlabkey)
## create a storage Freezer with a Shelf and 2 Plates on that Shelf

freezer <- labkey.storage.create(
    baseUrl="http://labkey/",
    folderPath="home",
    type="Freezer",
    props=list(name="Test Freezer", description="My example storage freezer")
)

shelf = labkey.storage.create(
    baseUrl="http://labkey/",
    folderPath="home",
    type="Shelf",
    props=list(name="Test Shelf", locationId=freezer$data$rowId )
)

plateType = labkey.storage.create(
    baseUrl="http://labkey/",
    folderPath="home",
    type="Storage Unit Type",
    props=list(name="Test 8X12 Well Plate", unitType="Plate", rows=8, cols=12 )
)

plate1 = labkey.storage.create(
    baseUrl="http://labkey/",
    folderPath="home",
    type="Terminal Storage Location",
    props=list(name="Plate #1", typeId=plateType$data$rowId, locationId=shelf$data$rowId )
)

plate2 = labkey.storage.create(
    baseUrl="http://labkey/",
    folderPath="home",
    type="Terminal Storage Location",
    props=list(name="Plate #2", typeId=plateType$data$rowId, locationId=shelf$data$rowId )
)

## End(Not run)

Delete a LabKey Freezer Manager storage item

Description

Delete an existing LabKey Freezer Manager storage item. Note that deletion of freezers, primary storage, or locations within the storage hierarchy will cascade the delete down the hierarchy to remove child locations and terminal storage locations. Samples in the deleted storage location(s) will not be deleted but will be removed from storage. Storage items can be of the following types: Physical Location, Freezer, Primary Storage, Shelf, Rack, Canister, Storage Unit Type, or Terminal Storage Location.

Usage

labkey.storage.delete(baseUrl=NULL, folderPath, type, rowId)

Arguments

baseUrl

a string specifying the baseUrlfor the LabKey server

folderPath

a string specifying the folderPath

type

a string specifying the type of storage item to delete

rowId

the primary key of the storage item to delete

Value

A list containing a data element with the property values for the deleted storage item.

Author(s)

Cory Nathe

See Also

labkey.storage.create, labkey.storage.update

Examples

## Not run: 

library(Rlabkey)
## delete a freezer and its child locations and terminal storage locations

freezer <- labkey.storage.create(
    baseUrl="http://labkey/",
    folderPath="home",
    type="Freezer",
    props=list(name="Test Freezer", description="My example storage freezer")
)

shelf = labkey.storage.create(
    baseUrl="http://labkey/",
    folderPath="home",
    type="Shelf",
    props=list(name="Test Shelf", locationId=freezer$data$rowId )
)

plateType = labkey.storage.create(
    baseUrl="http://labkey/",
    folderPath="home",
    type="Storage Unit Type",
    props=list(name="Test 8X12 Well Plate", unitType="Plate", rows=8, cols=12 )
)

plate1 = labkey.storage.create(
    baseUrl="http://labkey/",
    folderPath="home",
    type="Terminal Storage Location",
    props=list(name="Plate #1", typeId=plateType$data$rowId, locationId=shelf$data$rowId )
)

plate2 = labkey.storage.create(
    baseUrl="http://labkey/",
    folderPath="home",
    type="Terminal Storage Location",
    props=list(name="Plate #2", typeId=plateType$data$rowId, locationId=shelf$data$rowId )
)

# NOTE: this will delete freezer, shelf, plate1 and plate2 but it will not delete
#       the plateType as that is not a part of the freezer hierarchy
freezer <- labkey.storage.delete(
    baseUrl="http://labkey/",
    folderPath="home",
    type="Freezer",
    rowId=freezer$data$rowId
)

## End(Not run)

Update a LabKey Freezer Manager storage item

Description

Update an existing LabKey Freezer Manager storage item to change its properties or location within the storage hierarchy. Storage items can be of the following types: Physical Location, Freezer, Primary Storage, Shelf, Rack, Canister, Storage Unit Type, or Terminal Storage Location.

Usage

labkey.storage.update(baseUrl=NULL, folderPath, type, props)

Arguments

baseUrl

a string specifying the baseUrlfor the LabKey server

folderPath

a string specifying the folderPath

type

a string specifying the type of storage item to update

props

a list properties for the storage item (i.e. name, description, etc.), must include the RowId primary key

Value

A list containing a data element with the property values for the updated storage item.

Author(s)

Cory Nathe

See Also

labkey.storage.create, labkey.storage.delete

Examples

## Not run: 

library(Rlabkey)
## create a storage unit type and then update it to change some properties

plateType = labkey.storage.create(
    baseUrl="http://labkey/",
    folderPath="home",
    type="Storage Unit Type",
    props=list(name="Test 8X12 Well Plate", unitType="Plate", rows=8, cols=12 )
)

plateType = labkey.storage.update(
    baseUrl="http://labkey/",
    folderPath="home",
    type="Storage Unit Type",
    props=list(rowId=plateType$data$rowId, positionFormat="NumAlpha", positionOrder="ColumnRow" )
)

## End(Not run)

Assay transform script helper function to get a run property value from a data.frame

Description

A function that takes in data.frame of the run properties info for a given assay transform script execution and returns the value for a given property name.

Usage

labkey.transform.getRunPropertyValue(runProps, propName)

Arguments

runProps

the data.frame of the run property key/value pairs

propName

the name of the property to get the value of within the runProps data.frame

Details

This helper function will most likely be used within an assay transform script after the labkey.transform.readRunPropertiesFile function has been called to load the full set of run properties.

Examples

## Not run: 

# library(Rlabkey)

run.props = labkey.transform.readRunPropertiesFile("${runInfo}");
run.data.file = labkey.transform.getRunPropertyValue(run.props, "runDataFile");


## End(Not run)

Assay transform script helper function to read a run properties file

Description

A function that takes in the full path to the LabKey generated run properties file and returns a data.frame of the key value pairs for the lines within that file. This helper function would be used as part of an assay transform script written in R and associated with an assay design.

Usage

labkey.transform.readRunPropertiesFile(runInfoPath)

Arguments

runInfoPath

the full file system path to the generated run properties file

Details

The most common scenario is that the assay transform script will get the run properties file path added into the running script as a replacement variable.

Examples

## Not run: 

# library(Rlabkey)

labkey.transform.readRunPropertiesFile("${runInfo}")


## End(Not run)

Delete all rows from a table

Description

Delete all rows from the specified table.

Usage

labkey.truncateTable(baseUrl = NULL, folderPath, schemaName, queryName)

Arguments

baseUrl

a string specifying the baseUrl for the labkey server

folderPath

a string specifying the folderPath

schemaName

a string specifying the name of the schema of the domain

queryName

a string specifying the query name

Details

Deletes all rows in the table in a single transaction and will also log a single audit event for the action. Not all tables support truncation, if a particular table doesn't support the action, an error will be returned. The current list of tables supporting truncation include : lists, datasets, issues, sample sets, data classes.

Value

Returns the count of the number of rows deleted.

Author(s)

Karl Lum

See Also

labkey.deleteRows

Examples

## Not run: 

## create a data frame and infer it's fields
library(Rlabkey)

labkey.truncateTable(baseUrl="http://labkey/", folderPath="home",
    schemaName="lists", queryName="people")


## End(Not run)

Update existing rows of data in a labkey database

Description

Send data from an R session to update existing rows of data in the database.

Usage

labkey.updateRows(baseUrl, folderPath,
    schemaName, queryName, toUpdate,
    provenanceParams=NULL, options=NULL)

Arguments

baseUrl

a string specifying the baseUrlfor the labkey server

folderPath

a string specifying the folderPath

schemaName

a string specifying the schemaNamefor the query

queryName

a string specifying the queryName

toUpdate

a data frame containing the row(s) of data to be updated

provenanceParams

the provenance parameter object which contains the options to include as part of a provenance recording. This is a premium feature and requires the Provenance LabKey module to function correctly, if it is not present this parameter will be ignored.

options

(optional) a list containing options specific to the insert action of the query

Details

A single row or multiple rows of data can be updated. The toUpdate data frame should contain the rows of data to be updated and must be created with the stringsAsFactors option set to FALSE. The names of the data in the data frame must be the column names from the labkey database. To update a row/column to a value of NULL, use an empty string ("") in the data frame (regardless of the database column type).

The list of valid options for each query will vary, but some common examples include:

  • auditBehavior (string) : Can be used to override the audit behavior for the table the query is acting on. The set of types include: NONE, SUMMARY, and DETAILED.

  • auditUserComment (string) : Can be used to provide a comment from the user that will be attached to certain detailed audit log records.

Value

A list is returned with named categories of command, rowsAffected, rows, queryName, containerPath and schemaName. The schemaName, queryName and containerPath properties contain the same schema, query and folder path used in the request. The rowsAffected property indicates the number of rows affected by the API action. This will typically be the same number as passed in the request. The rows property contains a list of row objects corresponding to the rows updated.

Author(s)

Valerie Obenchain

See Also

labkey.selectRows, labkey.executeSql, makeFilter, labkey.insertRows, labkey.importRows,
labkey.deleteRows, labkey.moveRows,
labkey.query.import, labkey.provenance.createProvenanceParams, labkey.provenance.startRecording, labkey.provenance.addRecordingStep, labkey.provenance.stopRecording

Examples

## Not run: 

## Insert, update and delete
## Note that users must have the necessary permissions in the database
## to be able to modify data through the use of these functions
# library(Rlabkey)

newrow <- data.frame(
	DisplayFld="Inserted from R"
	, TextFld="how its done"
	, IntFld= 98 
	, DoubleFld = 12.345
	, DateTimeFld = "03/01/2010"
	, BooleanFld= FALSE
	, LongTextFld = "Four score and seven years ago"
#	, AttachmentFld = NA    		#attachment fields not supported 
	, RequiredText = "Veni, vidi, vici"
	, RequiredInt = 0
	, Category = "LOOKUP2"
	, stringsAsFactors=FALSE)

insertedRow <- labkey.insertRows("http://localhost:8080/labkey",
    folderPath="/apisamples", schemaName="lists", queryName="AllTypes",
    toInsert=newrow, options=list(auditBehavior="DETAILED",
    auditUserComment="testing audit comment for insert"))
newRowId <- insertedRow$rows[[1]]$RowId

selectedRow<-labkey.selectRows("http://localhost:8080/labkey",
    folderPath="/apisamples", schemaName="lists", queryName="AllTypes",
    colFilter=makeFilter(c("RowId", "EQUALS", newRowId)))
selectedRow

updaterow=data.frame(
	RowId=newRowId
	, DisplayFld="Updated from R"
	, TextFld="how to update"
	, IntFld= 777 
	, stringsAsFactors=FALSE)

updatedRow <- labkey.updateRows("http://localhost:8080/labkey",
    folderPath="/apisamples", schemaName="lists", queryName="AllTypes",
    toUpdate=updaterow, options=list(auditBehavior="DETAILED",
    auditUserComment="testing audit comment for update"))
selectedRow<-labkey.selectRows("http://localhost:8080/labkey",
    folderPath="/apisamples", schemaName="lists", queryName="AllTypes",
    colFilter=makeFilter(c("RowId", "EQUALS", newRowId)))
selectedRow

deleterow <- data.frame(RowId=newRowId, stringsAsFactors=FALSE)
result <- labkey.deleteRows(baseUrl="http://localhost:8080/labkey",
    folderPath="/apisamples", schemaName="lists", queryName="AllTypes",
    toDelete=deleterow)
str(result)


## End(Not run)

Deletes the provided file/folder on a LabKey Server via WebDAV

Description

This will delete the supplied file or folder under the specified LabKey Server project using WebDAV.

Usage

labkey.webdav.delete(
    baseUrl=NULL,
    folderPath,
    remoteFilePath,
    fileSet='@files'
    )

Arguments

baseUrl

a string specifying the baseUrl for the labkey server

folderPath

a string specifying the folderPath

remoteFilePath

the path to delete, relative to the LabKey folder root.

fileSet

(optional) the name of file server fileSet, which is typically "@files" (the default value for this argument). In some cases this might be "@pipeline" or "@fileset".

Details

This will delete the supplied file or folder under the specified LabKey Server project using WebDAV. Note: if a folder is provided, it will delete that folder and contents.

Value

TRUE if the folder was deleted successfully

Author(s)

Ben Bimber, Ph.D.

See Also

labkey.webdav.get, labkey.webdav.put, labkey.webdav.mkDir, labkey.webdav.mkDirs, labkey.webdav.listDir, labkey.webdav.pathExists, labkey.webdav.downloadFolder

Examples

## Not run: 

library(Rlabkey)

#delete an entire directory and contents
labkey.webdav.delete(baseUrl="http://labkey/", folderPath="home", remoteFilePath="folder1")

#delete single file
labkey.webdav.delete(baseUrl="http://labkey/", folderPath="home", remoteFilePath="folder/file.txt")


## End(Not run)

Recursively download a folder via WebDAV

Description

This will recursively download a folder from a LabKey Server using WebDAV.

Usage

labkey.webdav.downloadFolder(
    localBaseDir,
    baseUrl=NULL, 
    folderPath,
    remoteFilePath,
    overwriteFiles=TRUE,
    mergeFolders=TRUE,
    fileSet='@files'
    )

Arguments

localBaseDir

the local filepath where this directory will be saved. a subfolder with the remote directory name will be created.

baseUrl

a string specifying the baseUrl for the labkey server

folderPath

a string specifying the folderPath

remoteFilePath

the path of this folder on the remote server, relative to the folder root.

overwriteFiles

(optional) if true, any pre-existing file at this location will be overwritten. Defaults to TRUE

mergeFolders

(optional) if false, any pre-existing local folders in the target location will be deleted if there is an incoming folder of the same name. If true, these existing folders will be left alone, and remote files downloaded into them. Existing file conflicts will be handled based on the overwriteFiles parameter. Defaults to TRUE

fileSet

(optional) the name of file server fileSet, which is typically "@files" (the default value for this argument). In some cases this might be "@pipeline" or "@fileset".

Details

This will recursively download a folder from a LabKey Server using WebDAV. This is essentially a wrapper that recursively calls labkey.webdav.get to download all files in the remote folder.

Value

TRUE or FALSE, depending on if this folder was successfully downloaded

Author(s)

Ben Bimber, Ph.D.

See Also

labkey.webdav.get, labkey.webdav.put, labkey.webdav.mkDir, labkey.webdav.mkDirs, labkey.webdav.pathExists, labkey.webdav.listDir, labkey.webdav.delete

Examples

## Not run: 
## download folder from a LabKey Server
library(Rlabkey)

labkey.webdav.downloadFolder(baseUrl="http://labkey/",
    folderPath="home",
    remoteFilePath="folder1",
    localBaseDir="destFolder",
    overwrite=TRUE
)


## End(Not run)

Download a file via WebDAV

Description

This will download a file from a LabKey Server using WebDAV.

Usage

labkey.webdav.get(
    baseUrl=NULL,
    folderPath,
    remoteFilePath,
    localFilePath,
    overwrite=TRUE,
    fileSet='@files'
    )

Arguments

baseUrl

a string specifying the baseUrl for the labkey server

folderPath

a string specifying the folderPath

remoteFilePath

the path of this file on the remote server, relative to the folder root.

localFilePath

the local filepath where this file will be saved

overwrite

(optional) if true, any pre-existing file at this location will be overwritten. Defaults to TRUE

fileSet

(optional) the name of file server fileSet, which is typically "@files" (the default value for this argument). In some cases this might be "@pipeline" or "@fileset".

Details

Download a single file from a LabKey Server to the local machine using WebDAV.

Value

TRUE or FALSE, depending on if this file was downloaded and exists locally. Will return FALSE if the already file exists and overwrite=F.

Author(s)

Ben Bimber, Ph.D.

See Also

labkey.webdav.put, labkey.webdav.mkDir, labkey.webdav.mkDirs, labkey.webdav.pathExists, labkey.webdav.listDir, labkey.webdav.delete, labkey.webdav.downloadFolder

Examples

## Not run: 
## download a single file from a LabKey Server
library(Rlabkey)

labkey.webdav.get(
    baseUrl="http://labkey/",
    folderPath="home",
    remoteFilePath="folder/myFile.txt",
    localFilePath="myDownloadedFile.txt",
    overwrite=TRUE
)


## End(Not run)

List the contents of a LabKey Server folder via WebDAV

Description

This will list the contents of a LabKey Server folder using WebDAV.

Usage

labkey.webdav.listDir(
    baseUrl=NULL,
    folderPath,
    remoteFilePath,
    fileSet='@files',
    haltOnError=TRUE
    )

Arguments

baseUrl

a string specifying the baseUrl for the labkey server

folderPath

a string specifying the folderPath

remoteFilePath

path of the folder on the remote server, relative to the folder root.

fileSet

(optional) the name of file server fileSet, which is typically "@files" (the default value for this argument). In some cases this might be "@pipeline" or "@fileset".

haltOnError

(optional) Specifies whether this request should fail if the requested path does not exist. Defaults to TRUE

Details

Lists the contents of a folder on a LabKey Server using WebDAV.

Value

A list with each item under this folder. Each item (file or directory) is a list with the following attributes:

  • "files": A list of the files, where each has the following attributes:

    • "id": The relative path to this item, not encoded

    • "href": The relative URL to this item, HTML encoded

    • "text": A dataset in a date based study

    • "creationdate": The date this item was created

    • "createdby": The user that created this file

    • "lastmodified": The last modification time

    • "contentlength": The content length

    • "size": The file size

    • "isdirectory": TRUE or FALSE, depending on whether this item is a directory

  • "fileCount": If this item is a directory, this property will be present, listing the the total files in this location

Author(s)

Ben Bimber, Ph.D.

See Also

labkey.webdav.get, labkey.webdav.put, labkey.webdav.mkDir, labkey.webdav.mkDirs, labkey.webdav.pathExists, labkey.webdav.delete, labkey.webdav.downloadFolder

Examples

## Not run: 

library(Rlabkey)

json <- labkey.webdav.listDir(
            baseUrl="http://labkey/",
            folderPath="home",
            remoteFilePath="myFolder"
        )


## End(Not run)

Create a folder via WebDAV

Description

This will create a folder under the specified LabKey Server project using WebDAV.

Usage

labkey.webdav.mkDir(
    baseUrl=NULL,
    folderPath,
    remoteFilePath,
    fileSet='@files'
    )

Arguments

baseUrl

a string specifying the baseUrl for the labkey server

folderPath

a string specifying the folderPath

remoteFilePath

the folder path to create, relative to the LabKey folder root.

fileSet

(optional) the name of file server fileSet, which is typically "@files" (the default value for this argument). In some cases this might be "@pipeline" or "@fileset".

Details

Creates a folder on a LabKey Server using WebDAV. If the parent directory does not exist, this will fail (similar to mkdir on linux)

Value

TRUE if the folder was created successfully

Author(s)

Ben Bimber, Ph.D.

See Also

labkey.webdav.get, labkey.webdav.put, labkey.webdav.mkDirs, labkey.webdav.pathExists, labkey.webdav.listDir, labkey.webdav.delete, labkey.webdav.downloadFolder

Examples

## Not run: 

library(Rlabkey)

labkey.webdav.mkDir(
    baseUrl="http://labkey/",
    folderPath="home",
    remoteFilePath="toCreate"
)


## End(Not run)

Create a folder via WebDAV

Description

This will create folder(s) under the specified LabKey Server project using WebDAV.

Usage

labkey.webdav.mkDirs(
    baseUrl=NULL,
    folderPath,
    remoteFilePath,
    fileSet='@files'
    )

Arguments

baseUrl

a string specifying the baseUrl for the labkey server

folderPath

a string specifying the folderPath

remoteFilePath

the folder path to create, relative to the LabKey folder root.

fileSet

(optional) the name of file server fileSet, which is typically "@files" (the default value for this argument). In some cases this might be "@pipeline" or "@fileset".

Details

Creates a folder on a LabKey Server using WebDAV. If the parent directory or directories no not exist, these will also be created (similar to mkdir -p on linux)

Value

TRUE if the folder was created successfully

Author(s)

Ben Bimber, Ph.D.

See Also

labkey.webdav.get, labkey.webdav.put, labkey.webdav.mkDir, labkey.webdav.pathExists, labkey.webdav.listDir, labkey.webdav.delete, labkey.webdav.downloadFolder

Examples

## Not run: 

library(Rlabkey)

labkey.webdav.mkDirs(
    baseUrl="http://labkey/",
    folderPath="home",
    remoteFilePath="folder1/folder2/toCreate"
)


## End(Not run)

Tests if a path exists on a LabKey Server via WebDAV

Description

This will test if the supplied file/folder exists folder under the specified LabKey Server project using WebDAV.

Usage

labkey.webdav.pathExists(
    baseUrl=NULL,
    folderPath,
    remoteFilePath,
    fileSet='@files'
    )

Arguments

baseUrl

a string specifying the baseUrl for the labkey server

folderPath

a string specifying the folderPath

remoteFilePath

the path to test, relative to the LabKey folder root.

fileSet

(optional) the name of file server fileSet, which is typically "@files" (the default value for this argument). In some cases this might be "@pipeline" or "@fileset".

Details

This will test if the supplied file/folder exists folder under the specified LabKey Server project using WebDAV.

Value

TRUE if the folder was created successfully

Author(s)

Ben Bimber, Ph.D.

See Also

labkey.webdav.get, labkey.webdav.put, labkey.webdav.mkDir, labkey.webdav.mkDirs, labkey.webdav.listDir, labkey.webdav.delete, labkey.webdav.downloadFolder

Examples

## Not run: 

library(Rlabkey)

# Test folder
labkey.webdav.pathExists(
    baseUrl="http://labkey/",
    folderPath="home",
    remoteFilePath="pathToTest"
)

# Test file
labkey.webdav.pathExists(
    baseUrl="http://labkey/",
    folderPath="home",
    remoteFilePath="folder/fileToTest.txt"
)


## End(Not run)

Upload a file via WebDAV

Description

This will upload a file to a LabKey Server using WebDAV.

Usage

labkey.webdav.put(
    localFile,
    baseUrl=NULL,
    folderPath,
    remoteFilePath,
    fileSet='@files',
    description=NULL
)

Arguments

localFile

the local filepath to upload

baseUrl

a string specifying the baseUrl for the labkey server

folderPath

a string specifying the folderPath

remoteFilePath

the destination path of this file on the remote server, relative to the folder root.

fileSet

(optional) the name of file server fileSet, which is typically "@files" (the default value for this argument). In some cases this might be "@pipeline" or "@fileset".

description

(optional) the description to attach to this file on the remote server.

Details

Upload a single file from the local machine to a LabKey Server using WebDAV.

Value

TRUE if the file was uploaded successfully

Author(s)

Ben Bimber, Ph.D.

See Also

labkey.webdav.get, labkey.webdav.mkDir, labkey.webdav.mkDirs, labkey.webdav.pathExists, labkey.webdav.listDir, labkey.webdav.delete, labkey.webdav.downloadFolder

Examples

## Not run: 
## upload a single file to a LabKey Server
library(Rlabkey)

labkey.webdav.put(
    localFile="myFileToUpload.txt",
    baseUrl="http://labkey/",
    folderPath="home",
    remoteFilePath="myFileToUpload.txt"
)


## End(Not run)

Call the whoami API

Description

Call the whoami API to get information about the current LabKey user.

Usage

labkey.whoAmI(baseUrl=NULL)

Arguments

baseUrl

A string specifying the baseUrl for the LabKey server.

Value

Returns information about the logged in user including: displayName, id, email, and whether or not the user is impersonated.

Author(s)

Cory Nathe

See Also

labkey.security.impersonateUser, labkey.security.stopImpersonating

Examples

## Not run: 

library(Rlabkey)

labkey.whoAmI(baseUrl="http://labkey/")


## End(Not run)

List the available folder paths

Description

Lists the available folder paths relative to the current folder path for a LabKey session

Usage

lsFolders(session)

Arguments

session

the session key returned from getSession

Details

Lists the available folder paths relative to the current folder path for a LabKey session

Value

A character array containing the available folder paths, relative to the project root. These values can be set on a session using curFolder<-

Author(s)

Peter Hussey

References

https://www.labkey.org/Documentation/wiki-page.view?name=projects

See Also

getSession, lsProjects, lsSchemas

Examples

## Not run: 

##get a list if projects and folders
# library(Rlabkey)

lks<- getSession("https://www.labkey.org", "/home")

#returns values "/home" , "/home/_menus" , ...
lsFolders(lks)


## End(Not run)

List the projects available at a given LabKey Server address

Description

Lists the projects available. Takes a string URL instead of a session, as it is intended for use before creating a session.

Usage

lsProjects(baseUrl)

Arguments

baseUrl

a string specifying the baseUrlfor the LabKey Server, of the form http://<server dns name>/<contextroot>

Details

List the projects available at a given LabKey Server address.

Value

A character array containing the available projects, relative to the root. These values can be set on a session using curFolder<-

Author(s)

Peter Hussey

References

https://www.labkey.org/home/project-begin.view

See Also

getSession, lsFolders, lsSchemas

Examples

## Not run: 

## get list of projects on server, connect a session in one project,
## then list the folders in that project
# library(Rlabkey)

lsProjects("https://www.labkey.org")

lkorg <- getSession("https://www.labkey.org", "/home")
lsFolders(lkorg)

lkorg <- getSession("https://www.labkey.org", "/home/Study/ListDemo")
lsSchemas(lkorg)


## End(Not run)

List the available schemas

Description

Lists the available schemas given the current folder path for a LabKey session

Usage

lsSchemas(session)

Arguments

session

the session key returned from getSession

Details

Lists the available schemas given the current folder path for a LabKey session

Value

A character array containing the available schema names

Author(s)

Peter Hussey

See Also

getSession, lsFolders, lsProjects

Examples

## Not run: 

##  get a list of schemas available in the current session context
# library(Rlabkey)

lks<- getSession(baseUrl="http://localhost:8080/labkey",
    folderPath="/apisamples")

#returns several schema names, e.g. "lists", "core", "MS1", etc.
lsSchemas(lks)


## End(Not run)

Builds filters to be used in labkey.selectRows and getRows

Description

This function takes inputs of column name, filter value and filter operator and returns an array of filters to be used in labkey.selectRows and getRows.

Usage

makeFilter(...)

Arguments

...

Arguments in c("colname","operator","value") form, used to create a filter.

Details

These filters are applied to the data prior to import into R. The user can specify as many filters as desired. The format for specifying a filter is a vector of characters including the column name, operator and value.

colname

a string specifying the name of the column to be filtered

operator

a string specifying what operator should be used in the filter (see options below)

value

an integer or string specifying the value the columns should be filtered on

Operator values:
EQUAL
DATE_EQUAL
NOT_EQUAL
DATE_NOT_EQUAL
NOT_EQUAL_OR_MISSING
GREATER_THAN
DATE_GREATER_THAN
LESS_THAN
DATE_LESS_THAN
GREATER_THAN_OR_EQUAL
DATE_GREATER_THAN_OR_EQUAL
LESS_THAN_OR_EQUAL
DATE_LESS_THAN_OR_EQUAL
STARTS_WITH
DOES_NOT_START_WITH
CONTAINS
DOES_NOT_CONTAIN
CONTAINS_ONE_OF
CONTAINS_NONE_OF
IN
NOT_IN
BETWEEN
NOT_BETWEEN
MEMBER_OF
MISSING
NOT_MISSING
MV_INDICATOR
NO_MV_INDICATOR
Q
ONTOLOGY_IN_SUBTREE
ONTOLOGY_NOT_IN_SUBTREE
EXP_CHILD_OF
EXP_PARENT_OF
EXP_LINEAGE_OF

When using the MISSING, NOT_MISSING, MV_INDICATOR, or NO_MV_INDICATOR operators, an empty string should be supplied as the value. See example below.

Value

The function returns either a single string or an array of strings to be use in the colFilter argument of the labkey.selectRows function.

Author(s)

Valerie Obenchain

References

http://www.omegahat.net/RCurl/,
https://www.labkey.org/home/project-begin.view

See Also

labkey.selectRows

Examples

# library(Rlabkey)

## Two filters, ANDed together
makeFilter(c("TextFld","CONTAINS","h"),
    c("BooleanFld","EQUAL","TRUE"))

## Using "in" operator:
makeFilter(c("RowId","IN","2;3;6"))

## Using "missing" operator:
makeFilter(c("IntFld","MISSING",""))

Returns an object representing a LabKey schema

Description

A wrapper function to labkey.saveBatch which uses a session object and provides defaults for the Batch/Run names.

Usage

saveResults(session, assayName, resultDataFrame, 
  batchPropertyList= list(name=paste("Batch ", as.character(date()))),
  runPropertyList= list(name=paste("Assay Run ", as.character(date()))))

Arguments

session

the session key returned from getSession

assayName

a string specifying the name of the assay instance

resultDataFrame

a data frame containing rows of data to be inserted

batchPropertyList

a list of batch Properties

runPropertyList

a list of run Properties

Details

saveResults is a wrapper function to labkey.saveBatch with two changes: First, it uses a session object in place of the separate baseUrl and folderPath arguments. Second, it provides defaults for generating Batch and Run names based on a current timestamp.

To see the save result on LabKey server, click on the "SimpleMeans" assay in the Assay List web part.

Value

an object representing the assay.

Author(s)

Peter Hussey

References

https://www.labkey.org/home/project-begin.view

See Also

getSession, getSchema, getLookups, getRows

Examples

## Not run: 

## Very simple example of an analysis flow:  query some data,
## calculate some stats, then save the calculations as an assay
## result set in LabKey Server
# library(Rlabkey)

s<- getSession(baseUrl="http://localhost:8080/labkey",
    folderPath="/apisamples")
scobj <- getSchema(s, "lists")
simpledf <- getRows(s, scobj$AllTypes)

## some dummy calculations to produce and example analysis result
testtable <- simpledf[,3:4]
colnames(testtable) <- c("IntFld", "DoubleFld")
row <- c(list("Measure"="colMeans"), colMeans(testtable, na.rm=TRUE))
results <- data.frame(row, row.names=NULL, stringsAsFactors=FALSE)
row <- c(list("Measure"="colSums"), colSums(testtable, na.rm=TRUE))
results <- rbind(results, as.vector(row))

bprops <- list(LabNotes="this is a simple demo")
bpl<- list(name=paste("Batch ", as.character(date())),properties=bprops) 
rpl<- list(name=paste("Assay Run ", as.character(date())))

assayInfo<- saveResults(s, "SimpleMeans", results,
    batchPropertyList=bpl, runPropertyList=rpl)


## End(Not run)