Package 'Rfmtool'

Title: Fuzzy Measure Tools
Description: Various tools for handling fuzzy measures, calculating Shapley value and interaction index, Choquet and Sugeno integrals, as well as fitting fuzzy measures to empirical data are provided. Construction of fuzzy measures from empirical data is done by solving a linear programming problem by using 'lpsolve' package, whose source in C adapted to the R environment is included. The description of the basic theory of fuzzy measures is in the manual in the Doc folder in this package. Please refer to the following: [1] <https://personal-sites.deakin.edu.au/~gleb/fmtools.html> [2] G. Beliakov, H. Bustince, T. Calvo, 'A Practical Guide to Averaging', Springer, (2016, ISBN: 978-3-319-24753-3). [3] G. Beliakov, S. James, J-Z. Wu, 'Discrete Fuzzy Measures', Springer, (2020, ISBN: 978-3-030-15305-2).
Authors: Gleb Beliakov [aut, cre], Quan Vu [ctb], Andrei Kelarev [ctb], Michel Berkelaar [ctb], Kjell Eikland [ctb], Samuel E. Buttrey [ctb], Stefan I. Larimore [ctb], Timothy A. Davis [ctb], John Gilbert [ctb], Esmond Ng [ctb], Peter Notebaert [ctb], Richard Stallman [ctb], Jeroen Dirks [ctb], Daniela L. Calderon [ctb]
Maintainer: Gleb Beliakov <[email protected]>
License: LGPL-3
Version: 5.0.4
Built: 2024-10-31 06:22:46 UTC
Source: CRAN

Help Index


Rfmtool package

Description

This function shows a list of function included in this toolbox

Usage

fm()

Details

The following functions involve the parameters v (the array containing the fuzzy measure in standard representation) or Mob (in Mobius representation), n - the dimension and m = 2^n. The values of the fuzzy measure always obey the binary ordering.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

fm()

Function for adding a pair to the sparse fuzzy measure

Description

This is used for populating capacities which Add a pair v_ij to the structure, their Indices are 1-based.

Usage

fm.add_pair_sparse( i, j, v, envsp = NULL)

Arguments

i

One of the indices which are 1-based

j

One of the indices which are 1-based

v

The value to be added.

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n)

Value

output

The output is an added pair v_ij to the structure.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n <- 3
  tups<-vector()
  tupsidx<-vector()
  envsp <- fm.PrepareSparseFM(n, tups,tupsidx) 
   envsp <-fm.add_pair_sparse(1,2, 0.4, envsp)
   envsp <-fm.add_pair_sparse(1,3, 0.3, envsp)
envsp
     envsp <- fm.FreeSparseFM(envsp)

Function for adding singletons to the sparse fuzzy measure

Description

This is used for adding singletons to the structure.

Usage

fm.add_singletons_sparse(v, envsp=NULL)

Arguments

v

The vector of singletons of size n.

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n).

Value

output

The output is added singletons to the structure.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n <- 3
  tups<-vector()
  tupsidx<-vector()
  envsp <- fm.PrepareSparseFM(n, tups,tupsidx) 

 envsp <- fm.add_singletons_sparse(c(0, 0.3, 0.5),envsp)

Function for adding singletons to the sparse fuzzy measure

Description

This is used for populating capacities which Add a tuple of size tupsize to the structure whose Indices are 1-based in tuple.

For populating capacities, adds a whose 1-based indices are in tuple

Usage

fm.add_tuple_sparse( tuple, v, envsp=NULL)

Arguments

tuple

Collection of objects. It is a list of cardinalities of the nonzero tuples (cardinality, tuple composition)

v

The value of the tuple to be added

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n).

Value

output

The output is adding a tuple of size tupsize

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n <- 4
  tups<-vector()
  tupsidx<-vector()
  envsp <- fm.PrepareSparseFM(n, tups,tupsidx) 
  envsp <- fm.add_tuple_sparse(c(1,2,3),0.2,envsp)
  envsp <- fm.add_tuple_sparse(c(1,3,4),0.3,envsp)

Banzhaf value computation function

Description

Calculates the Banzhaf indices of input criteria from general fuzzy measure.

Usage

fm.Banzhaf(v,env=NULL)

Arguments

v

Fuzzy measure in general representation.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is an array of size n, which contain Banzhaf indices of input criteria.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.Banzhaf(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)

env<-fm.Free(env)

Function for calculating Banzhaf values of 2-additive fuzzy measure in Mobius representation

Description

Calculate the Banzhaf values of a 2-additive fuzzy measure for n inputs given in Mobius representation. The results are in arrays.

Usage

fm.Banzhaf2addMob(n, Mob)

Arguments

n

Number of inputs

Mob

Fuzzy measure value in Mobius representation

Value

output

The output is an array of size n, which contain Banzhaf indices of input criteria.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

Banzhaf  <- fm.Banzhaf2addMob(3, c(0.2, 0.3, 0.5, -0.2, 0.4, 0.1))

Banzhaf value computation function in Mobius representation

Description

Calculates the Banzhaf indices of input criteria from general fuzzy measure in Mobius representation.

Usage

fm.BanzhafMob(Mob,env=NULL)

Arguments

Mob

Fuzzy measure in Mobius representation.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is an array of size n, which contain Banzhaf indices of input criteria.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.BanzhafMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)
env<-fm.Free(env)

Banzhaf values computation function in sparse representation

Description

Calculates Banzhaf values vectors of size n of a sparse fuzzy measure

Usage

fm.BanzhafMob_sparse(n, envsp=NULL)

Arguments

n

The size of values vectors

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n).

Value

output

The output is Banzhaf values vectors of size n of a sparse fuzzy measure.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n <- 3
  tups<-vector()
  tupsidx<-vector()
  envsp <- fm.PrepareSparseFM(n, tups,tupsidx) 
    envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp) 
    envsp <- fm.add_pair_sparse(1,2,0.4,envsp);

    fm.BanzhafMob_sparse(3, envsp)

    envsp <- fm.FreeSparseFM(envsp)

Bipartition interaction index computation function

Description

Calculates the Bipartition interaction indices of input criteria from general fuzzy measure.

Usage

fm.Bipartition(v,env=NULL)

Arguments

v

Fuzzy measure in general representation.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is an array of size 2^n, which contain bipartition interaction indices of input criteria coalitions.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.Bipartition(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
env<-fm.Free(env)

Bipartition Banhzaf interaction index computation function

Description

Calculates the Banzhaf Bipartition interaction indices of input criteria from general fuzzy measure.

Usage

fm.BipartitionBanzhaf(v,env=NULL)

Arguments

v

Fuzzy measure in general representation.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is an array of size 2^n, which contain Banzhaf bipartition interaction indices of input criteria coalitions.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.BipartitionBanzhaf(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
env<-fm.Free(env)

Function for checking supermodularity of the set function v in Mobius representation

Description

Checks supermodularity of the set function v in Mobius representation using stan- dard check.

Usage

fm.check_convexity_monotonicity_mob(v, len, env=NULL)

Arguments

v

matrix v stores fuzzy measurements consecutively in cardinal order v.

len

this is the length of array Mob (this array is usually smaller than 2^n), and is computed by fm.fm_arraysize_kadd(N, Kadd).

env

Environment variable obtained from fm.Init(n).

Value

output

The output is 1 or 0 to check for monotonicity.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
step <- 0.001
Fn <- NULL
Option<- 3
fuzzymeasures <- fm.generate_fm_randomwalk(1, 3, 2, 1000, Option, step, Fn, env)
len <- fuzzymeasures$length
check <- fm.check_convexity_monotonicity_mob(fuzzymeasures$V, len, env)

Function for checking monotonicity of the set function v

Description

Checks monotonicity of the set function v in standard representation using insert sort.

Usage

fm.check_monotonicity(v, env=NULL)

Arguments

v

matrix v stores fuzzy measurements consecutively in cardinal order.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is 1 or 0 to check for monotonicity.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
v <- fm.generate_fm_sorting(1, 1000, 0, env)
monotonicity <- fm.check_monotonicity(v, env)

Function for checking monotonicity of the set function v in Mobius representation.

Description

Checks monotonicity of the set function v in Mobius representation using standard check.

Usage

fm.check_monotonicity_mob(v, len, env=NULL)

Arguments

v

matrix v stores fuzzy measurements consecutively in cardinal order.

len

this is the length of array Mob (this array is usually smaller than 2^n), and is computed by fm_arraysize_kadd(N, Kadd)

env

Environment variable obtained from fm.Init(n).

Value

output

The output is 1 or 0 to check for monotonicity

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
step <- 100
Fn <- NULL
Option<- 3
fuzzymeasures <- fm.generate_fm_randomwalk(1, 3, 2, 1000, Option, step, Fn, env)
len <- fuzzymeasures$length
check <- fm.check_monotonicity_mob(fuzzymeasures$V, len, env)
check

Function for checking the monotonicity of the 2-additive set function v in Mobius representation.

Description

Check the monotonicity of the 2-additive set function v in Mobius representation using fast check.

Usage

fm.check_monotonicity_mob_2additive(v, n, temp=NULL)

Arguments

v

Random 2-additive fuzzy measure in Mobius representation.

n

Number of inputs

temp

Auxiliary array of length n^2 (e.g: array(0.0,n*n)). It may or may not be specified (if speed matters, then preallocate it).

Value

output

The output is 1 or 0 to check for monotonicity.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

v <- fm.generate_fm_2additive(1, 10)
  n <- 10
  v$len
  v$V
  check <- fm.check_monotonicity_mob_2additive(v$V, n)
  check

  temp <- array(0.0,10*10);
  check <- fm.check_monotonicity_mob_2additive(v$V, n, temp)
  check

Function for checking monotonicity of the set function v

Description

Checks monotonicity of the set function v in standard representation using insert sort.

Usage

fm.check_monotonicity_sort_insert(v, indices, env=NULL)

Arguments

v

matrix v stores fuzzy measurements consecutively in cardinal order.

indices

The indices can be used at subsequent steps of monotonicity verification. This function is called after merge sort, so the indices are already precomputed.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is a list of components (True/False, indices, values). The indices and values can be used at subsequent steps of monotonicity verification (e.g., values slightly perturbed)

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
 v <- fm.generate_fm_sorting(1, 1000, 0, env)
  out <- fm.check_monotonicity_sort_merge(v, NULL, env)
  out$V[1] = out$V[1] *1.1
  out<- fm.check_monotonicity_sort_insert(out$V, out$index, env)
  out$out

Function for checking monotonicity of the set function v

Description

Checks monotonicity of the set function v in standard representation using merge sort.

Usage

fm.check_monotonicity_sort_merge(v, indices=NULL, env=NULL)

Arguments

v

matrix v stores fuzzy measurements consecutively in cardinal order.

indices

The indices can be used at subsequent steps of monotonicity verification. Initially indices need not be specified

env

Environment variable obtained from fm.Init(n).

Value

output

The output is a list of components (True/False, indices, values). The indices and values can be used at subsequent steps of monotonicity verification (e.g., values slightly perturbed)

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
  v <- fm.generate_fm_sorting(1, 1000, 0, env)
  v
  measure <- fm.check_monotonicity_sort_merge(v,NULL, env)

  print(measure$out)
  
    measure$V[1] = measure$V[1] *1.1
    measure <- fm.check_monotonicity_sort_merge(measure$V, measure$index, env)

Choquet integral computation function

Description

Calculates the value of a discrete Choquet integral of input x, with fuzzy measure in general representation.

Usage

fm.Choquet(x, v, env=NULL)

Arguments

x

Input vector of size n, containing utility value of input criteria. x is in [0,1].

v

The general fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The ouput is a single value of the computed Choquet integral.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.Choquet(c(0.6, 0.3, 0.8), c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
env<-fm.Free(env)

Function for calculating Choquet integral value for 2-additive fuzzy measure in Mobius representation

Description

Calculates the Choquet integral value of a 2-additive fuzzy measure for n inputs given in Mobius representation.

Usage

fm.Choquet2addMob(n, x, Mob)

Arguments

n

Number of inputs

x

Input vector of size n, containing utility value of input criteria. x is in [0,1].

Mob

The Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

Value

output

The output is the Choquet integral value in Mobius representation.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

Choquet <- fm.Choquet2addMob(3, c(0.2,0.5,0.4), c(0.2, 0.3, 0.5, -0.2, 0.4, 0.1))

function for calculating Choquet integral value with respect to dual k-interactive fuzzy measure in Mobius representation

Description

Calculates the Choquet integral of x with respect to dual k-interactive fuzzy measure in Mobius representation.

Usage

fm.ChoquetCoMobKInter(x, Mob, kadd, env=NULL)

Arguments

x

Input vector of size n, containing utility value of input criteria. x is in [0,1].

Mob

The Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data

kadd

is the value of k-additivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = n. kadd is k in k-additive f-measure, 1 < kadd < n+1; if kdd=n - f.m. is unrestricted.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is the Choquet integral value in Mobius representation.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env <-fm.Init(4)
step <- 0.0001
Fn <- NULL
fuzzymeasures <- fm.generate_fm_kinteractivedualconvex(1, 4, 2, 1000, step, Fn, env)
fuzzymeasures
env

fm.ChoquetCoMobKInter(c(0.2,0.5,0.4,0.1), fuzzymeasures$V, 2, env)
env<-fm.Free(env)

Choquet integral value computation function in standard representation wrt k-interactive fuzzy measure

Description

This is an alternative calculation of the Choquet integral from the fuzzy measure in Mobius representation.

Usage

fm.ChoquetKinter(x, v, kint, env)

Arguments

x

Input vector of size n, containing utility value of input criteria. x is in [0,1].

v

The fuzzy measure of size less than m=2^n. Its values can be provided by users, or by estimating from empirical data.

kint

the k-interactivity parameter, must be smaller than n.

env

Environment variable obtained from fm.Init(n).

Value

output

The ouput is a single value of the computed Choquet integral.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.ChoquetKinter(c(0.6,0.3,0.8),c(0,0.3,0.5,0.6,0.4,0.8,0.7,1),2,env)
env<-fm.Free(env)

Choquet integral value computation function in Mobius representation

Description

This is an alternative calculation of the Choquet integral from the fuzzy measure in Mobius representation.

Usage

fm.ChoquetMob(x, Mob, env=NULL)

Arguments

x

Input vector of size n, containing utility value of input criteria. x is in [0,1].

Mob

The Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The ouput is a single value of the computed Choquet integral.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.ChoquetMob(c(0.2,0.5,0.4), c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)

Choquet integral computation function in sparse representation

Description

Calculates the Choquet integral in Mobius sparse representation.

Usage

fm.ChoquetMob_sparse(x, envsp=NULL)

Arguments

x

Input vector of size n, containing utility value of input criteria. x is in [0,1].

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n).

Value

output

The output is the Choquet integral in Mobius sparse representation.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n <- 3
  envsp <- fm.PrepareSparseFM(n, vector(), vector()) 
  envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp) 
  envsp <- fm.add_pair_sparse(1,2,0.4,envsp);

   ChoquetMobsparse <- fm.ChoquetMob_sparse(c(0.1,0.05,0.2),envsp)
   ChoquetMobsparse 
   envsp <- fm.FreeSparseFM(envsp)

Function for Constructing Lambda

Description

Finds the value of lambda and calculates the rest of the values of the fuzzy measure, given its values at singletons; singletons is an array of size n. The outputs are lambda and v, v is in standard representation and binary ordering.

Usage

fm.ConstructLambdaMeasure(singletons,env)

Arguments

singletons

Singletons is an array of n.

env

Environment variable obtained from fm.Init(n).

Value

output

The ouput is the list (lambda, measure), where measure is a fuzzy measure in standard representation.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
w <- fm.ConstructLambdaMeasure(c(0, 0.3, 0.5),env)

Function for Constructing Lambda in Mobius representation

Description

Finds the value of lambda and calculates the rest of the values of the fuzzy measure, given its values at singletons; singletons is an array of size n. The outputs are lambda and measure, measure is in Mobius representation.

Usage

fm.ConstructLambdaMeasureMob(singletons,env)

Arguments

singletons

Singletons is an array of n.

env

Environment variable obtained from fm.Init(n).

Value

output

The ouput is the list (lambda, measure), where measure is a fuzzy measure in Mobius representation.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
w <- fm.ConstructLambdaMeasureMob(c(0, 0.3, 0.5),env)
w$measure 
fm.Free(env)

Function for dual k-interactive fuzzy measure from Mobius to standard representation

Description

Converts dual k-interactive fuzzy measure from Mobius to standard representation.

Usage

fm.ConvertCoMob2Kinter(Mob,kadd, fullmu, env=NULL)

Arguments

Mob

Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from emperical data.

kadd

is the value of k-additivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = n. kadd is k in k-additive f-measure, 1 < kadd < n+1; if kdd=n - f.m. is unrestricted.

fullmu

Integer flag. is 1 then all 2n are allocated, otherwise a more compact representation fo rk-interactive fuzzy measures is used.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is k-interactive fuzzy measure standard representation

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env <-fm.Init(4)
fullmu <- 0
step<-0.001
Fn <- NULL
        fuzzymeasures <- fm.generate_fm_kinteractivedualconvex(1, 4, 2, 1000,
        step, Fn, env)

fm.ConvertCoMob2Kinter(fuzzymeasures$V, 2, fullmu, env )

Function for calculating dual of fuzzy measure

Description

Calculates the dual of fuzzy measure v, returns it as value of the function (array of size m).

Usage

fm.dualm(v, env=NULL)

Arguments

v

General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from emperical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The ouput is an array of size m with the dual of fuzzy measure v.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
w <- fm.dualm(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)

Dualm computation function in Mobius representation

Description

Calculates the dual of fuzzy measure v, returns it as value of the function (array of size m).

Usage

fm.dualmMob(Mob,env=NULL)

Arguments

Mob

Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from emperical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The ouput is an array of size m with the dual of fuzzy measure.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
w <- fm.dualmMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)

Function for calculating dual of k-additive fuzzy measure in Mobius representation

Description

Calculates the dual of a k-additive fuzzy measures for n inputs.

Usage

fm.dualMobKadd(Mob, env = NULL, kadd = "NA")

Arguments

Mob

Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

kadd

Value of k-interactivity, which is used for reducing the complexity of fuzzy measures. It is defined as an optional argument

Value

output

The output is the dual of a k-additive fuzzy measures for n inputs

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
  dualMob_Kadd <- fm.dualMobKadd(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1), env,2)

Entropy of fuzzy measure

Description

Calculates entropy value of the Choquet integral for the fuzzy measure v in general representation

Usage

fm.EntropyChoquet(v,env)

Arguments

v

General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The ouput is the entropy value of the Choquet integral for the fuzzy measure.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.EntropyChoquet(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1))

Entropy Choquet computation function in Mobius representation

Description

Calculates entropy value of the Choquet integral for the fuzzy measure v in Mobius representation

Usage

fm.EntropyChoquetMob(Mob,env)

Arguments

Mob

Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The ouput is entropy value of the Choquet integral for the fuzzy measure.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.EntropyChoquetMob(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1),env)

Basic error check

Description

This function checks that the enviromnemt variable is internally consistent.

Usage

fm.errorcheck(env)

Arguments

env

Environment variable obtained from fm.Init(n).

Value

output

The ouput is TRUE or FALSE.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.errorcheck(env)

Function for exporting full representation of 2-additive capacity

Description

From sparse to full representation of 2-additive capacity (singletons and pairs, augmented with 0s).

Usage

fm.expand_2add_full(n, envsp=NULL)

Arguments

n

Number of inputs

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n).

Value

output

The output is a sparse to full representation of 2-additive capacity (singletons and pairs, augmented with 0s)

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n <- 3
  envsp <- fm.PrepareSparseFM(n, vector(), vector()) 
  envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp) 
  envsp <- fm.add_pair_sparse(1,2,0.4,envsp);

  cap2add <- fm.expand_2add_full(n,envsp)
  cap2add 

  envsp <- fm.FreeSparseFM(envsp)

Function for exporting full capacity from sparse representation

Description

Exports from sparse to full capacity.

Usage

fm.expand_sparse_full(n, envsp=NULL)

Arguments

n

Number of inputs.

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n).

Value

output

Exports from sparse to full capacity.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n<-3
  envsp <- fm.PrepareSparseFM(n, vector(), vector()) 
  envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp) 
  envsp <- fm.add_pair_sparse(1,2,0.4,envsp);

  cap <- fm.expand_sparse_full(n, envsp)
  cap 

  envsp <- fm.FreeSparseFM(envsp)

Function for exporting maximal chains

Description

Returns in mc the arrays of maximal chains (there are n! such arrays) of a fuzzy measure v. Each maximal chain corresponds to the coefficients of a linea. function on the respective simplex

Usage

fm.export_maximal_chains(v, env = NULL)

Arguments

v

Fuzzy measure in general representation.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is mc the arrays of maximal chains

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
  exportmaximalchains <- fm.export_maximal_chains(
   c(0, 0.00224, 0.0649, 0.510, 0.00965, 0.374,0.154, 1),env)

Fuzzy Measure Fitting function

Description

Estimate values of the fuzzy measures from empirical data.

Usage

fm.fitting(data, env=NULL, kadd="NA")

Arguments

data

Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x_i2,...,x_in,y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 stores the observed aggregated value y.

env

Environment variable obtained from fm.Init(n).

kadd

The value of k-additivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = n.

Value

output

The output is an array of size 2^n containing estimated standard fuzzy measure in binary ordering.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
d <-  matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338, 
            0.808716, 0.584991, 0.479858, 0.544309, 
            0.350281, 0.895935, 0.822815, 0.625868, 
            0.746582, 0.174103, 0.858917, 0.480347, 
            0.71048, 0.513519, 0.303986, 0.387631, 
            0.0149841, 0.0914001, 0.364441, 0.134229, 
            0.147308, 0.165894, 0.988495, 0.388044, 
            0.445679, 0.11908, 0.00466919, 0.0897714, 
            0.00891113, 0.377869, 0.531647, 0.258585, 
            0.571167, 0.601746, 0.607147, 0.589803, 
            0.166229, 0.663025, 0.450775, 0.357412, 
            0.352112, 0.0570374, 0.607666, 0.270228, 
            0.783295, 0.802582, 0.519867, 0.583348, 
            0.301941, 0.875946, 0.726654, 0.562174, 
            0.955872, 0.92569, 0.539337, 0.633631, 
            0.142334, 0.462067, 0.235321, 0.228419, 
            0.862213, 0.209595, 0.779633, 0.498077, 
            0.843628, 0.996765, 0.999664, 0.930197, 
            0.611481, 0.92426, 0.266205, 0.334666, 
            0.297272, 0.840118, 0.0237427, 0.168081), 
       nrow=20, 
       ncol=4,byrow=TRUE);
fm.fitting(d,env)

Fuzzy Measure Fitting function

Description

Estimate values of the fuzzy measures from empirical data tailored 2-additive standard fuzzy measure.

Usage

fm.fitting2additive(data, options=0, indexlow, indexhigh , option1=0, orness)

Arguments

data

is the empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector contains utility values of n input criteria x_i1,x_i2,...,x_in, y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 store the observed aggregating value y.

options

options (default value is 0) 1 - lower bounds on Shapley values supplied in indexlow, 2 - upper bounds on Shapley values supplied in indexhigh, 3 - lower and upper bounds on Shapley values supplied in indexlow and indexhigh, 4 - lower bounds on all interaction indices supplied in indexlow, 5 - upper bounds on all interaction indices supplied in indexhigh, 6 - lower and upper bounds on all interaction indices supplied inindexlow and indexhigh. All these value will be treated as additional constraints in the LP.

indexlow

optional array of size n (options =1,2,3) or m (options=4,5,6) containing the lower bounds on the Shapley values or interaction indices

indexhigh

optional array of size n (options =1,2,3) or m (options=4,5,6) containing the upper bounds on the Shapley values or interaction indices

option1

if the value is 1, the interval of orness values will be fitted (and the desired low and high orness values should be provided). If 0, no additional orness constraints.

orness

optional array of size 2, for example c(0.1,1)

Value

output

The output is an array containing the values of a standard fuzzy measure in binary ordering.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
d <-  matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338, 
            0.808716, 0.584991, 0.479858, 0.544309, 
            0.350281, 0.895935, 0.822815, 0.625868, 
            0.746582, 0.174103, 0.858917, 0.480347, 
            0.71048, 0.513519, 0.303986, 0.387631, 
            0.0149841, 0.0914001, 0.364441, 0.134229, 
            0.147308, 0.165894, 0.988495, 0.388044, 
            0.445679, 0.11908, 0.00466919, 0.0897714, 
            0.00891113, 0.377869, 0.531647, 0.258585, 
            0.571167, 0.601746, 0.607147, 0.589803, 
            0.166229, 0.663025, 0.450775, 0.357412, 
            0.352112, 0.0570374, 0.607666, 0.270228, 
            0.783295, 0.802582, 0.519867, 0.583348, 
            0.301941, 0.875946, 0.726654, 0.562174, 
            0.955872, 0.92569, 0.539337, 0.633631, 
            0.142334, 0.462067, 0.235321, 0.228419, 
            0.862213, 0.209595, 0.779633, 0.498077, 
            0.843628, 0.996765, 0.999664, 0.930197, 
            0.611481, 0.92426, 0.266205, 0.334666, 
            0.297272, 0.840118, 0.0237427, 0.168081), 
       nrow=20, 
       ncol=4,byrow=TRUE);
       
    

indexlow=c(0.1,0.1,0.2);
indexhigh=c(0.9,0.9,0.5);

fm.fitting2additive(d, options=3, indexlow, indexhigh, option1=0, orness=c(0.1,0.7))

Fuzzy Measure Fitting function

Description

Estimate values of the k-interacive fuzzy measures from empirical data.

Usage

fm.fittingKinteractive(data, env=NULL, kadd="NA", K="NA")

Arguments

data

Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x_i2,...,x_in, y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 stores the observed aggregated value y.

env

Environment variable obtained from fm.Init(n).

kadd

Value of k-interactivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = 2.

K

Value of FM value for sets of cardinality kadd+1, its default value is K = 0.5.

Value

output

The output is an array of size 2^n containing estimated standard fuzzy measure in binary ordering.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
d <-  matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338, 
            0.808716, 0.584991, 0.479858, 0.544309, 
            0.350281, 0.895935, 0.822815, 0.625868, 
            0.746582, 0.174103, 0.858917, 0.480347, 
            0.71048, 0.513519, 0.303986, 0.387631, 
            0.0149841, 0.0914001, 0.364441, 0.134229, 
            0.147308, 0.165894, 0.988495, 0.388044, 
            0.445679, 0.11908, 0.00466919, 0.0897714, 
            0.00891113, 0.377869, 0.531647, 0.258585, 
            0.571167, 0.601746, 0.607147, 0.589803, 
            0.166229, 0.663025, 0.450775, 0.357412, 
            0.352112, 0.0570374, 0.607666, 0.270228, 
            0.783295, 0.802582, 0.519867, 0.583348, 
            0.301941, 0.875946, 0.726654, 0.562174, 
            0.955872, 0.92569, 0.539337, 0.633631, 
            0.142334, 0.462067, 0.235321, 0.228419, 
            0.862213, 0.209595, 0.779633, 0.498077, 
            0.843628, 0.996765, 0.999664, 0.930197, 
            0.611481, 0.92426, 0.266205, 0.334666, 
            0.297272, 0.840118, 0.0237427, 0.168081), 
       nrow=20, 
       ncol=4,byrow=TRUE);
fm.fittingKinteractive(d,env,2,0.8)

Fuzzy Measure Fitting function of the k-interactive

Description

Estimate values of the k-interacive fuzzy measures from empirical data.

Usage

fm.fittingKinteractiveAuto(data, env=NULL, kadd="NA")

Arguments

data

Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x_i2,...,x_in, y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 stores the observed aggregated value y.

env

Environment variable obtained from fm.Init(n).

kadd

Value of k-interactivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = 2. The constant K the value of FM value for sets of cardinality kadd+1 is computed from data.

Value

output

The output is an array of size 2^n containing estimated standard fuzzy measure in binary ordering.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
d <-  matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338, 
            0.808716, 0.584991, 0.479858, 0.544309, 
            0.350281, 0.895935, 0.822815, 0.625868, 
            0.746582, 0.174103, 0.858917, 0.480347, 
            0.71048, 0.513519, 0.303986, 0.387631, 
            0.0149841, 0.0914001, 0.364441, 0.134229, 
            0.147308, 0.165894, 0.988495, 0.388044, 
            0.445679, 0.11908, 0.00466919, 0.0897714, 
            0.00891113, 0.377869, 0.531647, 0.258585, 
            0.571167, 0.601746, 0.607147, 0.589803, 
            0.166229, 0.663025, 0.450775, 0.357412, 
            0.352112, 0.0570374, 0.607666, 0.270228, 
            0.783295, 0.802582, 0.519867, 0.583348, 
            0.301941, 0.875946, 0.726654, 0.562174, 
            0.955872, 0.92569, 0.539337, 0.633631, 
            0.142334, 0.462067, 0.235321, 0.228419, 
            0.862213, 0.209595, 0.779633, 0.498077, 
            0.843628, 0.996765, 0.999664, 0.930197, 
            0.611481, 0.92426, 0.266205, 0.334666, 
            0.297272, 0.840118, 0.0237427, 0.168081), 
       nrow=20, 
       ncol=4,byrow=TRUE);
fm.fittingKinteractiveAuto(d,env,2)

Fuzzy Measure Fitting function of the k-interactive using marginal representation

Description

Estimate values of the k-interacive fuzzy measures from empirical data using marginal representation.

Usage

fm.fittingKinteractiveMarginal(data, env=NULL, kadd="NA", K="NA", submod ="NA")

Arguments

data

Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x_i2,...,x_in, y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 stores the observed aggregated value y.

env

Environment variable obtained from fm.Init(n).

kadd

Value of k-interactivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = 2.

K

The constant K, the value of FM value for sets of cardinality kadd+1 is computed from data, default 0.5.

submod

-1 indicates supermodular FM is needed, +1 indicates submodular, 0 otherwise. Should be consistent with K and n, see manual

Value

output

The output is an array of size 2^n containing estimated standard fuzzy measure in binary ordering.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
d <-  matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338, 
            0.808716, 0.584991, 0.479858, 0.544309, 
            0.350281, 0.895935, 0.822815, 0.625868, 
            0.746582, 0.174103, 0.858917, 0.480347, 
            0.71048, 0.513519, 0.303986, 0.387631, 
            0.0149841, 0.0914001, 0.364441, 0.134229, 
            0.147308, 0.165894, 0.988495, 0.388044, 
            0.445679, 0.11908, 0.00466919, 0.0897714, 
            0.00891113, 0.377869, 0.531647, 0.258585, 
            0.571167, 0.601746, 0.607147, 0.589803, 
            0.166229, 0.663025, 0.450775, 0.357412, 
            0.352112, 0.0570374, 0.607666, 0.270228, 
            0.783295, 0.802582, 0.519867, 0.583348, 
            0.301941, 0.875946, 0.726654, 0.562174, 
            0.955872, 0.92569, 0.539337, 0.633631, 
            0.142334, 0.462067, 0.235321, 0.228419, 
            0.862213, 0.209595, 0.779633, 0.498077, 
            0.843628, 0.996765, 0.999664, 0.930197, 
            0.611481, 0.92426, 0.266205, 0.334666, 
            0.297272, 0.840118, 0.0237427, 0.168081), 
       nrow=20, 
       ncol=4,byrow=TRUE);
fm.fittingKinteractiveMarginal(d,env,2,0.6, 0)

Fuzzy Measure Fitting function of the k-interactive using marginal representation and maximal chains method

Description

Estimate values of the k-interacive fuzzy measures from empirical data using marginal representation and maximal chains method.

Usage

fm.fittingKinteractiveMarginalMC(data, env=NULL, kadd="NA", K="NA", submod ="NA")

Arguments

data

Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x_i2,...,x_in, y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 stores the observed aggregated value y.

env

Environment variable obtained from fm.Init(n).

kadd

Value of k-interactivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = 2.

K

The constant K the value of FM value for sets of cardinality kadd+1 is computed from data, default 0.5.

submod

-1 indicates supermodular FM is needed, +1 indicates submodular, 0 otherwise. Should be consistent with K and n, see manual

Value

output

The output is an array of size 2^n containing estimated standard fuzzy measure in binary ordering.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
d <-  matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338, 
            0.808716, 0.584991, 0.479858, 0.544309, 
            0.350281, 0.895935, 0.822815, 0.625868, 
            0.746582, 0.174103, 0.858917, 0.480347, 
            0.71048, 0.513519, 0.303986, 0.387631, 
            0.0149841, 0.0914001, 0.364441, 0.134229, 
            0.147308, 0.165894, 0.988495, 0.388044, 
            0.445679, 0.11908, 0.00466919, 0.0897714, 
            0.00891113, 0.377869, 0.531647, 0.258585, 
            0.571167, 0.601746, 0.607147, 0.589803, 
            0.166229, 0.663025, 0.450775, 0.357412, 
            0.352112, 0.0570374, 0.607666, 0.270228, 
            0.783295, 0.802582, 0.519867, 0.583348, 
            0.301941, 0.875946, 0.726654, 0.562174, 
            0.955872, 0.92569, 0.539337, 0.633631, 
            0.142334, 0.462067, 0.235321, 0.228419, 
            0.862213, 0.209595, 0.779633, 0.498077, 
            0.843628, 0.996765, 0.999664, 0.930197, 
            0.611481, 0.92426, 0.266205, 0.334666, 
            0.297272, 0.840118, 0.0237427, 0.168081), 
       nrow=20, 
       ncol=4,byrow=TRUE);
fm.fittingKinteractiveMarginalMC(d,env,2,0.6,0)

Fuzzy Measure Fitting function of the k-interactive using maximal chains method

Description

Estimate values of the k-interacive fuzzy measures from empirical data using maximal chains method.

Usage

fm.fittingKinteractiveMC(data, env=NULL, kadd="NA", K="NA")

Arguments

data

Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x(i2,...,x_in), y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 stores the observed aggregated value y.

env

Environment variable obtained from fm.Init(n).

kadd

Value of k-interactivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = 2.

K

The constant K the value of FM value for sets of cardinality kadd+1 is computed from data, default 0.5.

Value

output

The output is an array of size 2^n containing estimated standard fuzzy measure in binary ordering.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
d <-  matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338, 
            0.808716, 0.584991, 0.479858, 0.544309, 
            0.350281, 0.895935, 0.822815, 0.625868, 
            0.746582, 0.174103, 0.858917, 0.480347, 
            0.71048, 0.513519, 0.303986, 0.387631, 
            0.0149841, 0.0914001, 0.364441, 0.134229, 
            0.147308, 0.165894, 0.988495, 0.388044, 
            0.445679, 0.11908, 0.00466919, 0.0897714, 
            0.00891113, 0.377869, 0.531647, 0.258585, 
            0.571167, 0.601746, 0.607147, 0.589803, 
            0.166229, 0.663025, 0.450775, 0.357412, 
            0.352112, 0.0570374, 0.607666, 0.270228, 
            0.783295, 0.802582, 0.519867, 0.583348, 
            0.301941, 0.875946, 0.726654, 0.562174, 
            0.955872, 0.92569, 0.539337, 0.633631, 
            0.142334, 0.462067, 0.235321, 0.228419, 
            0.862213, 0.209595, 0.779633, 0.498077, 
            0.843628, 0.996765, 0.999664, 0.930197, 
            0.611481, 0.92426, 0.266205, 0.334666, 
            0.297272, 0.840118, 0.0237427, 0.168081), 
       nrow=20, 
       ncol=4,byrow=TRUE);
fm.fittingKinteractiveMC(d,env,2,0.6)

Fuzzy Measure Fitting function of the k-maxitive

Description

Estimate values of the k-maxitive fuzzy measures from empirical data.

Usage

fm.fittingKmaxitive(data, env=NULL, kadd="NA")

Arguments

data

Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x_i2,...,x_in, y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 stores the observed aggregated value y.

env

Environment variable obtained from fm.Init(n).

kadd

Value of k-maxitivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = n.

Value

output

The output is an array of size 2^n containing estimated standard fuzzy measure in binary ordering.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
d <-  matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338, 
            0.808716, 0.584991, 0.479858, 0.544309, 
            0.350281, 0.895935, 0.822815, 0.625868, 
            0.746582, 0.174103, 0.858917, 0.480347, 
            0.71048, 0.513519, 0.303986, 0.387631, 
            0.0149841, 0.0914001, 0.364441, 0.134229, 
            0.147308, 0.165894, 0.988495, 0.388044, 
            0.445679, 0.11908, 0.00466919, 0.0897714, 
            0.00891113, 0.377869, 0.531647, 0.258585, 
            0.571167, 0.601746, 0.607147, 0.589803, 
            0.166229, 0.663025, 0.450775, 0.357412, 
            0.352112, 0.0570374, 0.607666, 0.270228, 
            0.783295, 0.802582, 0.519867, 0.583348, 
            0.301941, 0.875946, 0.726654, 0.562174, 
            0.955872, 0.92569, 0.539337, 0.633631, 
            0.142334, 0.462067, 0.235321, 0.228419, 
            0.862213, 0.209595, 0.779633, 0.498077, 
            0.843628, 0.996765, 0.999664, 0.930197, 
            0.611481, 0.92426, 0.266205, 0.334666, 
            0.297272, 0.840118, 0.0237427, 0.168081), 
       nrow=20, 
       ncol=4,byrow=TRUE);
fm.fittingKmaxitive(d,env,2)

Fuzzy Measure Fitting function of the k-tolerant

Description

Estimate values of the k-tolerant fuzzy measures from empirical data.

Usage

fm.fittingKtolerant(data, env=NULL, kadd="NA")

Arguments

data

Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x_i2,...,x_in, y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 stores the observed aggregated value y.

env

Environment variable obtained from fm.Init(n).

kadd

Value of k-tolerance, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = n.

Value

output

The output is an array of size 2^n containing estimated standard fuzzy measure in binary ordering.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
d <-  matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338, 
            0.808716, 0.584991, 0.479858, 0.544309, 
            0.350281, 0.895935, 0.822815, 0.625868, 
            0.746582, 0.174103, 0.858917, 0.480347, 
            0.71048, 0.513519, 0.303986, 0.387631, 
            0.0149841, 0.0914001, 0.364441, 0.134229, 
            0.147308, 0.165894, 0.988495, 0.388044, 
            0.445679, 0.11908, 0.00466919, 0.0897714, 
            0.00891113, 0.377869, 0.531647, 0.258585, 
            0.571167, 0.601746, 0.607147, 0.589803, 
            0.166229, 0.663025, 0.450775, 0.357412, 
            0.352112, 0.0570374, 0.607666, 0.270228, 
            0.783295, 0.802582, 0.519867, 0.583348, 
            0.301941, 0.875946, 0.726654, 0.562174, 
            0.955872, 0.92569, 0.539337, 0.633631, 
            0.142334, 0.462067, 0.235321, 0.228419, 
            0.862213, 0.209595, 0.779633, 0.498077, 
            0.843628, 0.996765, 0.999664, 0.930197, 
            0.611481, 0.92426, 0.266205, 0.334666, 
            0.297272, 0.840118, 0.0237427, 0.168081), 
       nrow=20, 
       ncol=4,byrow=TRUE);
fm.fittingKtolerant(d,env,2)

Mobius Fuzzy Measure Fitting function

Description

Estimate values of the Mobius fuzzy measures from empirical data.

Usage

fm.fittingMob(data, env=NULL ,kadd="NA")

Arguments

data

Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x_i2,...,x_in, y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 store the observed aggregating value y.

env

Environment variable obtained from fm.Init(n).

kadd

value of k-additivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its defaultvalue is kadd = n.

Value

output

The output is an array of size 2^n containing estimated Mobius fuzzy measure in binary ordering.

Note

The fit might not be perfect, and not all the constraints can be fully met.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

d <-  matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338, 
            0.808716, 0.584991, 0.479858, 0.544309, 
            0.350281, 0.895935, 0.822815, 0.625868, 
            0.746582, 0.174103, 0.858917, 0.480347, 
            0.71048, 0.513519, 0.303986, 0.387631, 
            0.0149841, 0.0914001, 0.364441, 0.134229, 
            0.147308, 0.165894, 0.988495, 0.388044, 
            0.445679, 0.11908, 0.00466919, 0.0897714, 
            0.00891113, 0.377869, 0.531647, 0.258585, 
            0.571167, 0.601746, 0.607147, 0.589803, 
            0.166229, 0.663025, 0.450775, 0.357412, 
            0.352112, 0.0570374, 0.607666, 0.270228, 
            0.783295, 0.802582, 0.519867, 0.583348, 
            0.301941, 0.875946, 0.726654, 0.562174, 
            0.955872, 0.92569, 0.539337, 0.633631, 
            0.142334, 0.462067, 0.235321, 0.228419, 
            0.862213, 0.209595, 0.779633, 0.498077, 
            0.843628, 0.996765, 0.999664, 0.930197, 
            0.611481, 0.92426, 0.266205, 0.334666, 
            0.297272, 0.840118, 0.0237427, 0.168081), 
       nrow=20, 
       ncol=4,byrow=TRUE);
env<-fm.Init(3)
fm.fittingMob(d,env)

Symmetric Fuzzy Measure Fitting function

Description

Estimate values of the symmetric fuzzy measures from empirical data. The resulting Choquet integral is the OWA function.

Usage

fm.fittingOWA(data, env=NULL)

Arguments

data

Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x_i2,...,x_in, y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 stores the observed aggregated value y.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is an array of size n containing estimated OWA coefficients.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
d <-  matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338, 
            0.808716, 0.584991, 0.479858, 0.544309, 
            0.350281, 0.895935, 0.822815, 0.625868, 
            0.746582, 0.174103, 0.858917, 0.480347, 
            0.71048, 0.513519, 0.303986, 0.387631, 
            0.0149841, 0.0914001, 0.364441, 0.134229, 
            0.147308, 0.165894, 0.988495, 0.388044, 
            0.445679, 0.11908, 0.00466919, 0.0897714, 
            0.00891113, 0.377869, 0.531647, 0.258585, 
            0.571167, 0.601746, 0.607147, 0.589803, 
            0.166229, 0.663025, 0.450775, 0.357412, 
            0.352112, 0.0570374, 0.607666, 0.270228, 
            0.783295, 0.802582, 0.519867, 0.583348, 
            0.301941, 0.875946, 0.726654, 0.562174, 
            0.955872, 0.92569, 0.539337, 0.633631, 
            0.142334, 0.462067, 0.235321, 0.228419, 
            0.862213, 0.209595, 0.779633, 0.498077, 
            0.843628, 0.996765, 0.999664, 0.930197, 
            0.611481, 0.92426, 0.266205, 0.334666, 
            0.297272, 0.840118, 0.0237427, 0.168081), 
       nrow=20, 
       ncol=4,byrow=TRUE);
fm.fittingOWA(d,env)

Additive Fuzzy Measure Fitting function

Description

Estimate values of an additive fuzzy measure from empirical data. In this case the Choquet integral is the weighted arithmetic mean WAM.

Usage

fm.fittingWAM(data, env=NULL)

Arguments

data

Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x_i2,...,x_in,y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 stores the observed aggregated value y.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is an array of size n containing estimated weighting vector of WAM.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
d <-  matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338, 
            0.808716, 0.584991, 0.479858, 0.544309, 
            0.350281, 0.895935, 0.822815, 0.625868, 
            0.746582, 0.174103, 0.858917, 0.480347, 
            0.71048, 0.513519, 0.303986, 0.387631, 
            0.0149841, 0.0914001, 0.364441, 0.134229, 
            0.147308, 0.165894, 0.988495, 0.388044, 
            0.445679, 0.11908, 0.00466919, 0.0897714, 
            0.00891113, 0.377869, 0.531647, 0.258585, 
            0.571167, 0.601746, 0.607147, 0.589803, 
            0.166229, 0.663025, 0.450775, 0.357412, 
            0.352112, 0.0570374, 0.607666, 0.270228, 
            0.783295, 0.802582, 0.519867, 0.583348, 
            0.301941, 0.875946, 0.726654, 0.562174, 
            0.955872, 0.92569, 0.539337, 0.633631, 
            0.142334, 0.462067, 0.235321, 0.228419, 
            0.862213, 0.209595, 0.779633, 0.498077, 
            0.843628, 0.996765, 0.999664, 0.930197, 
            0.611481, 0.92426, 0.266205, 0.334666, 
            0.297272, 0.840118, 0.0237427, 0.168081), 
       nrow=20, 
       ncol=4,byrow=TRUE);
fm.fittingWAM(d,env)

Function for returning the length of the array

Description

Returns the length of the array of values of k-interactive fuzzy measures. Useful for reserving memory.

Usage

fm.fm_arraysize(env = NULL, kint = "NA")

Arguments

env

Environment variable obtained from fm.Init(n).

kint

Interactive fuzzy measure. 0 < kint <= n

Value

output

The outputs is the length of the array of values of k-interactive fuzzy measures

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
  arraylength <- fm.fm_arraysize(env,1)

FreeSparseFM function

Description

Frees the memory previously allocated in env.

Usage

fm.Free(env)

Arguments

env

Structure required for auxiliary data. It is obtained from fm.Init(n).

Value

output

Frees the memory previously allocated in envsp.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n<-3
    env <- fm.Init(n)
    env<-fm.Free(env)
    env

FreeSparseFM function

Description

Frees the memory previously allocated in envsp.

Usage

fm.FreeSparseFM(envsp)

Arguments

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n).

Value

output

Frees the memory previously allocated in envsp.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n<-3
    envsp <- fm.PrepareSparseFM(n, vector(), vector()) 
    envsp <- fm.FreeSparseFM(envsp)
    envsp <- fm.PrepareSparseFM(n, c(0.2,0.4,0.1), c(2,1,2,2,1,3,3,1,2,3)) 
     envsp <- fm.FreeSparseFM(envsp) 
envsp

Fuzzy Measure Fitting function.

Description

Estimate values of the fuzzy measures from empirical data. The result is an array containing the values of a standard fuzzy measure in binary ordering. kadd defines the complexity of fuzzy measure. If kadd is not provided, its default value is equal to the number of inputs.

Usage

fm.FuzzyMeasureFitLP(data, env=NULL, kadd="NA", 
        options=0, indexlow=(NULL), indexhigh=(NULL) , option1=0, orness=(NULL))

Arguments

data

Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector contains utility values of n input criteria x_i1,x_i2,...,x_in, y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria,the column n + 1 store the observed aggregating value y.

env

Environment variable obtained from fm.Init(n).

kadd

Value of k-additivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = n. kadd is k in k-additive f-measure, 1 < kadd < n+1; if kdd=n - f.m. is unrestricted

options

Options default value is 0. 1 - lower bounds on Shapley values supplied in indexlow, 2 - upper bounds on Shapley values supplied in indexhigh, 3 - lower and upper bounds on Shapley values supplied in indexlow and indexhigh, 4 - lower bounds on all interaction indices supplied in indexlow, 5 - upper bounds on all interaction indices supplied in indexhigh, 6 - lower and upper bounds on all interaction indices supplied inindexlow and indexhigh. All these value will be treated as additional constraints in the LP.

indexlow

Array of size n (options =1,2,3) or m (options=4,5,6) containing the lower bounds on the Shapley values or interaction indices

indexhigh

Array of size n (options =1,2,3) or m (options=4,5,6) containing the upper bounds on the Shapley values or interaction indices

option1

If the value is 1, the interval of orness values will be fitted (and the desired low and high orness values should be provided). If 0, no additional orness constraints.

orness

Array of size 2, for example c(0.1,1)

Value

output

The output is an array of size 2^n containing estimated standard fuzzy measure in binary ordering.

Note

The fit might not be perfect, and not all the constraints can be fully met.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

d <-  matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338, 
            0.808716, 0.584991, 0.479858, 0.544309, 
            0.350281, 0.895935, 0.822815, 0.625868, 
            0.746582, 0.174103, 0.858917, 0.480347, 
            0.71048, 0.513519, 0.303986, 0.387631, 
            0.0149841, 0.0914001, 0.364441, 0.134229, 
            0.147308, 0.165894, 0.988495, 0.388044, 
            0.445679, 0.11908, 0.00466919, 0.0897714, 
            0.00891113, 0.377869, 0.531647, 0.258585, 
            0.571167, 0.601746, 0.607147, 0.589803, 
            0.166229, 0.663025, 0.450775, 0.357412, 
            0.352112, 0.0570374, 0.607666, 0.270228, 
            0.783295, 0.802582, 0.519867, 0.583348, 
            0.301941, 0.875946, 0.726654, 0.562174, 
            0.955872, 0.92569, 0.539337, 0.633631, 
            0.142334, 0.462067, 0.235321, 0.228419, 
            0.862213, 0.209595, 0.779633, 0.498077, 
            0.843628, 0.996765, 0.999664, 0.930197, 
            0.611481, 0.92426, 0.266205, 0.334666, 
            0.297272, 0.840118, 0.0237427, 0.168081), 
       nrow=20, 
       ncol=4,byrow=TRUE);
env<-fm.Init(3)
fm.FuzzyMeasureFitLP(d,env)
indexlow=c(0.1,0.1,0.2);
indexhigh=c(0.9,0.9,0.5);
fm.FuzzyMeasureFitLP(d,env, kadd=2, indexlow, indexhigh, 
  options=3, option1=1, orness=c(0.1,0.7))

Mobius Fuzzy Measure Fitting function, R wrapper for FuzzyMeasureFitLP() in fuzzymeasurefit.cpp

Description

Estimate values of the Mobius fuzzy measures from empirical data. The result is an array containing the values of the fuzzy measure in Mobius, ordered according to set cardinalities. kadd defines the complexity of fuzzy measure. if kadd is not provided, its default value is equal to the number of inputs.

Usage

fm.FuzzyMeasureFitLPMob(data, env=NULL, kadd="NA", 
        options=0, indexlow=(NULL), indexhigh=(NULL) , option1=0, orness=(NULL))

Arguments

data

Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector contains utility values of n input criteria x_i1,x_i2,...,x_in, y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 store the observed aggregating value y.

env

Environment variable obtained from fm.Init(n).

kadd

Value of k-additivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = n. kadd is k in k-additive f-measure, 1 < kadd < n+1; if kdd=n - f.m. is unrestricted

options

Options default value is 0. 1 - lower bounds on Shapley values supplied in indexlow, 2 - upper bounds on Shapley values supplied in indexhigh, 3 - lower and upper bounds on Shapley values supplied in indexlow and indexhigh, 4 - lower bounds on all interaction indices supplied in indexlow, 5 - upper bounds on all interaction indices supplied in indexhigh, 6 - lower and upper bounds on all interaction indices supplied inindexlow and indexhigh. All these value will be treated as additional constraints in the LP.

indexlow

Array of size n (options =1,2,3) or m (options=4,5,6) containing the lower bounds on the Shapley values or interaction indices

indexhigh

Array of size n (options =1,2,3) or m (options=4,5,6) containing the upper bounds on the Shapley values or interaction indices

option1

If the value is 1, the interval of orness values will be fitted (and the desired low and high orness values should be provided). If 0, no additional orness constraints.

orness

Array of size 2, for example c(0.1,1)

Value

output

The output is an array of size 2^n containing estimated Mobius fuzzy measure in binary ordering.

Note

The fit might not be perfect, and not all the constraints can be fully met.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

d <-  matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338, 
            0.808716, 0.584991, 0.479858, 0.544309, 
            0.350281, 0.895935, 0.822815, 0.625868, 
            0.746582, 0.174103, 0.858917, 0.480347, 
            0.71048, 0.513519, 0.303986, 0.387631, 
            0.0149841, 0.0914001, 0.364441, 0.134229, 
            0.147308, 0.165894, 0.988495, 0.388044, 
            0.445679, 0.11908, 0.00466919, 0.0897714, 
            0.00891113, 0.377869, 0.531647, 0.258585, 
            0.571167, 0.601746, 0.607147, 0.589803, 
            0.166229, 0.663025, 0.450775, 0.357412, 
            0.352112, 0.0570374, 0.607666, 0.270228, 
            0.783295, 0.802582, 0.519867, 0.583348, 
            0.301941, 0.875946, 0.726654, 0.562174, 
            0.955872, 0.92569, 0.539337, 0.633631, 
            0.142334, 0.462067, 0.235321, 0.228419, 
            0.862213, 0.209595, 0.779633, 0.498077, 
            0.843628, 0.996765, 0.999664, 0.930197, 
            0.611481, 0.92426, 0.266205, 0.334666, 
            0.297272, 0.840118, 0.0237427, 0.168081), 
       nrow=20, 
       ncol=4,byrow=TRUE);
env<-fm.Init(3)
fm.FuzzyMeasureFitLPMob(d,env)
indexlow=c(0.1,0.1,0.2);
indexhigh=c(0.9,0.9,0.5);
fm.FuzzyMeasureFitLPMob(d,env, kadd=2, indexlow, indexhigh, 
  options=3, option1=1, orness=c(0.1,0.7))

Function for generating one antibuoyant random fuzzy measure

Description

Generates one antibuoyant random fuzzy measure in standard representation.

Usage

fm.generate_antibuoyant(env = NULL)

Arguments

env

Environment variable obtained from fm.Init(n).

Value

output

The output is one antibuoyant random fuzzy measure.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
  fuzzymeasures <- fm.generate_antibuoyant(env)
  fuzzymeasures

Function for random generation of balanced fuzzy measures in standard representation

Description

Generate several balanced random fuzzy measures in standard representation.

Usage

fm.generate_balanced(num, env=NULL)

Arguments

num

Generates num random fuzzy measures stored in an array v of length num * 2n.

env

Environment variable obtained from fm.Init(n).

Value

output

The output are several random fuzzy measures containing in an array v of length num * 2n

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
  fuzzymeasures  <- fm.generate_balanced(2, env)
  fuzzymeasures

Function for random generation of belief fuzzy measures in standard representation

Description

Generate several random k-additive belief measures in Mobius representation.

Usage

fm.generate_belief(num, kadd, env=NULL)

Arguments

num

Generates num random belief measures stored in an array Mob of length num * fm_arraysize_kadd(n, kadd).

kadd

k-additivity

env

Environment variable obtained from fm.Init(n).

Value

output

The output are several random belief measures containing in an array v of length num * fm_a

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(5)
  belief  <- fm.generate_belief(2, 3, env)
  # 2 3-additive measures with n=5
  belief

Function for generating 2-additive fuzzy measures in Mobius representation

Description

Generates num random 2-additive fuzzy measures in Mobius representation.

Usage

fm.generate_fm_2additive(num, n)

Arguments

num

Generates num random fuzzy measures stored consecutively in cardinality ordering in the array v.

n

Number of inputs

Value

output

The output are random fuzzy measures, it contains singletons and pairs but no emptyset

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

num <- 2
n <- 5
fuzzymeasures <- fm.generate_fm_2additive(num,n)
fuzzymeasures$V
fuzzymeasures$len

Function for generating 2additive concave fuzzy measures.

Description

Generates num 2-additive concave (supermodular) fuzzy measures for n inputs.

Usage

fm.generate_fm_2additive_concave(num, n)

Arguments

num

Generated num concave random fuzzy measures stored consecutively in cardinality ordering in the array v

n

Number of inputs

Value

output

The output is the length of the part of the array v allocated for each fuzzy measure, and the array with singletons and pairs in Mobius representation

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

fuzzymeasures <- fm.generate_fm_2additive_concave(10,20)

Function for generating 2-additive convex fuzzy measures

Description

Generates num 2-additive convex (supermodular) fuzzy measures for n inputs.

Usage

fm.generate_fm_2additive_convex(num, n)

Arguments

num

Generates num convex random fuzzy measures stored consecutively in cardinality ordering in the array v

n

Number of inputs

Value

output

The output is the length of the part of the array v allocated for each fuzzy measure, and the array with singletons and pairs in Mobius representation

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

addconvex <- fm.generate_fm_2additive_convex(5,20)

Function for generating 2additive convex numbers in sparse representation

Description

Generates a random 2-additive supermodular fuzzy measure in sparse representation.

Usage

fm.generate_fm_2additive_convex_sparse(n, envsp = NULL)

Arguments

n

Number of inputs

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n).

Value

output

The output are 2-additive supermodular fuzzy measure in sparse representation

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n <- 5
  tups<-vector()
  tupsidx<-vector()
  envsp <- fm.PrepareSparseFM(n, tups,tupsidx) 
  envsp <- fm.generate_fm_2additive_convex_sparse(n, envsp)
  envsp
     envsp <- fm.FreeSparseFM(envsp)

Function for generating 2additive convex fuzzy measures with some independent inputs

Description

Generates num 2-additive convex (supermodular) fuzzy measures for n inputs. Some of the interaction indices are set to 0 (independence).

Usage

fm.generate_fm_2additive_convex_withsomeindependent(num, n)

Arguments

num

Generates num convex random fuzzy measures stored consecutively in cardinality ordering in the array

n

Number of inputs

Value

output

The output is the length of the part of the array v allocated for each fuzzy measure, and the array with singletons and pairs in Mobius representation

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

addconvex <- fm.generate_fm_2additive_convex_withsomeindependent(5,20)

Function for generating random 2-additive fuzzy measures in Mobius representation by using random walk.

Description

Generate a random 2-additive fuzzy measures in Mobius representation by using random walk.

Usage

fm.generate_fm_2additive_randomwalk2(num, n, markov, option, step, Fn)

Arguments

num

Generated num random fuzzy measures stored consecutively in cardinality ordering in the array v.

n

Number of inputs.

markov

Number of Markov steps to take, the randomness increases with that number.

option

Not used, reserved for future use.

step

The maximum size of random steps (with respect to each value). The actual step is a random value up to Step.

Fn

The callback function to verify any additional conditions on generated FM. Provided by the user or NULL.

Value

output

The output are random 2-additive fuzzy measure, it contains singletons and pairs but no emptyset.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

num <- 10
  n <- 5
  fuzzymeasures <- fm.generate_fm_2additive_randomwalk2(num, n, 1000, 0, 0.001, NULL)

Generate kadditive convex sparse fuzzy measures

Description

Generates a random k-additive Belief fuzzy measure in sparse representation

Usage

fm.generate_fm_kadditive_convex_sparse(n, kadd, nonzero, envsp = NULL)

Arguments

n

Inputs length. (n inputs)

kadd

kadd is the value of k-additivity, which is used for reducing the complexity of fuzzy measures. default value is kadd = n. 1 < kadd < n+1; if kdd=n - f.m. is unrestricted

nonzero

Values stored and indexed in the respective arrays which are part of the structure

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n).

Value

output

The output is k-additive Belief fuzzy measure in sparse representation

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n <- 5
  tups<-vector()
  tupsidx<-vector()
  envsp <- fm.PrepareSparseFM(n, tups,tupsidx) 
  envsp <- fm.generate_fm_kadditive_convex_sparse(n,4,10, envsp)
  envsp
     envsp <- fm.FreeSparseFM(envsp)

Function for generating k-interactive dual concave fuzzy measures in Mobius representation

Description

Generates num k-interactive dual concave fuzzy measures in Mobius representation using random walk of length markov of stepsize step

Usage

fm.generate_fm_kinteractivedualconcave(num, n, kadd, markov,  step,  Fn, env)

Arguments

num

Generated num random fuzzy measures stored consecutively in cardinality ordering in the array v.

n

Number of inputs.

kadd

kadd is the value of k-additivity, which is used for reducing the complexity of fuzzy measures. default value is kadd = n. 1 < kadd < n+1; if kdd=n - f.m. is unrestricted.

markov

Number of Markov steps to take, the randomness increases with that number.

step

The maximum size of random steps (with respect to each value). The actual step is a random value up to Step.

Fn

The callback function to verify any additional conditions on generated FM. Provided by the user.

env

Environment variable obtained from fm.Init(n).

Value

output

The output are k-interactive dual concave fuzzy measures in Mobius representation

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(4)
  step <- 0.001
  Fn <- NULL

  fuzzymeasures <- fm.generate_fm_kinteractivedualconcave(10, 4, 2, 1000, step, Fn, env)
  fuzzymeasures

Function for generating several k-interactive dual convex fuzzy measures in Mobius representation

Description

Generates num k-interactive dual convex fuzzy measures in Mobius representation using random walk of length markov of stepsize step.

Usage

fm.generate_fm_kinteractivedualconvex(num, n, kadd, markov,  step, Fn, env)

Arguments

num

Generated num random fuzzy measures stored consecutively in cardinality ordering in the array v.

n

Number of inputs.

kadd

kadd is the value of k-additivity, which is used for reducing the complexity of fuzzy measures. default value is kadd = n. 1 < kadd < n+1; if kdd=n - f.m. is unrestricted.

markov

Number of Markov steps to take, the randomness increases with that number.

step

The maximum size of random steps (with respect to each value). The actual step is a random value up to Step.

Fn

The callback function to verify any additional conditions on generated FM. Provided by the user.

env

Environment variable obtained from fm.Init(n).

Value

output

The output are several k-interactive dual convex fuzzy measures in Mobius representation

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(4)
  step <- 0.0001
  Fn <- NULL

  fuzzymeasures <- fm.generate_fm_kinteractivedualconvex(10, 4, 2, 1000, step, Fn, env)
  fuzzymeasures 
  
  env<-fm.Free(env)

Generate randomly fuzzy measures

Description

Generate several random fuzzy measures (num is their number) stored in cardinality ordering in the array v using minimals_plus method.

Usage

fm.generate_fm_minplus(num, kint, markov, option, K, env = NULL)

Arguments

num

Generated num random fuzzy measures stored consecutively in cardinality ordering in the array

kint

Interactive fuzzy measure. 0 < kint <= n

markov

Number of Markov steps to take, the randomness increases with that number

option

Option = 1 employs internal rejection method to improve uniformity, but for n > 5 is is not essential

K

K is the constant in k-interactive fuzzy measures

env

Environment variable obtained from fm.Init(n).

Value

output

The output is generate several random fuzzy measures

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
  fuzzymeasures <- fm.generate_fm_minplus(10,3,1000,0,0.7, env)
  fuzzymeasures

Function for generating several k-additive fuzzy measure

Description

Generates num k-additive fuzzy measures in the standard or Mobius representation using random walk of length markov of stepsize step.

Usage

fm.generate_fm_randomwalk(num, n, kadd, markov, option, step, Fn, env)

Arguments

num

Generated num random fuzzy measures stored consecutively in standard or cardinality ordering in the array v.

n

Number of inputs

kadd

kadd is the value of k-additivity, which is used for reducing the complexity of fuzzy measures. default value is kadd = n. 1 < kadd < n+1; if kdd=n - f.m. is unrestricted. The parameter kadd only matters for options 3 and 5

markov

Number of Markov steps to take, the randomness increases with that number.

option

Option = 0 - normal, 1 convex (supermodular), 2 antibuoyant, 3 kadditive , 4 belief measure, 5 kadditive convex. The measure generated is in standard representation fo all options except 3,5. The parameter kadd only matters for options 3 and 5. In that case the measure is in more compact Mobius representation.

step

The maximum size of random steps (with respect to each value). The actual step is a random value up to Step.

Fn

The callback function to verify any additional conditions on generated FM. Provided by the user. if not NULL, is a callback function to perform additional check at every Markov step of the current set function, i.e., any extra conditions

env

Environment variable obtained from fm.Init(n).

Value

output

The output is named list with the first element v being the fuzzy measure and the second being the length of the array containing it

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

Fn <- function(n,v){
        out <- 0.0

        for(i in 1:n) out<- out+v[i];
        
        if(out>1) {
        return(0)
        } else
        return(1)
    }
    env<-fm.Init(3)
    step <- 0.0010
    Option <- 3
    n <- 3

  fuzzymeasures <- fm.generate_fm_randomwalk(2, 3, 2, 1000, Option, step, Fn, env)
  print(fuzzymeasures)
  print(fuzzymeasures$length)

Function for random generation of fuzzy measures in standard representation

Description

Generate several random fuzzy measures in standard representation

Usage

fm.generate_fm_sorting(num, markov, option, env = NULL)

Arguments

num

Generates num random fuzzy measures stored in an array v of length num * 2n.

markov

Number of Markov steps to take, the randomness increases with that number.

option

Option = 1 employs internal rejection method to improve uniformity, but for n > 5 is not essential.

env

Environment variable obtained from fm.Init(n).

Value

output

The output are several random fuzzy measures containing in an array v of length num * 2n

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
  markovsteps <- 100
  fuzzymeasures <- fm.generate_fm_sorting(5, markovsteps, 0, env)
  fuzzymeasures

Function for random generation of fuzzy measures

Description

Generate several random fuzzy measures (num is their number) stored in cardinality ordering in the array v using topological sort.

Usage

fm.generate_fm_tsort(num, kint, markov, option, K, env = NULL)

Arguments

num

Generated num random fuzzy measures stored consecutively in cardinality ordering in the array

kint

Interactive fuzzy measure. 0 < kint <= n

markov

Number of Markov steps to take, the randomness increases with that number

option

Option = 1 employs internal rejection method to improve uniformity, but for n > 5 is is not essential

K

K is the constant in k-interactive fuzzy measures

env

Environment variable obtained from fm.Init(n).

Value

output

The output is generate several random fuzzy measures

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
  fuzzymeasures <- fm.generate_fm_tsort(10,3,1000,0,0.7, env)
  fuzzymeasures

Function for generating convex fuzzy measures

Description

Generates num convex random fuzzy measures stored consecutively in cardinality ordering in the output array.

Usage

fm.generate_fmconvex_tsort(num, kint, markov, option, K, env = NULL)

Arguments

num

Several random fuzzy measures stored in cardinality ordering in the array v (num is their number)

kint

Interactive fuzzy measure. 0 < kint <= n

markov

Number of Markov steps to take, the randomness increases with that number

option

Option = 1 employs internal rejection method to improve uniformity, but for n > 5 is is not essential

K

K is the constant in k-interactive fuzzy measures

env

Environment variable obtained from fm.Init(n).

Value

output

The output is the generation of num convex random fuzzy measures stored consecutively in cardinality ordering in the array v

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
  fuzzymeasures <- fm.generate_fmconvex_tsort(1,3,1000,0,1, env)

Function for exporting number of tuples

Description

Returns the number of tuples.

Usage

fm.get_num_tuples(envsp=NULL)

Arguments

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n).

Value

output

The output is the number of tuples.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n <- 3
  envsp <- fm.PrepareSparseFM(n, vector(), vector()) 
  envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp) 
  envsp <- fm.add_tuple_sparse(c(1,2,3),0.4,envsp);
  fm.get_num_tuples(envsp)

  envsp <-fm.FreeSparseFM(envsp)

Function for exporting the size of the array of tuples

Description

Returns the length of the array of tuples.

Usage

fm.get_sizearray_tuples(envsp=NULL)

Arguments

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n).

Value

output

The output is the length of the array of tuples.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n <- 3
  envsp <- fm.PrepareSparseFM(n, vector(), vector()) 
  envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp) 
  envsp <- fm.add_tuple_sparse(c(1,2,3),0.4,envsp);
  fm.get_sizearray_tuples(envsp)

  envsp <- fm.FreeSparseFM(envsp)

Initialisation function

Description

This function initialises the internal structures which makes computations faster. The structures are saved in the output environment variable, which should be subsequently passed to other functions. Several environment variables (for different dimensions) can be initialised at the same time.

Usage

fm.Init(n1)

Arguments

n1

The number of variables.

Value

output

The ouput is the enviromnet variable containing the internal structures.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)

Interaction Index computation function

Description

Calculates all the interaction indices of input criteria for standard fuzzy measure.

Usage

fm.Interaction(v,env)

Arguments

v

Fuzzy measure value in standard representation

env

Environment variable obtained from fm.Init(n).

Value

output

The output is a matrix, whose first column stores the interaction index values, and the second column stores the indices of criteria in coalitions.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.Interaction(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)

Banzhaf Interaction Index computation function

Description

Calculates all the Banzhaf Interaction indices of input criteria for a standard fuzzy measure.

Usage

fm.InteractionB(v,env)

Arguments

v

Fuzzy measure value in standard representation

env

Environment variable obtained from fm.Init(n).

Value

output

The output is a matrix, whose first column stores the Banzhaf Interaction index values, and the second column stores the indices of criteria in coalitions.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.InteractionB(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)

Banzhaf InteractionB Index computation function in Mobius representation

Description

Calculates all the Banzhaf InteractionB indices of input criteria for a Mobius fuzzy measure.

Usage

fm.InteractionBMob(Mob,env)

Arguments

Mob

Fuzzy measure value in Mobius representation

env

Environment variable obtained from fm.Init(n).

Value

output

The output is a matrix, whose first column stores the Banzhaf Interaction index values, and the second column stores the indices of criteria in coalitions.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.InteractionBMob(c( 0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)

Interaction Index computation function for Mobius fuzzy measure

Description

Calculates all the interaction indices of input criteria for a Mobius fuzzy measure.

Usage

fm.InteractionMob(Mob,env )

Arguments

Mob

Fuzzy measure value in Mobius representation

env

Environment variable obtained from fm.Init(n).

Value

output

The output is a matrix, whose first column stores the interaction index values, and the second column stores the indices of criteria in coalitions.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.InteractionMob(c( 0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)

Function for checking if i belongs to the tuple A

Description

Checks if element i (1-based) belongs to the tuple indexed A (whose cardinality can be 1,2, other (automatically determined)).

Usage

fm.is_inset_sparse(A, card, i, envsp=NULL)

Arguments

A

Tuple indexed.

card

Whose cardinality can be 1,2, other (automatically determined)

i

Element (1-based)

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n).

Value

output

The output is a logical value.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n <- 3
  envsp <- fm.PrepareSparseFM(n, vector(), vector()) 
  envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp) 
  envsp <- fm.add_tuple_sparse(c(1,2,3),0.4,envsp);

  fm.is_inset_sparse(0,3,1,envsp)
  fm.is_inset_sparse(0,3,4,envsp)

  envsp <- fm.FreeSparseFM(envsp)

Function for checking if tuple B is subset of tuple A

Description

Checks if tuple B is a subset of tuple A, The cardinalities of both tuples need to be supplied.

Usage

fm.is_subset_sparse(A, cardA, B, cardB, envsp = NULL)

Arguments

A

Tuple

cardA

Whose cardinality can be 1,2, other (automatically determined)

B

Tuple, tup=0

cardB

Whose cardinality can be 1,2, other (automatically determined)

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n).

Value

output

The output is a logical value.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n <- 3
  envsp <- fm.PrepareSparseFM(n, vector(), vector()) 
  envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp) 
  envsp <- fm.add_tuple_sparse(c(1,2,3),0.4,envsp);
  envsp <- fm.add_pair_sparse(1,2,0.2,envsp);
  envsp <- fm.add_pair_sparse(1,3,0.3,envsp);

  fm.is_subset_sparse(0,3,0,2,envsp) #is 0th pair a subset of the 0th tuple?
  fm.is_subset_sparse(0,3,1,2,envsp) #is 1th pair a subset of the 0th tuple?

  envsp<-fm.FreeSparseFM(envsp)

IsMeasureAdditive function

Description

Returns 1 if yes, 0 if no; v is a fuzzy measure in standard representation.

Usage

fm.IsMeasureAdditive(v,env)

Arguments

v

General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is 1 if yes, 0 if no.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.IsMeasureAdditive(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)

IsMeasureAdditive function in Mobius representation

Description

Returns 1 if yes, 0 if no; v is a fuzzy measure in Mobius representation.

Usage

fm.IsMeasureAdditiveMob(Mob,env)

Arguments

Mob

Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is 1 if yes, 0 if no.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.IsMeasureAdditiveMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)

IsMeasureBalanced function

Description

Returns 1 if yes, 0 if no; v is a fuzzy measure in standard representation.

Usage

fm.IsMeasureBalanced(v,env)

Arguments

v

General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is 1 if yes, 0 if no.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.IsMeasureBalanced(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)

IsMeasureBalanced function in Mobius representation

Description

Returns 1 if yes, 0 if no; Mob is a fuzzy measure in Mobius representation.

Usage

fm.IsMeasureBalancedMob(Mob,env)

Arguments

Mob

Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from emperical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is 1 if yes, 0 if no.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.IsMeasureBalancedMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)

IsMeasureKmaxitive function

Description

Returns k; v is a fuzzy measure in standard representation.

Usage

fm.IsMeasureKmaxitive(v,env=NULL)

Arguments

v

General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is k. If k=n then not k-maxitive

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.IsMeasureKmaxitive(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)

IsMeasureKmaxitive function in Mobius representation

Description

Returns k; mob is a fuzzy measure in Mobius representation.

Usage

fm.IsMeasureKmaxitiveMob(Mob,env=NULL)

Arguments

Mob

Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from emperical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is k. If k=n then not k-maxitive

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.IsMeasureKmaxitiveMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)

IsMeasureSelfdual function

Description

Returns 1 if yes, 0 if no; v is a fuzzy measure in standard representation.

Usage

fm.IsMeasureSelfdual(v,env)

Arguments

v

General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is 1 if yes, 0 if no.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.IsMeasureSelfdual(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)

IsMeasureSelfdual function in Mobius representation

Description

Returns 1 if yes, 0 if no; Mob is a fuzzy measure in Mobius representation.

Usage

fm.IsMeasureSelfdualMob(Mob,env)

Arguments

Mob

General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is 1 if yes, 0 if no.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.IsMeasureSelfdualMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)

IsMeasureSub additive function

Description

Returns 1 if yes, 0 if no; v is a fuzzy measure in standard representation.

Usage

fm.IsMeasureSubadditive(v,env)

Arguments

v

General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is 1 if yes, 0 if no.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.IsMeasureSubadditive(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)

IsMeasureSub additive function in Mobius representation

Description

Returns 1 if yes, 0 if no; v is a fuzzy measure in Mobius representation.

Usage

fm.IsMeasureSubadditiveMob(Mob,env)

Arguments

Mob

Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is 1 if yes, 0 if no.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.IsMeasureSubadditiveMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)

IsMeasureSub modular function

Description

Returns 1 if yes, 0 if no; v is a fuzzy measure in standard representation.

Usage

fm.IsMeasureSubmodular(v,env=NULL)

Arguments

v

General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is 1 if yes, 0 if no.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.IsMeasureSubmodular(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)

IsMeasureSubmodular function in Mobius representation

Description

Returns 1 if yes, 0 if no; Mob is a fuzzy measure in Mobius representation.

Usage

fm.IsMeasureSubmodularMob(Mob,env=NULL)

Arguments

Mob

Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is 1 if yes, 0 if no.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.IsMeasureSubmodularMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)

IsMeasureSuperadditive function

Description

Returns 1 if yes, 0 if no; v is a fuzzy measure in standard representation.

Usage

fm.IsMeasureSuperadditive(v,env=NULL)

Arguments

v

General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is 1 if yes, 0 if no.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.IsMeasureSuperadditive(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)

IsMeasureSuperadditive function in Mobius representation

Description

Returns 1 if yes, 0 if no; Mob is a fuzzy measure in Mobius representation.

Usage

fm.IsMeasureSuperadditiveMob(Mob,env=NULL)

Arguments

Mob

Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is 1 if yes, 0 if no.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.IsMeasureSuperadditiveMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)

IsMeasureSupermodular function

Description

Returns 1 if yes, 0 if no; v is a fuzzy measure in standard representation.

Usage

fm.IsMeasureSupermodular(v,env=NULL)

Arguments

v

General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is 1 if yes, 0 if no.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.IsMeasureSupermodular(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)

IsMeasureSupermodular function in Mobius representation

Description

Returns 1 if yes, 0 if no; Mob is a fuzzy measure in Mobius representation.

Usage

fm.IsMeasureSupermodularMob(Mob,env=NULL)

Arguments

Mob

Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is 1 if yes, 0 if no.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.IsMeasureSupermodularMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)

IsMeasureSymmetric function

Description

Returns 1 if yes, 0 if no; v is a fuzzy measure in standard representation.

Usage

fm.IsMeasureSymmetric(v,env=NULL)

Arguments

v

General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is 1 if yes, 0 if no.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.IsMeasureSymmetric(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)

IsMeasureSymmetric function in Mobius representation

Description

Returns 1 if yes, 0 if no; v is a fuzzy measure in Mobius representation.

Usage

fm.IsMeasureSymmetricMob(Mob,env=NULL)

Arguments

Mob

Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is 1 if yes, 0 if no.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.IsMeasureSymmetricMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)

Maximun of x computation function in sparse representation

Description

Calculates maximum of x with the indices belonging to tuple indexed as S

Usage

fm.max_subset_sparse(x, S, cardS, envsp=NULL)

Arguments

x

Input vector of size n, containing utility value of input criteria. x is in [0,1].

S

Indices belonging to tuple indexed

cardS

Cardinality cardS

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n).

Value

output

The output is the maximum of x with the indices belonging to tuple indexed as S

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n <- 3
  envsp <- fm.PrepareSparseFM(n, vector(), vector()) 
  envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp) 
  envsp <- fm.add_tuple_sparse(c(1,2,3),0.4,envsp);

  fm.max_subset_sparse(c(0.1,0.05,0.2),0,3,envsp)
  envsp <- fm.FreeSparseFM(envsp)

Minimun of x computation function in sparse representation

Description

Calculates minimum of x with the indices belonging to tuple indexed as S

Usage

fm.min_subset_sparse(x, S, cardS, envsp=NULL)

Arguments

x

Input vector of size n, containing utility value of input criteria. x is in [0,1].

S

Indices belonging to tuple indexed

cardS

Cardinality cardS

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n).

Value

output

The output is the minimum of x with the indices belonging to tuple indexed as S

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n <- 3
  envsp <- fm.PrepareSparseFM(n, vector(), vector()) 
  envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp) 
  envsp <- fm.add_tuple_sparse(c(1,2,3),0.4,envsp);

  fm.min_subset_sparse(c(0.1,0.05,0.2),0,3,envsp)
   envsp <- fm.FreeSparseFM(envsp)

Mobius transform function

Description

Calculates Mobius representation of general fuzzy measure, the input and output is an array of size 2^n=m in binary ordering.

Usage

fm.Mobius(v,env=NULL)

Arguments

v

Fuzzy measure value in standard representation.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is the fuzzy measure in Mobius representation.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.Mobius(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)

Nonadditivity index computation function

Description

Calculate the nonadditivity indices of input criteria from general fuzzy measure.

Usage

fm.NonadditivityIndex(v,env=NULL)

Arguments

v

Fuzzy measure in general representation.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is an array of size 2^n, which contain nonadditivity indices of input criteria coalitions.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.NonadditivityIndex(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)

Nonadditivity index computation function in Mobius representation

Description

Calculate the nonadditivity indices of input criteria from general fuzzy measure in Mobius representation.

Usage

fm.NonadditivityIndexMob(Mob,env=NULL)

Arguments

Mob

Fuzzy measure in Mobius representation.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is an array of size 2^n, which contain nonadditivity indices of input criteria coalitions.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
  NonadditivityIndex <- fm.NonadditivityIndexMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)

Nonmodularity index computation function

Description

Calculate all the m = 2^n nonmodularity indices of fuzzy measure v given in standard representation

Usage

fm.NonmodularityIndex(v, env = NULL)

Arguments

v

Fuzzy measure in general representation.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is an array of size m

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
Nonmodularityindex <- fm.NonmodularityIndex(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1),env)

Nonmodularity index computation function in sparse representation

Description

Calculate all 2^n nonmodularity indices using Mobius transform of a fuzzy measure of lenght 2^n=m, using sparse representation

Usage

fm.NonmodularityIndex_sparse( n, envsp=NULL)

Arguments

n

Number of inputs

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n).

Value

output

The output is all 2^n nonmodularity indice.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n <- 3
    tups<-vector()
    tupsidx<-vector()
    envsp <- fm.PrepareSparseFM(n, tups,tupsidx) 
    envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp) 
    envsp <- fm.add_pair_sparse(1,2,0.4,envsp);

    fm.NonmodularityIndex_sparse(3,envsp)
    envsp <- fm.FreeSparseFM(envsp)

NonmodularityIndexKinteractive computation function

Description

Calculate all the m = 2^n nonmodularity indices of k-interactive fuzzy measure v given in standard representation (in cardinality ordering)

Usage

fm.NonmodularityIndexKinteractive(v, env = NULL, kadd = "NA")

Arguments

v

Fuzzy measure in general representation.

env

Environment variable obtained from fm.Init(n).

kadd

kadd is the value of k-additivity, which is used for reducing the complexity of fuzzy measures. default value is kadd = n. 1 < kadd < n+1; if kdd=n - f.m. is unrestricted

Value

output

The output is an array of size m.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
  fm.NonmodularityIndexKinteractive(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1),env,2)

Nonmodularityindex computation function in Mobius representation

Description

Calculates all the nonmodularity indices of fuzzy measure in Mobius representation representation

Usage

fm.NonmodularityIndexMob(Mob, env = NULL)

Arguments

Mob

Fuzzy measure in Mobius representation of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is an array of size m

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
  fm.NonmodularityIndexMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)

Function for calculating all Nonmodularity indices of k-additive in Mobius representation

Description

Calculate all the m = 2^n nonmodularity indices of k-additive in Mobius representation(in cardinality ordering)

Usage

fm.NonmodularityIndexMobkadditive(Mob, env = NULL, kadd = "NA")

Arguments

Mob

Fuzzy measure in Mobius representation of size m=2^n. Its values can be provided by users, or by estimating from empirical data

env

Environment variable obtained from fm.Init(n).

kadd

kadd is the value of k-additivity, which is used for reducing the complexity of fuzzy measures. default value is kadd = n. 1 < kadd < n+1; if kdd=n - f.m. is unrestricted.

Value

output

The output is an array of size m.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
  fm.NonmodularityIndexMobkadditive(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1),env,2)

OrnessChoquet function

Description

Calculate Orness value of the Choquet integral of the fuzzy measure, where v is a standard representation.

Usage

fm.OrnessChoquet(v,env=NULL)

Arguments

v

Standard fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is the Orness the Choquet integral for the fuzzy measure.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.OrnessChoquet(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)

OrnessChoquet function in Mobius representation

Description

Calculate Orness value of the Choquet integral of the fuzzy measure, where Mob is the Mobius representation.

Usage

fm.OrnessChoquetMob(Mob,env=NULL)

Arguments

Mob

Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is the Orness the Choquet integral for the fuzzy measure.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.OrnessChoquetMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)

Function for populating 2-additive sparse capacity

Description

Populate 2-additive sparse capacity with nonzero values using the singletons and two arrays of indices (of size numpairs).

Usage

fm.populate_fm_2add_sparse(singletons, numpairs, pairs, indicesp1, indicesp2, envsp)

Arguments

singletons

Singletons 0-based.

numpairs

Size numpairs.

pairs

Array 0-based.

indicesp1

Array of indices of Size numpairs.need to be 1-based.

indicesp2

Array of indices of Size numpairs.need to be 1-based.

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n).

Value

output

The output is Populate 2-additive sparse capacity with nonzero values using the singletons and two arrays of indices (of size numpairs)

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n <- 3
    envsp <- fm.PrepareSparseFM(n, vector(), vector()) 

   envsp <- fm.populate_fm_2add_sparse(c(0.1,0.2,0.3), 3, 
              c(0.4,0.5,0.6), c(1,1,2), c(2,3,3), envsp)
    envsp
    envsp <- fm.FreeSparseFM(envsp)

Function for populating 2-additive sparse capacity from 2-additive capacity

Description

Given 2-additive capacity singletons+pairs in one array v , selects nonzero pairs and populates sparse capacity envsp

Usage

fm.populate_fm_2add_sparse_from2add(n, v, envsp=NULL)

Arguments

n

Number of inputs

v

Pairs in one array v

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n).

Value

output

The output is a nonzero pairs and populates sparse capacity envsp

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n <- 3
      envsp <- fm.PrepareSparseFM(n, vector(), vector()) 
      envsp <- fm.populate_fm_2add_sparse_from2add(3,c(0.4,0.5,0.6, 0, 0, 0.1),envsp)
envsp
     envsp <- fm.FreeSparseFM(envsp)

PrepareSparseFM preparation function

Description

This function initialises Sparse representation structure. It is used to allocate storage and later populate these values

Usage

fm.PrepareSparseFM(n, tups, tupsidx)

Arguments

n

Number of inputs

tups

Tuples to be added (can be null vector)

tupsidx

Cardinalities and indices (1-based) of the elements of tuples (can be null vector)

Value

output

The output allocate storage and later populate these values. envsp

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n<-3
    envsp <- fm.PrepareSparseFM(n, vector(), vector()) 
    envsp <- fm.FreeSparseFM(envsp)
    envsp <- fm.PrepareSparseFM(n, c(0.2,0.4,0.1), c(2,1,2,2,1,3,3,1,2,3)) 
envsp
     envsp <- fm.FreeSparseFM(envsp)

Shapley value computation function

Description

Calculates the Shapley values of input criteria from general fuzzy measure,

Usage

fm.Shapley(v,env=NULL)

Arguments

v

Fuzzy measure in general representation.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is an array of size n, which contain Shapley values of input criteria.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.Shapley(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)

Function for calculating Shapley values of 2-additive fuzzy measure in Mobius representation

Description

Calculate the Shapley values of a 2-additive fuzzy measure for n inputs given in Mobius representation. The results are in arrays.

Usage

fm.Shapley2addMob(n, Mob)

Arguments

n

Number of inputs

Mob

Fuzzy measure value in Mobius representation

Value

output

The output is an array of size n, which contain Shapley indices of input criteria.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

Shapley <- fm.Shapley2addMob(3, c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1))

Shapley value computation function in Mobius representation

Description

Calculate the Shapley indices of input criteria from general fuzzy measure in Mobius representation.

Usage

fm.ShapleyMob(Mob,env=NULL)

Arguments

Mob

Fuzzy measure in Mobius representation.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is an array of size n, which contain Shapley values of input criteria.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.ShapleyMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)

Shapley values computation function in sparse representation

Description

Calculate Shapley values vectors of size n of a sparse fuzzy measure

Usage

fm.ShapleyMob_sparse(n, envsp=NULL)

Arguments

n

Size of values vectors

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n).

Value

output

The output is Shapley values vectors of size n of a sparse fuzzy measure.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n <- 3
    envsp <- fm.PrepareSparseFM(n, c(0.2,0.4,0.1), c(2,1,2,2,1,3,3,1,2,3)) 

   fm.ShapleyMob_sparse(3, envsp)

   envsp <- fm.FreeSparseFM(envsp)

Show Coalitions function

Description

Return the decimal expression for the subsets A. In binary and in cardinality ordering respectively.

Usage

fm.ShowCoalitions(env = NULL)

Arguments

env

Environment variable obtained from fm.Init(n).

Value

output

is the array of integers which show the decimal expressions for all 2^n coalitions.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
  ShowCoalitions <- fm.ShowCoalitions(env)
  ShowCoalitions

Show CoalitionsCard function

Description

Return the decimal expression for the subsets A. In binary and in cardinality ordering respectively.

Usage

fm.ShowCoalitionsCard(env = NULL)

Arguments

env

Environment variable obtained from fm.Init(n).

Value

output

The output the decimal expression for the subsets A. It is the array of integers containing the decimal expressions for all 2^n coalitions.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
  CoalitionsCard <- fm.ShowCoalitionsCard(env)
  CoalitionsCard

Get pairs computation function in sparse representation

Description

Export the internal arrays of the sparse capacity as arrays of singletons, pairs and tuples.

Usage

fm.sparse_get_pairs( envsp=NULL)

Arguments

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n).

Value

output

The output is the array of pairs and their number.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n <- 3
    envsp <- fm.PrepareSparseFM(n)
    envsp <-fm.add_pair_sparse(1,2, 0.4, envsp)
    envsp <-fm.add_pair_sparse(1,3, 0.3, envsp)

    pairs <- fm.sparse_get_pairs(envsp)
    pairs
         envsp <- fm.FreeSparseFM(envsp)

Get singletons of sparse fuzzy measure

Description

Export the internal arrays of the sparse capacity as arrays of singletons, pairs and tuples.

Usage

fm.sparse_get_singletons(envsp=NULL)

Arguments

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n).

Value

output

The output is the numbers of pairs and tuples.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n <- 3
  envsp <- fm.PrepareSparseFM(n)
  envsp <- fm.add_singletons_sparse(c(0, 0.3, 0.5),envsp)
  singletons <- fm.sparse_get_singletons(envsp)
  singletons
       envsp <- fm.FreeSparseFM(envsp)

Get tuples of a sparse fuzzy measure

Description

Export the internal arrays of the sparse capacity as arrays of singletons, pairs and tuples.

Usage

fm.sparse_get_tuples(envsp=NULL)

Arguments

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n).

Value

output

The output is the numbers of pairs and tuples.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n <- 3
    envsp <- fm.PrepareSparseFM(n) 
    envsp <- fm.add_tuple_sparse(c(1,2,3),0.2,envsp)
    envsp <- fm.add_tuple_sparse(c(1,3,4),0.3,envsp)

    tuples <- fm.sparse_get_tuples(envsp)
    tuples
     envsp <- fm.FreeSparseFM(envsp)

Sugeno computation function

Description

Calculate the value of a Sugeno integral of input x, with fuzzy measure in standard representation

Usage

fm.Sugeno(x, v,env=NULL)

Arguments

x

Input vector of size n, containing utility value of input criteria. x is in [0,1].

v

General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is a single value of the computed Sugeno integral.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.Sugeno(c(0.6, 0.3, 0.8), c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)

Sugeno function in Mobius representation

Description

Calculate the value of a Sugeno integral of input x, with fuzzy measure in mobius representation

Usage

fm.SugenoMob(x, Mob,env=NULL)

Arguments

x

Input vector of size n, containing utility value of input criteria. x is in [0,1].

Mob

Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is a single value of the computed Sugeno integral.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.SugenoMob(c(0.6, 0.3, 0.8), c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)

Test function

Description

This function provide some examples of how fuzzy measure operation in this toolbox are used. It can be used to test if the toolbox has been installed successfully or not.

Usage

fm.test()

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

fm.test()

Tuple cardinality

Description

Returns the cardinality of the tuple numbered i in the list of tuples.

Usage

fm.tuple_cardinality_sparse(i, envsp = NULL)

Arguments

i

In the list of tuples.

envsp

Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n).

Value

output

The output is the cardinality of the tuple numbered i in the list of tuple.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

n <- 3
    envsp <- fm.PrepareSparseFM(n, c(0.2,0.4,0.1), c(2,1,2,2,1,3,3,1,2,3)) 
    fm.tuple_cardinality_sparse(0,envsp)
     envsp <- fm.FreeSparseFM(envsp)

Zeta transform function

Description

Calculate the general fuzzy measure from Mobius representation. The input and output is an array of size 2^n=m in binary ordering. This is the inverse of the Mobius function.

Usage

fm.Zeta(Mob,env)

Arguments

Mob

Fuzzy measure value in Mobius representation.

env

Environment variable obtained from fm.Init(n).

Value

output

The output is the fuzzy measure in general representation.

Author(s)

Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University

Examples

env<-fm.Init(3)
fm.Zeta(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1),env)