Title: | Dimension Reduction and Estimation Methods |
---|---|
Description: | We provide linear and nonlinear dimension reduction techniques. Intrinsic dimension estimation methods for exploratory analysis are also provided. For more details on the package, see the paper by You and Shung (2022) <doi:10.1016/j.simpa.2022.100414>. |
Authors: | Kisung You [aut, cre] , Changhee Suh [ctb], Dennis Shung [ctb] |
Maintainer: | Kisung You <[email protected]> |
License: | MIT + file LICENSE |
Version: | 1.1.2 |
Built: | 2024-12-08 07:21:18 UTC |
Source: | CRAN |
It generates samples from predefined shapes, set by dname
parameter.
Also incorporated a functionality to add white noise with degree noise
.
aux.gensamples( n = 496, noise = 0.01, dname = c("swiss", "crown", "helix", "saddle", "ribbon", "bswiss", "cswiss", "twinpeaks", "sinusoid", "mobius", "R12in72"), ... )
aux.gensamples( n = 496, noise = 0.01, dname = c("swiss", "crown", "helix", "saddle", "ribbon", "bswiss", "cswiss", "twinpeaks", "sinusoid", "mobius", "R12in72"), ... )
n |
the number of points to be generated. |
||||||
noise |
level of additive white noise. |
||||||
dname |
name of a predefined shape. Should be one of
|
||||||
... |
extra parameters for the followings #'
|
an matrix of generated data by row. For all methods other than
"R12in72"
, it returns a matrix with .
Kisung You
Hein M, Audibert J (2005). “Intrinsic Dimensionality Estimation of Submanifolds in $R^ d$.” In Proceedings of the 22nd International Conference on Machine Learning, 289–296.
van der Maaten L (2009). “Learning a Parametric Embedding by Preserving Local Structure.” Proceedings of AI-STATS.
## generating toy example datasets set.seed(100) dat.swiss = aux.gensamples(50, dname="swiss") dat.crown = aux.gensamples(50, dname="crown") dat.helix = aux.gensamples(50, dname="helix")
## generating toy example datasets set.seed(100) dat.swiss = aux.gensamples(50, dname="swiss") dat.crown = aux.gensamples(50, dname="crown") dat.helix = aux.gensamples(50, dname="helix")
Given data, it first computes pairwise distance (method
) using one of measures
defined from dist
function. Then, type
controls how nearest neighborhood
graph should be constructed. Finally, symmetric
parameter controls how
nearest neighborhood graph should be symmetrized.
aux.graphnbd( data, method = "euclidean", type = c("proportion", 0.1), symmetric = "union", pval = 2 )
aux.graphnbd( data, method = "euclidean", type = c("proportion", 0.1), symmetric = "union", pval = 2 )
data |
an |
method |
type of distance to be used. See also |
type |
a defining pattern of neighborhood criterion. One of
|
symmetric |
either “intersect” or “union” for symmetrization, or “asymmetric”. |
pval |
a |
a named list containing
a binary matrix of indicating existence of an edge for each element.
corresponding distance matrix. -Inf
is returned for non-connecting edges.
Our package supports three ways of defining nearest neighborhood. First is
knn, which finds k
nearest points and flag them as neighbors.
Second is enn - epsilon nearest neighbor - that connects all the
data poinst within a certain radius. Finally, proportion flag is to
connect proportion-amount of data points sequentially from the nearest to farthest.
In many graph setting, it starts from dealing with undirected graphs.
NN search, however, does not necessarily guarantee if symmetric connectivity
would appear or not. There are two easy options for symmetrization;
intersect
for connecting two nodes if both of them are
nearest neighbors of each other and union
for only either of them to be present.
Kisung You
## Generate data set.seed(100) X = aux.gensamples(n=100) ## Test three different types of neighborhood connectivity nn1 = aux.graphnbd(X,type=c("knn",20)) # knn with k=20 nn2 = aux.graphnbd(X,type=c("enn",1)) # enn with radius = 1 nn3 = aux.graphnbd(X,type=c("proportion",0.4)) # connecting 40% of edges ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3), pty="s") image(nn1$mask); title("knn with k=20") image(nn2$mask); title("enn with radius=1") image(nn3$mask); title("proportion of ratio=0.4") par(opar)
## Generate data set.seed(100) X = aux.gensamples(n=100) ## Test three different types of neighborhood connectivity nn1 = aux.graphnbd(X,type=c("knn",20)) # knn with k=20 nn2 = aux.graphnbd(X,type=c("enn",1)) # enn with radius = 1 nn3 = aux.graphnbd(X,type=c("proportion",0.4)) # connecting 40% of edges ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3), pty="s") image(nn1$mask); title("knn with k=20") image(nn2$mask); title("enn with radius=1") image(nn3$mask); title("proportion of ratio=0.4") par(opar)
From the celebrated Mercer's Theorem, we know that for a mapping , there exists
a kernel function - or, symmetric bilinear form,
such that
where is
standard inner product.
aux.kernelcov
is a collection of 20 such positive definite kernel functions, as
well as centering of such kernel since covariance requires a mean to be subtracted and
a set of transformed values are not centered after transformation.
Since some kernels require parameters - up to 2, its usage will be listed in arguments section.
aux.kernelcov(X, ktype)
aux.kernelcov(X, ktype)
X |
an |
ktype |
a vector containing the type of kernel and parameters involved. Below the usage is consistent with description
|
There are 20 kernels supported. Belows are the kernels when given two vectors ,
,
,
,
,
,
,
,
a named list containing
a kernelizd gram matrix.
a centered version of
K
.
Kisung You
Hofmann, T., Scholkopf, B., and Smola, A.J. (2008) Kernel methods in machine learning. arXiv:math/0701907.
## generate a toy data set.seed(100) X = aux.gensamples(n=100) ## compute a few kernels Klin = aux.kernelcov(X, ktype=c("linear",0)) Kgau = aux.kernelcov(X, ktype=c("gaussian",1)) Klap = aux.kernelcov(X, ktype=c("laplacian",1)) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3), pty="s") image(Klin$K, main="kernel=linear") image(Kgau$K, main="kernel=gaussian") image(Klap$K, main="kernel=laplacian") par(opar)
## generate a toy data set.seed(100) X = aux.gensamples(n=100) ## compute a few kernels Klin = aux.kernelcov(X, ktype=c("linear",0)) Kgau = aux.kernelcov(X, ktype=c("gaussian",1)) Klap = aux.kernelcov(X, ktype=c("laplacian",1)) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3), pty="s") image(Klin$K, main="kernel=linear") image(Kgau$K, main="kernel=gaussian") image(Klap$K, main="kernel=laplacian") par(opar)
This function is mainly used for tracking progress for this package.
aux.pkgstat()
aux.pkgstat()
## run with following command aux.pkgstat()
## run with following command aux.pkgstat()
aux.preprocess
can perform one of following operations; "center"
, "scale"
,
"cscale"
, "decorrelate"
and "whiten"
. See below for more details.
aux.preprocess( data, type = c("center", "scale", "cscale", "decorrelate", "whiten") )
aux.preprocess( data, type = c("center", "scale", "cscale", "decorrelate", "whiten") )
data |
an |
type |
one of |
named list containing:
an matrix after preprocessing in accordance with
type
parameter
a list containing
type:
name of preprocessing procedure.
mean:
a mean vector of length .
multiplier:
a matrix or 1 for "center".
we have following operations,
"center"
subtracts mean of each column so that every variable has mean .
"scale"
turns each column corresponding to variable have variance .
"cscale"
combines "center"
and "scale"
.
"decorrelate"
"center"
and sets its covariance term having diagonal entries only.
"whiten"
"decorrelate"
and sets all diagonal elements be .
Kisung You
## Generate data set.seed(100) X = aux.gensamples(n=200) ## 5 types of preprocessing X_center = aux.preprocess(X) X_scale = aux.preprocess(X,type="scale") X_cscale = aux.preprocess(X,type="cscale") X_decorr = aux.preprocess(X,type="decorrelate") X_whiten = aux.preprocess(X,type="whiten")
## Generate data set.seed(100) X = aux.gensamples(n=200) ## 5 types of preprocessing X_center = aux.preprocess(X) X_scale = aux.preprocess(X,type="scale") X_cscale = aux.preprocess(X,type="cscale") X_decorr = aux.preprocess(X,type="decorrelate") X_whiten = aux.preprocess(X,type="whiten")
This is a fast implementation of Floyd-Warshall algorithm to find the shortest path in a pairwise sense using 'RcppArmadillo'. A logical input is also accepted.
aux.shortestpath(dist)
aux.shortestpath(dist)
dist |
either an |
an matrix containing pairwise shortest path.
Kisung You
Floyd, R.W. (1962) Algorithm 97: Shortest Path. Commincations of the ACMS, Vol.5(6):345.
## generate a toy data X = aux.gensamples(n=10) ## Find knn graph with k=5 Xgraph = aux.graphnbd(X,type=c("knn",5)) ## Separately use binarized and real distance matrices W1 = aux.shortestpath(Xgraph$mask) W2 = aux.shortestpath(Xgraph$dist) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2), pty="s") image(W1, main="from binarized") image(W2, main="from Euclidean distance") par(opar)
## generate a toy data X = aux.gensamples(n=10) ## Find knn graph with k=5 Xgraph = aux.graphnbd(X,type=c("knn",5)) ## Separately use binarized and real distance matrices W1 = aux.shortestpath(Xgraph$mask) W2 = aux.shortestpath(Xgraph$dist) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2), pty="s") image(W1, main="from binarized") image(W2, main="from Euclidean distance") par(opar)
Adaptive Dimension Reduction (Ding et al. 2002) iteratively finds the best subspace to perform data clustering. It can be regarded as one of remedies for clustering in high dimensional space. Eigenvectors of a between-cluster scatter matrix are used as basis of projection.
do.adr(X, ndim = 2, ...)
do.adr(X, ndim = 2, ...)
X |
an |
ndim |
an integer-valued target dimension. |
... |
extra parameters including
|
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a whose columns are basis for projection.
a list containing information for out-of-sample prediction.
name of the algorithm.
Ding C, Xiaofeng He, Hongyuan Zha, Simon HD (2002). “Adaptive Dimension Reduction for Clustering High Dimensional Data.” In Proceedings 2002 IEEE International Conference on Data Mining, 147–154.
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare ADR with other methods outADR = do.adr(X) outPCA = do.pca(X) outLDA = do.lda(X, label) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(outADR$Y, col=label, pch=19, main="ADR") plot(outPCA$Y, col=label, pch=19, main="PCA") plot(outLDA$Y, col=label, pch=19, main="LDA") par(opar)
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare ADR with other methods outADR = do.adr(X) outPCA = do.pca(X) outLDA = do.lda(X, label) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(outADR$Y, col=label, pch=19, main="ADR") plot(outPCA$Y, col=label, pch=19, main="PCA") plot(outLDA$Y, col=label, pch=19, main="LDA") par(opar)
Adaptive Maximum Margin Criterion (AMMC) is a supervised linear dimension reduction method.
The method uses different weights to characterize the different contributions of the
training samples embedded in MMC framework. With the choice of a=0
, b=0
, and
lambda=1
, it is identical to standard MMC method.
do.ammc( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), a = 1, b = 1, lambda = 1 )
do.ammc( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), a = 1, b = 1, lambda = 1 )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a |
tuning parameter for between-class weight in |
b |
tuning parameter for within-class weight in |
lambda |
balance parameter for between-class and within-class scatter matrices in |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Lu J, Tan Y (2011). “Adaptive Maximum Margin Criterion for Image Classification.” In 2011 IEEE International Conference on Multimedia and Expo, 1–6.
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different lambda values out1 = do.ammc(X, label, lambda=0.1) out2 = do.ammc(X, label, lambda=1) out3 = do.ammc(X, label, lambda=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="AMMC::lambda=0.1", pch=19, cex=0.5, col=label) plot(out2$Y, main="AMMC::lambda=1", pch=19, cex=0.5, col=label) plot(out3$Y, main="AMMC::lambda=10", pch=19, cex=0.5, col=label) par(opar)
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different lambda values out1 = do.ammc(X, label, lambda=0.1) out2 = do.ammc(X, label, lambda=1) out3 = do.ammc(X, label, lambda=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="AMMC::lambda=0.1", pch=19, cex=0.5, col=label) plot(out2$Y, main="AMMC::lambda=1", pch=19, cex=0.5, col=label) plot(out3$Y, main="AMMC::lambda=10", pch=19, cex=0.5, col=label) par(opar)
Average Neighborhood Margin Maximization (ANMM) is a supervised method for feature extraction. It aims to find a projection mapping in the following manner; for each data point, the algorithm tries to pull the neighboring points in the same class while pushing neighboring points of different classes far away. It is known that ANMM does suffer less from small sample size problem, which is bottleneck for LDA.
do.anmm( X, label, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten"), No = ceiling(nrow(X)/10), Ne = ceiling(nrow(X)/10) )
do.anmm( X, label, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten"), No = ceiling(nrow(X)/10), Ne = ceiling(nrow(X)/10) )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
No |
neighborhood size for same-class data points; either a constant number or
a vector of length- |
Ne |
neighborhood size for different-class data points; either a constant number or
a vector of length- |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Wang F, Zhang C (2007). “Feature Extraction by Maximizing the Average Neighborhood Margin.” In 2007 IEEE Conference on Computer Vision and Pattern Recognition, 1–8.
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## perform ANMM on different choices of neighborhood size out1 = do.anmm(X, label, No=6, Ne=6) out2 = do.anmm(X, label, No=2, Ne=10) out3 = do.anmm(X, label, No=10,Ne=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="(No,Ne)=(6,6)", pch=19, cex=0.5, col=label) plot(out2$Y, main="(No,Ne)=(2,10)", pch=19, cex=0.5, col=label) plot(out3$Y, main="(No,Ne)=(10,2)", pch=19, cex=0.5, col=label) par(opar)
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## perform ANMM on different choices of neighborhood size out1 = do.anmm(X, label, No=6, Ne=6) out2 = do.anmm(X, label, No=2, Ne=10) out3 = do.anmm(X, label, No=10,Ne=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="(No,Ne)=(6,6)", pch=19, cex=0.5, col=label) plot(out2$Y, main="(No,Ne)=(2,10)", pch=19, cex=0.5, col=label) plot(out3$Y, main="(No,Ne)=(10,2)", pch=19, cex=0.5, col=label) par(opar)
Adaptive Subspace Iteration (ASI) iteratively finds the best subspace to perform data clustering. It can be regarded as one of remedies for clustering in high dimensional space. Eigenvectors of a within-cluster scatter matrix are used as basis of projection.
do.asi(X, ndim = 2, ...)
do.asi(X, ndim = 2, ...)
X |
an |
ndim |
an integer-valued target dimension. |
... |
extra parameters including
|
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a whose columns are basis for projection.
name of the algorithm.
Kisung You
Li T, Ma S, Ogihara M (2004). “Document Clustering via Adaptive Subspace Iteration.” In Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 218.
## use iris data data(iris, package="Rdimtools") set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare ASI with other methods outASI = do.asi(X) outPCA = do.pca(X) outLDA = do.lda(X, label) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(outASI$Y, pch=19, col=label, main="ASI") plot(outPCA$Y, pch=19, col=label, main="PCA") plot(outLDA$Y, pch=19, col=label, main="LDA") par(opar)
## use iris data data(iris, package="Rdimtools") set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare ASI with other methods outASI = do.asi(X) outPCA = do.pca(X) outLDA = do.lda(X, label) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(outASI$Y, pch=19, col=label, main="ASI") plot(outPCA$Y, pch=19, col=label, main="PCA") plot(outLDA$Y, pch=19, col=label, main="LDA") par(opar)
A Bayesian formulation of classical Multidimensional Scaling is presented.
Even though this method is based on MCMC sampling, we only return maximum a posterior (MAP) estimate
that maximizes the posterior distribution. Due to its nature without any special tuning,
increasing mc.iter
requires much computation. A note on the method is that
this algorithm does not return an explicit form of projection matrix so it's
classified in our package as a nonlinear method. Also, automatic dimension selection is not supported
for simplicity as well as consistency with other methods in the package.
do.bmds( X, ndim = 2, par.a = 5, par.alpha = 0.5, par.step = 1, mc.iter = 50, print.progress = FALSE )
do.bmds( X, ndim = 2, par.a = 5, par.alpha = 0.5, par.step = 1, mc.iter = 50, print.progress = FALSE )
X |
an |
ndim |
an integer-valued target dimension. |
par.a |
hyperparameter for conjugate prior on variance term, i.e., |
par.alpha |
hyperparameter for conjugate prior on diagonal term, i.e., |
par.step |
stepsize for random-walk, which is standard deviation of Gaussian proposal. |
mc.iter |
the number of MCMC iterations. |
print.progress |
a logical; |
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
name of the algorithm.
Kisung You
Oh M, Raftery AE (2001). “Bayesian Multidimensional Scaling and Choice of Dimension.” Journal of the American Statistical Association, 96(455), 1031–1044.
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare with other methods outBMD <- do.bmds(X, ndim=2) outPCA <- do.pca(X, ndim=2) outLDA <- do.lda(X, label, ndim=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(outBMD$Y, pch=19, col=label, main="Bayesian MDS") plot(outPCA$Y, pch=19, col=label, main="PCA") plot(outLDA$Y, pch=19, col=label, main="LDA") par(opar)
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare with other methods outBMD <- do.bmds(X, ndim=2) outPCA <- do.pca(X, ndim=2) outLDA <- do.lda(X, label, ndim=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(outBMD$Y, pch=19, col=label, main="Bayesian MDS") plot(outPCA$Y, pch=19, col=label, main="PCA") plot(outLDA$Y, pch=19, col=label, main="LDA") par(opar)
Bayesian PCA (BPCA) is a further variant of PCA in that it imposes prior and encodes
basis selection mechanism. Even though the model is fully Bayesian, do.bpca
faithfully follows the original paper by Bishop in that it only returns the mode value
of posterior as an estimate, in conjunction with ARD-motivated prior as well as
consideration of variance to be estimated. Unlike PPCA, it uses full basis and returns
relative weight for each base in that the smaller value is, the more likely
corresponding column vector of
mp.W
to be selected as potential basis.
do.bpca(X, ndim = 2, ...)
do.bpca(X, ndim = 2, ...)
X |
an |
ndim |
an integer-valued target dimension. |
... |
extra parameters including
|
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a whose columns are basis for projection.
the number of iterations taken for EM algorithm to converge.
estimated value via EM algorithm.
length-ndim-1
vector of relative weight for each base in mp.W
.
an matrix from EM update.
name of the algorithm.
Kisung You
Bishop C (1999). “Bayesian PCA.” In Advances in Neural Information Processing Systems, volume 11, 382–388.
## Not run: ## use iris dataset data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## compare BPCA with others out1 <- do.bpca(X, ndim=2) out2 <- do.pca(X, ndim=2) out3 <- do.lda(X, lab, ndim=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=lab, pch=19, cex=0.8, main="Bayesian PCA") plot(out2$Y, col=lab, pch=19, cex=0.8, main="PCA") plot(out3$Y, col=lab, pch=19, cex=0.8, main="LDA") par(opar) ## End(Not run)
## Not run: ## use iris dataset data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## compare BPCA with others out1 <- do.bpca(X, ndim=2) out2 <- do.pca(X, ndim=2) out3 <- do.lda(X, lab, ndim=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=lab, pch=19, cex=0.8, main="Bayesian PCA") plot(out2$Y, col=lab, pch=19, cex=0.8, main="PCA") plot(out3$Y, col=lab, pch=19, cex=0.8, main="LDA") par(opar) ## End(Not run)
Canonical Correlation Analysis (CCA) is similar to Partial Least Squares (PLS), except for one objective; while PLS focuses on maximizing covariance, CCA maximizes the correlation. This difference sometimes incurs quite distinct results compared to PLS. For algorithm aspects, we used recursive gram-schmidt orthogonalization in conjunction with extracting projection vectors under eigen-decomposition formulation, as the problem dimension matters only up to original dimensionality.
do.cca(data1, data2, ndim = 2)
do.cca(data1, data2, ndim = 2)
data1 |
an |
data2 |
an |
ndim |
an integer-valued target dimension. |
a named list containing
an matrix of projected observations from
data1
.
an matrix of projected observations from
data2
.
a whose columns are loadings for
data1
.
a whose columns are loadings for
data2
.
a list containing information for out-of-sample prediction for data1
.
a list containing information for out-of-sample prediction for data2
.
a vector of eigenvalues for iterative decomposition.
Kisung You
Hotelling H (1936). “RELATIONS BETWEEN TWO SETS OF VARIATES.” Biometrika, 28(3-4), 321–377.
## generate 2 normal data matrices set.seed(100) mat1 = matrix(rnorm(100*12),nrow=100)+10 # 12-dim normal mat2 = matrix(rnorm(100*6), nrow=100)-10 # 6-dim normal ## project onto 2 dimensional space for each data output = do.cca(mat1, mat2, ndim=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(output$Y1, main="proj(mat1)") plot(output$Y2, main="proj(mat2)") par(opar)
## generate 2 normal data matrices set.seed(100) mat1 = matrix(rnorm(100*12),nrow=100)+10 # 12-dim normal mat2 = matrix(rnorm(100*6), nrow=100)-10 # 6-dim normal ## project onto 2 dimensional space for each data output = do.cca(mat1, mat2, ndim=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(output$Y1, main="proj(mat1)") plot(output$Y2, main="proj(mat2)") par(opar)
Constrained Graph Embedding (CGE) is a semi-supervised embedding method that incorporates partially available label information into the graph structure that find embeddings consistent with the labels.
do.cge( X, label, ndim = 2, type = c("proportion", 0.1), preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate") )
do.cge( X, label, ndim = 2, type = c("proportion", 0.1), preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate") )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
preprocess |
an additional option for preprocessing the data.
Default is |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
He X, Ji M, Bao H (2009). “Graph Embedding with Constraints.” In IJCAI.
## use iris data data(iris) X = as.matrix(iris[,2:4]) label = as.integer(iris[,5]) lcols = as.factor(label) ## copy a label and let 10% of elements be missing nlabel = length(label) nmissing = round(nlabel*0.10) label_missing = label label_missing[sample(1:nlabel, nmissing)]=NA ## try different neighborhood sizes out1 = do.cge(X, label_missing, type=c("proportion",0.10)) out2 = do.cge(X, label_missing, type=c("proportion",0.25)) out3 = do.cge(X, label_missing, type=c("proportion",0.50)) ## visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="10% connected", pch=19, col=lcols) plot(out2$Y, main="25% connected", pch=19, col=lcols) plot(out3$Y, main="50% connected", pch=19, col=lcols) par(opar)
## use iris data data(iris) X = as.matrix(iris[,2:4]) label = as.integer(iris[,5]) lcols = as.factor(label) ## copy a label and let 10% of elements be missing nlabel = length(label) nmissing = round(nlabel*0.10) label_missing = label label_missing[sample(1:nlabel, nmissing)]=NA ## try different neighborhood sizes out1 = do.cge(X, label_missing, type=c("proportion",0.10)) out2 = do.cge(X, label_missing, type=c("proportion",0.25)) out3 = do.cge(X, label_missing, type=c("proportion",0.50)) ## visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="10% connected", pch=19, col=lcols) plot(out2$Y, main="25% connected", pch=19, col=lcols) plot(out3$Y, main="50% connected", pch=19, col=lcols) par(opar)
Conformal Isomap(C-Isomap) is a variant of a celebrated method of Isomap. It aims at, rather than preserving full isometry, maintaining infinitestimal angles - conformality - in that it alters geodesic distance to reflect scale information.
do.cisomap( X, ndim = 2, type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), weight = TRUE, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate") )
do.cisomap( X, ndim = 2, type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), weight = TRUE, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate") )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
one of |
weight |
|
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
Silva VD, Tenenbaum JB (2003). “Global Versus Local Methods in Nonlinear Dimensionality Reduction.” In Becker S, Thrun S, Obermayer K (eds.), Advances in Neural Information Processing Systems 15, 721–728. MIT Press.
## generate data set.seed(100) X <- aux.gensamples(dname="cswiss",n=100) ## 1. original Isomap output1 <- do.isomap(X,ndim=2) ## 2. C-Isomap output2 <- do.cisomap(X,ndim=2) ## 3. C-Isomap on a binarized graph output3 <- do.cisomap(X,ndim=2,weight=FALSE) ## Visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, main="Isomap") plot(output2$Y, main="C-Isomap") plot(output3$Y, main="Binarized C-Isomap") par(opar)
## generate data set.seed(100) X <- aux.gensamples(dname="cswiss",n=100) ## 1. original Isomap output1 <- do.isomap(X,ndim=2) ## 2. C-Isomap output2 <- do.cisomap(X,ndim=2) ## 3. C-Isomap on a binarized graph output3 <- do.cisomap(X,ndim=2,weight=FALSE) ## Visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, main="Isomap") plot(output2$Y, main="C-Isomap") plot(output3$Y, main="Binarized C-Isomap") par(opar)
One of drawbacks of Neighborhood Preserving Embedding (NPE) is the small-sample-size problem under high-dimensionality of original data, where singular matrices to be decomposed suffer from rank deficiency. Instead of applying PCA as a preprocessing step, Complete NPE (CNPE) transforms the singular generalized eigensystem computation of NPE into two eigenvalue decomposition problems.
do.cnpe( X, ndim = 2, type = c("proportion", 0.1), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
do.cnpe( X, ndim = 2, type = c("proportion", 0.1), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Wang Y, Wu Y (2010). “Complete Neighborhood Preserving Embedding for Face Recognition.” Pattern Recognition, 43(3), 1008–1015.
## generate data of 3 types with clear difference dt1 = aux.gensamples(n=20)-50 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+50 lab = rep(1:3, each=20) ## merge the data X = rbind(dt1,dt2,dt3) ## try different numbers for neighborhood size out1 = do.cnpe(X, type=c("proportion",0.10)) out2 = do.cnpe(X, type=c("proportion",0.25)) out3 = do.cnpe(X, type=c("proportion",0.50)) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=lab, pch=19, main="CNPE::10% connected") plot(out2$Y, col=lab, pch=19, main="CNPE::25% connected") plot(out3$Y, col=lab, pch=19, main="CNPE::50% connected") par(opar)
## generate data of 3 types with clear difference dt1 = aux.gensamples(n=20)-50 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+50 lab = rep(1:3, each=20) ## merge the data X = rbind(dt1,dt2,dt3) ## try different numbers for neighborhood size out1 = do.cnpe(X, type=c("proportion",0.10)) out2 = do.cnpe(X, type=c("proportion",0.25)) out3 = do.cnpe(X, type=c("proportion",0.50)) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=lab, pch=19, main="CNPE::10% connected") plot(out2$Y, col=lab, pch=19, main="CNPE::25% connected") plot(out3$Y, col=lab, pch=19, main="CNPE::50% connected") par(opar)
Curvilinear Component Analysis (CRCA) is a type of self-organizing algorithms for
manifold learning. Like MDS, it aims at minimizing a cost function (Stress)
based on pairwise proximity. Parameter lambda
is a heaviside function for
penalizing distance pair of embedded data, and alpha
controls learning rate
similar to that of subgradient method in that at each iteration the gradient is
weighted by
.
do.crca(X, ndim = 2, lambda = 1, alpha = 1, maxiter = 1000, tolerance = 1e-06)
do.crca(X, ndim = 2, lambda = 1, alpha = 1, maxiter = 1000, tolerance = 1e-06)
X |
an |
ndim |
an integer-valued target dimension. |
lambda |
threshold value. |
alpha |
initial value for updating. |
maxiter |
maximum number of iterations allowed. |
tolerance |
stopping criterion for maximum absolute discrepancy between two distance matrices. |
a named list containing
an matrix whose rows are embedded observations.
the number of iterations until convergence.
a list containing information for out-of-sample prediction.
Kisung You
Demartines P, Herault J (1997). “Curvilinear Component Analysis: A Self-Organizing Neural Network for Nonlinear Mapping of Data Sets.” IEEE Transactions on Neural Networks, 8(1), 148–154.
Hérault J, Jausions-Picaud C, Guérin-Dugué A (1999). “Curvilinear Component Analysis for High-Dimensional Data Representation: I. Theoretical Aspects and Practical Use in the Presence of Noise.” In Goos G, Hartmanis J, van Leeuwen J, Mira J, Sánchez-Andrés JV (eds.), Engineering Applications of Bio-Inspired Artificial Neural Networks, volume 1607, 625–634. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-540-66068-2 978-3-540-48772-2.
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## different initial learning rates out1 <- do.crca(X,alpha=1) out2 <- do.crca(X,alpha=5) out3 <- do.crca(X,alpha=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, pch=19, main="alpha=1.0") plot(out2$Y, col=label, pch=19, main="alpha=5.0") plot(out3$Y, col=label, pch=19, main="alpha=10.0") par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## different initial learning rates out1 <- do.crca(X,alpha=1) out2 <- do.crca(X,alpha=5) out3 <- do.crca(X,alpha=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, pch=19, main="alpha=1.0") plot(out2$Y, col=label, pch=19, main="alpha=5.0") plot(out3$Y, col=label, pch=19, main="alpha=10.0") par(opar)
Curvilinear Distance Analysis (CRDA) is a variant of Curvilinear Component Analysis in that the input pairwise distance is altered by curvilinear distance on a data manifold. Like in Isomap, it first generates neighborhood graph and finds shortest path on a constructed graph so that the shortest-path length plays as an approximate geodesic distance on nonlinear manifolds.
do.crda( X, ndim = 2, type = c("proportion", 0.1), symmetric = "union", weight = TRUE, lambda = 1, alpha = 1, maxiter = 1000, tolerance = 1e-06 )
do.crda( X, ndim = 2, type = c("proportion", 0.1), symmetric = "union", weight = TRUE, lambda = 1, alpha = 1, maxiter = 1000, tolerance = 1e-06 )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
one of |
weight |
|
lambda |
threshold value. |
alpha |
initial value for updating. |
maxiter |
maximum number of iterations allowed. |
tolerance |
stopping criterion for maximum absolute discrepancy between two distance matrices. |
a named list containing
an matrix whose rows are embedded observations.
the number of iterations until convergence.
a list containing information for out-of-sample prediction.
Kisung You
Lee JA, Lendasse A, Verleysen M (2002). “Curvilinear Distance Analysis versus Isomap.” In ESANN.
Lee JA, Lendasse A, Verleysen M (2004). “Nonlinear Projection with Curvilinear Distances: Isomap versus Curvilinear Distance Analysis.” Neurocomputing, 57, 49–76.
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## different settings of connectivity out1 <- do.crda(X, type=c("proportion",0.10)) out2 <- do.crda(X, type=c("proportion",0.25)) out3 <- do.crda(X, type=c("proportion",0.50)) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, pch=19, main="10% connected") plot(out2$Y, col=label, pch=19, main="25% connected") plot(out3$Y, col=label, pch=19, main="50% connected") par(opar)
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## different settings of connectivity out1 <- do.crda(X, type=c("proportion",0.10)) out2 <- do.crda(X, type=c("proportion",0.25)) out3 <- do.crda(X, type=c("proportion",0.50)) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, pch=19, main="10% connected") plot(out2$Y, col=label, pch=19, main="25% connected") plot(out3$Y, col=label, pch=19, main="50% connected") par(opar)
Collaborative Representation-based Projection (CRP) is an unsupervised linear
dimension reduction method. Its embedding is based on _2 graph construction,
similar to that of SPP where sparsity constraint is imposed via
optimization problem.
Note that though it may be way faster, rank deficiency can pose a great deal of problems,
especially when the dataset is large.
do.crp( X, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), lambda = 1 )
do.crp( X, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), lambda = 1 )
X |
an |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
lambda |
regularization parameter for constructing |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Yang W, Wang Z, Sun C (2015). “A Collaborative Representation Based Projections Method for Feature Extraction.” Pattern Recognition, 48(1), 20–27.
## use iris dataset data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## test different regularization parameters out1 <- do.crp(X,ndim=2,lambda=0.1) out2 <- do.crp(X,ndim=2,lambda=1) out3 <- do.crp(X,ndim=2,lambda=10) # visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=lab, pch=19, main="CRP::lambda=0.1") plot(out2$Y, col=lab, pch=19, main="CRP::lambda=1") plot(out3$Y, col=lab, pch=19, main="CRP::lambda=10") par(opar)
## use iris dataset data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## test different regularization parameters out1 <- do.crp(X,ndim=2,lambda=0.1) out2 <- do.crp(X,ndim=2,lambda=1) out3 <- do.crp(X,ndim=2,lambda=10) # visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=lab, pch=19, main="CRP::lambda=0.1") plot(out2$Y, col=lab, pch=19, main="CRP::lambda=1") plot(out3$Y, col=lab, pch=19, main="CRP::lambda=10") par(opar)
Constraint Score (Zhang et al. 2008) is a filter-type algorithm for feature selection using pairwise constraints. It first marks all pairwise constraints as same- and different-cluster and construct a feature score for both constraints. It takes ratio or difference of feature score vectors and selects the indices with smallest values.
do.cscore(X, label, ndim = 2, ...)
do.cscore(X, label, ndim = 2, ...)
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension (default: 2). |
... |
extra parameters including
|
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a length- vector of constraint scores. Indices with smallest values are selected.
a length- vector of indices with highest scores.
a whose columns are basis for projection.
a list containing information for out-of-sample prediction.
name of the algorithm.
Zhang D, Chen S, Zhou Z (2008). “Constraint Score: A New Filter Method for Feature Selection with Pairwise Constraints.” Pattern Recognition, 41(5), 1440–1451.
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) iris.dat = as.matrix(iris[,1:4]) iris.lab = as.factor(iris[,5]) ## try different strategy out1 = do.cscore(iris.dat, iris.lab, score="ratio") out2 = do.cscore(iris.dat, iris.lab, score="difference", lambda=0) out3 = do.cscore(iris.dat, iris.lab, score="difference", lambda=0.5) out4 = do.cscore(iris.dat, iris.lab, score="difference", lambda=1) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(2,2)) plot(out1$Y, col=iris.lab, main="ratio") plot(out2$Y, col=iris.lab, main="diff/lambda=0") plot(out3$Y, col=iris.lab, main="diff/lambda=0.5") plot(out4$Y, col=iris.lab, main="diff/lambda=1") par(opar)
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) iris.dat = as.matrix(iris[,1:4]) iris.lab = as.factor(iris[,5]) ## try different strategy out1 = do.cscore(iris.dat, iris.lab, score="ratio") out2 = do.cscore(iris.dat, iris.lab, score="difference", lambda=0) out3 = do.cscore(iris.dat, iris.lab, score="difference", lambda=0.5) out4 = do.cscore(iris.dat, iris.lab, score="difference", lambda=1) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(2,2)) plot(out1$Y, col=iris.lab, main="ratio") plot(out2$Y, col=iris.lab, main="diff/lambda=0") plot(out3$Y, col=iris.lab, main="diff/lambda=0.5") plot(out4$Y, col=iris.lab, main="diff/lambda=1") par(opar)
Constraint Score is a filter-type algorithm for feature selection using pairwise constraints. It first marks all pairwise constraints as same- and different-cluster and construct a feature score for both constraints. It takes ratio or difference of feature score vectors and selects the indices with smallest values. Graph laplacian is constructed for approximated nonlinear manifold structure.
do.cscoreg(X, label, ndim = 2, score = c("ratio", "difference"), lambda = 0.5)
do.cscoreg(X, label, ndim = 2, score = c("ratio", "difference"), lambda = 0.5)
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
score |
type of score measures from two score vectors of same- and different-class pairwise constraints; |
lambda |
a penalty value for different-class pairwise constraints. Only valid for |
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a length- vector of constraint scores. Indices with smallest values are selected.
a length- vector of indices with highest scores.
a whose columns are basis for projection.
name of the algorithm.
Kisung You
Zhang D, Chen S, Zhou Z (2008). “Constraint Score: A New Filter Method for Feature Selection with Pairwise Constraints.” Pattern Recognition, 41(5), 1440–1451.
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) set.seed(100) subid = sample(1:150,50) iris.dat = as.matrix(iris[subid,1:4]) iris.lab = as.factor(iris[subid,5]) ## try different strategy out1 = do.cscoreg(iris.dat, iris.lab, score="ratio") out2 = do.cscoreg(iris.dat, iris.lab, score="difference", lambda=0) out3 = do.cscoreg(iris.dat, iris.lab, score="difference", lambda=0.5) out4 = do.cscoreg(iris.dat, iris.lab, score="difference", lambda=1) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(2,2)) plot(out1$Y, pch=19, col=iris.lab, main="ratio") plot(out2$Y, pch=19, col=iris.lab, main="diff/lambda=0") plot(out3$Y, pch=19, col=iris.lab, main="diff/lambda=0.5") plot(out4$Y, pch=19, col=iris.lab, main="diff/lambda=1") par(opar)
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) set.seed(100) subid = sample(1:150,50) iris.dat = as.matrix(iris[subid,1:4]) iris.lab = as.factor(iris[subid,5]) ## try different strategy out1 = do.cscoreg(iris.dat, iris.lab, score="ratio") out2 = do.cscoreg(iris.dat, iris.lab, score="difference", lambda=0) out3 = do.cscoreg(iris.dat, iris.lab, score="difference", lambda=0.5) out4 = do.cscoreg(iris.dat, iris.lab, score="difference", lambda=1) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(2,2)) plot(out1$Y, pch=19, col=iris.lab, main="ratio") plot(out2$Y, pch=19, col=iris.lab, main="diff/lambda=0") plot(out3$Y, pch=19, col=iris.lab, main="diff/lambda=0.5") plot(out4$Y, pch=19, col=iris.lab, main="diff/lambda=1") par(opar)
Doublue Adjacency Graphs-based Discriminant Neighborhood Embedding (DAG-DNE) is a variant of DNE. As its name suggests, it introduces two adjacency graphs for homogeneous and heterogeneous samples accordaing to their labels.
do.dagdne( X, label, ndim = 2, numk = max(ceiling(nrow(X)/10), 2), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
do.dagdne( X, label, ndim = 2, numk = max(ceiling(nrow(X)/10), 2), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
numk |
the number of neighboring points for k-nn graph construction. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Ding C, Zhang L (2015). “Double Adjacency Graphs-Based Discriminant Neighborhood Embedding.” Pattern Recognition, 48(5), 1734–1742.
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different numbers for neighborhood size out1 = do.dagdne(X, label, numk=5) out2 = do.dagdne(X, label, numk=10) out3 = do.dagdne(X, label, numk=20) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="nbd size=5", col=label, pch=19) plot(out2$Y, main="nbd size=10",col=label, pch=19) plot(out3$Y, main="nbd size=20",col=label, pch=19) par(opar)
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different numbers for neighborhood size out1 = do.dagdne(X, label, numk=5) out2 = do.dagdne(X, label, numk=10) out3 = do.dagdne(X, label, numk=20) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="nbd size=5", col=label, pch=19) plot(out2$Y, main="nbd size=10",col=label, pch=19) plot(out3$Y, main="nbd size=20",col=label, pch=19) par(opar)
Diversity-Induced Self-Representation (DISR) is a feature selection method that aims at
ranking features by both representativeness and diversity. Self-representation controlled by
lbd1
lets the most representative features to be selected, while lbd2
penalizes
the degree of inter-feature similarity to enhance diversity from the chosen features.
do.disr( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), lbd1 = 1, lbd2 = 1 )
do.disr( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), lbd1 = 1, lbd2 = 1 )
X |
an |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
lbd1 |
nonnegative number to control the degree of regularization of the self-representation. |
lbd2 |
nonnegative number to control the degree of feature diversity. |
a named list containing
an matrix whose rows are embedded observations.
a length- vector of indices with highest scores.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Liu Y, Liu K, Zhang C, Wang J, Wang X (2017). “Unsupervised Feature Selection via Diversity-Induced Self-Representation.” Neurocomputing, 219, 350–363.
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) #### try different lbd combinations out1 = do.disr(X, lbd1=1, lbd2=1) out2 = do.disr(X, lbd1=1, lbd2=5) out3 = do.disr(X, lbd1=5, lbd2=1) out4 = do.disr(X, lbd1=5, lbd2=5) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(2,2)) plot(out1$Y, main="(lbd1,lbd2)=(1,1)", col=label, pch=19) plot(out2$Y, main="(lbd1,lbd2)=(1,5)", col=label, pch=19) plot(out3$Y, main="(lbd1,lbd2)=(5,1)", col=label, pch=19) plot(out4$Y, main="(lbd1,lbd2)=(5,5)", col=label, pch=19) par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) #### try different lbd combinations out1 = do.disr(X, lbd1=1, lbd2=1) out2 = do.disr(X, lbd1=1, lbd2=5) out3 = do.disr(X, lbd1=5, lbd2=1) out4 = do.disr(X, lbd1=5, lbd2=5) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(2,2)) plot(out1$Y, main="(lbd1,lbd2)=(1,1)", col=label, pch=19) plot(out2$Y, main="(lbd1,lbd2)=(1,5)", col=label, pch=19) plot(out3$Y, main="(lbd1,lbd2)=(5,1)", col=label, pch=19) plot(out4$Y, main="(lbd1,lbd2)=(5,5)", col=label, pch=19) par(opar)
do.dm
discovers low-dimensional manifold structure embedded in high-dimensional
data space using Diffusion Maps (DM). It exploits diffusion process and distances in data space to find
equivalent representations in low-dimensional space.
do.dm( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten"), bandwidth = 1, timescale = 1, multiscale = FALSE )
do.dm( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten"), bandwidth = 1, timescale = 1, multiscale = FALSE )
X |
an |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
bandwidth |
a scaling parameter for diffusion kernel. Default is 1 and should be a nonnegative real number. |
timescale |
a target scale whose value represents behavior of heat kernels at time t. Default is 1 and should be a positive real number. |
multiscale |
logical; |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a vector of eigenvalues for Markov transition matrix.
Kisung You
Nadler B, Lafon S, Coifman RR, Kevrekidis IG (2005). “Diffusion Maps, Spectral Clustering and Eigenfunctions of Fokker-Planck Operators.” In Proceedings of the 18th International Conference on Neural Information Processing Systems, NIPS'05, 955–962.
Coifman RR, Lafon S (2006). “Diffusion Maps.” Applied and Computational Harmonic Analysis, 21(1), 5–30.
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare different bandwidths out1 <- do.dm(X,bandwidth=10) out2 <- do.dm(X,bandwidth=100) out3 <- do.dm(X,bandwidth=1000) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="DM::bandwidth=10") plot(out2$Y, pch=19, col=label, main="DM::bandwidth=100") plot(out3$Y, pch=19, col=label, main="DM::bandwidth=1000") par(opar)
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare different bandwidths out1 <- do.dm(X,bandwidth=10) out2 <- do.dm(X,bandwidth=100) out3 <- do.dm(X,bandwidth=1000) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="DM::bandwidth=10") plot(out2$Y, pch=19, col=label, main="DM::bandwidth=100") plot(out3$Y, pch=19, col=label, main="DM::bandwidth=1000") par(opar)
Discriminant Neighborhood Embedding (DNE) is a supervised subspace learning method. DNE tries to move multi-class data points in high-dimensional space in accordance with local intra-class attraction and inter-class repulsion.
do.dne( X, label, ndim = 2, numk = max(ceiling(nrow(X)/10), 2), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
do.dne( X, label, ndim = 2, numk = max(ceiling(nrow(X)/10), 2), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
numk |
the number of neighboring points for k-nn graph construction. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Zhang W, Xue X, Lu H, Guo Y (2006). “Discriminant Neighborhood Embedding for Classification.” Pattern Recognition, 39(11), 2240–2243.
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different numbers for neighborhood size out1 = do.dne(X, label, numk=5) out2 = do.dne(X, label, numk=10) out3 = do.dne(X, label, numk=20) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="DNE::nbd size=5", col=label, pch=19) plot(out2$Y, main="DNE::nbd size=10", col=label, pch=19) plot(out3$Y, main="DNE::nbd size=20", col=label, pch=19) par(opar)
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different numbers for neighborhood size out1 = do.dne(X, label, numk=5) out2 = do.dne(X, label, numk=10) out3 = do.dne(X, label, numk=20) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="DNE::nbd size=5", col=label, pch=19) plot(out2$Y, main="DNE::nbd size=10", col=label, pch=19) plot(out3$Y, main="DNE::nbd size=20", col=label, pch=19) par(opar)
Dual view of PPCA optimizes the latent variables directly from a simple
Bayesian approach to model the noise using the multivariate Gaussian distribution
of zero mean and spherical covariance . When
is too small,
the algorithm automatically returns an error and provides a guideline for minimal
value that enables successful computation.
do.dppca(X, ndim = 2, beta = 1)
do.dppca(X, ndim = 2, beta = 1)
X |
an |
ndim |
an integer-valued target dimension (default: 2). |
beta |
the degree for modeling the level of noise (default: 1). |
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
name of the algorithm.
Lawrence N (2005). “Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models.” Journal of Machine Learning Research, 6(60), 1783-1816.
## load iris data data(iris) X = as.matrix(iris[,1:4]) lab = as.factor(iris[,5]) ## compare difference choices of 'beta' embed1 <- do.dppca(X, beta=0.2) embed2 <- do.dppca(X, beta=1) embed3 <- do.dppca(X, beta=5) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3), pty="s") plot(embed1$Y , col=lab, pch=19, main="beta=0.2") plot(embed2$Y , col=lab, pch=19, main="beta=1") plot(embed3$Y , col=lab, pch=19, main="beta=5") par(opar)
## load iris data data(iris) X = as.matrix(iris[,1:4]) lab = as.factor(iris[,5]) ## compare difference choices of 'beta' embed1 <- do.dppca(X, beta=0.2) embed2 <- do.dppca(X, beta=1) embed3 <- do.dppca(X, beta=5) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3), pty="s") plot(embed1$Y , col=lab, pch=19, main="beta=0.2") plot(embed2$Y , col=lab, pch=19, main="beta=1") plot(embed3$Y , col=lab, pch=19, main="beta=5") par(opar)
Discriminative Sparsity Preserving Projection (DSPP) is a supervised dimension reduction method that employs sparse representation model to adaptively build both intrinsic adjacency graph and penalty graph. It follows an integration of global within-class structure into manifold learning under exploiting discriminative nature provided from label information.
do.dspp( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), lambda = 1, rho = 1 )
do.dspp( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), lambda = 1, rho = 1 )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
lambda |
regularization parameter for constructing sparsely weighted network. |
rho |
a parameter for balancing the local and global contribution. |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Gao Q, Huang Y, Zhang H, Hong X, Li K, Wang Y (2015). “Discriminative Sparsity Preserving Projections for Image Recognition.” Pattern Recognition, 48(8), 2543–2553.
## Not run: ## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different rho values out1 <- do.dspp(X, label, ndim=2, rho=0.01) out2 <- do.dspp(X, label, ndim=2, rho=0.1) out3 <- do.dspp(X, label, ndim=2, rho=1) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="rho=0.01", col=label, pch=19) plot(out2$Y, main="rho=0.1", col=label, pch=19) plot(out3$Y, main="rho=1", col=label, pch=19) par(opar) ## End(Not run)
## Not run: ## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different rho values out1 <- do.dspp(X, label, ndim=2, rho=0.01) out2 <- do.dspp(X, label, ndim=2, rho=0.1) out3 <- do.dspp(X, label, ndim=2, rho=1) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="rho=0.01", col=label, pch=19) plot(out2$Y, main="rho=0.1", col=label, pch=19) plot(out3$Y, main="rho=1", col=label, pch=19) par(opar) ## End(Not run)
Distinguishing Variance Embedding (DVE) is an unsupervised nonlinear manifold learning method. It can be considered as a balancing method between Maximum Variance Unfolding and Laplacian Eigenmaps. The algorithm unfolds the data by maximizing the global variance subject to the locality-preserving constraint. Instead of defining certain kernel, it applies local scaling scheme in that it automatically computes adaptive neighborhood-based kernel bandwidth.
do.dve( X, ndim = 2, type = c("proportion", 0.1), preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten") )
do.dve( X, ndim = 2, type = c("proportion", 0.1), preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
Wang Q, Li J (2009). “Combining Local and Global Information for Nonlinear Dimensionality Reduction.” Neurocomputing, 72(10-12), 2235–2241.
Qinggang W, Jianwei L, Xuchu W (2010). “Distinguishing Variance Embedding.” Image and Vision Computing, 28(6), 872–880.
## generate swiss-roll dataset of size 100 set.seed(100) X <- aux.gensamples(dname="crown", n=100) ## try different nbd size out1 <- do.dve(X, type=c("proportion",0.5)) out2 <- do.dve(X, type=c("proportion",0.7)) out3 <- do.dve(X, type=c("proportion",0.9)) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="50% connected") plot(out2$Y, main="70% connected") plot(out3$Y, main="90% connected") par(opar)
## generate swiss-roll dataset of size 100 set.seed(100) X <- aux.gensamples(dname="crown", n=100) ## try different nbd size out1 <- do.dve(X, type=c("proportion",0.5)) out2 <- do.dve(X, type=c("proportion",0.7)) out3 <- do.dve(X, type=c("proportion",0.9)) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="50% connected") plot(out2$Y, main="70% connected") plot(out3$Y, main="90% connected") par(opar)
Local Discriminant Embedding (LDE) suffers from a small-sample-size problem where scatter matrix may suffer from rank deficiency. Exponential LDE (ELDE) provides not only a remedy for the problem using matrix exponential, but also a flexible framework to transform original data into a new space via distance diffusion mapping similar to kernel-based nonlinear mapping.
do.elde( X, label, ndim = 2, t = 1, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), k1 = max(ceiling(nrow(X)/10), 2), k2 = max(ceiling(nrow(X)/10), 2) )
do.elde( X, label, ndim = 2, t = 1, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), k1 = max(ceiling(nrow(X)/10), 2), k2 = max(ceiling(nrow(X)/10), 2) )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
t |
kernel bandwidth in |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
k1 |
the number of same-class neighboring points (homogeneous neighbors). |
k2 |
the number of different-class neighboring points (heterogeneous neighbors). |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Dornaika F, Bosaghzadeh A (2013). “Exponential Local Discriminant Embedding and Its Application to Face Recognition.” IEEE Transactions on Cybernetics, 43(3), 921–934.
## generate data of 3 types with difference set.seed(100) dt1 = aux.gensamples(n=20)-50 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+50 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## try different kernel bandwidth out1 = do.elde(X, label, t=1) out2 = do.elde(X, label, t=10) out3 = do.elde(X, label, t=100) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="ELDE::bandwidth=1") plot(out2$Y, pch=19, col=label, main="ELDE::bandwidth=10") plot(out3$Y, pch=19, col=label, main="ELDE::bandwidth=100") par(opar)
## generate data of 3 types with difference set.seed(100) dt1 = aux.gensamples(n=20)-50 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+50 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## try different kernel bandwidth out1 = do.elde(X, label, t=1) out2 = do.elde(X, label, t=10) out3 = do.elde(X, label, t=100) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="ELDE::bandwidth=1") plot(out2$Y, pch=19, col=label, main="ELDE::bandwidth=10") plot(out3$Y, pch=19, col=label, main="ELDE::bandwidth=100") par(opar)
Enhanced Locality Preserving Projection proposed in 2013 (ELPP2) is built upon a parameter-free philosophy from PFLPP. It further aims to exclude its projection to be uncorrelated in the sense that the scatter matrix is placed in a generalized eigenvalue problem.
do.elpp2( X, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
do.elpp2( X, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a whose columns are basis for projection.
a list containing information for out-of-sample prediction.
Kisung You
Dornaika F, Assoum A (2013). “Enhanced and Parameterless Locality Preserving Projections for Face Recognition.” Neurocomputing, 99, 448–457.
## use iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## compare with PCA and PFLPP out1 = do.pca(X, ndim=2) out2 = do.pflpp(X, ndim=2) out3 = do.elpp2(X, ndim=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=lab, main="PCA") plot(out2$Y, pch=19, col=lab, main="Parameter-Free LPP") plot(out3$Y, pch=19, col=lab, main="Enhanced LPP (2013)") par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## compare with PCA and PFLPP out1 = do.pca(X, ndim=2) out2 = do.pflpp(X, ndim=2) out3 = do.elpp2(X, ndim=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=lab, main="PCA") plot(out2$Y, pch=19, col=lab, main="Parameter-Free LPP") plot(out3$Y, pch=19, col=lab, main="Enhanced LPP (2013)") par(opar)
Elastic Net is a regularized regression method by solving
where iis
response
variable in our method. The method can be used in feature selection like LASSO.
do.enet(X, response, ndim = 2, lambda1 = 1, lambda2 = 1)
do.enet(X, response, ndim = 2, lambda1 = 1, lambda2 = 1)
X |
an |
response |
a length- |
ndim |
an integer-valued target dimension. |
lambda1 |
|
lambda2 |
|
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a length- vector of indices with highest scores.
a whose columns are basis for projection.
name of the algorithm.
Kisung You
Zou H, Hastie T (2005). “Regularization and Variable Selection via the Elastic Net.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320.
## generate swiss roll with auxiliary dimensions ## it follows reference example from LSIR paper. set.seed(100) n = 123 theta = runif(n) h = runif(n) t = (1+2*theta)*(3*pi/2) X = array(0,c(n,10)) X[,1] = t*cos(t) X[,2] = 21*h X[,3] = t*sin(t) X[,4:10] = matrix(runif(7*n), nrow=n) ## corresponding response vector y = sin(5*pi*theta)+(runif(n)*sqrt(0.1)) ## try different regularization parameters out1 = do.enet(X, y, lambda1=0.01) out2 = do.enet(X, y, lambda1=1) out3 = do.enet(X, y, lambda1=100) ## extract embeddings Y1 = out1$Y; Y2 = out2$Y; Y3 = out3$Y ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(Y1, pch=19, main="ENET::lambda1=0.01") plot(Y2, pch=19, main="ENET::lambda1=1") plot(Y3, pch=19, main="ENET::lambda1=100") par(opar)
## generate swiss roll with auxiliary dimensions ## it follows reference example from LSIR paper. set.seed(100) n = 123 theta = runif(n) h = runif(n) t = (1+2*theta)*(3*pi/2) X = array(0,c(n,10)) X[,1] = t*cos(t) X[,2] = 21*h X[,3] = t*sin(t) X[,4:10] = matrix(runif(7*n), nrow=n) ## corresponding response vector y = sin(5*pi*theta)+(runif(n)*sqrt(0.1)) ## try different regularization parameters out1 = do.enet(X, y, lambda1=0.01) out2 = do.enet(X, y, lambda1=1) out3 = do.enet(X, y, lambda1=100) ## extract embeddings Y1 = out1$Y; Y2 = out2$Y; Y3 = out3$Y ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(Y1, pch=19, main="ENET::lambda1=0.01") plot(Y2, pch=19, main="ENET::lambda1=1") plot(Y3, pch=19, main="ENET::lambda1=100") par(opar)
Extended LPP and Supervised LPP are two variants of the celebrated Locality Preserving Projection (LPP) algorithm for dimension reduction. Their combination, Extended Supervised LPP, is a combination of two algorithmic novelties in one that it reflects discriminant information with realistic distance measure via Z-score function.
do.eslpp( X, label, ndim = 2, numk = max(ceiling(nrow(X)/10), 2), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
do.eslpp( X, label, ndim = 2, numk = max(ceiling(nrow(X)/10), 2), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
numk |
the number of neighboring points for k-nn graph construction. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Zheng Z, Yang F, Tan W, Jia J, Yang J (2007). “Gabor Feature-Based Face Recognition Using Supervised Locality Preserving Projection.” Signal Processing, 87(10), 2473–2483.
Shikkenawis G, Mitra SK (2012). “Improving the Locality Preserving Projection for Dimensionality Reduction.” In 2012 Third International Conference on Emerging Applications of Information Technology, 161–164.
## generate data of 2 types with clear difference set.seed(100) diff = 50 dt1 = aux.gensamples(n=50)-diff; dt2 = aux.gensamples(n=50)+diff; ## merge the data and create a label correspondingly Y = rbind(dt1,dt2) label = rep(1:2, each=50) ## compare LPP, SLPP and ESLPP outLPP <- do.lpp(Y) outSLPP <- do.slpp(Y, label) outESLPP <- do.eslpp(Y, label) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(outLPP$Y, col=label, pch=19, main="LPP") plot(outSLPP$Y, col=label, pch=19, main="SLPP") plot(outESLPP$Y, col=label, pch=19, main="ESLPP") par(opar)
## generate data of 2 types with clear difference set.seed(100) diff = 50 dt1 = aux.gensamples(n=50)-diff; dt2 = aux.gensamples(n=50)+diff; ## merge the data and create a label correspondingly Y = rbind(dt1,dt2) label = rep(1:2, each=50) ## compare LPP, SLPP and ESLPP outLPP <- do.lpp(Y) outSLPP <- do.slpp(Y, label) outESLPP <- do.eslpp(Y, label) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(outLPP$Y, col=label, pch=19, main="LPP") plot(outSLPP$Y, col=label, pch=19, main="SLPP") plot(outESLPP$Y, col=label, pch=19, main="ESLPP") par(opar)
Extended Locality Preserving Projection (EXTLPP) is an unsupervised dimension reduction algorithm with a bit of flavor in adopting discriminative idea by nature. It raises a question on the data points at moderate distance in that a Z-shaped function is introduced in defining similarity derived from Euclidean distance.
do.extlpp( X, ndim = 2, numk = max(ceiling(nrow(X)/10), 2), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
do.extlpp( X, ndim = 2, numk = max(ceiling(nrow(X)/10), 2), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
ndim |
an integer-valued target dimension. |
numk |
the number of neighboring points for k-nn graph construction. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Shikkenawis G, Mitra SK (2012). “Improving the Locality Preserving Projection for Dimensionality Reduction.” In 2012 Third International Conference on Emerging Applications of Information Technology, 161–164.
## generate data set.seed(100) X <- aux.gensamples(n=75) ## run Extended LPP with different neighborhood graph out1 <- do.extlpp(X, numk=5) out2 <- do.extlpp(X, numk=10) out3 <- do.extlpp(X, numk=25) ## Visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="EXTLPP::k=5") plot(out2$Y, main="EXTLPP::k=10") plot(out3$Y, main="EXTLPP::k=25") par(opar)
## generate data set.seed(100) X <- aux.gensamples(n=75) ## run Extended LPP with different neighborhood graph out1 <- do.extlpp(X, numk=5) out2 <- do.extlpp(X, numk=10) out3 <- do.extlpp(X, numk=25) ## Visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="EXTLPP::k=5") plot(out2$Y, main="EXTLPP::k=10") plot(out3$Y, main="EXTLPP::k=25") par(opar)
do.fa
is an optimization-based implementation of a popular technique for Exploratory Data Analysis.
It is closely related to principal component analysis.
do.fa(X, ndim = 2, ...)
do.fa(X, ndim = 2, ...)
X |
an |
ndim |
an integer-valued number of loading variables, or target dimension. |
... |
extra parameters including
|
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a whose columns are basis for projection.
a matrix whose rows are extracted loading factors.
a length- vector of estimated noise.
name of the algorithm.
Kisung You
Spearman C (1904). “"General Intelligence," Objectively Determined and Measured.” The American Journal of Psychology, 15(2), 201.
## use iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## compare with PCA and MDS out1 <- do.fa(X, ndim=2) out2 <- do.mds(X, ndim=2) out3 <- do.pca(X, ndim=2) ## visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=lab, main="Factor Analysis") plot(out2$Y, pch=19, col=lab, main="MDS") plot(out3$Y, pch=19, col=lab, main="PCA") par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## compare with PCA and MDS out1 <- do.fa(X, ndim=2) out2 <- do.mds(X, ndim=2) out3 <- do.pca(X, ndim=2) ## visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=lab, main="Factor Analysis") plot(out2$Y, pch=19, col=lab, main="MDS") plot(out3$Y, pch=19, col=lab, main="PCA") par(opar)
do.fastmap
is an implementation of FastMap algorithm. Though
it shares similarities with MDS, it is innately a nonlinear method that makes an iterative update
for the projection information using pairwise distance information.
do.fastmap( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate") )
do.fastmap( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate") )
X |
an |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
Faloutsos C, Lin K (1995). “FastMap: A Fast Algorithm for Indexing, Data-Mining and Visualization of Traditional and Multimedia Datasets.” In Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data - SIGMOD '95, 163–174.
## Not run: ## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## let's compare with other methods out1 <- do.pca(X, ndim=2) # PCA out2 <- do.mds(X, ndim=2) # Classical MDS out3 <- do.fastmap(X, ndim=2) # FastMap ## visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="PCA") plot(out2$Y, pch=19, col=label, main="MDS") plot(out3$Y, pch=19, col=label, main="FastMap") par(opar) ## End(Not run)
## Not run: ## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## let's compare with other methods out1 <- do.pca(X, ndim=2) # PCA out2 <- do.mds(X, ndim=2) # Classical MDS out3 <- do.fastmap(X, ndim=2) # FastMap ## visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="PCA") plot(out2$Y, pch=19, col=label, main="MDS") plot(out3$Y, pch=19, col=label, main="FastMap") par(opar) ## End(Not run)
The FOS-MOD algorithm (Wei and Billings 2007) is an unsupervised algorithm that selects a desired number of features in a forward manner by ranking the features using the squared correlation coefficient and sequential orthogonalization.
do.fosmod(X, ndim = 2, ...)
do.fosmod(X, ndim = 2, ...)
X |
an |
ndim |
an integer-valued target dimension (default: 2). |
... |
extra parameters including
|
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a length- vector of indices with highest scores.
a whose columns are basis for projection.
a list containing information for out-of-sample prediction.
name of the algorithm.
Wei H, Billings S (2007). “Feature Subset Selection and Ranking for Data Dimensionality Reduction.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(1), 162–166. ISSN 0162-8828.
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) set.seed(100) subid <- sample(1:150, 50) iris.dat <- as.matrix(iris[subid,1:4]) iris.lab <- as.factor(iris[subid,5]) ## compare with other methods out1 = do.fosmod(iris.dat) out2 = do.lscore(iris.dat) out3 = do.fscore(iris.dat, iris.lab) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=iris.lab, main="FOS-MOD") plot(out2$Y, pch=19, col=iris.lab, main="Laplacian Score") plot(out3$Y, pch=19, col=iris.lab, main="Fisher Score") par(opar)
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) set.seed(100) subid <- sample(1:150, 50) iris.dat <- as.matrix(iris[subid,1:4]) iris.lab <- as.factor(iris[subid,5]) ## compare with other methods out1 = do.fosmod(iris.dat) out2 = do.lscore(iris.dat) out3 = do.fscore(iris.dat, iris.lab) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=iris.lab, main="FOS-MOD") plot(out2$Y, pch=19, col=iris.lab, main="Laplacian Score") plot(out3$Y, pch=19, col=iris.lab, main="Fisher Score") par(opar)
Fisher Score (Fisher 1936) is a supervised linear feature extraction method. For each feature/variable, it computes Fisher score, a ratio of between-class variance to within-class variance. The algorithm selects variables with largest Fisher scores and returns an indicator projection matrix.
do.fscore(X, label, ndim = 2, ...)
do.fscore(X, label, ndim = 2, ...)
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
... |
extra parameters including
|
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a length- vector of indices with highest scores.
a whose columns are basis for projection.
a list containing information for out-of-sample prediction.
name of the algorithm.
Fisher RA (1936). “THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS.” Annals of Eugenics, 7(2), 179–188.
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) set.seed(100) subid = sample(1:150,50) iris.dat = as.matrix(iris[subid,1:4]) iris.lab = as.factor(iris[subid,5]) ## compare Fisher score with LDA out1 = do.lda(iris.dat, iris.lab) out2 = do.fscore(iris.dat, iris.lab) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, pch=19, col=iris.lab, main="LDA") plot(out2$Y, pch=19, col=iris.lab, main="Fisher Score") par(opar)
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) set.seed(100) subid = sample(1:150,50) iris.dat = as.matrix(iris[subid,1:4]) iris.lab = as.factor(iris[subid,5]) ## compare Fisher score with LDA out1 = do.lda(iris.dat, iris.lab) out2 = do.fscore(iris.dat, iris.lab) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, pch=19, col=iris.lab, main="LDA") plot(out2$Y, pch=19, col=iris.lab, main="Fisher Score") par(opar)
Feature Subset Selection using Expectation-Maximization (FSSEM) takes a wrapper approach to feature selection problem.
It iterates over optimizing the selection of variables by incrementally including each variable that adds the most
significant amount of scatter separability from a labeling obtained by Gaussian mixture model. This method is
quite computation intensive as it pertains to multiple fitting of GMM. Setting smaller max.k
for each round of
EM algorithm as well as target dimension ndim
would ease the burden.
do.fssem( X, ndim = 2, max.k = 10, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate") )
do.fssem( X, ndim = 2, max.k = 10, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate") )
X |
an |
ndim |
an integer-valued target dimension. |
max.k |
maximum number of clusters for GMM fitting with EM algorithms. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Dy JG, Brodley CE (2004). “Feature Selection for Unsupervised Learning.” J. Mach. Learn. Res., 5, 845–889.
## run FSSEM with IRIS dataset - select 2 of 4 variables data(iris) irismat = as.matrix(iris[,2:4]) ## select 50 observations for CRAN-purpose small example id50 = sample(1:nrow(irismat), 50) sel.dat = irismat[id50,] sel.lab = as.factor(iris[id50,5]) ## run and visualize out0 = do.fssem(sel.dat, ndim=2, max.k=3) opar = par(no.readonly=TRUE) plot(out0$Y, main="small run", col=sel.lab, pch=19) par(opar) ## Not run: ## NOT-FOR-CRAN example; run at your machine ! ## try different maximum number of clusters out3 = do.fssem(irismat, ndim=2, max.k=3) out6 = do.fssem(irismat, ndim=2, max.k=6) out9 = do.fssem(irismat, ndim=2, max.k=9) ## visualize cols = as.factor(iris[,5]) opar = par(no.readonly=TRUE) par(mfrow=c(3,1)) plot(out3$Y, main="max k=3", col=cols) plot(out6$Y, main="max k=6", col=cols) plot(out9$Y, main="max k=9", col=cols) par(opar) ## End(Not run)
## run FSSEM with IRIS dataset - select 2 of 4 variables data(iris) irismat = as.matrix(iris[,2:4]) ## select 50 observations for CRAN-purpose small example id50 = sample(1:nrow(irismat), 50) sel.dat = irismat[id50,] sel.lab = as.factor(iris[id50,5]) ## run and visualize out0 = do.fssem(sel.dat, ndim=2, max.k=3) opar = par(no.readonly=TRUE) plot(out0$Y, main="small run", col=sel.lab, pch=19) par(opar) ## Not run: ## NOT-FOR-CRAN example; run at your machine ! ## try different maximum number of clusters out3 = do.fssem(irismat, ndim=2, max.k=3) out6 = do.fssem(irismat, ndim=2, max.k=6) out9 = do.fssem(irismat, ndim=2, max.k=9) ## visualize cols = as.factor(iris[,5]) opar = par(no.readonly=TRUE) par(mfrow=c(3,1)) plot(out3$Y, main="max k=3", col=cols) plot(out6$Y, main="max k=6", col=cols) plot(out9$Y, main="max k=9", col=cols) par(opar) ## End(Not run)
Hyperbolic Distance Recovery and Approximation, also known as hydra
in short,
implements embedding of distance-based data into hyperbolic space represented as the Poincare disk,
which is interior of a hypersphere.
do.hydra(X, ndim = 2, ...)
do.hydra(X, ndim = 2, ...)
X |
an |
ndim |
an integer-valued target dimension (default: 2). |
... |
extra parameters including
|
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations in the Poincare disk.
name of the algorithm.
Keller-Ressel M, Nargang S (2020). “Hydra: A Method for Strain-Minimizing Hyperbolic Embedding of Network- and Distance-Based Data.” Journal of Complex Networks, 8(1), cnaa002. ISSN 2051-1329.
## load iris data data(iris) X = as.matrix(iris[,1:4]) lab = as.factor(iris[,5]) ## multiple runs with varying curvatures embed1 <- do.hydra(X, kappa=0.1) embed2 <- do.hydra(X, kappa=1) embed3 <- do.hydra(X, kappa=10) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3), pty="s") plot(embed1$Y , col=lab, pch=19, main="kappa=0.1") plot(embed2$Y , col=lab, pch=19, main="kappa=1") plot(embed3$Y , col=lab, pch=19, main="kappa=10") par(opar)
## load iris data data(iris) X = as.matrix(iris[,1:4]) lab = as.factor(iris[,5]) ## multiple runs with varying curvatures embed1 <- do.hydra(X, kappa=0.1) embed2 <- do.hydra(X, kappa=1) embed3 <- do.hydra(X, kappa=10) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3), pty="s") plot(embed1$Y , col=lab, pch=19, main="kappa=0.1") plot(embed2$Y , col=lab, pch=19, main="kappa=1") plot(embed3$Y , col=lab, pch=19, main="kappa=10") par(opar)
do.ica
is an R implementation of FastICA algorithm, which aims at
finding weight vectors that maximize a measure of non-Gaussianity of projected data.
FastICA is initiated with pre-whitening of the data. Single and multiple component
extraction are both supported. For more detailed information on ICA and FastICA algorithm,
see this Wikipedia page.
do.ica( X, ndim = 2, type = "logcosh", tpar = 1, sym = FALSE, tol = 1e-06, redundancy = TRUE, maxiter = 100 )
do.ica( X, ndim = 2, type = "logcosh", tpar = 1, sym = FALSE, tol = 1e-06, redundancy = TRUE, maxiter = 100 )
X |
an |
ndim |
an integer-valued target dimension. |
type |
nonquadratic function, one of |
tpar |
a numeric parameter for |
sym |
a logical value; |
tol |
stopping criterion for iterative update. |
redundancy |
a logical value; |
maxiter |
maximum number of iterations allowed.
|
In most of ICA literature, we have
where is an unmixing matrix for
the given data
. In order to preserve consistency throughout our package, we changed
the notation;
a projected matrix for
, and
projection
for unmixing matrix .
Kisung You
Hyvarinen A, Karhunen J, Oja E (2001). Independent Component Analysis. J. Wiley, New York. ISBN 978-0-471-40540-5.
## use iris dataset data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## 1. use logcosh function for transformation output1 <- do.ica(X,ndim=2,type="logcosh") ## 2. use exponential function for transformation output2 <- do.ica(X,ndim=2,type="exp") ## 3. use polynomial function for transformation output3 <- do.ica(X,ndim=2,type="poly") ## Visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, col=lab, pch=19, main="ICA::logcosh") plot(output2$Y, col=lab, pch=19, main="ICA::exp") plot(output3$Y, col=lab, pch=19, main="ICA::poly") par(opar)
## use iris dataset data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## 1. use logcosh function for transformation output1 <- do.ica(X,ndim=2,type="logcosh") ## 2. use exponential function for transformation output2 <- do.ica(X,ndim=2,type="exp") ## 3. use polynomial function for transformation output3 <- do.ica(X,ndim=2,type="poly") ## Visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, col=lab, pch=19, main="ICA::logcosh") plot(output2$Y, col=lab, pch=19, main="ICA::exp") plot(output3$Y, col=lab, pch=19, main="ICA::poly") par(opar)
Interactive Document Map originates from text analysis to generate maps of documents by placing
similar documents in the same neighborhood. After defining pairwise distance with cosine similarity,
authors asserted to use either NNP
or FastMap
as an engine behind.
do.idmap( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), engine = c("NNP", "FastMap") )
do.idmap( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), engine = c("NNP", "FastMap") )
X |
an |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
engine |
either |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Minghim R, Paulovich FV, de Andrade Lopes A (2006). “Content-Based Text Mapping Using Multi-Dimensional Projections for Exploration of Document Collections.” In Erbacher RF, Roberts JC, Gröhn MT, Börner K (eds.), Visualization and Data Analysis, 60600S.
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## let's compare with other methods out1 <- do.pca(X, ndim=2) out2 <- do.lda(X, ndim=2, label=lab) out3 <- do.idmap(X, ndim=2, engine="NNP") ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=lab, main="PCA") plot(out2$Y, pch=19, col=lab, main="LDA") plot(out3$Y, pch=19, col=lab, main="IDMAP") par(opar)
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## let's compare with other methods out1 <- do.pca(X, ndim=2) out2 <- do.lda(X, ndim=2, label=lab) out3 <- do.idmap(X, ndim=2, engine="NNP") ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=lab, main="PCA") plot(out2$Y, pch=19, col=lab, main="LDA") plot(out3$Y, pch=19, col=lab, main="IDMAP") par(opar)
Conventional LTSA method relies on PCA for approximating local tangent spaces. Improved LTSA (ILTSA) provides a remedy that can efficiently recover the geometric structure of data manifolds even when data are sparse or non-uniformly distributed.
do.iltsa( X, ndim = 2, type = c("proportion", 0.25), symmetric = c("union", "intersect", "asymmetric"), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), t = 10 )
do.iltsa( X, ndim = 2, type = c("proportion", 0.25), symmetric = c("union", "intersect", "asymmetric"), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), t = 10 )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
one of |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
t |
heat kernel bandwidth parameter in |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
Zhang P, Qiao H, Zhang B (2011). “An Improved Local Tangent Space Alignment Method for Manifold Learning.” Pattern Recognition Letters, 32(2), 181–189.
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different bandwidth size out1 <- do.iltsa(X, t=1) out2 <- do.iltsa(X, t=10) out3 <- do.iltsa(X, t=100) ## Visualize two comparisons opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="ILTSA::t=1") plot(out2$Y, pch=19, col=label, main="ILTSA::t=10") plot(out3$Y, pch=19, col=label, main="ILTSA::t=100") par(opar)
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different bandwidth size out1 <- do.iltsa(X, t=1) out2 <- do.iltsa(X, t=10) out3 <- do.iltsa(X, t=100) ## Visualize two comparisons opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="ILTSA::t=1") plot(out2$Y, pch=19, col=label, main="ILTSA::t=10") plot(out3$Y, pch=19, col=label, main="ILTSA::t=100") par(opar)
do.isomap
is an efficient implementation of a well-known Isomap method
by Tenenbaum et al (2000). Its novelty comes from applying classical multidimensional
scaling on nonlinear manifold, which is approximated as a graph.
do.isomap( X, ndim = 2, type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), weight = FALSE, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
do.isomap( X, ndim = 2, type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), weight = FALSE, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
one of |
weight |
|
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
Silva VD, Tenenbaum JB (2003). “Global Versus Local Methods in Nonlinear Dimensionality Reduction.” In Becker S, Thrun S, Obermayer K (eds.), Advances in Neural Information Processing Systems 15, 721–728. MIT Press.
## generate data set.seed(100) X <- aux.gensamples(n=123) ## 1. connecting 10% of data for graph construction. output1 <- do.isomap(X,ndim=2,type=c("proportion",0.10),weight=FALSE) ## 2. constructing 25%-connected graph output2 <- do.isomap(X,ndim=2,type=c("proportion",0.25),weight=FALSE) ## 3. constructing 25%-connected with binarization output3 <- do.isomap(X,ndim=2,type=c("proportion",0.50),weight=FALSE) ## Visualize three different projections opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, main="10%") plot(output2$Y, main="25%") plot(output3$Y, main="25%+Binary") par(opar)
## generate data set.seed(100) X <- aux.gensamples(n=123) ## 1. connecting 10% of data for graph construction. output1 <- do.isomap(X,ndim=2,type=c("proportion",0.10),weight=FALSE) ## 2. constructing 25%-connected graph output2 <- do.isomap(X,ndim=2,type=c("proportion",0.25),weight=FALSE) ## 3. constructing 25%-connected with binarization output3 <- do.isomap(X,ndim=2,type=c("proportion",0.50),weight=FALSE) ## Visualize three different projections opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, main="10%") plot(output2$Y, main="25%") plot(output3$Y, main="25%+Binary") par(opar)
Isometric Projection is a linear dimensionality reduction algorithm that exploits geodesic distance in original data dimension and mimicks the behavior in the target dimension. Embedded manifold is approximated by graph construction as of ISOMAP. Since it involves singular value decomposition and guesses intrinsic dimension by the number of positive singular values from the decomposition of data matrix, it automatically corrects the target dimension accordingly.
do.isoproj( X, ndim = 2, type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
do.isoproj( X, ndim = 2, type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
one of |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix of projected observations as rows.
a whose columns are loadings.
a list containing information for out-of-sample prediction.
Kisung You
Cai D, He X, Han J (2007). “Isometric Projection.” In Proceedings of the 22Nd National Conference on Artificial Intelligence - Volume 1, AAAI'07, 528–533. ISBN 978-1-57735-323-2.
## use iris dataset data(iris) set.seed(100) subid <- sample(1:150, 50) X <- as.matrix(iris[subid,1:4]) lab <- as.factor(iris[subid,5]) ## try different connectivity levels output1 <- do.isoproj(X,ndim=2,type=c("proportion",0.50)) output2 <- do.isoproj(X,ndim=2,type=c("proportion",0.70)) output3 <- do.isoproj(X,ndim=2,type=c("proportion",0.90)) ## visualize two different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, main="50%", col=lab, pch=19) plot(output2$Y, main="70%", col=lab, pch=19) plot(output3$Y, main="90%", col=lab, pch=19) par(opar)
## use iris dataset data(iris) set.seed(100) subid <- sample(1:150, 50) X <- as.matrix(iris[subid,1:4]) lab <- as.factor(iris[subid,5]) ## try different connectivity levels output1 <- do.isoproj(X,ndim=2,type=c("proportion",0.50)) output2 <- do.isoproj(X,ndim=2,type=c("proportion",0.70)) output3 <- do.isoproj(X,ndim=2,type=c("proportion",0.90)) ## visualize two different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, main="50%", col=lab, pch=19) plot(output2$Y, main="70%", col=lab, pch=19) plot(output3$Y, main="90%", col=lab, pch=19) par(opar)
The isometric SPE (ISPE) adopts the idea of approximating geodesic distance on embedded manifold
when two data points are close enough. It introduces the concept of cutoff
where the learning process
is only applied to the pair of data points whose original proximity is small enough to be considered as
mutually local whose distance should be close to geodesic distance.
do.ispe( X, ndim = 2, proximity = function(x) { dist(x, method = "euclidean") }, C = 50, S = 50, lambda = 1, drate = 0.9, cutoff = 1 )
do.ispe( X, ndim = 2, proximity = function(x) { dist(x, method = "euclidean") }, C = 50, S = 50, lambda = 1, drate = 0.9, cutoff = 1 )
X |
an |
ndim |
an integer-valued target dimension. |
proximity |
a function for constructing proximity matrix from original data dimension. |
C |
the number of cycles to be run; after each cycle, learning parameter |
S |
the number of updates for each cycle. |
lambda |
initial learning parameter. |
drate |
multiplier for |
cutoff |
cutoff threshold value. |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
Agrafiotis DK, Xu H (2002). “A Self-Organizing Principle for Learning Nonlinear Manifolds.” Proceedings of the National Academy of Sciences, 99(25), 15869–15872.
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare with original SPE outSPE <- do.spe(X, ndim=2) out1 <- do.ispe(X, ndim=2, cutoff=0.5) out2 <- do.ispe(X, ndim=2, cutoff=5) out3 <- do.ispe(X, ndim=2, cutoff=50) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(2,2)) plot(outSPE$Y, pch=19, col=label, main="SPE") plot(out1$Y, pch=19, col=label, main="ISPE::cutoff=0.5") plot(out2$Y, pch=19, col=label, main="ISPE::cutoff=5") plot(out3$Y, pch=19, col=label, main="ISPE::cutoff=50") par(opar)
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare with original SPE outSPE <- do.spe(X, ndim=2) out1 <- do.ispe(X, ndim=2, cutoff=0.5) out2 <- do.ispe(X, ndim=2, cutoff=5) out3 <- do.ispe(X, ndim=2, cutoff=50) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(2,2)) plot(outSPE$Y, pch=19, col=label, main="SPE") plot(out1$Y, pch=19, col=label, main="ISPE::cutoff=0.5") plot(out2$Y, pch=19, col=label, main="ISPE::cutoff=5") plot(out3$Y, pch=19, col=label, main="ISPE::cutoff=50") par(opar)
Kernel Entropy Component Analysis(KECA) is a kernel method of dimensionality reduction.
Unlike Kernel PCA(do.kpca
), it utilizes eigenbasis of kernel matrix
in accordance with indices of largest Renyi quadratic entropy in which entropy for
-th eigenpair is defined to be
, where
is
-th eigenvector of an uncentered kernel matrix
.
do.keca( X, ndim = 2, kernel = c("gaussian", 1), preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate") )
do.keca( X, ndim = 2, kernel = c("gaussian", 1), preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate") )
X |
an |
ndim |
an integer-valued target dimension. |
kernel |
a vector containing name of a kernel and corresponding parameters. See also |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a length-ndim
vector of estimated entropy values.
Kisung You
Jenssen R (2010). “Kernel Entropy Component Analysis.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5), 847–860.
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## 1. standard KECA with gaussian kernel output1 <- do.keca(X,ndim=2) ## 2. gaussian kernel with large bandwidth output2 <- do.keca(X,ndim=2,kernel=c("gaussian",5)) ## 3. use laplacian kernel output3 <- do.keca(X,ndim=2,kernel=c("laplacian",1)) ## Visualize three different projections opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, pch=19, col=label, main="Gaussian kernel") plot(output2$Y, pch=19, col=label, main="Gaussian, sigma=5") plot(output3$Y, pch=19, col=label, main="Laplacian kernel") par(opar)
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## 1. standard KECA with gaussian kernel output1 <- do.keca(X,ndim=2) ## 2. gaussian kernel with large bandwidth output2 <- do.keca(X,ndim=2,kernel=c("gaussian",5)) ## 3. use laplacian kernel output3 <- do.keca(X,ndim=2,kernel=c("laplacian",1)) ## Visualize three different projections opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, pch=19, col=label, main="Gaussian kernel") plot(output2$Y, pch=19, col=label, main="Gaussian, sigma=5") plot(output3$Y, pch=19, col=label, main="Laplacian kernel") par(opar)
Kernel Local Discriminant Embedding (KLDE) is a variant of Local Discriminant Embedding in that it aims to preserve inter- and intra-class neighborhood information in a nonlinear manner using kernel trick. Note that the combination of kernel matrix and its eigendecomposition often suffers from lacking numerical rank. For such case, our algorithm returns a warning message and algorithm stops working any further due to its innate limitations of constructing weight matrix.
do.klde( X, label, ndim = 2, t = 1, numk = max(ceiling(nrow(X)/10), 2), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), ktype = c("gaussian", 1), kcentering = TRUE )
do.klde( X, label, ndim = 2, t = 1, numk = max(ceiling(nrow(X)/10), 2), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), ktype = c("gaussian", 1), kcentering = TRUE )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
t |
kernel bandwidth in |
numk |
the number of neighboring points for k-nn graph construction. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
ktype |
a vector containing name of a kernel and corresponding parameters. See also |
kcentering |
a logical; |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
Hwann-Tzong Chen, Huang-Wei Chang, Tyng-Luh Liu (2005). “Local Discriminant Embedding and Its Variants.” In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, 846–853.
## generate data of 2 types with clear difference set.seed(100) diff = 25 dt1 = aux.gensamples(n=50)-diff; dt2 = aux.gensamples(n=50)+diff; ## merge the data and create a label correspondingly X = rbind(dt1,dt2) label = rep(1:2, each=50) ## try different neighborhood size out1 <- do.klde(X, label, numk=5) out2 <- do.klde(X, label, numk=10) out3 <- do.klde(X, label, numk=20) ## visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, pch=19, main="k=5") plot(out2$Y, col=label, pch=19, main="k=10") plot(out3$Y, col=label, pch=19, main="k=20") par(opar)
## generate data of 2 types with clear difference set.seed(100) diff = 25 dt1 = aux.gensamples(n=50)-diff; dt2 = aux.gensamples(n=50)+diff; ## merge the data and create a label correspondingly X = rbind(dt1,dt2) label = rep(1:2, each=50) ## try different neighborhood size out1 <- do.klde(X, label, numk=5) out2 <- do.klde(X, label, numk=10) out3 <- do.klde(X, label, numk=20) ## visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, pch=19, main="k=5") plot(out2$Y, col=label, pch=19, main="k=10") plot(out3$Y, col=label, pch=19, main="k=20") par(opar)
Kernel LFDA is a nonlinear extension of LFDA method using kernel trick. It applies conventional kernel method
to extend excavation of hidden patterns in a more flexible manner in tradeoff of computational load. For simplicity,
only the gaussian kernel parametrized by its bandwidth t
is supported.
do.klfda( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), localscaling = TRUE, t = 1 )
do.klfda( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), localscaling = TRUE, t = 1 )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
one of |
localscaling |
|
t |
bandwidth parameter for heat kernel in |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
Sugiyama M (2006). “Local Fisher Discriminant Analysis for Supervised Dimensionality Reduction.” In Proceedings of the 23rd International Conference on Machine Learning, 905–912.
Zelnik-manor L, Perona P (2005). “Self-Tuning Spectral Clustering.” In Saul LK, Weiss Y, Bottou L (eds.), Advances in Neural Information Processing Systems 17, 1601–1608. MIT Press.
## generate 3 different groups of data X and label vector set.seed(100) x1 = matrix(rnorm(4*10), nrow=10)-20 x2 = matrix(rnorm(4*10), nrow=10) x3 = matrix(rnorm(4*10), nrow=10)+20 X = rbind(x1, x2, x3) label = rep(1:3, each=10) ## try different affinity matrices out1 = do.klfda(X, label, t=0.1) out2 = do.klfda(X, label, t=1) out3 = do.klfda(X, label, t=10) ## visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="bandwidth=0.1") plot(out2$Y, pch=19, col=label, main="bandwidth=1") plot(out3$Y, pch=19, col=label, main="bandwidth=10") par(opar)
## generate 3 different groups of data X and label vector set.seed(100) x1 = matrix(rnorm(4*10), nrow=10)-20 x2 = matrix(rnorm(4*10), nrow=10) x3 = matrix(rnorm(4*10), nrow=10)+20 X = rbind(x1, x2, x3) label = rep(1:3, each=10) ## try different affinity matrices out1 = do.klfda(X, label, t=0.1) out2 = do.klfda(X, label, t=1) out3 = do.klfda(X, label, t=10) ## visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="bandwidth=0.1") plot(out2$Y, pch=19, col=label, main="bandwidth=1") plot(out3$Y, pch=19, col=label, main="bandwidth=10") par(opar)
Kernel LSDA (KLSDA) is a nonlinear extension of LFDA method using kernel trick. It applies conventional kernel method
to extend excavation of hidden patterns in a more flexible manner in tradeoff of computational load. For simplicity,
only the gaussian kernel parametrized by its bandwidth t
is supported.
do.klsda( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate"), alpha = 0.5, k1 = max(ceiling(nrow(X)/10), 2), k2 = max(ceiling(nrow(X)/10), 2), t = 1 )
do.klsda( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate"), alpha = 0.5, k1 = max(ceiling(nrow(X)/10), 2), k2 = max(ceiling(nrow(X)/10), 2), t = 1 )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
alpha |
balancing parameter for between- and within-class scatter in |
k1 |
the number of same-class neighboring points (homogeneous neighbors). |
k2 |
the number of different-class neighboring points (heterogeneous neighbors). |
t |
bandwidth parameter for heat kernel in |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
Cai D, He X, Zhou K, Han J, Bao H (2007). “Locality Sensitive Discriminant Analysis.” In Proceedings of the 20th International Joint Conference on Artifical Intelligence, IJCAI'07, 708–713.
## generate 3 different groups of data X and label vector x1 = matrix(rnorm(4*10), nrow=10)-50 x2 = matrix(rnorm(4*10), nrow=10) x3 = matrix(rnorm(4*10), nrow=10)+50 X = rbind(x1, x2, x3) label = rep(1:3, each=10) ## try different kernel bandwidths out1 = do.klsda(X, label, t=0.1) out2 = do.klsda(X, label, t=1) out3 = do.klsda(X, label, t=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, pch=19, main="bandwidth=0.1") plot(out2$Y, col=label, pch=19, main="bandwidth=1") plot(out3$Y, col=label, pch=19, main="bandwidth=10") par(opar)
## generate 3 different groups of data X and label vector x1 = matrix(rnorm(4*10), nrow=10)-50 x2 = matrix(rnorm(4*10), nrow=10) x3 = matrix(rnorm(4*10), nrow=10)+50 X = rbind(x1, x2, x3) label = rep(1:3, each=10) ## try different kernel bandwidths out1 = do.klsda(X, label, t=0.1) out2 = do.klsda(X, label, t=1) out3 = do.klsda(X, label, t=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, pch=19, main="bandwidth=0.1") plot(out2$Y, col=label, pch=19, main="bandwidth=1") plot(out3$Y, col=label, pch=19, main="bandwidth=10") par(opar)
Kernel Marginal Fisher Analysis (KMFA) is a nonlinear variant of MFA using kernel tricks. For simplicity, we only enabled a heat kernel of a form
where is a bandwidth parameter. Note that the method is far sensitive to the choice of
.
do.kmfa( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), k1 = max(ceiling(nrow(X)/10), 2), k2 = max(ceiling(nrow(X)/10), 2), t = 1 )
do.kmfa( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), k1 = max(ceiling(nrow(X)/10), 2), k2 = max(ceiling(nrow(X)/10), 2), t = 1 )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
k1 |
the number of same-class neighboring points (homogeneous neighbors). |
k2 |
the number of different-class neighboring points (heterogeneous neighbors). |
t |
bandwidth parameter for heat kernel in |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
Yan S, Xu D, Zhang B, Zhang H, Yang Q, Lin S (2007). “Graph Embedding and Extensions: A General Framework for Dimensionality Reduction.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(1), 40–51.
## generate data of 3 types with clear difference set.seed(100) dt1 = aux.gensamples(n=20)-100 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+100 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## try different numbers for neighborhood size out1 = do.kmfa(X, label, k1=10, k2=10, t=0.001) out2 = do.kmfa(X, label, k1=10, k2=10, t=0.01) out3 = do.kmfa(X, label, k1=10, k2=10, t=0.1) ## visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="bandwidth=0.001") plot(out2$Y, pch=19, col=label, main="bandwidth=0.01") plot(out3$Y, pch=19, col=label, main="bandwidth=0.1") par(opar)
## generate data of 3 types with clear difference set.seed(100) dt1 = aux.gensamples(n=20)-100 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+100 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## try different numbers for neighborhood size out1 = do.kmfa(X, label, k1=10, k2=10, t=0.001) out2 = do.kmfa(X, label, k1=10, k2=10, t=0.01) out3 = do.kmfa(X, label, k1=10, k2=10, t=0.1) ## visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="bandwidth=0.001") plot(out2$Y, pch=19, col=label, main="bandwidth=0.01") plot(out3$Y, pch=19, col=label, main="bandwidth=0.1") par(opar)
Kernel Maximum Margin Criterion (KMMC) is a nonlinear variant of MMC method using kernel trick.
For computational simplicity, only the gaussian kernel is used with bandwidth parameter t
.
do.kmmc( X, label, ndim = 2, preprocess = c("center", "decorrelate", "whiten"), t = 1 )
do.kmmc( X, label, ndim = 2, preprocess = c("center", "decorrelate", "whiten"), t = 1 )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
t |
bandwidth parameter for heat kernel in |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
Li H, Jiang T, Zhang K (2006). “Efficient and Robust Feature Extraction by Maximum Margin Criterion.” IEEE Transactions on Neural Networks, 17(1), 157–165.
## load iris data data(iris) set.seed(100) subid = sample(1:150,100) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## perform MVP with different preprocessings out1 = do.kmmc(X, label, t=0.1) out2 = do.kmmc(X, label, t=1.0) out3 = do.kmmc(X, label, t=10.0) ## visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="bandwidth=0.1") plot(out2$Y, pch=19, col=label, main="bandwidth=1") plot(out3$Y, pch=19, col=label, main="bandwidth=10.0") par(opar)
## load iris data data(iris) set.seed(100) subid = sample(1:150,100) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## perform MVP with different preprocessings out1 = do.kmmc(X, label, t=0.1) out2 = do.kmmc(X, label, t=1.0) out3 = do.kmmc(X, label, t=10.0) ## visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="bandwidth=0.1") plot(out2$Y, pch=19, col=label, main="bandwidth=1") plot(out3$Y, pch=19, col=label, main="bandwidth=10.0") par(opar)
Kernel-Weighted Maximum Variance Projection (KMVP) is a generalization of Maximum Variance Projection (MVP). Even though its name contains kernel, it is not related to kernel trick well known in the machine learning community. Rather, it generalizes the binary penalization on class discrepancy,
where is an
-th data point and
a kernel bandwidth (
bandwidth
). Note that
when the bandwidth value is too small, it might suffer from numerical instability and rank deficiency due to its formulation.
do.kmvp( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), bandwidth = 1 )
do.kmvp( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), bandwidth = 1 )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
bandwidth |
bandwidth parameter for heat kernel as the equation above. |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Zhang T (2007). “Maximum Variance Projections for Face Recognition.” Optical Engineering, 46(6), 067206.
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## perform KMVP with different bandwidths out1 = do.kmvp(X, label, bandwidth=0.1) out2 = do.kmvp(X, label, bandwidth=1) out3 = do.kmvp(X, label, bandwidth=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="bandwidth=0.1", col=label, pch=19) plot(out2$Y, main="bandwidth=1", col=label, pch=19) plot(out3$Y, main="bandwidth=10", col=label, pch=19) par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## perform KMVP with different bandwidths out1 = do.kmvp(X, label, bandwidth=0.1) out2 = do.kmvp(X, label, bandwidth=1) out3 = do.kmvp(X, label, bandwidth=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="bandwidth=0.1", col=label, pch=19) plot(out2$Y, main="bandwidth=1", col=label, pch=19) plot(out3$Y, main="bandwidth=10", col=label, pch=19) par(opar)
Kernel principal component analysis (KPCA/Kernel PCA) is a nonlinear extension of classical PCA using techniques called kernel trick, a common method of introducing nonlinearity by transforming, usually, covariance structure or other gram-type estimate to make it flexible in Reproducing Kernel Hilbert Space.
do.kpca( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), kernel = c("gaussian", 1) )
do.kpca( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), kernel = c("gaussian", 1) )
X |
an |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
kernel |
a vector containing name of a kernel and corresponding parameters. See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
variances of projected data / eigenvalues from kernelized covariance matrix.
Kisung You
Schölkopf B, Smola A, Müller K (1997). “Kernel Principal Component Analysis.” In Goos G, Hartmanis J, van Leeuwen J, Gerstner W, Germond A, Hasler M, Nicoud J (eds.), Artificial Neural Networks — ICANN'97, volume 1327, 583–588. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-540-63631-1 978-3-540-69620-9.
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try out different settings output1 <- do.kpca(X) # default setting output2 <- do.kpca(X,kernel=c("gaussian",5)) # gaussian kernel with large bandwidth output3 <- do.kpca(X,kernel=c("laplacian",1)) # laplacian kernel ## visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, col=label, pch=19, main="Gaussian kernel") plot(output2$Y, col=label, pch=19, main="Gaussian kernel with sigma=5") plot(output3$Y, col=label, pch=19, main="Laplacian kernel") par(opar)
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try out different settings output1 <- do.kpca(X) # default setting output2 <- do.kpca(X,kernel=c("gaussian",5)) # gaussian kernel with large bandwidth output3 <- do.kpca(X,kernel=c("laplacian",1)) # laplacian kernel ## visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, col=label, pch=19, main="Gaussian kernel") plot(output2$Y, col=label, pch=19, main="Gaussian kernel with sigma=5") plot(output3$Y, col=label, pch=19, main="Laplacian kernel") par(opar)
Kernel Quadratic Mutual Information (KQMI) is a supervised linear dimension reduction method. Quadratic Mutual Information is an efficient nonparametric estimation method for Mutual Information for class labels not requiring class priors. The method re-states the estimation procedure in terms of kernel objective in the graph embedding framework.
do.kqmi( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate"), t = 10 )
do.kqmi( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate"), t = 10 )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
t |
bandwidth parameter for heat kernel in |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Bouzas D, Arvanitopoulos N, Tefas A (2015). “Graph Embedded Nonparametric Mutual Information for Supervised Dimensionality Reduction.” IEEE Transactions on Neural Networks and Learning Systems, 26(5), 951–963.
## Not run: ## generate 3 different groups of data X and label vector x1 = matrix(rnorm(4*10), nrow=10)-20 x2 = matrix(rnorm(4*10), nrow=10) x3 = matrix(rnorm(4*10), nrow=10)+20 X = rbind(x1, x2, x3) label = c(rep(1,10), rep(2,10), rep(3,10)) ## try different kernel bandwidths out1 = do.kqmi(X, label, t=0.01) out2 = do.kqmi(X, label, t=1) out3 = do.kqmi(X, label, t=100) ## visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, main="KQMI::t=0.01") plot(out2$Y, col=label, main="KQMI::t=1") plot(out3$Y, col=label, main="KQMI::t=100") par(opar) ## End(Not run)
## Not run: ## generate 3 different groups of data X and label vector x1 = matrix(rnorm(4*10), nrow=10)-20 x2 = matrix(rnorm(4*10), nrow=10) x3 = matrix(rnorm(4*10), nrow=10)+20 X = rbind(x1, x2, x3) label = c(rep(1,10), rep(2,10), rep(3,10)) ## try different kernel bandwidths out1 = do.kqmi(X, label, t=0.01) out2 = do.kqmi(X, label, t=1) out3 = do.kqmi(X, label, t=100) ## visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, main="KQMI::t=0.01") plot(out2$Y, col=label, main="KQMI::t=1") plot(out3$Y, col=label, main="KQMI::t=100") par(opar) ## End(Not run)
Kernel Semi-Supervised Discriminant Analysis (KSDA) is a nonlinear variant of
SDA (do.sda
). For simplicity, we enabled heat/gaussian kernel only.
Note that this method is quite sensitive to choices of
parameters, alpha
, beta
, and t
. Especially when data
are well separated in the original space, it may lead to unsatisfactory results.
do.ksda( X, label, ndim = 2, type = c("proportion", 0.1), alpha = 1, beta = 1, t = 1 )
do.ksda( X, label, ndim = 2, type = c("proportion", 0.1), alpha = 1, beta = 1, t = 1 )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
alpha |
balancing parameter between model complexity and empirical loss. |
beta |
Tikhonov regularization parameter. |
t |
bandwidth parameter for heat kernel. |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
Cai D, He X, Han J (2007). “Semi-Supervised Discriminant Analysis.” In 2007 IEEE 11th International Conference on Computer Vision, 1–7.
## generate data of 3 types with clear difference set.seed(100) dt1 = aux.gensamples(n=20)-100 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+100 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## copy a label and let 10% of elements be missing nlabel = length(label) nmissing = round(nlabel*0.10) label_missing = label label_missing[sample(1:nlabel, nmissing)]=NA ## compare true case with missing-label case out1 = do.ksda(X, label, beta=0, t=0.1) out2 = do.ksda(X, label_missing, beta=0, t=0.1) ## visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, col=label, main="true projection") plot(out2$Y, col=label, main="20% missing labels") par(opar)
## generate data of 3 types with clear difference set.seed(100) dt1 = aux.gensamples(n=20)-100 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+100 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## copy a label and let 10% of elements be missing nlabel = length(label) nmissing = round(nlabel*0.10) label_missing = label label_missing[sample(1:nlabel, nmissing)]=NA ## compare true case with missing-label case out1 = do.ksda(X, label, beta=0, t=0.1) out2 = do.ksda(X, label_missing, beta=0, t=0.1) ## visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, col=label, main="true projection") plot(out2$Y, col=label, main="20% missing labels") par(opar)
Kernel-Weighted Unsupervised Discriminant Projection (KUDP) is a generalization of UDP where proximity is given by weighted values via heat kernel,
whence UDP uses binary connectivity. If bandwidth
is , it becomes
a standard UDP problem. Like UDP, it also performs PCA preprocessing for rank-deficient case.
do.kudp( X, ndim = 2, type = c("proportion", 0.1), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), bandwidth = 1 )
do.kudp( X, ndim = 2, type = c("proportion", 0.1), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), bandwidth = 1 )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
bandwidth |
bandwidth parameter for heat kernel as the equation above. |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
the number of PCA target dimension used in preprocessing.
Kisung You
Yang J, Zhang D, Yang J, Niu B (2007). “Globally Maximizing, Locally Minimizing: Unsupervised Discriminant Projection with Applications to Face and Palm Biometrics.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(4), 650–664.
## use iris dataset data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## use different kernel bandwidth out1 <- do.kudp(X, bandwidth=0.1) out2 <- do.kudp(X, bandwidth=10) out3 <- do.kudp(X, bandwidth=1000) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=lab, pch=19, main="bandwidth=0.1") plot(out2$Y, col=lab, pch=19, main="bandwidth=10") plot(out3$Y, col=lab, pch=19, main="bandwidth=1000") par(opar)
## use iris dataset data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## use different kernel bandwidth out1 <- do.kudp(X, bandwidth=0.1) out2 <- do.kudp(X, bandwidth=10) out3 <- do.kudp(X, bandwidth=1000) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=lab, pch=19, main="bandwidth=0.1") plot(out2$Y, col=lab, pch=19, main="bandwidth=10") plot(out3$Y, col=lab, pch=19, main="bandwidth=1000") par(opar)
Local Affine Mulditimensional Projection (LAMP) can be considered as
a nonlinear method even though each datum is projected using locally estimated
affine mapping. It first finds a low-dimensional embedding for control points
and then locates the rest data using affine mapping. We use number
of data as controls and Stochastic Neighborhood Embedding is applied as an
initial projection of control set. Note that this belongs to the method for
visualization so projection onto
is suggested for use.
do.lamp(X, ndim = 2)
do.lamp(X, ndim = 2)
X |
an |
ndim |
an integer-valued target dimension. |
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
name of the algorithm.
Kisung You
Joia P, Paulovich FV, Coimbra D, Cuminato JA, Nonato LG (2011). “Local Affine Multidimensional Projection.” IEEE Transactions on Visualization and Computer Graphics, 17(12), 2563–2571.
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## let's compare with PCA out1 <- do.pca(X, ndim=2) # PCA out2 <- do.lamp(X, ndim=2) # LAMP ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, pch=19, col=label, main="PCA") plot(out2$Y, pch=19, col=label, main="LAMP") par(opar)
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## let's compare with PCA out1 <- do.pca(X, ndim=2) # PCA out2 <- do.lamp(X, ndim=2) # LAMP ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, pch=19, col=label, main="PCA") plot(out2$Y, pch=19, col=label, main="LAMP") par(opar)
do.lapeig
performs Laplacian Eigenmaps (LE) to discover low-dimensional
manifold embedded in high-dimensional data space using graph laplacians. This
is a classic algorithm employing spectral graph theory.
do.lapeig(X, ndim = 2, ...)
do.lapeig(X, ndim = 2, ...)
X |
an |
ndim |
an integer-valued target dimension. |
... |
extra parameters including
|
a named list containing
an matrix whose rows are embedded observations.
a vector of eigenvalues for laplacian matrix.
a list containing information for out-of-sample prediction.
name of the algorithm.
Kisung You
Belkin M, Niyogi P (2003). “Laplacian Eigenmaps for Dimensionality Reduction and Data Representation.” Neural Computation, 15(6), 1373–1396.
## use iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## try different levels of connectivity out1 <- do.lapeig(X, type=c("proportion",0.5), weighted=FALSE) out2 <- do.lapeig(X, type=c("proportion",0.10), weighted=FALSE) out3 <- do.lapeig(X, type=c("proportion",0.25), weighted=FALSE) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=lab, main="5% connected") plot(out2$Y, pch=19, col=lab, main="10% connected") plot(out3$Y, pch=19, col=lab, main="25% connected") par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## try different levels of connectivity out1 <- do.lapeig(X, type=c("proportion",0.5), weighted=FALSE) out2 <- do.lapeig(X, type=c("proportion",0.10), weighted=FALSE) out3 <- do.lapeig(X, type=c("proportion",0.25), weighted=FALSE) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=lab, main="5% connected") plot(out2$Y, pch=19, col=lab, main="10% connected") plot(out3$Y, pch=19, col=lab, main="25% connected") par(opar)
LASSO is a popular regularization scheme in linear regression in pursuit of sparsity in coefficient vector that has been widely used. The method can be used in feature selection in that given the regularization parameter, it first solves the problem and takes indices of estimated coefficients with the largest magnitude as meaningful features by solving
where is
response
in our method.
do.lasso(X, response, ndim = 2, lambda = 1)
do.lasso(X, response, ndim = 2, lambda = 1)
X |
an |
response |
a length- |
ndim |
an integer-valued target dimension. |
lambda |
sparsity regularization parameter in |
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a length- vector of indices with highest scores.
a whose columns are basis for projection.
name of the algorithm.
Kisung You
Tibshirani R (1996). “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal Statistical Society. Series B (Methodological), 58(1), 267–288.
## generate swiss roll with auxiliary dimensions ## it follows reference example from LSIR paper. set.seed(1) n = 123 theta = runif(n) h = runif(n) t = (1+2*theta)*(3*pi/2) X = array(0,c(n,10)) X[,1] = t*cos(t) X[,2] = 21*h X[,3] = t*sin(t) X[,4:10] = matrix(runif(7*n), nrow=n) ## corresponding response vector y = sin(5*pi*theta)+(runif(n)*sqrt(0.1)) ## try different regularization parameters out1 = do.lasso(X, y, lambda=0.1) out2 = do.lasso(X, y, lambda=1) out3 = do.lasso(X, y, lambda=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="LASSO::lambda=0.1") plot(out2$Y, main="LASSO::lambda=1") plot(out3$Y, main="LASSO::lambda=10") par(opar)
## generate swiss roll with auxiliary dimensions ## it follows reference example from LSIR paper. set.seed(1) n = 123 theta = runif(n) h = runif(n) t = (1+2*theta)*(3*pi/2) X = array(0,c(n,10)) X[,1] = t*cos(t) X[,2] = 21*h X[,3] = t*sin(t) X[,4:10] = matrix(runif(7*n), nrow=n) ## corresponding response vector y = sin(5*pi*theta)+(runif(n)*sqrt(0.1)) ## try different regularization parameters out1 = do.lasso(X, y, lambda=0.1) out2 = do.lasso(X, y, lambda=1) out3 = do.lasso(X, y, lambda=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="LASSO::lambda=0.1") plot(out2$Y, main="LASSO::lambda=1") plot(out3$Y, main="LASSO::lambda=10") par(opar)
Linear Discriminant Analysis (LDA) originally aims to find a set of features
that best separate groups of data. Since we need label information,
LDA belongs to a class of supervised methods of performing classification.
However, since it is based on finding suitable projections, it can still
be used to do dimension reduction. We support both binary and multiple-class cases.
Note that the target dimension ndim
should be less than or equal to K-1
,
where K
is the number of classes, or K=length(unique(label))
. Our code
automatically gives bounds on user's choice to correspond to what theory has shown. See
the comments section for more details.
do.lda(X, label, ndim = 2)
do.lda(X, label, ndim = 2)
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a whose columns are basis for projection.
name of the algorithm.
In unsupervised algorithms, selection of ndim
is arbitrary as long as
the target dimension is lower-dimensional than original data dimension, i.e., ndim < p
.
In LDA, it is not allowed. Suppose we have K
classes, then its formulation on
, between-group variance, has maximum rank of
K-1
. Therefore, the maximal
subspace can only be spanned by at most K-1
orthogonal vectors.
Kisung You
Fisher RA (1936). “THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS.” Annals of Eugenics, 7(2), 179–188.
Fukunaga K (1990). Introduction to Statistical Pattern Recognition, Computer Science and Scientific Computing, 2nd ed edition. Academic Press, Boston. ISBN 978-0-12-269851-4.
## use iris dataset data(iris) X = as.matrix(iris[,1:4]) lab = as.factor(iris[,5]) ## compare with PCA outLDA = do.lda(X, lab, ndim=2) outPCA = do.pca(X, ndim=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(outLDA$Y, col=lab, pch=19, main="LDA") plot(outPCA$Y, col=lab, pch=19, main="PCA") par(opar)
## use iris dataset data(iris) X = as.matrix(iris[,1:4]) lab = as.factor(iris[,5]) ## compare with PCA outLDA = do.lda(X, lab, ndim=2) outPCA = do.pca(X, ndim=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(outLDA$Y, col=lab, pch=19, main="LDA") plot(outPCA$Y, col=lab, pch=19, main="PCA") par(opar)
do.ldakm
is an unsupervised subspace discovery method that combines linear discriminant analysis (LDA) and K-means algorithm.
It tries to build an adaptive framework that selects the most discriminative subspace. It iteratively applies two methods in that
the clustering process is integrated with the subspace selection, and continuously updates its discrimative basis. From its formulation
with respect to generalized eigenvalue problem, it can be considered as generalization of Adaptive Subspace Iteration (ASI) and Adaptive Dimension Reduction (ADR).
do.ldakm( X, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), maxiter = 10, abstol = 0.001 )
do.ldakm( X, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), maxiter = 10, abstol = 0.001 )
X |
an |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
maxiter |
maximum number of iterations allowed. |
abstol |
stopping criterion for incremental change in projection matrix. |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Ding C, Li T (2007). “Adaptive Dimension Reduction Using Discriminant Analysis and K-Means Clustering.” In Proceedings of the 24th International Conference on Machine Learning, 521–528.
## use iris dataset data(iris) set.seed(100) subid <- sample(1:150, 50) X <- as.matrix(iris[subid,1:4]) lab <- as.factor(iris[subid,5]) ## try different tolerance level out1 = do.ldakm(X, abstol=1e-2) out2 = do.ldakm(X, abstol=1e-3) out3 = do.ldakm(X, abstol=1e-4) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=lab, main="LDA-KM::tol=1e-2") plot(out2$Y, pch=19, col=lab, main="LDA-KM::tol=1e-3") plot(out3$Y, pch=19, col=lab, main="LDA-KM::tol=1e-4") par(opar)
## use iris dataset data(iris) set.seed(100) subid <- sample(1:150, 50) X <- as.matrix(iris[subid,1:4]) lab <- as.factor(iris[subid,5]) ## try different tolerance level out1 = do.ldakm(X, abstol=1e-2) out2 = do.ldakm(X, abstol=1e-3) out3 = do.ldakm(X, abstol=1e-4) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=lab, main="LDA-KM::tol=1e-2") plot(out2$Y, pch=19, col=lab, main="LDA-KM::tol=1e-3") plot(out3$Y, pch=19, col=lab, main="LDA-KM::tol=1e-4") par(opar)
Local Discriminant Embedding (LDE) is a supervised algorithm that learns the embedding for the submanifold of each class. Its idea is to same-class data points maintain their original neighborhood information while segregating different-class data distinct from each other.
do.lde( X, label, ndim = 2, t = 1, numk = max(ceiling(nrow(X)/10), 2), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
do.lde( X, label, ndim = 2, t = 1, numk = max(ceiling(nrow(X)/10), 2), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
t |
kernel bandwidth in |
numk |
the number of neighboring points for k-nn graph construction. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Hwann-Tzong Chen, Huang-Wei Chang, Tyng-Luh Liu (2005). “Local Discriminant Embedding and Its Variants.” In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, 846–853.
## generate data of 2 types with clear difference set.seed(100) diff = 15 dt1 = aux.gensamples(n=50)-diff; dt2 = aux.gensamples(n=50)+diff; ## merge the data and create a label correspondingly X = rbind(dt1,dt2) label = rep(1:2, each=50) ## try different neighborhood size out1 <- do.lde(X, label, numk=5) out2 <- do.lde(X, label, numk=10) out3 <- do.lde(X, label, numk=25) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="LDE::k=5") plot(out2$Y, pch=19, col=label, main="LDE::k=10") plot(out3$Y, pch=19, col=label, main="LDE::k=25") par(opar)
## generate data of 2 types with clear difference set.seed(100) diff = 15 dt1 = aux.gensamples(n=50)-diff; dt2 = aux.gensamples(n=50)+diff; ## merge the data and create a label correspondingly X = rbind(dt1,dt2) label = rep(1:2, each=50) ## try different neighborhood size out1 <- do.lde(X, label, numk=5) out2 <- do.lde(X, label, numk=10) out3 <- do.lde(X, label, numk=25) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="LDE::k=5") plot(out2$Y, pch=19, col=label, main="LDE::k=10") plot(out3$Y, pch=19, col=label, main="LDE::k=25") par(opar)
Locally Discriminating Projection (LDP) is a supervised linear dimension reduction method. It utilizes both label/class information and local neighborhood information to discover the intrinsic structure of the data. It can be considered as an extension of LPP in a supervised manner.
do.ldp( X, label, ndim = 2, type = c("proportion", 0.1), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), beta = 10 )
do.ldp( X, label, ndim = 2, type = c("proportion", 0.1), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), beta = 10 )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
beta |
bandwidth parameter for heat kernel in |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Zhao H, Sun S, Jing Z, Yang J (2006). “Local Structure Based Supervised Feature Extraction.” Pattern Recognition, 39(8), 1546–1550.
## generate data of 3 types with clear difference dt1 = aux.gensamples(n=20)-100 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+100 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## try different neighborhood sizes out1 = do.ldp(X, label, type=c("proportion",0.10)) out2 = do.ldp(X, label, type=c("proportion",0.25)) out3 = do.ldp(X, label, type=c("proportion",0.50)) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, pch=19, main="10% connectivity") plot(out2$Y, col=label, pch=19, main="25% connectivity") plot(out3$Y, col=label, pch=19, main="50% connectivity") par(opar)
## generate data of 3 types with clear difference dt1 = aux.gensamples(n=20)-100 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+100 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## try different neighborhood sizes out1 = do.ldp(X, label, type=c("proportion",0.10)) out2 = do.ldp(X, label, type=c("proportion",0.25)) out3 = do.ldp(X, label, type=c("proportion",0.50)) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, pch=19, main="10% connectivity") plot(out2$Y, col=label, pch=19, main="25% connectivity") plot(out3$Y, col=label, pch=19, main="50% connectivity") par(opar)
Locally Linear Embedding (LLE) is a powerful nonlinear manifold learning method. This method, Locally Linear Embedded Eigenspace Analysis - LEA, in short - is a linear approximation to LLE, similar to Neighborhood Preserving Embedding. In our implementation, the choice of weight binarization is removed in order to respect original work. For 1-dimensional projection, which is rarely performed, authors provided a detour for rank correcting mechanism but it is omitted for practical reason.
do.lea( X, ndim = 2, type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
do.lea( X, ndim = 2, type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
one of |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Fu Y, Huang TS (2005). “Locally Linear Embedded Eigenspace Analysis.” IFP-TR, UIUC, 2005, 2–05.
## Not run: ## use iris dataset data(iris) set.seed(100) subid <- sample(1:150, 50) X <- as.matrix(iris[subid,1:4]) lab <- as.factor(iris[subid,5]) ## compare LEA with LLE and another approximation NPE out1 <- do.lle(X, ndim=2) out2 <- do.npe(X, ndim=2) out3 <- do.lea(X, ndim=2) ## visual comparison opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=lab, main="LLE") plot(out2$Y, pch=19, col=lab, main="NPE") plot(out3$Y, pch=19, col=lab, main="LEA") par(opar) ## End(Not run)
## Not run: ## use iris dataset data(iris) set.seed(100) subid <- sample(1:150, 50) X <- as.matrix(iris[subid,1:4]) lab <- as.factor(iris[subid,5]) ## compare LEA with LLE and another approximation NPE out1 <- do.lle(X, ndim=2) out2 <- do.npe(X, ndim=2) out3 <- do.lea(X, ndim=2) ## visual comparison opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=lab, main="LLE") plot(out2$Y, pch=19, col=lab, main="NPE") plot(out3$Y, pch=19, col=lab, main="LEA") par(opar) ## End(Not run)
Local Fisher Discriminant Analysis (LFDA) is a linear dimension reduction method for supervised case, i.e., labels are given. It reflects local information to overcome undesired results of traditional Fisher Discriminant Analysis which results in a poor mapping when samples in a single class form form several separate clusters.
do.lfda( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), localscaling = TRUE )
do.lfda( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), localscaling = TRUE )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
one of |
localscaling |
|
a named list containing
an matrix whose rows are embedded observations.
a whose columns are basis for projection.
a list containing information for out-of-sample prediction.
Kisung You
Sugiyama M (2006). “Local Fisher Discriminant Analysis for Supervised Dimensionality Reduction.” In Proceedings of the 23rd International Conference on Machine Learning, 905–912.
Zelnik-manor L, Perona P (2005). “Self-Tuning Spectral Clustering.” In Saul LK, Weiss Y, Bottou L (eds.), Advances in Neural Information Processing Systems 17, 1601–1608. MIT Press.
## generate 3 different groups of data X and label vector x1 = matrix(rnorm(4*10), nrow=10)-20 x2 = matrix(rnorm(4*10), nrow=10) x3 = matrix(rnorm(4*10), nrow=10)+20 X = rbind(x1, x2, x3) label = rep(1:3, each=10) ## try different affinity matrices out1 = do.lfda(X, label) out2 = do.lfda(X, label, localscaling=FALSE) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, col=label, main="binary affinity matrix") plot(out2$Y, col=label, main="local scaling affinity") par(opar)
## generate 3 different groups of data X and label vector x1 = matrix(rnorm(4*10), nrow=10)-20 x2 = matrix(rnorm(4*10), nrow=10) x3 = matrix(rnorm(4*10), nrow=10)+20 X = rbind(x1, x2, x3) label = rep(1:3, each=10) ## try different affinity matrices out1 = do.lfda(X, label) out2 = do.lfda(X, label, localscaling=FALSE) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, col=label, main="binary affinity matrix") plot(out2$Y, col=label, main="local scaling affinity") par(opar)
Landmark Isomap is a variant of Isomap in that it first finds a low-dimensional embedding using a small portion of given dataset and graft the others in a manner to preserve as much pairwise distance from all the other data points to landmark points as possible.
do.lisomap( X, ndim = 2, ltype = c("random", "MaxMin"), npoints = max(nrow(X)/5, ndim + 1), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), weight = TRUE )
do.lisomap( X, ndim = 2, ltype = c("random", "MaxMin"), npoints = max(nrow(X)/5, ndim + 1), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), weight = TRUE )
X |
an |
ndim |
an integer-valued target dimension. |
ltype |
on how to select landmark points, either |
npoints |
the number of landmark points to be drawn. |
preprocess |
an option for preprocessing the data. Default is "center". See also |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
one of |
weight |
|
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
Silva VD, Tenenbaum JB (2003). “Global Versus Local Methods in Nonlinear Dimensionality Reduction.” In Becker S, Thrun S, Obermayer K (eds.), Advances in Neural Information Processing Systems 15, 721–728. MIT Press.
## use iris data data(iris) X <- as.matrix(iris[,1:4]) lab <- as.factor(iris[,5]) ## use different number of data points as landmarks output1 <- do.lisomap(X, npoints=10, type=c("proportion",0.25)) output2 <- do.lisomap(X, npoints=25, type=c("proportion",0.25)) output3 <- do.lisomap(X, npoints=50, type=c("proportion",0.25)) ## visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, pch=19, col=lab, main="10 landmarks") plot(output2$Y, pch=19, col=lab, main="25 landmarks") plot(output3$Y, pch=19, col=lab, main="50 landmarks") par(opar)
## use iris data data(iris) X <- as.matrix(iris[,1:4]) lab <- as.factor(iris[,5]) ## use different number of data points as landmarks output1 <- do.lisomap(X, npoints=10, type=c("proportion",0.25)) output2 <- do.lisomap(X, npoints=25, type=c("proportion",0.25)) output3 <- do.lisomap(X, npoints=50, type=c("proportion",0.25)) ## visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, pch=19, col=lab, main="10 landmarks") plot(output2$Y, pch=19, col=lab, main="25 landmarks") plot(output3$Y, pch=19, col=lab, main="50 landmarks") par(opar)
Locally-Linear Embedding (LLE) was introduced approximately at the same time as Isomap.
Its idea was motivated to describe entire data manifold by making a chain of local patches
in that low-dimensional embedding should resemble the connectivity pattern of patches.
do.lle
also provides an automatic choice of regularization parameter based on an
optimality criterion suggested by authors.
do.lle( X, ndim = 2, type = c("proportion", 0.1), symmetric = "union", weight = TRUE, preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten"), regtype = FALSE, regparam = 1 )
do.lle( X, ndim = 2, type = c("proportion", 0.1), symmetric = "union", weight = TRUE, preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten"), regtype = FALSE, regparam = 1 )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
one of |
weight |
|
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
regtype |
|
regparam |
regularization parameter. |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a vector of eigenvalues from computation of embedding matrix.
Kisung You
Roweis ST (2000). “Nonlinear Dimensionality Reduction by Locally Linear Embedding.” Science, 290(5500), 2323–2326.
## generate swiss-roll data set.seed(100) X = aux.gensamples(n=100) ## 1. connecting 10% of data for graph construction. output1 <- do.lle(X,ndim=2,type=c("proportion",0.10)) ## 2. constructing 20%-connected graph output2 <- do.lle(X,ndim=2,type=c("proportion",0.20)) ## 3. constructing 50%-connected with bigger regularization parameter output3 <- do.lle(X,ndim=2,type=c("proportion",0.5),regparam=10) ## Visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, main="5%") plot(output2$Y, main="10%") plot(output3$Y, main="50%+Binary") par(opar)
## generate swiss-roll data set.seed(100) X = aux.gensamples(n=100) ## 1. connecting 10% of data for graph construction. output1 <- do.lle(X,ndim=2,type=c("proportion",0.10)) ## 2. constructing 20%-connected graph output2 <- do.lle(X,ndim=2,type=c("proportion",0.20)) ## 3. constructing 50%-connected with bigger regularization parameter output3 <- do.lle(X,ndim=2,type=c("proportion",0.5),regparam=10) ## Visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, main="5%") plot(output2$Y, main="10%") plot(output3$Y, main="50%+Binary") par(opar)
Local Linear Laplacian Eigenmaps is an unsupervised manifold learning method as an
extension of Local Linear Embedding (do.lle
). It is claimed to be
more robust to local structure and noises. It involves the concept of
artificial neighborhood in constructing the adjacency graph for reconstruction of
the approximated manifold.
do.llle( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten"), K = round(nrow(X)/2), P = max(round(nrow(X)/4), 2), bandwidth = 0.2 )
do.llle( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten"), K = round(nrow(X)/2), P = max(round(nrow(X)/4), 2), bandwidth = 0.2 )
X |
an |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is |
K |
size of near neighborhood for each data point. |
P |
size of artifical neighborhood. |
bandwidth |
scale parameter for Gaussian kernel. It should be in |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
Liu F, Zhang W, Gu S (2016). “Local Linear Laplacian Eigenmaps: A Direct Extension of LLE.” Pattern Recognition Letters, 75, 30–35.
## Not run: ## use iris data data(iris) X = as.matrix(iris[,1:4]) label = as.integer(iris$Species) # see the effect bandwidth out1 = do.llle(X, bandwidth=0.1, P=20) out2 = do.llle(X, bandwidth=0.5, P=20) out3 = do.llle(X, bandwidth=0.9, P=20) # visualize the results opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, main="bandwidth=0.1") plot(out2$Y, col=label, main="bandwidth=0.5") plot(out3$Y, col=label, main="bandwidth=0.9") par(opar) ## End(Not run)
## Not run: ## use iris data data(iris) X = as.matrix(iris[,1:4]) label = as.integer(iris$Species) # see the effect bandwidth out1 = do.llle(X, bandwidth=0.1, P=20) out2 = do.llle(X, bandwidth=0.5, P=20) out3 = do.llle(X, bandwidth=0.9, P=20) # visualize the results opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, main="bandwidth=0.1") plot(out2$Y, col=label, main="bandwidth=0.5") plot(out3$Y, col=label, main="bandwidth=0.9") par(opar) ## End(Not run)
While Principal Component Analysis (PCA) aims at minimizing global estimation error, Local Learning
Projection (LLP) approach tries to find the projection with the minimal local
estimation error in the sense that each projected datum can be well represented
based on ones neighbors. For the kernel part, we only enabled to use
a gaussian kernel as suggested from the original paper. The parameter lambda
controls possible rank-deficiency of kernel matrix.
do.llp( X, ndim = 2, type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), t = 1, lambda = 1 )
do.llp( X, ndim = 2, type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), t = 1, lambda = 1 )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
one of |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
t |
bandwidth for heat kernel in |
lambda |
regularization parameter for kernel matrix in |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Wu M, Yu K, Yu S, Schölkopf B (2007). “Local Learning Projections.” In Proceedings of the 24th International Conference on Machine Learning, 1039–1046.
## generate data set.seed(100) X <- aux.gensamples(n=100, dname="crown") ## test different lambda - regularization - values out1 <- do.llp(X,ndim=2,lambda=0.1) out2 <- do.llp(X,ndim=2,lambda=1) out3 <- do.llp(X,ndim=2,lambda=10) # visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, main="lambda=0.1") plot(out2$Y, pch=19, main="lambda=1") plot(out3$Y, pch=19, main="lambda=10") par(opar)
## generate data set.seed(100) X <- aux.gensamples(n=100, dname="crown") ## test different lambda - regularization - values out1 <- do.llp(X,ndim=2,lambda=0.1) out2 <- do.llp(X,ndim=2,lambda=1) out3 <- do.llp(X,ndim=2,lambda=10) # visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, main="lambda=0.1") plot(out2$Y, pch=19, main="lambda=1") plot(out3$Y, pch=19, main="lambda=10") par(opar)
Linear Local Tangent Space Alignment (LLTSA) is a linear variant of the celebrated LTSA method. It uses the tangent space in the neighborhood for each data point to represent the local geometry. Alignment of those local tangent spaces in the low-dimensional space returns an explicit mapping from the high-dimensional space.
do.lltsa( X, ndim = 2, type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
do.lltsa( X, ndim = 2, type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
one of |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Zhang T, Yang J, Zhao D, Ge X (2007). “Linear Local Tangent Space Alignment and Application to Face Recognition.” Neurocomputing, 70(7-9), 1547–1553.
## use iris dataset data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## try different neighborhood size out1 <- do.lltsa(X, type=c("proportion",0.25)) out2 <- do.lltsa(X, type=c("proportion",0.50)) out3 <- do.lltsa(X, type=c("proportion",0.75)) ## Visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=lab, pch=19, main="LLTSA::25% connected") plot(out2$Y, col=lab, pch=19, main="LLTSA::50% connected") plot(out3$Y, col=lab, pch=19, main="LLTSA::75% connected") par(opar)
## use iris dataset data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## try different neighborhood size out1 <- do.lltsa(X, type=c("proportion",0.25)) out2 <- do.lltsa(X, type=c("proportion",0.50)) out3 <- do.lltsa(X, type=c("proportion",0.75)) ## Visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=lab, pch=19, main="LLTSA::25% connected") plot(out2$Y, col=lab, pch=19, main="LLTSA::50% connected") plot(out3$Y, col=lab, pch=19, main="LLTSA::75% connected") par(opar)
Landmark MDS is a variant of Classical Multidimensional Scaling in that it first finds a low-dimensional embedding using a small portion of given dataset and graft the others in a manner to preserve as much pairwise distance from all the other data points to landmark points as possible.
do.lmds(X, ndim = 2, npoints = max(nrow(X)/5, ndim + 1))
do.lmds(X, ndim = 2, npoints = max(nrow(X)/5, ndim + 1))
X |
an |
ndim |
an integer-valued target dimension. |
npoints |
the number of landmark points to be drawn. |
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a whose columns are basis for projection.
name of the algorithm.
Kisung You
Silva VD, Tenenbaum JB (2002). “Global Versus Local Methods in Nonlinear Dimensionality Reduction.” In Thrun S, Obermayer K (eds.), Advances in Neural Information Processing Systems 15, 705–712. MIT Press, Cambridge, MA.
Lee S, Choi S (2009). “Landmark MDS Ensemble.” Pattern Recognition, 42(9), 2045–2053.
## use iris data data(iris) X = as.matrix(iris[,1:4]) lab = as.factor(iris[,5]) ## use 10% and 25% of the data and compare with full MDS output1 <- do.lmds(X, ndim=2, npoints=round(nrow(X)*0.10)) output2 <- do.lmds(X, ndim=2, npoints=round(nrow(X)*0.25)) output3 <- do.mds(X, ndim=2) ## vsualization opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, pch=19, col=lab, main="10% random points") plot(output2$Y, pch=19, col=lab, main="25% random points") plot(output3$Y, pch=19, col=lab, main="original MDS") par(opar)
## use iris data data(iris) X = as.matrix(iris[,1:4]) lab = as.factor(iris[,5]) ## use 10% and 25% of the data and compare with full MDS output1 <- do.lmds(X, ndim=2, npoints=round(nrow(X)*0.10)) output2 <- do.lmds(X, ndim=2, npoints=round(nrow(X)*0.25)) output3 <- do.mds(X, ndim=2) ## vsualization opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, pch=19, col=lab, main="10% random points") plot(output2$Y, pch=19, col=lab, main="25% random points") plot(output3$Y, pch=19, col=lab, main="original MDS") par(opar)
Locally Principal Component Analysis (LPCA) is an unsupervised linear dimension reduction method. It focuses on the information brought by local neighborhood structure and seeks the corresponding structure, which may contain useful information for revealing discriminative information of the data.
do.lpca2006( X, ndim = 2, type = c("proportion", 0.1), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
do.lpca2006( X, ndim = 2, type = c("proportion", 0.1), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Yang J, Zhang D, Yang J (2006). “Locally Principal Component Learning for Face Representation and Recognition.” Neurocomputing, 69(13-15), 1697–1701.
## use iris dataset data(iris) set.seed(100) subid = sample(1:150,100) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## try different neighborhood size out1 <- do.lpca2006(X, ndim=2, type=c("proportion",0.25)) out2 <- do.lpca2006(X, ndim=2, type=c("proportion",0.50)) out3 <- do.lpca2006(X, ndim=2, type=c("proportion",0.75)) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=lab, main="LPCA2006::25% connected") plot(out2$Y, pch=19, col=lab, main="LPCA2006::50% connected") plot(out3$Y, pch=19, col=lab, main="LPCA2006::75% connected") par(opar)
## use iris dataset data(iris) set.seed(100) subid = sample(1:150,100) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## try different neighborhood size out1 <- do.lpca2006(X, ndim=2, type=c("proportion",0.25)) out2 <- do.lpca2006(X, ndim=2, type=c("proportion",0.50)) out3 <- do.lpca2006(X, ndim=2, type=c("proportion",0.75)) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=lab, main="LPCA2006::25% connected") plot(out2$Y, pch=19, col=lab, main="LPCA2006::50% connected") plot(out3$Y, pch=19, col=lab, main="LPCA2006::75% connected") par(opar)
Locality Pursuit Embedding (LPE) is an unsupervised linear dimension reduction method. It aims at preserving local structure by solving a variational problem that models the local geometrical structure by the Euclidean distances.
do.lpe( X, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), numk = max(ceiling(nrow(X)/10), 2) )
do.lpe( X, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), numk = max(ceiling(nrow(X)/10), 2) )
X |
an |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
numk |
size of |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Min W, Lu K, He X (2004). “Locality Pursuit Embedding.” Pattern Recognition, 37(4), 781–788.
## generate swiss roll with auxiliary dimensions set.seed(100) n = 100 theta = runif(n) h = runif(n) t = (1+2*theta)*(3*pi/2) X = array(0,c(n,10)) X[,1] = t*cos(t) X[,2] = 21*h X[,3] = t*sin(t) X[,4:10] = matrix(runif(7*n), nrow=n) ## try with different neighborhood sizes out1 = do.lpe(X, numk=5) out2 = do.lpe(X, numk=10) out3 = do.lpe(X, numk=25) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="LPE::numk=5") plot(out2$Y, main="LPE::numk=10") plot(out3$Y, main="LPE::numk=25") par(opar)
## generate swiss roll with auxiliary dimensions set.seed(100) n = 100 theta = runif(n) h = runif(n) t = (1+2*theta)*(3*pi/2) X = array(0,c(n,10)) X[,1] = t*cos(t) X[,2] = 21*h X[,3] = t*sin(t) X[,4:10] = matrix(runif(7*n), nrow=n) ## try with different neighborhood sizes out1 = do.lpe(X, numk=5) out2 = do.lpe(X, numk=10) out3 = do.lpe(X, numk=25) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="LPE::numk=5") plot(out2$Y, main="LPE::numk=10") plot(out3$Y, main="LPE::numk=25") par(opar)
Locality Preserving Fisher Discriminant Analysis (LPFDA) is a supervised variant of LPP. It can also be seemed as an improved version of LDA where the locality structure of the data is preserved. The algorithm aims at getting a subspace projection matrix by solving a generalized eigenvalue problem.
do.lpfda( X, label, ndim = 2, type = c("proportion", 0.1), preprocess = c("center", "scale", "cscale", "whiten", "decorrelate"), t = 10 )
do.lpfda( X, label, ndim = 2, type = c("proportion", 0.1), preprocess = c("center", "scale", "cscale", "whiten", "decorrelate"), t = 10 )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
t |
bandwidth parameter for heat kernel in |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Zhao X, Tian X (2009). “Locality Preserving Fisher Discriminant Analysis for Face Recognition.” In Huang D, Jo K, Lee H, Kang H, Bevilacqua V (eds.), Emerging Intelligent Computing Technology and Applications, 261–269.
## generate data of 3 types with clear difference set.seed(100) dt1 = aux.gensamples(n=20)-50 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+50 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## try different proportion of connected edges out1 = do.lpfda(X, label, type=c("proportion",0.10)) out2 = do.lpfda(X, label, type=c("proportion",0.25)) out3 = do.lpfda(X, label, type=c("proportion",0.50)) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="10% connectivity") plot(out2$Y, pch=19, col=label, main="25% connectivity") plot(out3$Y, pch=19, col=label, main="50% connectivity") par(opar)
## generate data of 3 types with clear difference set.seed(100) dt1 = aux.gensamples(n=20)-50 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+50 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## try different proportion of connected edges out1 = do.lpfda(X, label, type=c("proportion",0.10)) out2 = do.lpfda(X, label, type=c("proportion",0.25)) out3 = do.lpfda(X, label, type=c("proportion",0.50)) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="10% connectivity") plot(out2$Y, pch=19, col=label, main="25% connectivity") plot(out3$Y, pch=19, col=label, main="50% connectivity") par(opar)
Locality-Preserved Maximum Information Projection (LPMIP) is an unsupervised linear dimension reduction method
to identify the underlying manifold structure by learning both the within- and between-locality information. The
parameter alpha
is balancing the tradeoff between two and the flexibility of this model enables an interpretation
of it as a generalized extension of LPP.
do.lpmip( X, ndim = 2, type = c("proportion", 0.1), preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), sigma = 10, alpha = 0.5 )
do.lpmip( X, ndim = 2, type = c("proportion", 0.1), preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), sigma = 10, alpha = 0.5 )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
sigma |
bandwidth parameter for heat kernel in |
alpha |
balancing parameter between two locality information in |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Haixian Wang, Sibao Chen, Zilan Hu, Wenming Zheng (2008). “Locality-Preserved Maximum Information Projection.” IEEE Transactions on Neural Networks, 19(4), 571–585.
## use iris dataset data(iris) set.seed(100) subid <- sample(1:150, 50) X <- as.matrix(iris[subid,1:4]) lab <- as.factor(iris[subid,5]) ## try different neighborhood size out1 <- do.lpmip(X, ndim=2, type=c("proportion",0.10)) out2 <- do.lpmip(X, ndim=2, type=c("proportion",0.25)) out3 <- do.lpmip(X, ndim=2, type=c("proportion",0.50)) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=lab, main="10% connected") plot(out2$Y, pch=19, col=lab, main="25% connected") plot(out3$Y, pch=19, col=lab, main="50% connected") par(opar)
## use iris dataset data(iris) set.seed(100) subid <- sample(1:150, 50) X <- as.matrix(iris[subid,1:4]) lab <- as.factor(iris[subid,5]) ## try different neighborhood size out1 <- do.lpmip(X, ndim=2, type=c("proportion",0.10)) out2 <- do.lpmip(X, ndim=2, type=c("proportion",0.25)) out3 <- do.lpmip(X, ndim=2, type=c("proportion",0.50)) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=lab, main="10% connected") plot(out2$Y, pch=19, col=lab, main="25% connected") plot(out3$Y, pch=19, col=lab, main="50% connected") par(opar)
do.lpp
is a linear approximation to Laplacian Eigenmaps. More precisely,
it aims at finding a linear approximation to the eigenfunctions of the Laplace-Beltrami
operator on the graph-approximated data manifold.
do.lpp( X, ndim = 2, type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), preprocess = c("center", "scale", "cscale", "whiten", "decorrelate"), t = 1 )
do.lpp( X, ndim = 2, type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), preprocess = c("center", "scale", "cscale", "whiten", "decorrelate"), t = 1 )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
one of |
preprocess |
an additional option for preprocessing the data.
Default is |
t |
bandwidth for heat kernel in |
a named list containing
an matrix whose rows are embedded observations.
a whose columns are basis for projection.
a list containing information for out-of-sample prediction.
Kisung You
He X (2005). Locality Preserving Projections. PhD Thesis, University of Chicago, Chicago, IL, USA.
## use iris dataset data(iris) set.seed(100) subid <- sample(1:150, 50) X <- as.matrix(iris[subid,1:4]) lab <- as.factor(iris[subid,5]) ## try different kernel bandwidths out1 <- do.lpp(X, t=0.1) out2 <- do.lpp(X, t=1) out3 <- do.lpp(X, t=10) ## Visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=lab, pch=19, main="LPP::bandwidth=0.1") plot(out2$Y, col=lab, pch=19, main="LPP::bandwidth=1") plot(out3$Y, col=lab, pch=19, main="LPP::bandwidth=10") par(opar)
## use iris dataset data(iris) set.seed(100) subid <- sample(1:150, 50) X <- as.matrix(iris[subid,1:4]) lab <- as.factor(iris[subid,5]) ## try different kernel bandwidths out1 <- do.lpp(X, t=0.1) out2 <- do.lpp(X, t=1) out3 <- do.lpp(X, t=10) ## Visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=lab, pch=19, main="LPP::bandwidth=0.1") plot(out2$Y, col=lab, pch=19, main="LPP::bandwidth=1") plot(out3$Y, col=lab, pch=19, main="LPP::bandwidth=10") par(opar)
Linear Quadratic Mutual Information (LQMI) is a supervised linear dimension reduction method. Quadratic Mutual Information is an efficient nonparametric estimation method for Mutual Information for class labels not requiring class priors. For the KQMI formulation, LQMI is a linear equivalent.
do.lqmi( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate") )
do.lqmi( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate") )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Bouzas D, Arvanitopoulos N, Tefas A (2015). “Graph Embedded Nonparametric Mutual Information for Supervised Dimensionality Reduction.” IEEE Transactions on Neural Networks and Learning Systems, 26(5), 951–963.
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare against LDA out1 = do.lda(X, label) out2 = do.lqmi(X, label) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, col=label, main="LDA projection") plot(out2$Y, col=label, main="LQMI projection") par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare against LDA out1 = do.lda(X, label) out2 = do.lqmi(X, label) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, col=label, main="LDA projection") plot(out2$Y, col=label, main="LQMI projection") par(opar)
Laplacian Score (He et al. 2005) is an unsupervised linear feature extraction method. For each feature/variable, it computes Laplacian score based on an observation that data from the same class are often close to each other. Its power of locality preserving property is used, and the algorithm selects variables with smallest scores.
do.lscore(X, ndim = 2, ...)
do.lscore(X, ndim = 2, ...)
X |
an |
ndim |
an integer-valued target dimension (default: 2). |
... |
extra parameters including
|
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a length- vector of laplacian scores. Indices with smallest values are selected.
a length- vector of indices with highest scores.
a whose columns are basis for projection.
a list containing information for out-of-sample prediction.
name of the algorithm.
Kisung You
He X, Cai D, Niyogi P (2005). “Laplacian Score for Feature Selection.” In Proceedings of the 18th International Conference on Neural Information Processing Systems, NIPS'05, 507–514.
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) set.seed(100) subid <- sample(1:150, 50) iris.dat <- as.matrix(iris[subid,1:4]) iris.lab <- as.factor(iris[subid,5]) ## try different kernel bandwidth out1 = do.lscore(iris.dat, t=0.1) out2 = do.lscore(iris.dat, t=1) out3 = do.lscore(iris.dat, t=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=iris.lab, main="bandwidth=0.1") plot(out2$Y, pch=19, col=iris.lab, main="bandwidth=1") plot(out3$Y, pch=19, col=iris.lab, main="bandwidth=10") par(opar)
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) set.seed(100) subid <- sample(1:150, 50) iris.dat <- as.matrix(iris[subid,1:4]) iris.lab <- as.factor(iris[subid,5]) ## try different kernel bandwidth out1 = do.lscore(iris.dat, t=0.1) out2 = do.lscore(iris.dat, t=1) out3 = do.lscore(iris.dat, t=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=iris.lab, main="bandwidth=0.1") plot(out2$Y, pch=19, col=iris.lab, main="bandwidth=1") plot(out3$Y, pch=19, col=iris.lab, main="bandwidth=10") par(opar)
Locality Sensitive Discriminant Analysis (LSDA) is a supervised linear method. It aims at finding a projection which maximizes the margin between data points from different classes at each local area in which the nearby points with the same label are close to each other while the nearby points with different labels are far apart.
do.lsda( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate"), alpha = 0.5, k1 = max(ceiling(nrow(X)/10), 2), k2 = max(ceiling(nrow(X)/10), 2) )
do.lsda( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate"), alpha = 0.5, k1 = max(ceiling(nrow(X)/10), 2), k2 = max(ceiling(nrow(X)/10), 2) )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
alpha |
balancing parameter for between- and within-class scatter in |
k1 |
the number of same-class neighboring points (homogeneous neighbors). |
k2 |
the number of different-class neighboring points (heterogeneous neighbors). |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Cai D, He X, Zhou K, Han J, Bao H (2007). “Locality Sensitive Discriminant Analysis.” In Proceedings of the 20th International Joint Conference on Artifical Intelligence, IJCAI'07, 708–713.
## create a data matrix with clear difference x1 = matrix(rnorm(4*10), nrow=10)-20 x2 = matrix(rnorm(4*10), nrow=10) x3 = matrix(rnorm(4*10), nrow=10)+20 X = rbind(x1, x2, x3) label = c(rep(1,10), rep(2,10), rep(3,10)) ## try different affinity matrices out1 = do.lsda(X, label, k1=2, k2=2) out2 = do.lsda(X, label, k1=5, k2=5) out3 = do.lsda(X, label, k1=10, k2=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, main="nbd size 2") plot(out2$Y, col=label, main="nbd size 5") plot(out3$Y, col=label, main="nbd size 10") par(opar)
## create a data matrix with clear difference x1 = matrix(rnorm(4*10), nrow=10)-20 x2 = matrix(rnorm(4*10), nrow=10) x3 = matrix(rnorm(4*10), nrow=10)+20 X = rbind(x1, x2, x3) label = c(rep(1,10), rep(2,10), rep(3,10)) ## try different affinity matrices out1 = do.lsda(X, label, k1=2, k2=2) out2 = do.lsda(X, label, k1=5, k2=5) out3 = do.lsda(X, label, k1=10, k2=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, main="nbd size 2") plot(out2$Y, col=label, main="nbd size 5") plot(out3$Y, col=label, main="nbd size 10") par(opar)
Locality Sensitive Discriminant Feature (LSDF) is a semi-supervised feature selection method. It utilizes both labeled and unlabeled data points in that labeled points are used to maximize the margin between data opints from different classes, while labeled ones are used to discover the geometrical structure of the data space.
do.lsdf( X, label, ndim = 2, type = c("proportion", 0.1), preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), gamma = 100 )
do.lsdf( X, label, ndim = 2, type = c("proportion", 0.1), preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), gamma = 100 )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
gamma |
within-class weight parameter for same-class data. |
a named list containing
an matrix whose rows are embedded observations.
a length- vector of indices with highest scores.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Cai D, He X, Zhou K, Han J, Bao H (2007). “Locality Sensitive Discriminant Analysis.” In Proceedings of the 20th International Joint Conference on Artifical Intelligence, IJCAI'07, 708–713.
## generate data of 3 types with clear difference set.seed(100) dt1 = aux.gensamples(n=20)-50 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+50 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## copy a label and let 20% of elements be missing nlabel = length(label) nmissing = round(nlabel*0.20) label_missing = label label_missing[sample(1:nlabel, nmissing)]=NA ## try different neighborhood sizes out1 = do.lsdf(X, label_missing, type=c("proportion",0.10)) out2 = do.lsdf(X, label_missing, type=c("proportion",0.25)) out3 = do.lsdf(X, label_missing, type=c("proportion",0.50)) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="10% connectivity") plot(out2$Y, pch=19, col=label, main="25% connectivity") plot(out3$Y, pch=19, col=label, main="50% connectivity") par(opar)
## generate data of 3 types with clear difference set.seed(100) dt1 = aux.gensamples(n=20)-50 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+50 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## copy a label and let 20% of elements be missing nlabel = length(label) nmissing = round(nlabel*0.20) label_missing = label label_missing[sample(1:nlabel, nmissing)]=NA ## try different neighborhood sizes out1 = do.lsdf(X, label_missing, type=c("proportion",0.10)) out2 = do.lsdf(X, label_missing, type=c("proportion",0.25)) out3 = do.lsdf(X, label_missing, type=c("proportion",0.50)) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="10% connectivity") plot(out2$Y, pch=19, col=label, main="25% connectivity") plot(out3$Y, pch=19, col=label, main="50% connectivity") par(opar)
Localized SIR (SIR) is an extension of celebrated SIR method. As its name suggests, the locality concept is brought in that for each slice, only local data points are considered in order to discover intrinsic structure of the data.
do.lsir( X, response, ndim = 2, h = max(2, round(nrow(X)/5)), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), ycenter = FALSE, numk = max(2, round(nrow(X)/10)), tau = 1 )
do.lsir( X, response, ndim = 2, h = max(2, round(nrow(X)/5)), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), ycenter = FALSE, numk = max(2, round(nrow(X)/10)), tau = 1 )
X |
an |
response |
a length- |
ndim |
an integer-valued target dimension. |
h |
the number of slices to divide the range of response vector. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
ycenter |
a logical; |
numk |
size of determining neighborhood via |
tau |
regularization parameter for adjusting rank-deficient scatter matrix. |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Wu Q, Liang F, Mukherjee S (2010). “Localized Sliced Inverse Regression.” Journal of Computational and Graphical Statistics, 19(4), 843–860.
## generate swiss roll with auxiliary dimensions ## it follows reference example from LSIR paper. set.seed(100) n = 123 theta = runif(n) h = runif(n) t = (1+2*theta)*(3*pi/2) X = array(0,c(n,10)) X[,1] = t*cos(t) X[,2] = 21*h X[,3] = t*sin(t) X[,4:10] = matrix(runif(7*n), nrow=n) ## corresponding response vector y = sin(5*pi*theta)+(runif(n)*sqrt(0.1)) ## try different number of neighborhoods out1 = do.lsir(X, y, numk=5) out2 = do.lsir(X, y, numk=10) out3 = do.lsir(X, y, numk=25) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="LSIR::nbd size=5") plot(out2$Y, main="LSIR::nbd size=10") plot(out3$Y, main="LSIR::nbd size=25") par(opar)
## generate swiss roll with auxiliary dimensions ## it follows reference example from LSIR paper. set.seed(100) n = 123 theta = runif(n) h = runif(n) t = (1+2*theta)*(3*pi/2) X = array(0,c(n,10)) X[,1] = t*cos(t) X[,2] = 21*h X[,3] = t*sin(t) X[,4:10] = matrix(runif(7*n), nrow=n) ## corresponding response vector y = sin(5*pi*theta)+(runif(n)*sqrt(0.1)) ## try different number of neighborhoods out1 = do.lsir(X, y, numk=5) out2 = do.lsir(X, y, numk=10) out3 = do.lsir(X, y, numk=25) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="LSIR::nbd size=5") plot(out2$Y, main="LSIR::nbd size=10") plot(out3$Y, main="LSIR::nbd size=25") par(opar)
Locality Sensitive Laplacian Score (LSLS) is a supervised linear feature extraction method that combines a feature selection framework of laplacian score where the graph laplacian is adjusted as in the scheme of LSDA. The adjustment is taken via decomposed affinity matrices which are separately constructed using the provided class label information.
do.lsls( X, label, ndim = 2, alpha = 0.5, k = 5, preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten") )
do.lsls( X, label, ndim = 2, alpha = 0.5, k = 5, preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
alpha |
a weight factor; should be a real number in |
k |
an integer; the size of a neighborhood. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
a named list containing
an matrix whose rows are embedded observations.
a length- vector of indices with highest scores.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Liao B, Jiang Y, Liang W, Zhu W, Cai L, Cao Z (2014). “Gene Selection Using Locality Sensitive Laplacian Score.” IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11(6), 1146–1156.
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) set.seed(100) subid = sample(1:150,50) iris.dat = as.matrix(iris[subid,1:4]) iris.lab = as.factor(iris[subid,5]) ## compare different neighborhood sizes out1 = do.lsls(iris.dat, iris.lab, k=3) out2 = do.lsls(iris.dat, iris.lab, k=6) out3 = do.lsls(iris.dat, iris.lab, k=9) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=iris.lab, pch=19, main="LSLS::k=3") plot(out2$Y, col=iris.lab, pch=19, main="LSLS::k=6") plot(out3$Y, col=iris.lab, pch=19, main="LSLS::k=9") par(opar)
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) set.seed(100) subid = sample(1:150,50) iris.dat = as.matrix(iris[subid,1:4]) iris.lab = as.factor(iris[subid,5]) ## compare different neighborhood sizes out1 = do.lsls(iris.dat, iris.lab, k=3) out2 = do.lsls(iris.dat, iris.lab, k=6) out3 = do.lsls(iris.dat, iris.lab, k=9) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=iris.lab, pch=19, main="LSLS::k=3") plot(out2$Y, col=iris.lab, pch=19, main="LSLS::k=6") plot(out3$Y, col=iris.lab, pch=19, main="LSLS::k=9") par(opar)
Locality and Similarity Preserving Embedding (LSPE) is a feature selection method based on Neighborhood Preserving Embedding (do.npe
) and
Sparsity Preserving Projection (do.spp
) by first building a neighborhood graph and
then mapping the locality structure to reconstruct coefficients such that data similarity is preserved.
Use of norm boosts to impose column-sparsity that enables feature selection procedure.
do.lspe( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), alpha = 1, beta = 1, bandwidth = 1 )
do.lspe( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), alpha = 1, beta = 1, bandwidth = 1 )
X |
an |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
alpha |
nonnegative number to control |
beta |
nonnegative number to control the degree of local similarity. |
bandwidth |
positive number for Gaussian kernel bandwidth to define similarity. |
a named list containing
an matrix whose rows are embedded observations.
a length- vector of indices with highest scores.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Fang X, Xu Y, Li X, Fan Z, Liu H, Chen Y (2014). “Locality and Similarity Preserving Embedding for Feature Selection.” Neurocomputing, 128, 304–315.
#### generate R12in72 dataset set.seed(100) X = aux.gensamples(n=50, dname="R12in72") #### try different bandwidth values out1 = do.lspe(X, bandwidth=0.1) out2 = do.lspe(X, bandwidth=1) out3 = do.lspe(X, bandwidth=10) #### visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="LSPE::bandwidth=0.1") plot(out2$Y, main="LSPE::bandwidth=1") plot(out3$Y, main="LSPE::bandwidth=10") par(opar)
#### generate R12in72 dataset set.seed(100) X = aux.gensamples(n=50, dname="R12in72") #### try different bandwidth values out1 = do.lspe(X, bandwidth=0.1) out2 = do.lspe(X, bandwidth=1) out3 = do.lspe(X, bandwidth=10) #### visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="LSPE::bandwidth=0.1") plot(out2$Y, main="LSPE::bandwidth=1") plot(out3$Y, main="LSPE::bandwidth=10") par(opar)
Local Similarity Preserving Projection (LSPP) is a variant of LPP in that
it employs a sample-dependent graph generation process as of do.sdlpp
.
LSPP takes advantage of labeling information to correct local similarity weight
in order to make intra-class weight larger than inter-class weight. It uses
PCA preprocessing as suggested from the original work.
do.lspp( X, label, ndim = 2, t = 1, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
do.lspp( X, label, ndim = 2, t = 1, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
t |
kernel bandwidth in |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Huang P, Gao G (2015). “Local Similarity Preserving Projections for Face Recognition.” AEU - International Journal of Electronics and Communications, 69(11), 1724–1732.
## generate data of 2 types with clear difference diff = 15 dt1 = aux.gensamples(n=50)-diff; dt2 = aux.gensamples(n=50)+diff; ## merge the data and create a label correspondingly Y = rbind(dt1,dt2) label = rep(1:2, each=50) ## compare with PCA out1 <- do.pca(Y, ndim=2) out2 <- do.slpp(Y, label, ndim=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, col=label, pch=19, main="PCA") plot(out2$Y, col=label, pch=19, main="LSPP") par(opar)
## generate data of 2 types with clear difference diff = 15 dt1 = aux.gensamples(n=50)-diff; dt2 = aux.gensamples(n=50)+diff; ## merge the data and create a label correspondingly Y = rbind(dt1,dt2) label = rep(1:2, each=50) ## compare with PCA out1 <- do.pca(Y, ndim=2) out2 <- do.slpp(Y, label, ndim=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, col=label, pch=19, main="PCA") plot(out2$Y, col=label, pch=19, main="LSPP") par(opar)
Local Tangent Space Alignment, or LTSA in short, is a nonlinear dimensionality reduction method that mimicks the behavior of low-dimensional manifold embedded in high-dimensional space. Similar to LLE, LTSA computes tangent space using nearest neighbors of a given data point, and a multiple of tangent spaces are gathered to to find an embedding that aligns the tangent spaces in target dimensional space.
do.ltsa( X, ndim = 2, type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
do.ltsa( X, ndim = 2, type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
one of |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a vector of eigenvalues from the final decomposition.
Kisung You
Zhang T, Yang J, Zhao D, Ge X (2007). “Linear Local Tangent Space Alignment and Application to Face Recognition.” Neurocomputing, 70(7-9), 1547–1553.
## generate data set.seed(100) X <- aux.gensamples(dname="cswiss",n=100) ## 1. use 10%-connected graph output1 <- do.ltsa(X,ndim=2) ## 2. use 25%-connected graph output2 <- do.ltsa(X,ndim=2,type=c("proportion",0.25)) ## 3. use 50%-connected graph output3 <- do.ltsa(X,ndim=2,type=c("proportion",0.50)) ## Visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, main="10%") plot(output2$Y, main="25%") plot(output3$Y, main="50%") par(opar)
## generate data set.seed(100) X <- aux.gensamples(dname="cswiss",n=100) ## 1. use 10%-connected graph output1 <- do.ltsa(X,ndim=2) ## 2. use 25%-connected graph output2 <- do.ltsa(X,ndim=2,type=c("proportion",0.25)) ## 3. use 50%-connected graph output3 <- do.ltsa(X,ndim=2,type=c("proportion",0.50)) ## Visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, main="10%") plot(output2$Y, main="25%") plot(output3$Y, main="50%") par(opar)
Multi-Cluster Feature Selection (MCFS) is an unsupervised feature selection method. Based on a multi-cluster assumption, it aims at finding meaningful features using sparse reconstruction of spectral basis using LASSO.
do.mcfs( X, ndim = 2, type = c("proportion", 0.1), preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), K = max(round(nrow(X)/5), 2), lambda = 1, t = 10 )
do.mcfs( X, ndim = 2, type = c("proportion", 0.1), preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), K = max(round(nrow(X)/5), 2), lambda = 1, t = 10 )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
K |
assumed number of clusters in the original dataset. |
lambda |
|
t |
bandwidth parameter for heat kernel in |
a named list containing
an matrix whose rows are embedded observations.
a length- vector of indices with highest scores.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Cai D, Zhang C, He X (2010). “Unsupervised Feature Selection for Multi-Cluster Data.” In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 333–342.
## generate data of 3 types with clear difference dt1 = aux.gensamples(n=20)-100 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+100 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## try different regularization parameters out1 = do.mcfs(X, lambda=0.01) out2 = do.mcfs(X, lambda=0.1) out3 = do.mcfs(X, lambda=1) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="lambda=0.01") plot(out2$Y, pch=19, col=label, main="lambda=0.1") plot(out3$Y, pch=19, col=label, main="lambda=1") par(opar)
## generate data of 3 types with clear difference dt1 = aux.gensamples(n=20)-100 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+100 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## try different regularization parameters out1 = do.mcfs(X, lambda=0.01) out2 = do.mcfs(X, lambda=0.1) out3 = do.mcfs(X, lambda=1) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="lambda=0.01") plot(out2$Y, pch=19, col=label, main="lambda=0.1") plot(out3$Y, pch=19, col=label, main="lambda=1") par(opar)
do.mds
performs a classical Multidimensional Scaling (MDS) using
Rcpp
and RcppArmadillo
package to achieve faster performance than
cmdscale
.
do.mds(X, ndim = 2, ...)
do.mds(X, ndim = 2, ...)
X |
an |
ndim |
an integer-valued target dimension. |
... |
extra parameters including
|
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a whose columns are basis for projection.
a list containing information for out-of-sample prediction.
name of the algorithm.
Kruskal JB (1964). “Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric Hypothesis.” Psychometrika, 29(1), 1–27.
## use iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## compare with PCA Rmds <- do.mds(X, ndim=2) Rpca <- do.pca(X, ndim=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(Rmds$Y, pch=19, col=lab, main="MDS") plot(Rpca$Y, pch=19, col=lab, main="PCA") par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## compare with PCA Rmds <- do.mds(X, ndim=2) Rpca <- do.pca(X, ndim=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(Rmds$Y, pch=19, col=lab, main="MDS") plot(Rpca$Y, pch=19, col=lab, main="PCA") par(opar)
Marginal Fisher Analysis (MFA) is a supervised linear dimension reduction method. The intrinsic graph characterizes the intraclass compactness and connects each data point with its neighboring pionts of the same class, while the penalty graph connects the marginal points and characterizes the interclass separability.
do.mfa( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), k1 = max(ceiling(nrow(X)/10), 2), k2 = max(ceiling(nrow(X)/10), 2) )
do.mfa( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), k1 = max(ceiling(nrow(X)/10), 2), k2 = max(ceiling(nrow(X)/10), 2) )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
k1 |
the number of same-class neighboring points (homogeneous neighbors). |
k2 |
the number of different-class neighboring points (heterogeneous neighbors). |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Yan S, Xu D, Zhang B, Zhang H, Yang Q, Lin S (2007). “Graph Embedding and Extensions: A General Framework for Dimensionality Reduction.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(1), 40–51.
## generate data of 3 types with clear difference dt1 = aux.gensamples(n=20)-100 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+100 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## try different numbers for neighborhood size out1 = do.mfa(X, label, k1=5, k2=5) out2 = do.mfa(X, label, k1=10,k2=10) out3 = do.mfa(X, label, k1=25,k2=25) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="MFA::nbd size=5") plot(out2$Y, main="MFA::nbd size=10") plot(out3$Y, main="MFA::nbd size=25") par(opar)
## generate data of 3 types with clear difference dt1 = aux.gensamples(n=20)-100 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+100 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## try different numbers for neighborhood size out1 = do.mfa(X, label, k1=5, k2=5) out2 = do.mfa(X, label, k1=10,k2=10) out3 = do.mfa(X, label, k1=25,k2=25) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="MFA::nbd size=5") plot(out2$Y, main="MFA::nbd size=10") plot(out3$Y, main="MFA::nbd size=25") par(opar)
MIFS is a supervised feature selection that iteratively increases the subset of variables by choosing maximally informative feature based on the mutual information.
do.mifs( X, label, ndim = 2, beta = 0.75, discretize = c("default", "histogram"), preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate") )
do.mifs( X, label, ndim = 2, beta = 0.75, discretize = c("default", "histogram"), preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate") )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
beta |
penalty for relative importance of mutual information between the candidate and already-chosen features in iterations. Author proposes to use a value in |
discretize |
the method for each variable to be discretized. The paper proposes |
preprocess |
an additional option for preprocessing the data. Default is "null". See also |
a named list containing
an matrix whose rows are embedded observations.
a length- vector of indices with highest scores.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Battiti R (1994). “Using Mutual Information for Selecting Features in Supervised Neural Net Learning.” IEEE Transactions on Neural Networks, 5(4), 537–550. ISSN 10459227.
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) iris.dat = as.matrix(iris[,1:4]) iris.lab = as.factor(iris[,5]) ## try different beta values out1 = do.mifs(iris.dat, iris.lab, beta=0) out2 = do.mifs(iris.dat, iris.lab, beta=0.5) out3 = do.mifs(iris.dat, iris.lab, beta=1) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=iris.lab, main="beta=0") plot(out2$Y, pch=19, col=iris.lab, main="beta=0.5") plot(out3$Y, pch=19, col=iris.lab, main="beta=1") par(opar)
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) iris.dat = as.matrix(iris[,1:4]) iris.lab = as.factor(iris[,5]) ## try different beta values out1 = do.mifs(iris.dat, iris.lab, beta=0) out2 = do.mifs(iris.dat, iris.lab, beta=0.5) out3 = do.mifs(iris.dat, iris.lab, beta=1) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=iris.lab, main="beta=0") plot(out2$Y, pch=19, col=iris.lab, main="beta=0.5") plot(out3$Y, pch=19, col=iris.lab, main="beta=1") par(opar)
Maximal Local Interclass Embedding (MLIE) is a linear supervised method that the local interclass graph and the intrinsic graph are constructed to find a set of projections that maximize the local interclass scatter and the local intraclass compactness at the same time. It can be deemed an extended version of MFA.
do.mlie( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), k1 = max(ceiling(nrow(X)/10), 2), k2 = max(ceiling(nrow(X)/10), 2) )
do.mlie( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), k1 = max(ceiling(nrow(X)/10), 2), k2 = max(ceiling(nrow(X)/10), 2) )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
k1 |
the number of same-class neighboring points (homogeneous neighbors). |
k2 |
the number of different-class neighboring points (heterogeneous neighbors). |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Lai Z, Zhao C, Chen Y, Jin Z (2011). “Maximal Local Interclass Embedding with Application to Face Recognition.” Machine Vision and Applications, 22(4), 619–627.
## Not run: ## generate data of 3 types with clear difference set.seed(100) diff = 100 dt1 = aux.gensamples(n=20)-diff dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+diff ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## try different numbers for neighborhood size out1 = do.mlie(X, label, k1=5, k2=5) out2 = do.mlie(X, label, k1=10,k2=10) out3 = do.mlie(X, label, k1=25,k2=25) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="MLIE::nbd size=5") plot(out2$Y, main="MLIE::nbd size=10") plot(out3$Y, main="MLIE::nbd size=25") par(opar) ## End(Not run)
## Not run: ## generate data of 3 types with clear difference set.seed(100) diff = 100 dt1 = aux.gensamples(n=20)-diff dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+diff ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## try different numbers for neighborhood size out1 = do.mlie(X, label, k1=5, k2=5) out2 = do.mlie(X, label, k1=10,k2=10) out3 = do.mlie(X, label, k1=25,k2=25) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="MLIE::nbd size=5") plot(out2$Y, main="MLIE::nbd size=10") plot(out3$Y, main="MLIE::nbd size=25") par(opar) ## End(Not run)
Maximum Margin Criterion (MMC) is a linear supervised dimension reduction method that maximizes average margin between classes. The cost function is defined as
where is an overall variance of class mean vectors, and
refers to
spread of every class. Note that Principal Component Analysis (PCA) maximizes
total scatter,
.
do.mmc(X, label, ndim = 2)
do.mmc(X, label, ndim = 2)
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a whose columns are basis for projection.
name of the algorithm.
Kisung You
Li H, Jiang T, Zhang K (2006). “Efficient and Robust Feature Extraction by Maximum Margin Criterion.” IEEE Transactions on Neural Networks, 17(1), 157–165.
## use iris data data(iris, package="Rdimtools") subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare MMC with other methods outMMC = do.mmc(X, label) outMVP = do.mvp(X, label) outPCA = do.pca(X) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(outMMC$Y, pch=19, col=label, main="MMC") plot(outMVP$Y, pch=19, col=label, main="MVP") plot(outPCA$Y, pch=19, col=label, main="PCA") par(opar)
## use iris data data(iris, package="Rdimtools") subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare MMC with other methods outMMC = do.mmc(X, label) outMVP = do.mvp(X, label) outPCA = do.pca(X) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(outMMC$Y, pch=19, col=label, main="MMC") plot(outMVP$Y, pch=19, col=label, main="MVP") plot(outPCA$Y, pch=19, col=label, main="PCA") par(opar)
Metric MDS is a nonlinear method that is solved iteratively. We adopt a well-known SMACOF algorithm for updates with uniform weights over all pairwise distances after initializing the low-dimensional configuration via classical MDS.
do.mmds(X, ndim = 2, ...)
do.mmds(X, ndim = 2, ...)
X |
an |
ndim |
an integer-valued target dimension (default: 2). |
... |
extra parameters including
|
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
name of the algorithm.
Leeuw JD, Barra IJR, Brodeau F, Romier G, (eds BVC (1977). “Applications of Convex Analysis to Multidimensional Scaling.” In Recent Developments in Statistics, 133–146.
Borg I, Groenen PJF (2010). Modern Multidimensional Scaling: Theory and Applications. Springer New York, New York, NY. ISBN 978-1-4419-2046-1 978-0-387-28981-6.
## load iris data data(iris) X = as.matrix(iris[,1:4]) lab = as.factor(iris[,5]) ## compare with other methods pca2d <- do.pca(X, ndim=2) cmd2d <- do.mds(X, ndim=2) mmd2d <- do.mmds(X, ndim=2) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(pca2d$Y, col=lab, pch=19, main="PCA") plot(cmd2d$Y, col=lab, pch=19, main="Classical MDS") plot(mmd2d$Y, col=lab, pch=19, main="Metric MDS") par(opar)
## load iris data data(iris) X = as.matrix(iris[,1:4]) lab = as.factor(iris[,5]) ## compare with other methods pca2d <- do.pca(X, ndim=2) cmd2d <- do.mds(X, ndim=2) mmd2d <- do.mmds(X, ndim=2) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(pca2d$Y, col=lab, pch=19, main="PCA") plot(cmd2d$Y, col=lab, pch=19, main="Classical MDS") plot(mmd2d$Y, col=lab, pch=19, main="Metric MDS") par(opar)
Maximum Margin Projection (MMP) is a supervised linear method that maximizes the margin between positive and negative examples at each local neighborhood based on same- and different-class neighborhoods depending on class labels.
do.mmp( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), numk = max(ceiling(nrow(X)/10), 2), alpha = 0.5, gamma = 50 )
do.mmp( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), numk = max(ceiling(nrow(X)/10), 2), alpha = 0.5, gamma = 50 )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
numk |
the number of neighboring points. |
alpha |
balancing parameter in |
gamma |
weight for same-label data points with large magnitude. |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Xiaofei He, Deng Cai, Jiawei Han (2008). “Learning a Maximum Margin Subspace for Image Retrieval.” IEEE Transactions on Knowledge and Data Engineering, 20(2), 189–201.
## generate data of 3 types with clear difference dt1 = aux.gensamples(n=20)-100 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+100 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## copy a label and let 20% of elements be missing nlabel = length(label) nmissing = round(nlabel*0.20) label_missing = label label_missing[sample(1:nlabel, nmissing)]=NA ## compare with PCA case for full-label case ## for missing label case from MMP computation out1 = do.pca(X, ndim=2) out2 = do.mmp(X, label_missing, numk=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, col=label, main="PCA projection") plot(out2$Y, col=label, main="20% missing labels") par(opar)
## generate data of 3 types with clear difference dt1 = aux.gensamples(n=20)-100 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+100 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## copy a label and let 20% of elements be missing nlabel = length(label) nmissing = round(nlabel*0.20) label_missing = label label_missing[sample(1:nlabel, nmissing)]=NA ## compare with PCA case for full-label case ## for missing label case from MMP computation out1 = do.pca(X, ndim=2) out2 = do.mmp(X, label_missing, numk=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, col=label, main="PCA projection") plot(out2$Y, col=label, main="20% missing labels") par(opar)
Multiple Maximum Scatter Difference (MMSD) is a supervised linear dimension reduction method. It is a variant of MSD in that discriminant vectors are orthonormal. Similar to MSD, it also does not suffer from rank deficiency issue of scatter matrix.
do.mmsd( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate"), C = 1 )
do.mmsd( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate"), C = 1 )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
C |
nonnegative balancing parameter for intra- and inter-class scatter. |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Fengxi Song, Zhang D, Dayong Mei, Zhongwei Guo (2007). “A Multiple Maximum Scatter Difference Discriminant Criterion for Facial Feature Extraction.” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37(6), 1599–1606.
## generate data of 3 types with clear difference set.seed(100) dt1 = aux.gensamples(n=20)-50 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+50 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## try different balancing parameter out1 = do.mmsd(X, label, C=0.01) out2 = do.mmsd(X, label, C=1) out3 = do.mmsd(X, label, C=100) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="MMSD::C=0.01") plot(out2$Y, pch=19, col=label, main="MMSD::C=1") plot(out3$Y, pch=19, col=label, main="MMSD::C=100") par(opar)
## generate data of 3 types with clear difference set.seed(100) dt1 = aux.gensamples(n=20)-50 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+50 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## try different balancing parameter out1 = do.mmsd(X, label, C=0.01) out2 = do.mmsd(X, label, C=1) out3 = do.mmsd(X, label, C=100) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="MMSD::C=0.01") plot(out2$Y, pch=19, col=label, main="MMSD::C=1") plot(out3$Y, pch=19, col=label, main="MMSD::C=100") par(opar)
Modified Orthogonal Discriminant Projection (MODP) is a variant of Orthogonal Discriminant Projection (ODP). Authors argue the assumption in modeling ODP's mechanism to reflect distance and class labeling seem unsound. They propose a modified method to explore the intrinsic structure of original data and enhance the classification ability.
do.modp( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), alpha = 0.5, beta = 10 )
do.modp( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), alpha = 0.5, beta = 10 )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
one of |
alpha |
balancing parameter of non-local and local scatter in |
beta |
scaling control parameter for distant pairs of data in |
a named list containing
an matrix whose rows are embedded observations.
a whose columns are basis for projection.
a list containing information for out-of-sample prediction.
Zhang S, Lei Y, Wu Y, Yang J (2011). “Modified Orthogonal Discriminant Projection for Classification.” Neurocomputing, 74(17), 3690–3694.
## generate 3 different groups of data X and label vector x1 = matrix(rnorm(4*10), nrow=10)-20 x2 = matrix(rnorm(4*10), nrow=10) x3 = matrix(rnorm(4*10), nrow=10)+20 X = rbind(x1, x2, x3) label = rep(1:3, each=10) ## try different beta (scaling control) parameter out1 = do.modp(X, label, beta=1) out2 = do.modp(X, label, beta=10) out3 = do.modp(X, label, beta=100) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="MODP::beta=1") plot(out2$Y, main="MODP::beta=10") plot(out3$Y, main="MODP::beta=100") par(opar)
## generate 3 different groups of data X and label vector x1 = matrix(rnorm(4*10), nrow=10)-20 x2 = matrix(rnorm(4*10), nrow=10) x3 = matrix(rnorm(4*10), nrow=10)+20 X = rbind(x1, x2, x3) label = rep(1:3, each=10) ## try different beta (scaling control) parameter out1 = do.modp(X, label, beta=1) out2 = do.modp(X, label, beta=10) out3 = do.modp(X, label, beta=100) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="MODP::beta=1") plot(out2$Y, main="MODP::beta=10") plot(out3$Y, main="MODP::beta=100") par(opar)
Maximum Scatter Difference (MSD) is a supervised linear dimension reduction method. The basic idea of MSD is to use additive cost function rather than multiplicative trace ratio criterion that was adopted by LDA. Due to such formulation, it can neglect sample-sample-size problem from rank-deficiency of between-class variance matrix.
do.msd( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate"), C = 1 )
do.msd( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate"), C = 1 )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
C |
nonnegative balancing parameter for intra- and inter-class variance. |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Song F, Zhang D, Chen Q, Wang J (2007). “Face Recognition Based on a Novel Linear Discriminant Criterion.” Pattern Analysis and Applications, 10(3), 165–174.
## generate data of 3 types with clear difference set.seed(100) dt1 = aux.gensamples(n=20)-50 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+50 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## try different balancing parameter out1 = do.msd(X, label, C=0.01) out2 = do.msd(X, label, C=1) out3 = do.msd(X, label, C=100) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="MSD::C=0.01") plot(out2$Y, pch=19, col=label, main="MSD::C=1") plot(out3$Y, pch=19, col=label, main="MSD::C=100") par(opar)
## generate data of 3 types with clear difference set.seed(100) dt1 = aux.gensamples(n=20)-50 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+50 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## try different balancing parameter out1 = do.msd(X, label, C=0.01) out2 = do.msd(X, label, C=1) out3 = do.msd(X, label, C=100) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="MSD::C=0.01") plot(out2$Y, pch=19, col=label, main="MSD::C=1") plot(out3$Y, pch=19, col=label, main="MSD::C=100") par(opar)
Minimum Volume Embedding (MVE) is a nonlinear dimension reduction
algorithm that exploits semidefinite programming (SDP), like MVU/SDE.
Whereas MVU aims at stretching through all direction by maximizing
, MVE only opts for unrolling the top eigenspectrum
and chooses to shrink left-over spectral dimension. For ease of use,
unlike kernel PCA, we only made use of Gaussian kernel for MVE.
do.mve( X, ndim = 2, knn = ceiling(nrow(X)/10), kwidth = 1, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), tol = 1e-04, maxiter = 10 )
do.mve( X, ndim = 2, knn = ceiling(nrow(X)/10), kwidth = 1, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), tol = 1e-04, maxiter = 10 )
X |
an |
ndim |
an integer-valued target dimension. |
knn |
size of |
kwidth |
bandwidth for Gaussian kernel. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
tol |
stopping criterion for incremental change. |
maxiter |
maximum number of iterations allowed. |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
Shaw B, Jebara T (2007). “Minimum Volume Embedding.” In Meila M, Shen X (eds.), Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics March 21-24, 2007, San Juan, Puerto Rico, 460–467.
## Not run: ## use a small subset of iris data set.seed(100) id = sample(1:150, 50) X = as.matrix(iris[id,1:4]) lab = as.factor(iris[id,5]) ## try different connectivity levels output1 <- do.mve(X, knn=5) output2 <- do.mve(X, knn=10) output3 <- do.mve(X, knn=20) ## Visualize two comparisons opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, main="knn:k=5", pch=19, col=lab) plot(output2$Y, main="knn:k=10", pch=19, col=lab) plot(output3$Y, main="knn:k=20", pch=19, col=lab) par(opar) ## End(Not run)
## Not run: ## use a small subset of iris data set.seed(100) id = sample(1:150, 50) X = as.matrix(iris[id,1:4]) lab = as.factor(iris[id,5]) ## try different connectivity levels output1 <- do.mve(X, knn=5) output2 <- do.mve(X, knn=10) output3 <- do.mve(X, knn=20) ## Visualize two comparisons opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, main="knn:k=5", pch=19, col=lab) plot(output2$Y, main="knn:k=10", pch=19, col=lab) plot(output3$Y, main="knn:k=20", pch=19, col=lab) par(opar) ## End(Not run)
Maximum Variance Projection (MVP) is a supervised method based on linear discriminant analysis (LDA). In addition to classical LDA, it further aims at preserving local information by capturing the local geometry of the manifold via the following proximity coding,
,
where is the label of an
-th data point.
do.mvp(X, label, ndim = 2)
do.mvp(X, label, ndim = 2)
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a whose columns are basis for projection.
name of the algorithm.
Kisung You
Zhang T (2007). “Maximum Variance Projections for Face Recognition.” Optical Engineering, 46(6), 067206.
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## perform MVP and compare with others outMVP = do.mvp(X, label) outPCA = do.pca(X) outLDA = do.lda(X, label) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(outMVP$Y, col=label, pch=19, main="MVP") plot(outPCA$Y, col=label, pch=19, main="PCA") plot(outLDA$Y, col=label, pch=19, main="LDA") par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## perform MVP and compare with others outMVP = do.mvp(X, label) outPCA = do.pca(X) outLDA = do.lda(X, label) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(outMVP$Y, col=label, pch=19, main="MVP") plot(outPCA$Y, col=label, pch=19, main="PCA") plot(outLDA$Y, col=label, pch=19, main="LDA") par(opar)
The method of Maximum Variance Unfolding(MVU), also known as Semidefinite Embedding(SDE) is, as its names suggest,
to exploit semidefinite programming in performing nonlinear dimensionality reduction by unfolding
neighborhood graph constructed in the original high-dimensional space. Its unfolding generates a gram
matrix in that we can choose from either directly finding embeddings (
"spectral"
) or
use again Kernel PCA technique ("kpca"
) to find low-dimensional representations.
do.mvu( X, ndim = 2, type = c("proportion", 0.1), preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten"), projtype = c("spectral", "kpca") )
do.mvu( X, ndim = 2, type = c("proportion", 0.1), preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten"), projtype = c("spectral", "kpca") )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
projtype |
type of method for projection; either |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
Weinberger KQ, Saul LK (2006). “Unsupervised Learning of Image Manifolds by Semidefinite Programming.” International Journal of Computer Vision, 70(1), 77–90.
## use a small subset of iris data set.seed(100) id = sample(1:150, 50) X = as.matrix(iris[id,1:4]) lab = as.factor(iris[id,5]) ## try different connectivity levels output1 <- do.mvu(X, type=c("proportion", 0.10)) output2 <- do.mvu(X, type=c("proportion", 0.25)) output3 <- do.mvu(X, type=c("proportion", 0.50)) ## visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, main="10% connected", pch=19, col=lab) plot(output2$Y, main="25% connected", pch=19, col=lab) plot(output3$Y, main="50% connected", pch=19, col=lab) par(opar)
## use a small subset of iris data set.seed(100) id = sample(1:150, 50) X = as.matrix(iris[id,1:4]) lab = as.factor(iris[id,5]) ## try different connectivity levels output1 <- do.mvu(X, type=c("proportion", 0.10)) output2 <- do.mvu(X, type=c("proportion", 0.25)) output3 <- do.mvu(X, type=c("proportion", 0.50)) ## visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, main="10% connected", pch=19, col=lab) plot(output2$Y, main="25% connected", pch=19, col=lab) plot(output3$Y, main="50% connected", pch=19, col=lab) par(opar)
Nearest Neighbor Projection is an iterative method for visualizing high-dimensional dataset
in that a data is sequentially located in the low-dimensional space by maintaining
the triangular distance spread of target data with its two nearest neighbors in the high-dimensional space.
We extended the original method to be applied for arbitrarily low-dimensional space. Due the generalization,
we opted for a global optimization method of Differential Evolution (DEoptim
) within in that it may add computational burden to certain degrees.
do.nnp( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate") )
do.nnp( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate") )
X |
an |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
Tejada E, Minghim R, Nonato LG (2003). “On Improved Projection Techniques to Support Visual Exploration of Multidimensional Data Sets.” Information Visualization, 2(4), 218–231.
## use iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## let's compare with other methods out1 <- do.nnp(X, ndim=2) # NNP out2 <- do.pca(X, ndim=2) # PCA out3 <- do.dm(X, ndim=2) # Diffusion Maps ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="NNP") plot(out2$Y, pch=19, col=label, main="PCA") plot(out3$Y, pch=19, col=label, main="Diffusion Maps") par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## let's compare with other methods out1 <- do.nnp(X, ndim=2) # NNP out2 <- do.pca(X, ndim=2) # PCA out3 <- do.dm(X, ndim=2) # Diffusion Maps ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="NNP") plot(out2$Y, pch=19, col=label, main="PCA") plot(out3$Y, pch=19, col=label, main="Diffusion Maps") par(opar)
Nonnegative Orthogonal Locality Preserving Projection (NOLPP) is a variant of OLPP where projection vectors - or, basis for learned subspace - contain no negative values.
do.nolpp( X, ndim = 2, type = c("proportion", 0.1), preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten"), t = 1, maxiter = 1000, reltol = 1e-05 )
do.nolpp( X, ndim = 2, type = c("proportion", 0.1), preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten"), t = 1, maxiter = 1000, reltol = 1e-05 )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
t |
kernel bandwidth in |
maxiter |
number of maximum iteraions allowed. |
reltol |
stopping criterion for incremental relative error. |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Zafeiriou S, Laskaris N (2010). “Nonnegative Embeddings and Projections for Dimensionality Reduction and Information Visualization.” In 2010 20th International Conference on Pattern Recognition, 726–729.
## Not run: ## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## use different kernel bandwidths with 20% connectivity out1 = do.nolpp(X, type=c("proportion",0.5), t=0.01) out2 = do.nolpp(X, type=c("proportion",0.5), t=0.1) out3 = do.nolpp(X, type=c("proportion",0.5), t=1) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, main="NOLPP::t=0.01") plot(out2$Y, col=label, main="NOLPP::t=0.1") plot(out3$Y, col=label, main="NOLPP::t=1") par(opar) ## End(Not run)
## Not run: ## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## use different kernel bandwidths with 20% connectivity out1 = do.nolpp(X, type=c("proportion",0.5), t=0.01) out2 = do.nolpp(X, type=c("proportion",0.5), t=0.1) out3 = do.nolpp(X, type=c("proportion",0.5), t=1) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, main="NOLPP::t=0.01") plot(out2$Y, col=label, main="NOLPP::t=0.1") plot(out3$Y, col=label, main="NOLPP::t=1") par(opar) ## End(Not run)
Nonnegative Orthogonal Neighborhood Preserving Projections (NONPP) is a variant of ONPP where projection vectors - or, basis for learned subspace - contain no negative values.
do.nonpp( X, ndim = 2, type = c("proportion", 0.1), preprocess = c("null", "center", "decorrelate", "whiten"), maxiter = 1000, reltol = 1e-05 )
do.nonpp( X, ndim = 2, type = c("proportion", 0.1), preprocess = c("null", "center", "decorrelate", "whiten"), maxiter = 1000, reltol = 1e-05 )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
preprocess |
an additional option for preprocessing the data.
Default is "center" and other options of "decorrelate" and "whiten"
are supported. See also |
maxiter |
number of maximum iteraions allowed. |
reltol |
stopping criterion for incremental relative error. |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Zafeiriou S, Laskaris N (2010). “Nonnegative Embeddings and Projections for Dimensionality Reduction and Information Visualization.” In 2010 20th International Conference on Pattern Recognition, 726–729.
## Not run: ## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## use different levels of connectivity out1 = do.nonpp(X, type=c("proportion",0.1)) out2 = do.nonpp(X, type=c("proportion",0.2)) out3 = do.nonpp(X, type=c("proportion",0.5)) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, main="NONPP::10% connected") plot(out2$Y, col=label, main="NONPP::20% connected") plot(out3$Y, col=label, main="NONPP::50% connected") par(opar) ## End(Not run)
## Not run: ## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## use different levels of connectivity out1 = do.nonpp(X, type=c("proportion",0.1)) out2 = do.nonpp(X, type=c("proportion",0.2)) out3 = do.nonpp(X, type=c("proportion",0.5)) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, main="NONPP::10% connected") plot(out2$Y, col=label, main="NONPP::20% connected") plot(out3$Y, col=label, main="NONPP::50% connected") par(opar) ## End(Not run)
Nonnegative Principal Component Analysis (NPCA) is a variant of PCA where projection vectors - or, basis for learned subspace - contain no negative values.
do.npca(X, ndim = 2, ...)
do.npca(X, ndim = 2, ...)
X |
an |
ndim |
an integer-valued target dimension. |
... |
extra parameters including
|
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a whose columns are basis for projection.
name of the algorithm.
Kisung You
Zafeiriou S, Laskaris N (2010). “Nonnegative Embeddings and Projections for Dimensionality Reduction and Information Visualization.” In 2010 20th International Conference on Pattern Recognition, 726–729.
## Not run: ## use iris data data(iris, package="Rdimtools") set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) + 50 label = as.factor(iris[subid,5]) ## run NCPA and compare with others outNPC = do.npca(X) outPCA = do.pca(X) outMVP = do.mvp(X, label) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(outNPC$Y, pch=19, col=label, main="NPCA") plot(outPCA$Y, pch=19, col=label, main="PCA") plot(outMVP$Y, pch=19, col=label, main="MVP") par(opar) ## End(Not run)
## Not run: ## use iris data data(iris, package="Rdimtools") set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) + 50 label = as.factor(iris[subid,5]) ## run NCPA and compare with others outNPC = do.npca(X) outPCA = do.pca(X) outMVP = do.mvp(X, label) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(outNPC$Y, pch=19, col=label, main="NPCA") plot(outPCA$Y, pch=19, col=label, main="PCA") plot(outMVP$Y, pch=19, col=label, main="MVP") par(opar) ## End(Not run)
do.npe
performs a linear dimensionality reduction using Neighborhood Preserving
Embedding (NPE) proposed by He et al (2005). It can be regarded as a linear approximation
to Locally Linear Embedding (LLE). Like LLE, it is possible for the weight matrix being rank deficient.
If regtype
is set to TRUE
with a proper value of regparam
, it will
perform Tikhonov regularization as designated. When regularization is needed
with regtype
parameter to be FALSE
, it will automatically find a suitable
regularization parameter and put penalty for stable computation. See also
do.lle
for more details.
do.npe( X, ndim = 2, type = c("proportion", 0.1), symmetric = "union", weight = TRUE, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), regtype = FALSE, regparam = 1 )
do.npe( X, ndim = 2, type = c("proportion", 0.1), symmetric = "union", weight = TRUE, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), regtype = FALSE, regparam = 1 )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
one of |
weight |
|
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
regtype |
|
regparam |
a positive real number for Regularization. Default value is 1. |
a named list containing
an matrix whose rows are embedded observations.
a vector of eigenvalues corresponding to basis expansion in an ascending order.
a whose columns are basis for projection.
a list containing information for out-of-sample prediction.
Kisung You
He X, Cai D, Yan S, Zhang H (2005). “Neighborhood Preserving Embedding.” In Proceedings of the Tenth IEEE International Conference on Computer Vision - Volume 2, ICCV '05, 1208–1213.
## Not run: ## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## use different settings for connectivity output1 = do.npe(X, ndim=2, type=c("proportion",0.10)) output2 = do.npe(X, ndim=2, type=c("proportion",0.25)) output3 = do.npe(X, ndim=2, type=c("proportion",0.50)) ## visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, pch=19, col=label, main="NPE::10% connected") plot(output2$Y, pch=19, col=label, main="NPE::25% connected") plot(output3$Y, pch=19, col=label, main="NPE::50% connected") par(opar) ## End(Not run)
## Not run: ## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## use different settings for connectivity output1 = do.npe(X, ndim=2, type=c("proportion",0.10)) output2 = do.npe(X, ndim=2, type=c("proportion",0.25)) output3 = do.npe(X, ndim=2, type=c("proportion",0.50)) ## visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, pch=19, col=label, main="NPE::10% connected") plot(output2$Y, pch=19, col=label, main="NPE::25% connected") plot(output3$Y, pch=19, col=label, main="NPE::50% connected") par(opar) ## End(Not run)
In the standard, convex RSR problem (do.rsr
), row-sparsity for self-representation is
acquired using matrix norm, i.e,
. Its non-convex
extension aims at achieving higher-level of sparsity using arbitrarily chosen
norm for
and this exploits Iteratively Reweighted Least Squares (IRLS) algorithm for computation.
do.nrsr( X, ndim = 2, expl = 0.5, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), lbd = 1 )
do.nrsr( X, ndim = 2, expl = 0.5, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), lbd = 1 )
X |
an |
ndim |
an integer-valued target dimension. |
expl |
an exponent in |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
lbd |
nonnegative number to control the degree of self-representation by imposing row-sparsity. |
a named list containing
an matrix whose rows are embedded observations.
a length- vector of indices with highest scores.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Zhu P, Zhu W, Wang W, Zuo W, Hu Q (2017). “Non-Convex Regularized Self-Representation for Unsupervised Feature Selection.” Image and Vision Computing, 60, 22–29.
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) #### try different exponents for regularization out1 = do.nrsr(X, expl=0.01) out2 = do.nrsr(X, expl=0.1) out3 = do.nrsr(X, expl=0.5) #### visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="NRSR::expl=0.01") plot(out2$Y, pch=19, col=label, main="NRSR::expl=0.1") plot(out3$Y, pch=19, col=label, main="NRSR::expl=0.5") par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) #### try different exponents for regularization out1 = do.nrsr(X, expl=0.01) out2 = do.nrsr(X, expl=0.1) out3 = do.nrsr(X, expl=0.5) #### visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="NRSR::expl=0.01") plot(out2$Y, pch=19, col=label, main="NRSR::expl=0.1") plot(out3$Y, pch=19, col=label, main="NRSR::expl=0.5") par(opar)
Orthogonal Discriminant Projection (ODP) is a linear dimension reduction method with label information, i.e., supervised. The method maximizes weighted difference between local and non-local scatter while local information is also preserved by constructing a neighborhood graph.
do.odp( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), alpha = 0.5, beta = 10 )
do.odp( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), alpha = 0.5, beta = 10 )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
one of |
alpha |
balancing parameter of non-local and local scatter in |
beta |
scaling control parameter for distant pairs of data in |
a named list containing
an matrix whose rows are embedded observations.
a whose columns are basis for projection.
a list containing information for out-of-sample prediction.
Li B, Wang C, Huang D (2009). “Supervised Feature Extraction Based on Orthogonal Discriminant Projection.” Neurocomputing, 73(1-3), 191–196.
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different beta (scaling control) parameter out1 = do.odp(X, label, beta=1) out2 = do.odp(X, label, beta=10) out3 = do.odp(X, label, beta=100) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, pch=19, main="ODP::beta=1") plot(out2$Y, col=label, pch=19, main="ODP::beta=10") plot(out3$Y, col=label, pch=19, main="ODP::beta=100") par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different beta (scaling control) parameter out1 = do.odp(X, label, beta=1) out2 = do.odp(X, label, beta=10) out3 = do.odp(X, label, beta=100) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, pch=19, main="ODP::beta=1") plot(out2$Y, col=label, pch=19, main="ODP::beta=10") plot(out3$Y, col=label, pch=19, main="ODP::beta=100") par(opar)
Orthogonal LDA (OLDA) is an extension of classical LDA where the discriminant vectors are orthogonal to each other.
do.olda( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate") )
do.olda( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate") )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Ye J (2005). “Characterization of a Family of Algorithms for Generalized Discriminant Analysis on Undersampled Problems.” J. Mach. Learn. Res., 6, 483–502. ISSN 1532-4435.
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare with LDA out1 = do.lda(X, label) out2 = do.olda(X, label) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, pch=19, col=label, main="LDA") plot(out2$Y, pch=19, col=label, main="Orthogonal LDA") par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare with LDA out1 = do.lda(X, label) out2 = do.olda(X, label) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, pch=19, col=label, main="LDA") plot(out2$Y, pch=19, col=label, main="Orthogonal LDA") par(opar)
Orthogonal Locality Preserving Projection (OLPP) is a variant of do.lpp
, which
extracts orthogonal basis functions to reconstruct the data in a more intuitive fashion.
It adopts PCA as preprocessing step and uses only one eigenvector at each iteration in that
it might incur warning messages for solving near-singular system of linear equations. Current
implementation may not return an orthogonal projection matrix as of the paper. We plan to
fix this issue in the near future.
do.olpp( X, ndim = 2, type = c("proportion", 0.1), symmetric = c("union", "intersect"), t = 1 )
do.olpp( X, ndim = 2, type = c("proportion", 0.1), symmetric = c("union", "intersect"), t = 1 )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
either |
t |
bandwidth for heat kernel in |
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a whose columns are basis for projection.
name of the algorithm.
Kisung You
Cai D, He X, Han J, Zhang H (2006). “Orthogonal Laplacianfaces for Face Recognition.” IEEE Transactions on Image Processing, 15(11), 3608–3614.
## Not run: ## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## connecting 10% and 25% of data for graph construction each. output1 <- do.olpp(X,ndim=2,type=c("proportion",0.10)) output2 <- do.olpp(X,ndim=2,type=c("proportion",0.25)) ## Visualize # In theory, it should show two separated groups of data opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(output1$Y, col=label, pch=19, main="OLPP::10% connected") plot(output2$Y, col=label, pch=19, main="OLPP::25% connected") par(opar) ## End(Not run)
## Not run: ## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## connecting 10% and 25% of data for graph construction each. output1 <- do.olpp(X,ndim=2,type=c("proportion",0.10)) output2 <- do.olpp(X,ndim=2,type=c("proportion",0.25)) ## Visualize # In theory, it should show two separated groups of data opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(output1$Y, col=label, pch=19, main="OLPP::10% connected") plot(output2$Y, col=label, pch=19, main="OLPP::25% connected") par(opar) ## End(Not run)
Orthogonal Neighborhood Preserving Projection (ONPP) is an unsupervised linear dimension reduction method. It constructs a weighted data graph from LLE method. Also, it develops LPP method by preserving the structure of local neighborhoods.
do.onpp( X, ndim = 2, type = c("proportion", 0.1), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
do.onpp( X, ndim = 2, type = c("proportion", 0.1), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Kokiopoulou E, Saad Y (2007). “Orthogonal Neighborhood Preserving Projections: A Projection-Based Dimensionality Reduction Technique.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(12), 2143–2156.
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different numbers for neighborhood size out1 = do.onpp(X, type=c("proportion",0.10)) out2 = do.onpp(X, type=c("proportion",0.25)) out3 = do.onpp(X, type=c("proportion",0.50)) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="ONPP::10% connectivity") plot(out2$Y, pch=19, col=label, main="ONPP::25% connectivity") plot(out3$Y, pch=19, col=label, main="ONPP::50% connectivity") par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different numbers for neighborhood size out1 = do.onpp(X, type=c("proportion",0.10)) out2 = do.onpp(X, type=c("proportion",0.25)) out3 = do.onpp(X, type=c("proportion",0.50)) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="ONPP::10% connectivity") plot(out2$Y, pch=19, col=label, main="ONPP::25% connectivity") plot(out3$Y, pch=19, col=label, main="ONPP::50% connectivity") par(opar)
Also known as multilinear regression or semipenalized CCA, Orthogonal Partial Least Squares (OPLS)
was first used to perform multilinear ordinary least squares. In its usage, unlike PLS or CCA,
OPLS does not rely on projected variance of response -or, data2
. Instead, it exploits projected
variance of input - covariance of data1
and relates it under cross-covariance setting. Therefore,
OPLS only returns projection information of data1
, just like any other unsupervised methods in our package.
do.opls(data1, data2, ndim = 2)
do.opls(data1, data2, ndim = 2)
data1 |
an |
data2 |
an |
ndim |
an integer-valued target dimension. |
a named list containing
an matrix of projected observations from
data1
.
an whose columns are loadings for
data1
.
a list containing information for out-of-sample prediction for data1
.
a vector of eigenvalues for iterative decomposition.
Kisung You
Barker M, Rayens W (2003). “Partial Least Squares for Discrimination.” Journal of Chemometrics, 17(3), 166–173.
## generate 2 normal data matrices mat1 = matrix(rnorm(100*12),nrow=100)+10 # 12-dim normal mat2 = matrix(rnorm(100*6), nrow=100)-10 # 6-dim normal ## compare OPLS and PLS res_opls = do.opls(mat1, mat2, ndim=2) res_pls = do.pls(mat1, mat2, ndim=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(res_opls$Y, cex=0.5, main="OPLS result") plot(res_pls$Y1, cex=0.5, main="PLS result") par(opar)
## generate 2 normal data matrices mat1 = matrix(rnorm(100*12),nrow=100)+10 # 12-dim normal mat2 = matrix(rnorm(100*6), nrow=100)-10 # 6-dim normal ## compare OPLS and PLS res_opls = do.opls(mat1, mat2, ndim=2) res_pls = do.pls(mat1, mat2, ndim=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(res_opls$Y, cex=0.5, main="OPLS result") plot(res_pls$Y1, cex=0.5, main="PLS result") par(opar)
do.pca
performs a classical principal component analysis (Pearson 1901) using
RcppArmadillo
package for faster and efficient computation.
do.pca(X, ndim = 2, ...)
do.pca(X, ndim = 2, ...)
X |
an |
ndim |
an integer-valued target dimension. |
... |
extra parameters including
|
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a vector containing variances of projected data onto principal components.
a whose columns are basis for projection.
a list containing information for out-of-sample prediction.
name of the algorithm.
Kisung You
Pearson K (1901). “LIII. On Lines and Planes of Closest Fit to Systems of Points in Space.” Philosophical Magazine Series 6, 2(11), 559–572.
## use iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## try covariance & correlation decomposition out1 <- do.pca(X, ndim=2, cor=FALSE) out2 <- do.pca(X, ndim=2, cor=TRUE) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, col=lab, pch=19, main="correlation decomposition") plot(out2$Y, col=lab, pch=19, main="covariance decomposition") par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## try covariance & correlation decomposition out1 <- do.pca(X, ndim=2, cor=FALSE) out2 <- do.pca(X, ndim=2, cor=TRUE) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, col=lab, pch=19, main="correlation decomposition") plot(out2$Y, col=lab, pch=19, main="covariance decomposition") par(opar)
Principal Feature Analysis (Lu et al. 2007) adopts an idea from the celebrated PCA for unsupervised feature selection.
do.pfa(X, ndim = 2, ...)
do.pfa(X, ndim = 2, ...)
X |
an |
ndim |
an integer-valued target dimension (default: 2). |
... |
extra parameters including
|
Lu Y, Cohen I, Zhou XS, Tian Q (2007). “Feature Selection Using Principal Feature Analysis.” In Proceedings of the 15th International Conference on Multimedia - MULTIMEDIA '07, 301. ISBN 978-1-59593-702-5.
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) set.seed(100) subid <- sample(1:150, 50) iris.dat <- as.matrix(iris[subid,1:4]) iris.lab <- as.factor(iris[subid,5]) ## compare with other methods out1 = do.pfa(iris.dat) out2 = do.lscore(iris.dat) out3 = do.fscore(iris.dat, iris.lab) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=iris.lab, main="Principal Feature Analysis") plot(out2$Y, pch=19, col=iris.lab, main="Laplacian Score") plot(out3$Y, pch=19, col=iris.lab, main="Fisher Score") par(opar)
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) set.seed(100) subid <- sample(1:150, 50) iris.dat <- as.matrix(iris[subid,1:4]) iris.lab <- as.factor(iris[subid,5]) ## compare with other methods out1 = do.pfa(iris.dat) out2 = do.lscore(iris.dat) out3 = do.fscore(iris.dat, iris.lab) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=iris.lab, main="Principal Feature Analysis") plot(out2$Y, pch=19, col=iris.lab, main="Laplacian Score") plot(out3$Y, pch=19, col=iris.lab, main="Fisher Score") par(opar)
Conventional LPP is known to suffer from sensitivity upon choice of parameters, especially in building neighborhood information. Parameter-Free LPP (PFLPP) takes an alternative step to use normalized Pearson correlation, taking an average of such similarity as a threshold to decide which points are neighbors of a given datum.
do.pflpp( X, ndim = 2, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate") )
do.pflpp( X, ndim = 2, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate") )
X |
an |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a whose columns are basis for projection.
a list containing information for out-of-sample prediction.
Kisung You
Dornaika F, Assoum A (2013). “Enhanced and Parameterless Locality Preserving Projections for Face Recognition.” Neurocomputing, 99, 448–457.
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare with PCA out1 = do.pca(X, ndim=2) out2 = do.pflpp(X, ndim=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, pch=19, col=label, main="PCA") plot(out2$Y, pch=19, col=label, main="Parameter-Free LPP") par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare with PCA out1 = do.pca(X, ndim=2) out2 = do.pflpp(X, ndim=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, pch=19, col=label, main="PCA") plot(out2$Y, pch=19, col=label, main="Parameter-Free LPP") par(opar)
PHATE is a nonlinear method that is specifically targeted at visualizing high-dimensional data by embedding it on 2- or 3-dimensional space. We offer a native implementation of PHATE solely in R/C++ without interface to python module.
do.phate( X, ndim = 2, k = 5, alpha = 10, dtype = c("sqrt", "log"), smacof = TRUE, ... )
do.phate( X, ndim = 2, k = 5, alpha = 10, dtype = c("sqrt", "log"), smacof = TRUE, ... )
X |
an |
ndim |
an integer-valued target dimension (default: 2). |
k |
size of nearest neighborhood (default: 5). |
alpha |
decay parameter for Gaussian kernel exponent (default: 10). |
dtype |
type of potential distance transformation; |
smacof |
a logical; |
... |
extra parameters including
|
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
name of the algorithm.
Moon KR, van Dijk D, Wang Z, Gigante S, Burkhardt DB, Chen WS, Yim K, van den Elzen A, Hirn MJ, Coifman RR, Ivanova NB, Wolf G, Krishnaswamy S (2019). “Visualizing Structure and Transitions in High-Dimensional Biological Data.” Nature Biotechnology, 37(12), 1482–1492. ISSN 1087-0156, 1546-1696.
## load iris data data(iris) X = as.matrix(iris[,1:4]) lab = as.factor(iris[,5]) ## compare different neighborhood sizes. pca2d <- do.pca(X, ndim=2) phk01 <- do.phate(X, ndim=2, k=2) phk02 <- do.phate(X, ndim=2, k=5) phk03 <- do.phate(X, ndim=2, k=7) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(2,2)) plot(pca2d$Y, col=lab, pch=19, main="PCA") plot(phk01$Y, col=lab, pch=19, main="PHATE:k=2") plot(phk02$Y, col=lab, pch=19, main="PHATE:k=5") plot(phk03$Y, col=lab, pch=19, main="PHATE:k=7") par(opar)
## load iris data data(iris) X = as.matrix(iris[,1:4]) lab = as.factor(iris[,5]) ## compare different neighborhood sizes. pca2d <- do.pca(X, ndim=2) phk01 <- do.phate(X, ndim=2, k=2) phk02 <- do.phate(X, ndim=2, k=5) phk03 <- do.phate(X, ndim=2, k=7) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(2,2)) plot(pca2d$Y, col=lab, pch=19, main="PCA") plot(phk01$Y, col=lab, pch=19, main="PHATE:k=2") plot(phk02$Y, col=lab, pch=19, main="PHATE:k=5") plot(phk03$Y, col=lab, pch=19, main="PHATE:k=7") par(opar)
do.plp
is an implementation of Piecewise Laplacian-based Projection (PLP) that
adopts two-stage reduction scheme with local approximation.
do.plp(X, ndim = 2, type = c("proportion", 0.2))
do.plp(X, ndim = 2, type = c("proportion", 0.2))
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
First step is to select number of control points using
-means algorithm.
After selecting control points that play similar roles as representatives of the entire data points,
it performs classical multidimensional scaling.
For the rest of the data other than control points,
Laplacian Eigenmaps (do.lapeig
) is then applied to high-dimensional data points
lying in neighborhoods of each control point. Embedded low-dimensional local manifold is then
aligned to match their coordinates as of their counterparts from classical MDS.
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
name of the algorithm.
Random Control Points : The performance of embedding using PLP heavily relies on
selection of control points, which is contingent on the performance of -means
clustering.
User Interruption : PLP is actually an interactive algorithm that a user should be able to intervene intermittently. Such functionality is, however, sacrificed in this version.
Kisung You
Paulovich FV, Eler DM, Poco J, Botha CP, Minghim R, Nonato LG (2011). “Piece Wise Laplacian-Based Projection for Interactive Data Exploration and Organization.” Computer Graphics Forum, 30(3), 1091–1100.
## Not run: ## use iris data data(iris) X = as.matrix(iris[,1:4]) label = as.integer(iris$Species) ## try with 3 levels of connectivity out1 = do.plp(X, type=c("proportion", 0.1)) out2 = do.plp(X, type=c("proportion", 0.2)) out3 = do.plp(X, type=c("proportion", 0.5)) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, main="PLP::10% connected") plot(out2$Y, col=label, main="PLP::20% connected") plot(out3$Y, col=label, main="PLP::50% connected") par(opar) ## End(Not run)
## Not run: ## use iris data data(iris) X = as.matrix(iris[,1:4]) label = as.integer(iris$Species) ## try with 3 levels of connectivity out1 = do.plp(X, type=c("proportion", 0.1)) out2 = do.plp(X, type=c("proportion", 0.2)) out3 = do.plp(X, type=c("proportion", 0.5)) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, main="PLP::10% connected") plot(out2$Y, col=label, main="PLP::20% connected") plot(out3$Y, col=label, main="PLP::50% connected") par(opar) ## End(Not run)
Given two data sets, Partial Least Squares (PLS) aims at maximizing cross-covariance of latent variables for each data matrix,
therefore it can be considered as supervised methods. As we have two input matrices, do.pls
generates two sets of
outputs. Though it is widely used for regression problem, we used it in dimension reduction setting. For
algorithm aspects, we used recursive gram-schmidt orthogonalization in conjunction with extracting projection vectors under
eigen-decomposition formulation, as the problem dimension matters only up to original dimensionality.
For more details, see Wikipedia entry on PLS.
do.pls(data1, data2, ndim = 2)
do.pls(data1, data2, ndim = 2)
data1 |
an |
data2 |
an |
ndim |
an integer-valued target dimension. |
a named list containing
an matrix of projected observations from
data1
.
an matrix of projected observations from
data2
.
an whose columns are loadings for
data1
.
an whose columns are loadings for
data2
.
a list containing information for out-of-sample prediction for data1
.
a list containing information for out-of-sample prediction for data2
.
a vector of eigenvalues for iterative decomposition.
Kisung You
Wold H (1975). “Path Models with Latent Variables: The NIPALS Approach.” In Quantitative Sociology, 307–357. Elsevier. ISBN 978-0-12-103950-9.
Rosipal R, Krämer N (2006). “Overview and Recent Advances in Partial Least Squares.” In Saunders C, Grobelnik M, Gunn S, Shawe-Taylor J (eds.), Subspace, Latent Structure and Feature Selection: Statistical and Optimization Perspectives Workshop, SLSFS 2005, Bohinj, Slovenia, February 23-25, 2005, Revised Selected Papers, 34–51. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-540-34138-3.
## generate 2 normal data matrices mat1 = matrix(rnorm(100*12),nrow=100)+10 # 12-dim normal mat2 = matrix(rnorm(100*6), nrow=100)-10 # 6-dim normal ## project onto 2 dimensional space for each data output = do.pls(mat1, mat2, ndim=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(output$Y1, main="proj(mat1)") plot(output$Y2, main="proj(mat2)") par(opar)
## generate 2 normal data matrices mat1 = matrix(rnorm(100*12),nrow=100)+10 # 12-dim normal mat2 = matrix(rnorm(100*6), nrow=100)-10 # 6-dim normal ## project onto 2 dimensional space for each data output = do.pls(mat1, mat2, ndim=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(output$Y1, main="proj(mat1)") plot(output$Y2, main="proj(mat2)") par(opar)
Probabilistic PCA (PPCA) is a probabilistic framework to explain the well-known PCA model. Using
the conjugacy of normal model, we compute MLE for values explicitly derived in the paper. Note that
unlike PCA where loadings are directly used for projection, PPCA uses as projection matrix,
as it is relevant to the error model. Also, for high-dimensional problem, it is possible that MLE can have
negative values if sample covariance given the data is rank-deficient.
do.ppca(X, ndim = 2)
do.ppca(X, ndim = 2)
X |
an |
ndim |
an integer-valued target dimension. |
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a whose columns are basis for projection.
MLE for .
MLE of a mapping from latent to observation in column major.
name of the algorithm.
Kisung You
Tipping ME, Bishop CM (1999). “Probabilistic Principal Component Analysis.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3), 611–622.
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## Compare PCA and PPCA PCA <- do.pca(X, ndim=2) PPCA <- do.ppca(X, ndim=2) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(PCA$Y, pch=19, col=label, main="PCA") plot(PPCA$Y, pch=19, col=label, main="PPCA") par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## Compare PCA and PPCA PCA <- do.pca(X, ndim=2) PPCA <- do.ppca(X, ndim=2) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(PCA$Y, pch=19, col=label, main="PCA") plot(PPCA$Y, pch=19, col=label, main="PPCA") par(opar)
do.procrustes
selects a set of features that best aligns PCA's coordinates in the embedded low dimension.
It iteratively selects each variable that minimizes Procrustes distance between configurations.
do.procrustes(X, ndim = 2, intdim = (ndim - 1), cor = TRUE)
do.procrustes(X, ndim = 2, intdim = (ndim - 1), cor = TRUE)
X |
an |
ndim |
an integer-valued target dimension. |
intdim |
intrinsic dimension of PCA to be applied. It should be smaller than |
cor |
mode of eigendecomposition. |
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a length- vector of indices with highest scores.
a whose columns are basis for projection.
name of the algorithm.
Kisung You
Krzanowski WJ (1987). “Selection of Variables to Preserve Multivariate Data Structure, Using Principal Components.” Applied Statistics, 36(1), 22. ISSN 00359254.
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) iris.dat = as.matrix(iris[,1:4]) iris.lab = as.factor(iris[,5]) ## try different strategy out1 = do.procrustes(iris.dat, cor=TRUE) out2 = do.procrustes(iris.dat, cor=FALSE) out3 = do.mifs(iris.dat, iris.lab, beta=0) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1, 3)) plot(out1$Y, pch=19, col=iris.lab, main="PCA with Covariance") plot(out2$Y, pch=19, col=iris.lab, main="PCA with Correlation") plot(out3$Y, pch=19, col=iris.lab, main="MIFS") par(opar)
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) iris.dat = as.matrix(iris[,1:4]) iris.lab = as.factor(iris[,5]) ## try different strategy out1 = do.procrustes(iris.dat, cor=TRUE) out2 = do.procrustes(iris.dat, cor=FALSE) out3 = do.mifs(iris.dat, iris.lab, beta=0) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1, 3)) plot(out1$Y, pch=19, col=iris.lab, main="PCA with Covariance") plot(out2$Y, pch=19, col=iris.lab, main="PCA with Correlation") plot(out3$Y, pch=19, col=iris.lab, main="MIFS") par(opar)
Robust Euclidean Embedding (REE) is an embedding procedure exploiting
robustness of cost function. In our implementation, we adopted
a generalized version with weight matrix to be applied as well. Its original
paper introduced a subgradient algorithm to overcome memory-intensive nature of
original semidefinite programming formulation.
do.ree( X, ndim = 2, W = NA, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), initc = 1, dmethod = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"), maxiter = 100, abstol = 0.001 )
do.ree( X, ndim = 2, W = NA, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), initc = 1, dmethod = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"), maxiter = 100, abstol = 0.001 )
X |
an |
ndim |
an integer-valued target dimension. |
W |
an |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
initc |
initial |
dmethod |
a type of distance measure. See |
maxiter |
maximum number of iterations for subgradient descent method. |
abstol |
stopping criterion for subgradient descent method. |
a named list containing
an matrix whose rows are embedded observations.
the number of iterations taken til convergence.
a list containing information for out-of-sample prediction.
Kisung You
Cayton L, Dasgupta S (2006). “Robust Euclidean Embedding.” In Proceedings of the 23rd International Conference on Machine Learning, ICML '06, 169–176.
## use iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different distance method output1 <- do.ree(X, maxiter=50, dmethod="euclidean") output2 <- do.ree(X, maxiter=50, dmethod="maximum") output3 <- do.ree(X, maxiter=50, dmethod="canberra") ## visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, col=label, pch=19, main="dmethod-euclidean") plot(output2$Y, col=label, pch=19, main="dmethod-maximum") plot(output3$Y, col=label, pch=19, main="dmethod-canberra") par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different distance method output1 <- do.ree(X, maxiter=50, dmethod="euclidean") output2 <- do.ree(X, maxiter=50, dmethod="maximum") output3 <- do.ree(X, maxiter=50, dmethod="canberra") ## visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, col=label, pch=19, main="dmethod-euclidean") plot(output2$Y, col=label, pch=19, main="dmethod-maximum") plot(output3$Y, col=label, pch=19, main="dmethod-canberra") par(opar)
In small sample case, Linear Discriminant Analysis (LDA) may suffer from
rank deficiency issue. Applied mathematics has used Tikhonov regularization -
also known as regularization/shrinkage - to adjust linear operator.
Regularized Linear Discriminant Analysis (RLDA) adopts such idea to stabilize
eigendecomposition in LDA formulation.
do.rlda(X, label, ndim = 2, alpha = 1)
do.rlda(X, label, ndim = 2, alpha = 1)
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
alpha |
Tikhonow regularization parameter. |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Friedman JH (1989). “Regularized Discriminant Analysis.” Journal of the American Statistical Association, 84(405), 165.
## Not run: ## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different regularization parameters out1 <- do.rlda(X, label, alpha=0.001) out2 <- do.rlda(X, label, alpha=0.01) out3 <- do.rlda(X, label, alpha=100) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="RLDA::alpha=0.1") plot(out2$Y, pch=19, col=label, main="RLDA::alpha=1") plot(out3$Y, pch=19, col=label, main="RLDA::alpha=10") par(opar) ## End(Not run)
## Not run: ## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different regularization parameters out1 <- do.rlda(X, label, alpha=0.001) out2 <- do.rlda(X, label, alpha=0.01) out3 <- do.rlda(X, label, alpha=100) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="RLDA::alpha=0.1") plot(out2$Y, pch=19, col=label, main="RLDA::alpha=1") plot(out3$Y, pch=19, col=label, main="RLDA::alpha=10") par(opar) ## End(Not run)
do.rndproj
is a linear dimensionality reduction method based on
random projection technique, featured by the celebrated Johnson–Lindenstrauss lemma.
do.rndproj( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), type = c("gaussian", "achlioptas", "sparse"), s = max(sqrt(ncol(X)), 3) )
do.rndproj( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), type = c("gaussian", "achlioptas", "sparse"), s = max(sqrt(ncol(X)), 3) )
X |
an |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
type |
a type of random projection, one of "gaussian","achlioptas" or "sparse". |
s |
a tuning parameter for determining values in projection matrix. While default
is to use |
The Johnson-Lindenstrauss(JL) lemma states that given , for a set
of
points in
and a number
,
there is a linear map
to R^n such that
for all in
.
Three types of random projections are supported for an (p-by-ndim)
projection matrix .
Conventional approach is to use normalized Gaussian random vectors sampled from unit sphere .
Achlioptas suggested to employ a sparse approach using samples from with probability
.
Li et al proposed to sample from
with probability
for
to incorporate sparsity while attaining speedup with little loss in accuracy. While
the original suggsetion from the authors is to use
or
for
, any user-supported
is allowed.
a named list containing
an matrix whose rows are embedded observations.
a whose columns are basis for projection.
an estimated error in accordance with JL lemma.
a list containing information for out-of-sample prediction.
Johnson WB, Lindenstrauss J (1984). “Extensions of Lipschitz Mappings into a Hilbert Space.” In Beals R, Beck A, Bellow A, Hajian A (eds.), Contemporary Mathematics, volume 26, 189–206. American Mathematical Society, Providence, Rhode Island. ISBN 978-0-8218-5030-5 978-0-8218-7611-4.
Achlioptas D (2003). “Database-Friendly Random Projections: Johnson-Lindenstrauss with Binary Coins.” Journal of Computer and System Sciences, 66(4), 671–687.
Li P, Hastie TJ, Church KW (2006). “Very Sparse Random Projections.” In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '06, 287–296.
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## 1. Gaussian projection output1 <- do.rndproj(X,ndim=2) ## 2. Achlioptas projection output2 <- do.rndproj(X,ndim=2,type="achlioptas") ## 3. Sparse projection output3 <- do.rndproj(X,type="sparse") ## Visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, pch=19, col=label, main="RNDPROJ::Gaussian") plot(output2$Y, pch=19, col=label, main="RNDPROJ::Arclioptas") plot(output3$Y, pch=19, col=label, main="RNDPROJ::Sparse") par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## 1. Gaussian projection output1 <- do.rndproj(X,ndim=2) ## 2. Achlioptas projection output2 <- do.rndproj(X,ndim=2,type="achlioptas") ## 3. Sparse projection output3 <- do.rndproj(X,type="sparse") ## Visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, pch=19, col=label, main="RNDPROJ::Gaussian") plot(output2$Y, pch=19, col=label, main="RNDPROJ::Arclioptas") plot(output3$Y, pch=19, col=label, main="RNDPROJ::Sparse") par(opar)
Robust PCA (RPCA) is not like other methods in this package as finding explicit low-dimensional embedding with reduced number of columns.
Rather, it is more of a decomposition method of data matrix , possibly noisy, into low-rank and sparse matrices by
solving the following,
where is a low-rank matrix,
is a sparse matrix and
denotes nuclear norm, i.e., sum of singular values. Therefore,
it should be considered as preprocessing procedure of denoising. Note that after RPCA is applied,
should be used
as kind of a new data matrix for any manifold learning scheme to be applied.
do.rpca(X, mu = 1, lambda = sqrt(1/(max(dim(X)))), ...)
do.rpca(X, mu = 1, lambda = sqrt(1/(max(dim(X)))), ...)
X |
an |
mu |
an augmented Lagrangian parameter |
lambda |
parameter for the sparsity term |
... |
extra parameters including
|
a named list containing
an low-rank matrix.
an sparse matrix.
name of the algorithm.
Kisung You
Candès EJ, Li X, Ma Y, Wright J (2011). “Robust Principal Component Analysis?” Journal of the ACM, 58(3), 1–37.
## load iris data and add some noise data(iris, package="Rdimtools") set.seed(100) subid = sample(1:150,50) noise = 0.2 X = as.matrix(iris[subid,1:4]) X = X + matrix(noise*rnorm(length(X)), nrow=nrow(X)) lab = as.factor(iris[subid,5]) ## try different regularization parameters rpca1 = do.rpca(X, lambda=0.1) rpca2 = do.rpca(X, lambda=1) rpca3 = do.rpca(X, lambda=10) ## apply identical PCA methods Y1 = do.pca(rpca1$L, ndim=2)$Y Y2 = do.pca(rpca2$L, ndim=2)$Y Y3 = do.pca(rpca3$L, ndim=2)$Y ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(Y1, pch=19, col=lab, main="RPCA+PCA::lambda=0.1") plot(Y2, pch=19, col=lab, main="RPCA+PCA::lambda=1") plot(Y3, pch=19, col=lab, main="RPCA+PCA::lambda=10") par(opar)
## load iris data and add some noise data(iris, package="Rdimtools") set.seed(100) subid = sample(1:150,50) noise = 0.2 X = as.matrix(iris[subid,1:4]) X = X + matrix(noise*rnorm(length(X)), nrow=nrow(X)) lab = as.factor(iris[subid,5]) ## try different regularization parameters rpca1 = do.rpca(X, lambda=0.1) rpca2 = do.rpca(X, lambda=1) rpca3 = do.rpca(X, lambda=10) ## apply identical PCA methods Y1 = do.pca(rpca1$L, ndim=2)$Y Y2 = do.pca(rpca2$L, ndim=2)$Y Y3 = do.pca(rpca3$L, ndim=2)$Y ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(Y1, pch=19, col=lab, main="RPCA+PCA::lambda=0.1") plot(Y2, pch=19, col=lab, main="RPCA+PCA::lambda=1") plot(Y3, pch=19, col=lab, main="RPCA+PCA::lambda=10") par(opar)
This function robustifies the traditional PCA via an idea of geometric median.
To describe, the given data is first split into k
subsets for each sample
covariance is attained. According to the paper, the median covariance is computed
under Frobenius norm and projection is extracted from the largest eigenvectors.
do.rpcag( X, ndim = 2, k = 5, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate") )
do.rpcag( X, ndim = 2, k = 5, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate") )
X |
an |
ndim |
an integer-valued target dimension. |
k |
the number of subsets for |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Minsker S (2015). “Geometric Median and Robust Estimation in Banach Spaces.” Bernoulli, 21(4), 2308–2335.
## use iris data data(iris) X = as.matrix(iris[,1:4]) label = as.integer(iris$Species) ## try different numbers for subsets out1 = do.rpcag(X, ndim=2, k=2) out2 = do.rpcag(X, ndim=2, k=5) out3 = do.rpcag(X, ndim=2, k=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, main="RPCAG::k=2") plot(out2$Y, col=label, main="RPCAG::k=5") plot(out3$Y, col=label, main="RPCAG::k=10") par(opar)
## use iris data data(iris) X = as.matrix(iris[,1:4]) label = as.integer(iris$Species) ## try different numbers for subsets out1 = do.rpcag(X, ndim=2, k=2) out2 = do.rpcag(X, ndim=2, k=5) out3 = do.rpcag(X, ndim=2, k=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, main="RPCAG::k=2") plot(out2$Y, col=label, main="RPCAG::k=5") plot(out3$Y, col=label, main="RPCAG::k=10") par(opar)
One of possible drawbacks in SIR method is that for high-dimensional data, it might suffer from rank deficiency of scatter/covariance matrix. Instead of naive matrix inversion, several have proposed regularization schemes that reflect several ideas from various incumbent methods.
do.rsir( X, response, ndim = 2, h = max(2, round(nrow(X)/5)), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), regmethod = c("Ridge", "Tikhonov", "PCA", "PCARidge", "PCATikhonov"), tau = 1, numpc = ndim )
do.rsir( X, response, ndim = 2, h = max(2, round(nrow(X)/5)), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), regmethod = c("Ridge", "Tikhonov", "PCA", "PCARidge", "PCATikhonov"), tau = 1, numpc = ndim )
X |
an |
response |
a length- |
ndim |
an integer-valued target dimension. |
h |
the number of slices to divide the range of response vector. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
regmethod |
type of regularization scheme to be used. |
tau |
regularization parameter for adjusting rank-deficient scatter matrix. |
numpc |
number of principal components to be used in intermediate dimension reduction scheme. |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Chiaromonte F, Martinelli J (2002). “Dimension Reduction Strategies for Analyzing Global Gene Expression Data with a Response.” Mathematical Biosciences, 176(1), 123–144. ISSN 0025-5564.
Zhong W, Zeng P, Ma P, Liu JS, Zhu Y (2005). “RSIR: Regularized Sliced Inverse Regression for Motif Discovery.” Bioinformatics, 21(22), 4169–4175.
Bernard-Michel C, Gardes L, Girard S (2009). “Gaussian Regularized Sliced Inverse Regression.” Statistics and Computing, 19(1), 85–98.
Bernard-Michel C, Douté S, Fauvel M, Gardes L, Girard S (2009). “Retrieval of Mars Surface Physical Properties from OMEGA Hyperspectral Images Using Regularized Sliced Inverse Regression.” Journal of Geophysical Research, 114(E6).
## generate swiss roll with auxiliary dimensions ## it follows reference example from LSIR paper. set.seed(100) n = 50 theta = runif(n) h = runif(n) t = (1+2*theta)*(3*pi/2) X = array(0,c(n,10)) X[,1] = t*cos(t) X[,2] = 21*h X[,3] = t*sin(t) X[,4:10] = matrix(runif(7*n), nrow=n) ## corresponding response vector y = sin(5*pi*theta)+(runif(n)*sqrt(0.1)) ## try with different regularization methods ## use default number of slices out1 = do.rsir(X, y, regmethod="Ridge") out2 = do.rsir(X, y, regmethod="Tikhonov") outsir = do.sir(X, y) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="RSIR::Ridge") plot(out2$Y, main="RSIR::Tikhonov") plot(outsir$Y, main="standard SIR") par(opar)
## generate swiss roll with auxiliary dimensions ## it follows reference example from LSIR paper. set.seed(100) n = 50 theta = runif(n) h = runif(n) t = (1+2*theta)*(3*pi/2) X = array(0,c(n,10)) X[,1] = t*cos(t) X[,2] = 21*h X[,3] = t*sin(t) X[,4:10] = matrix(runif(7*n), nrow=n) ## corresponding response vector y = sin(5*pi*theta)+(runif(n)*sqrt(0.1)) ## try with different regularization methods ## use default number of slices out1 = do.rsir(X, y, regmethod="Ridge") out2 = do.rsir(X, y, regmethod="Tikhonov") outsir = do.sir(X, y) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="RSIR::Ridge") plot(out2$Y, main="RSIR::Tikhonov") plot(outsir$Y, main="standard SIR") par(opar)
Given a data matrix where observations are stacked in a row-wise manner,
Regularized Self-Representation (RSR) aims at finding a solution to following optimization problem
where is an
norm that imposes
row-wise sparsity constraint.
do.rsr(X, ndim = 2, lbd = 1)
do.rsr(X, ndim = 2, lbd = 1)
X |
an |
ndim |
an integer-valued target dimension. |
lbd |
nonnegative number to control the degree of self-representation by imposing row-sparsity. |
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a length- vector of indices with highest scores.
a whose columns are basis for projection.
name of the algorithm.
Kisung You
Zhu P, Zuo W, Zhang L, Hu Q, Shiu SC (2015). “Unsupervised Feature Selection by Regularized Self-Representation.” Pattern Recognition, 48(2), 438–446.
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) #### try different lbd combinations out1 = do.rsr(X, lbd=0.1) out2 = do.rsr(X, lbd=1) out3 = do.rsr(X, lbd=10) #### visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="RSR::lbd=0.1") plot(out2$Y, pch=19, col=label, main="RSR::lbd=1") plot(out3$Y, pch=19, col=label, main="RSR::lbd=10") par(opar)
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) #### try different lbd combinations out1 = do.rsr(X, lbd=0.1) out2 = do.rsr(X, lbd=1) out3 = do.rsr(X, lbd=10) #### visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="RSR::lbd=0.1") plot(out2$Y, pch=19, col=label, main="RSR::lbd=1") plot(out3$Y, pch=19, col=label, main="RSR::lbd=10") par(opar)
Semi-Supervised Adaptive Maximum Margin Criterion (SAMMC) is a semi-supervised variant of AMMC by making use of both labeled and unlabeled data.
do.sammc( X, label, ndim = 2, type = c("proportion", 0.1), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), a = 1, b = 1, lambda = 1, beta = 1 )
do.sammc( X, label, ndim = 2, type = c("proportion", 0.1), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), a = 1, b = 1, lambda = 1, beta = 1 )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a |
tuning parameter for between-class weight in |
b |
tuning parameter for within-class weight in |
lambda |
balance parameter for between-class and within-class scatter matrices in |
beta |
balance parameter for within-class scatter of the labeled data and consistency of the whole data in |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Lu J, Tan Y (2011). “Adaptive Maximum Margin Criterion for Image Classification.” In 2011 IEEE International Conference on Multimedia and Expo, 1–6.
## generate data of 3 types with clear difference set.seed(100) dt1 = aux.gensamples(n=33)-50 dt2 = aux.gensamples(n=33) dt3 = aux.gensamples(n=33)+50 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=33) ## copy a label and let 20% of elements be missing nlabel = length(label) nmissing = round(nlabel*0.20) label_missing = label label_missing[sample(1:nlabel, nmissing)]=NA ## try different balancing out1 = do.sammc(X, label_missing, beta=0.1) out2 = do.sammc(X, label_missing, beta=1) out3 = do.sammc(X, label_missing, beta=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="SAMMC::beta=0.1") plot(out2$Y, pch=19, col=label, main="SAMMC::beta=1") plot(out3$Y, pch=19, col=label, main="SAMMC::beta=10") par(opar)
## generate data of 3 types with clear difference set.seed(100) dt1 = aux.gensamples(n=33)-50 dt2 = aux.gensamples(n=33) dt3 = aux.gensamples(n=33)+50 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=33) ## copy a label and let 20% of elements be missing nlabel = length(label) nmissing = round(nlabel*0.20) label_missing = label label_missing[sample(1:nlabel, nmissing)]=NA ## try different balancing out1 = do.sammc(X, label_missing, beta=0.1) out2 = do.sammc(X, label_missing, beta=1) out3 = do.sammc(X, label_missing, beta=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="SAMMC::beta=0.1") plot(out2$Y, pch=19, col=label, main="SAMMC::beta=1") plot(out3$Y, pch=19, col=label, main="SAMMC::beta=10") par(opar)
do.sammon
is an implementation for Sammon mapping, one of the earliest
dimension reduction techniques that aims to find low-dimensional embedding
that preserves pairwise distance structure in high-dimensional data space.
do.sammon( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten"), initialize = c("pca", "random") )
do.sammon( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten"), initialize = c("pca", "random") )
X |
an |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
initialize |
|
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
Sammon, J.W. (1969) A Nonlinear Mapping for Data Structure Analysis. IEEE Transactions on Computers, C-18 5:401-409.
Sammon JW (1969). “A Nonlinear Mapping for Data Structure Analysis.” IEEE Transactions on Computers, C-18(5), 401–409.
## load iris data data(iris) X = as.matrix(iris[,1:4]) label = as.factor(iris$Species) ## compare two initialization out1 = do.sammon(X,ndim=2) # random projection out2 = do.sammon(X,ndim=2,initialize="pca") # pca as initialization ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, pch=19, col=label, main="out1:rndproj") plot(out2$Y, pch=19, col=label, main="out2:pca") par(opar)
## load iris data data(iris) X = as.matrix(iris[,1:4]) label = as.factor(iris$Species) ## compare two initialization out1 = do.sammon(X,ndim=2) # random projection out2 = do.sammon(X,ndim=2,initialize="pca") # pca as initialization ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, pch=19, col=label, main="out1:rndproj") plot(out2$Y, pch=19, col=label, main="out2:pca") par(opar)
Sliced Average Variance Estimation (SAVE) is a supervised linear dimension reduction method. It is based on sufficiency principle with respect to central subspace concept under the linerity and constant covariance conditions. For more details, see the reference paper.
do.save( X, response, ndim = 2, h = max(2, round(nrow(X)/5)), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
do.save( X, response, ndim = 2, h = max(2, round(nrow(X)/5)), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
response |
a length- |
ndim |
an integer-valued target dimension. |
h |
the number of slices to divide the range of response vector. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Dennis Cook R (2000). “Save: A Method for Dimension Reduction and Graphics in Regression.” Communications in Statistics - Theory and Methods, 29(9-10), 2109–2121.
## generate swiss roll with auxiliary dimensions ## it follows reference example from LSIR paper. set.seed(100) n = 50 theta = runif(n) h = runif(n) t = (1+2*theta)*(3*pi/2) X = array(0,c(n,10)) X[,1] = t*cos(t) X[,2] = 21*h X[,3] = t*sin(t) X[,4:10] = matrix(runif(7*n), nrow=n) ## corresponding response vector y = sin(5*pi*theta)+(runif(n)*sqrt(0.1)) ## try with different numbers of slices out1 = do.save(X, y, h=2) out2 = do.save(X, y, h=5) out3 = do.save(X, y, h=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="SAVE::2 slices") plot(out2$Y, main="SAVE::5 slices") plot(out3$Y, main="SAVE::10 slices") par(opar)
## generate swiss roll with auxiliary dimensions ## it follows reference example from LSIR paper. set.seed(100) n = 50 theta = runif(n) h = runif(n) t = (1+2*theta)*(3*pi/2) X = array(0,c(n,10)) X[,1] = t*cos(t) X[,2] = 21*h X[,3] = t*sin(t) X[,4:10] = matrix(runif(7*n), nrow=n) ## corresponding response vector y = sin(5*pi*theta)+(runif(n)*sqrt(0.1)) ## try with different numbers of slices out1 = do.save(X, y, h=2) out2 = do.save(X, y, h=5) out3 = do.save(X, y, h=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="SAVE::2 slices") plot(out2$Y, main="SAVE::5 slices") plot(out3$Y, main="SAVE::10 slices") par(opar)
Semi-Supervised Discriminant Analysis (SDA) is a linear dimension reduction method
when label is partially missing, i.e., semi-supervised. The labeled data
points are used to maximize the separability between classes while
the unlabeled ones to estimate the intrinsic structure of the data.
Regularization in case of rank-deficient case is also supported via an
scheme via
beta
.
do.sda(X, label, ndim = 2, type = c("proportion", 0.1), alpha = 1, beta = 1)
do.sda(X, label, ndim = 2, type = c("proportion", 0.1), alpha = 1, beta = 1)
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
alpha |
balancing parameter between model complexity and empirical loss. |
beta |
Tikhonov regularization parameter. |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Cai D, He X, Han J (2007). “Semi-Supervised Discriminant Analysis.” In 2007 IEEE 11th International Conference on Computer Vision, 1–7.
## use iris data data(iris) X = as.matrix(iris[,1:4]) label = as.integer(iris$Species) ## copy a label and let 20% of elements be missing nlabel = length(label) nmissing = round(nlabel*0.20) label_missing = label label_missing[sample(1:nlabel, nmissing)]=NA ## compare true case with missing-label case out1 = do.sda(X, label) out2 = do.sda(X, label_missing) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, col=label, main="true projection") plot(out2$Y, col=label, main="20% missing labels") par(opar)
## use iris data data(iris) X = as.matrix(iris[,1:4]) label = as.integer(iris$Species) ## copy a label and let 20% of elements be missing nlabel = length(label) nmissing = round(nlabel*0.20) label_missing = label label_missing[sample(1:nlabel, nmissing)]=NA ## compare true case with missing-label case out1 = do.sda(X, label) out2 = do.sda(X, label_missing) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, col=label, main="true projection") plot(out2$Y, col=label, main="20% missing labels") par(opar)
Many variants of Locality Preserving Projection are contingent on graph construction schemes in that they sometimes return a range of heterogeneous results when parameters are controlled to cover a wide range of values. This algorithm takes an approach called sample-dependent construction of graph connectivity in that it tries to discover intrinsic structures of data solely based on data.
do.sdlpp( X, ndim = 2, t = 1, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
do.sdlpp( X, ndim = 2, t = 1, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
ndim |
an integer-valued target dimension. |
t |
kernel bandwidth in |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Yang B, Chen S (2010). “Sample-Dependent Graph Construction with Application to Dimensionality Reduction.” Neurocomputing, 74(1-3), 301–314.
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare with PCA out1 <- do.pca(X,ndim=2) out2 <- do.sdlpp(X, t=0.01) out3 <- do.sdlpp(X, t=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="PCA") plot(out2$Y, pch=19, col=label, main="SDLPP::t=1") plot(out3$Y, pch=19, col=label, main="SDLPP::t=10") par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare with PCA out1 <- do.pca(X,ndim=2) out2 <- do.sdlpp(X, t=0.01) out3 <- do.sdlpp(X, t=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="PCA") plot(out2$Y, pch=19, col=label, main="SDLPP::t=1") plot(out3$Y, pch=19, col=label, main="SDLPP::t=10") par(opar)
Sliced Inverse Regression (SIR) is a supervised linear dimension reduction technique. Unlike engineering-driven methods, SIR takes a concept of central subspace, where conditional independence after projection is guaranteed. It first divides the range of response variable. Projection vectors are extracted where projected data best explains response variable.
do.sir( X, response, ndim = 2, h = max(2, round(nrow(X)/5)), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
do.sir( X, response, ndim = 2, h = max(2, round(nrow(X)/5)), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
response |
a length- |
ndim |
an integer-valued target dimension. |
h |
the number of slices to divide the range of response vector. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Li K (1991). “Sliced Inverse Regression for Dimension Reduction.” Journal of the American Statistical Association, 86(414), 316.
## generate swiss roll with auxiliary dimensions ## it follows reference example from LSIR paper. set.seed(100) n = 50 theta = runif(n) h = runif(n) t = (1+2*theta)*(3*pi/2) X = array(0,c(n,10)) X[,1] = t*cos(t) X[,2] = 21*h X[,3] = t*sin(t) X[,4:10] = matrix(runif(7*n), nrow=n) ## corresponding response vector y = sin(5*pi*theta)+(runif(n)*sqrt(0.1)) ## try with different numbers of slices out1 = do.sir(X, y, h=2) out2 = do.sir(X, y, h=5) out3 = do.sir(X, y, h=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="SIR::2 slices") plot(out2$Y, main="SIR::5 slices") plot(out3$Y, main="SIR::10 slices") par(opar)
## generate swiss roll with auxiliary dimensions ## it follows reference example from LSIR paper. set.seed(100) n = 50 theta = runif(n) h = runif(n) t = (1+2*theta)*(3*pi/2) X = array(0,c(n,10)) X[,1] = t*cos(t) X[,2] = 21*h X[,3] = t*sin(t) X[,4:10] = matrix(runif(7*n), nrow=n) ## corresponding response vector y = sin(5*pi*theta)+(runif(n)*sqrt(0.1)) ## try with different numbers of slices out1 = do.sir(X, y, h=2) out2 = do.sir(X, y, h=5) out3 = do.sir(X, y, h=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="SIR::2 slices") plot(out2$Y, main="SIR::5 slices") plot(out3$Y, main="SIR::10 slices") par(opar)
Supervised Locality Pursuit Embedding (SLPE) is a supervised extension of LPE that uses class labels of data points in order to enhance discriminating power in its mapping into a low dimensional space.
do.slpe( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
do.slpe( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Zheng Z, Yang J (2006). “Supervised Locality Pursuit Embedding for Pattern Classification.” Image and Vision Computing, 24(8), 819–826.
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare SLPE with SLPP out1 <- do.slpp(X, label) out2 <- do.slpe(X, label) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, pch=19, col=label, main="SLPP") plot(out2$Y, pch=19, col=label, main="SLPE") par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare SLPE with SLPP out1 <- do.slpp(X, label) out2 <- do.slpe(X, label) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, pch=19, col=label, main="SLPP") plot(out2$Y, pch=19, col=label, main="SLPE") par(opar)
As its names suggests, Supervised Locality Preserving Projection (SLPP) is a variant of LPP
in that it replaces neighborhood network construction schematic with class information in that
if two nodes belong to the same class, it assigns weight of 1, i.e., if
and
have same class labelings.
do.slpp(X, label, ndim = 2, preprocess = c("center", "decorrelate", "whiten"))
do.slpp(X, label, ndim = 2, preprocess = c("center", "decorrelate", "whiten"))
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center" and other options of "decorrelate" and "whiten"
are supported. See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Zheng Z, Yang F, Tan W, Jia J, Yang J (2007). “Gabor Feature-Based Face Recognition Using Supervised Locality Preserving Projection.” Signal Processing, 87(10), 2473–2483.
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare SLPP with LPP outLPP <- do.lpp(X) outSLPP <- do.slpp(X, label) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(outLPP$Y, pch=19, col=label, main="LPP") plot(outSLPP$Y, pch=19, col=label, main="SLPP") par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare SLPP with LPP outLPP <- do.lpp(X) outSLPP <- do.slpp(X, label) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(outLPP$Y, pch=19, col=label, main="LPP") plot(outSLPP$Y, pch=19, col=label, main="SLPP") par(opar)
Stochastic Neighbor Embedding (SNE) is a probabilistic approach to mimick distributional
description in high-dimensional - possible, nonlinear - subspace on low-dimensional target space.
do.sne
fully adopts algorithm details in an original paper by Hinton and Roweis (2002).
do.sne( X, ndim = 2, perplexity = 30, eta = 0.05, maxiter = 2000, jitter = 0.3, jitterdecay = 0.99, momentum = 0.5, pca = TRUE, pcascale = FALSE, symmetric = FALSE )
do.sne( X, ndim = 2, perplexity = 30, eta = 0.05, maxiter = 2000, jitter = 0.3, jitterdecay = 0.99, momentum = 0.5, pca = TRUE, pcascale = FALSE, symmetric = FALSE )
X |
an |
ndim |
an integer-valued target dimension. |
perplexity |
desired level of perplexity; ranging [5,50]. |
eta |
learning parameter. |
maxiter |
maximum number of iterations. |
jitter |
level of white noise added at the beginning. |
jitterdecay |
decay parameter in |
momentum |
level of acceleration in learning. |
pca |
whether to use PCA as preliminary step; |
pcascale |
a logical; |
symmetric |
a logical; |
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a vector containing betas used in perplexity matching.
name of the algorithm.
Kisung You
Hinton GE, Roweis ST (2003). “Stochastic Neighbor Embedding.” In Becker S, Thrun S, Obermayer K (eds.), Advances in Neural Information Processing Systems 15, 857–864. MIT Press.
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different perplexity values out1 <- do.sne(X, perplexity=5) out2 <- do.sne(X, perplexity=25) out3 <- do.sne(X, perplexity=50) ## Visualize two comparisons opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="perplexity=5") plot(out2$Y, pch=19, col=label, main="perplexity=25") plot(out3$Y, pch=19, col=label, main="perplexity=50") par(opar)
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different perplexity values out1 <- do.sne(X, perplexity=5) out2 <- do.sne(X, perplexity=25) out3 <- do.sne(X, perplexity=50) ## Visualize two comparisons opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="perplexity=5") plot(out2$Y, pch=19, col=label, main="perplexity=25") plot(out3$Y, pch=19, col=label, main="perplexity=50") par(opar)
Unlike original principal component analysis (do.pca
), this algorithm implements
a supervised version using response information for feature selection. For each feature/column,
its normalized association with response
variable is computed and the features with
large magnitude beyond threshold
are selected. From the selected submatrix,
regular PCA is applied for dimension reduction.
do.spc( X, response, ndim = 2, preprocess = c("center", "whiten", "decorrelate"), threshold = 0.1 )
do.spc( X, response, ndim = 2, preprocess = c("center", "whiten", "decorrelate"), threshold = 0.1 )
X |
an |
response |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is |
threshold |
a threshold value to cut off normalized association between covariates and response. |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Bair E, Hastie T, Paul D, Tibshirani R (2006). “Prediction by Supervised Principal Components.” Journal of the American Statistical Association, 101(473), 119–137.
## generate swiss roll with auxiliary dimensions ## it follows reference example from LSIR paper. set.seed(100) n = 100 theta = runif(n) h = runif(n) t = (1+2*theta)*(3*pi/2) X = array(0,c(n,10)) X[,1] = t*cos(t) X[,2] = 21*h X[,3] = t*sin(t) X[,4:10] = matrix(runif(7*n), nrow=n) ## corresponding response vector y = sin(5*pi*theta)+(runif(n)*sqrt(0.1)) ## try different threshold values out1 = do.spc(X, y, threshold=2) out2 = do.spc(X, y, threshold=5) out3 = do.spc(X, y, threshold=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="SPC::threshold=2") plot(out2$Y, main="SPC::threshold=5") plot(out3$Y, main="SPC::threshold=10") par(opar)
## generate swiss roll with auxiliary dimensions ## it follows reference example from LSIR paper. set.seed(100) n = 100 theta = runif(n) h = runif(n) t = (1+2*theta)*(3*pi/2) X = array(0,c(n,10)) X[,1] = t*cos(t) X[,2] = 21*h X[,3] = t*sin(t) X[,4:10] = matrix(runif(7*n), nrow=n) ## corresponding response vector y = sin(5*pi*theta)+(runif(n)*sqrt(0.1)) ## try different threshold values out1 = do.spc(X, y, threshold=2) out2 = do.spc(X, y, threshold=5) out3 = do.spc(X, y, threshold=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="SPC::threshold=2") plot(out2$Y, main="SPC::threshold=5") plot(out3$Y, main="SPC::threshold=10") par(opar)
Sparse PCA (do.spca
) is a variant of PCA in that each loading - or, principal
component - should be sparse. Instead of using generic optimization package,
we opt for formulating a problem as semidefinite relaxation and utilizing ADMM.
do.spca(X, ndim = 2, mu = 1, rho = 1, ...)
do.spca(X, ndim = 2, mu = 1, rho = 1, ...)
X |
an |
ndim |
an integer-valued target dimension. |
mu |
an augmented Lagrangian parameter. |
rho |
a regularization parameter for sparsity. |
... |
extra parameters including
|
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
a whose columns are basis for projection.
name of the algorithm.
Kisung You
Zou H, Hastie T, Tibshirani R (2006). “Sparse Principal Component Analysis.” Journal of Computational and Graphical Statistics, 15(2), 265–286.
d'Aspremont A, El Ghaoui L, Jordan MI, Lanckriet GRG (2007). “A Direct Formulation for Sparse PCA Using Semidefinite Programming.” SIAM Review, 49(3), 434–448.
Ma S (2013). “Alternating Direction Method of Multipliers for Sparse Principal Component Analysis.” Journal of the Operations Research Society of China, 1(2), 253–274.
## use iris data data(iris, package="Rdimtools") set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## try different regularization parameters for sparsity out1 <- do.spca(X,ndim=2,rho=0.01) out2 <- do.spca(X,ndim=2,rho=1) out3 <- do.spca(X,ndim=2,rho=100) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=lab, pch=19, main="SPCA::rho=0.01") plot(out2$Y, col=lab, pch=19, main="SPCA::rho=1") plot(out3$Y, col=lab, pch=19, main="SPCA::rho=100") par(opar)
## use iris data data(iris, package="Rdimtools") set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## try different regularization parameters for sparsity out1 <- do.spca(X,ndim=2,rho=0.01) out2 <- do.spca(X,ndim=2,rho=1) out3 <- do.spca(X,ndim=2,rho=100) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=lab, pch=19, main="SPCA::rho=0.01") plot(out2$Y, col=lab, pch=19, main="SPCA::rho=1") plot(out3$Y, col=lab, pch=19, main="SPCA::rho=100") par(opar)
One of drawbacks for Multidimensional Scaling or Sammon mapping is that
they have quadratic computational complexity with respect to the number of data.
Stochastic Proximity Embedding (SPE) adopts stochastic update rule in that
its computational speed is much improved. It performs C
number of cycles,
where for each cycle, it randomly selects two data points and updates their
locations correspondingly S
times. After each cycle, learning parameter
is multiplied by
drate
, becoming smaller in magnitude.
do.spe( X, ndim = 2, proximity = function(x) { dist(x, method = "euclidean") }, C = 50, S = 50, lambda = 1, drate = 0.9 )
do.spe( X, ndim = 2, proximity = function(x) { dist(x, method = "euclidean") }, C = 50, S = 50, lambda = 1, drate = 0.9 )
X |
an |
ndim |
an integer-valued target dimension. |
proximity |
a function for constructing proximity matrix from original data dimension. |
C |
the number of cycles to be run; after each cycle, learning parameter |
S |
the number of updates for each cycle. |
lambda |
initial learning parameter. |
drate |
multiplier for |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
Agrafiotis DK (2003). “Stochastic Proximity Embedding.” Journal of Computational Chemistry, 24(10), 1215–1221.
## load iris data data(iris) X = as.matrix(iris[,1:4]) label = as.factor(iris$Species) ## compare with mds using 2 distance metrics outM <- do.mds(X, ndim=2) out1 <- do.spe(X, ndim=2) out2 <- do.spe(X, ndim=2, proximity=function(x){dist(x, method="manhattan")}) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(outM$Y, pch=19, col=label, main="MDS") plot(out1$Y, pch=19, col=label, main="SPE with L2 norm") plot(out2$Y, pch=19, col=label, main="SPE with L1 norm") par(opar)
## load iris data data(iris) X = as.matrix(iris[,1:4]) label = as.factor(iris$Species) ## compare with mds using 2 distance metrics outM <- do.mds(X, ndim=2) out1 <- do.spe(X, ndim=2) out2 <- do.spe(X, ndim=2, proximity=function(x){dist(x, method="manhattan")}) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(outM$Y, pch=19, col=label, main="MDS") plot(out1$Y, pch=19, col=label, main="SPE with L2 norm") plot(out2$Y, pch=19, col=label, main="SPE with L1 norm") par(opar)
SPEC algorithm selects features from the data via spectral graph approach. Three types of ranking methods that appeared in the paper are available where the graph laplacian is built via class label information.
do.specs( X, label, ndim = 2, ranking = c("method1", "method2", "method3"), preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate") )
do.specs( X, label, ndim = 2, ranking = c("method1", "method2", "method3"), preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate") )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
ranking |
types of feature scoring method. See the paper in the reference for more details. |
preprocess |
an additional option for preprocessing the data. Default is "null". See also |
a named list containing
an matrix whose rows are embedded observations.
a length- vector of spectral feature scores.
a length- vector of indices with highest scores.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Zhao Z, Liu H (2007). “Spectral Feature Selection for Supervised and Unsupervised Learning.” In Proceedings of the 24th International Conference on Machine Learning - ICML '07, 1151–1157.
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) set.seed(100) subid = sample(1:150, 50) iris.dat = as.matrix(iris[subid,1:4]) iris.lab = as.factor(iris[subid,5]) ## try different ranking methods out1 = do.specs(iris.dat, iris.lab, ranking="method1") out2 = do.specs(iris.dat, iris.lab, ranking="method2") out3 = do.specs(iris.dat, iris.lab, ranking="method3") ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=iris.lab, main="SPECS::method1") plot(out2$Y, pch=19, col=iris.lab, main="SPECS::method2") plot(out3$Y, pch=19, col=iris.lab, main="SPECS::method3") par(opar)
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) set.seed(100) subid = sample(1:150, 50) iris.dat = as.matrix(iris[subid,1:4]) iris.lab = as.factor(iris[subid,5]) ## try different ranking methods out1 = do.specs(iris.dat, iris.lab, ranking="method1") out2 = do.specs(iris.dat, iris.lab, ranking="method2") out3 = do.specs(iris.dat, iris.lab, ranking="method3") ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=iris.lab, main="SPECS::method1") plot(out2$Y, pch=19, col=iris.lab, main="SPECS::method2") plot(out3$Y, pch=19, col=iris.lab, main="SPECS::method3") par(opar)
SPEC algorithm selects features from the data via spectral graph approach. Three types of ranking methods that appeared in the paper are available where the graph laplacian is built via RBF kernel.
do.specu( X, ndim = 2, sigma = 1, ranking = c("method1", "method2", "method3"), preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate") )
do.specu( X, ndim = 2, sigma = 1, ranking = c("method1", "method2", "method3"), preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate") )
X |
an |
ndim |
an integer-valued target dimension. |
sigma |
bandwidth parameter for RBK kernel of type |
ranking |
types of feature scoring method. See the paper in the reference for more details. |
preprocess |
an additional option for preprocessing the data. Default is "null". See also |
a named list containing
an matrix whose rows are embedded observations.
a length- vector of spectral feature scores.
a length- vector of indices with highest scores.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Zhao Z, Liu H (2007). “Spectral Feature Selection for Supervised and Unsupervised Learning.” In Proceedings of the 24th International Conference on Machine Learning - ICML '07, 1151–1157.
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) set.seed(100) subid = sample(1:150,50) iris.dat = as.matrix(iris[subid,1:4]) iris.lab = as.factor(iris[subid,5]) ## try different ranking methods mysig = 6 out1 = do.specu(iris.dat, sigma=mysig, ranking="method1") out2 = do.specu(iris.dat, sigma=mysig, ranking="method2") out3 = do.specu(iris.dat, sigma=mysig, ranking="method3") ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=iris.lab, main="SPECU::method1") plot(out2$Y, pch=19, col=iris.lab, main="SPECU::method2") plot(out3$Y, pch=19, col=iris.lab, main="SPECU::method3") par(opar)
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) set.seed(100) subid = sample(1:150,50) iris.dat = as.matrix(iris[subid,1:4]) iris.lab = as.factor(iris[subid,5]) ## try different ranking methods mysig = 6 out1 = do.specu(iris.dat, sigma=mysig, ranking="method1") out2 = do.specu(iris.dat, sigma=mysig, ranking="method2") out3 = do.specu(iris.dat, sigma=mysig, ranking="method3") ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=iris.lab, main="SPECU::method1") plot(out2$Y, pch=19, col=iris.lab, main="SPECU::method2") plot(out3$Y, pch=19, col=iris.lab, main="SPECU::method3") par(opar)
Supervised Laplacian Eigenmaps (SPLAPEIG) is a supervised variant of Laplacian Eigenmaps.
Instead of setting up explicit neighborhood, it utilizes an adaptive threshold strategy
to define neighbors for both within- and between-class neighborhood. It then builds affinity
matrices for each information and solves generalized eigenvalue problem. This algorithm
may be quite sensitive in the choice of beta
value.
do.splapeig( X, label, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), beta = 1, gamma = 0.5 )
do.splapeig( X, label, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), beta = 1, gamma = 0.5 )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
beta |
bandwidth parameter for heat kernel in |
gamma |
a balancing parameter in |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
Raducanu B, Dornaika F (2012). “A Supervised Non-Linear Dimensionality Reduction Approach for Manifold Learning.” Pattern Recognition, 45(6), 2432–2444.
## load iris data data(iris) X = as.matrix(iris[,1:4]) label = as.factor(iris[,5]) ## try different balancing parameters with beta=50 out1 = do.splapeig(X, label, beta=50, gamma=0.3); Y1=out1$Y out2 = do.splapeig(X, label, beta=50, gamma=0.6); Y2=out2$Y out3 = do.splapeig(X, label, beta=50, gamma=0.9); Y3=out3$Y ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(Y1, pch=19, col=label, main="gamma=0.3") plot(Y2, pch=19, col=label, main="gamma=0.6") plot(Y3, pch=19, col=label, main="gamma=0.9") par(opar)
## load iris data data(iris) X = as.matrix(iris[,1:4]) label = as.factor(iris[,5]) ## try different balancing parameters with beta=50 out1 = do.splapeig(X, label, beta=50, gamma=0.3); Y1=out1$Y out2 = do.splapeig(X, label, beta=50, gamma=0.6); Y2=out2$Y out3 = do.splapeig(X, label, beta=50, gamma=0.9); Y3=out3$Y ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(Y1, pch=19, col=label, main="gamma=0.3") plot(Y2, pch=19, col=label, main="gamma=0.6") plot(Y3, pch=19, col=label, main="gamma=0.9") par(opar)
do.spmds
transfers the classical multidimensional scaling problem into
the data spectral domain using Laplace-Beltrami operator. Its flexibility
to use subsamples and spectral interpolation of non-reference data enables relatively
efficient computation for large-scale data.
do.spmds( X, ndim = 2, neigs = max(2, nrow(X)/10), ratio = 0.1, preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten"), type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric") )
do.spmds( X, ndim = 2, neigs = max(2, nrow(X)/10), ratio = 0.1, preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten"), type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric") )
X |
an |
ndim |
an integer-valued target dimension. |
neigs |
number of eigenvectors to be used as spectral dimension. |
ratio |
percentage of subsamples as reference points. |
preprocess |
an additional option for preprocessing the data.
Default is |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
one of |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
Aflalo Y, Kimmel R (2013). “Spectral Multidimensional Scaling.” Proceedings of the National Academy of Sciences, 110(45), 18052–18057.
## Not run: ## Replicate the numerical example from the paper # Data Preparation set.seed(100) dim.true = 3 # true dimension dim.embed = 100 # embedding space (high-d) npoints = 1000 # number of samples to be generated v = matrix(runif(dim.embed*dim.true),ncol=dim.embed) coeff = matrix(runif(dim.true*npoints), ncol=dim.true) X = coeff%*%v # see the effect of neighborhood size out1 = do.spmds(X, neigs=100, type=c("proportion",0.10)) out2 = do.spmds(X, neigs=100, type=c("proportion",0.25)) out3 = do.spmds(X, neigs=100, type=c("proportion",0.50)) # visualize the results opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="10% neighborhood") plot(out2$Y, main="25% neighborhood") plot(out3$Y, main="50% neighborhood") par(opar) ## End(Not run)
## Not run: ## Replicate the numerical example from the paper # Data Preparation set.seed(100) dim.true = 3 # true dimension dim.embed = 100 # embedding space (high-d) npoints = 1000 # number of samples to be generated v = matrix(runif(dim.embed*dim.true),ncol=dim.embed) coeff = matrix(runif(dim.true*npoints), ncol=dim.true) X = coeff%*%v # see the effect of neighborhood size out1 = do.spmds(X, neigs=100, type=c("proportion",0.10)) out2 = do.spmds(X, neigs=100, type=c("proportion",0.25)) out3 = do.spmds(X, neigs=100, type=c("proportion",0.50)) # visualize the results opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="10% neighborhood") plot(out2$Y, main="25% neighborhood") plot(out3$Y, main="50% neighborhood") par(opar) ## End(Not run)
Sparsity Preserving Projection (SPP) is an unsupervised linear dimension reduction technique. It aims to preserve high-dimensional structure in a sparse manner to find projections that keeps such sparsely-connected pattern in the low-dimensional space. Note that we used CVXR for convenient computation, which may lead to slower execution once used for large dataset.
do.spp( X, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), reltol = 1e-04 )
do.spp( X, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), reltol = 1e-04 )
X |
an |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
reltol |
tolerance level for stable computation of sparse reconstruction weights. |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Qiao L, Chen S, Tan X (2010). “Sparsity Preserving Projections with Applications to Face Recognition.” Pattern Recognition, 43(1), 331–341.
## Not run: ## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## test different tolerance levels out1 <- do.spp(X,ndim=2,reltol=0.001) out2 <- do.spp(X,ndim=2,reltol=0.01) out3 <- do.spp(X,ndim=2,reltol=0.1) # visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="SPP::reltol=.001") plot(out2$Y, pch=19, col=label, main="SPP::reltol=.01") plot(out3$Y, pch=19, col=label, main="SPP::reltol=.1") par(opar) ## End(Not run)
## Not run: ## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## test different tolerance levels out1 <- do.spp(X,ndim=2,reltol=0.001) out2 <- do.spp(X,ndim=2,reltol=0.01) out3 <- do.spp(X,ndim=2,reltol=0.1) # visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="SPP::reltol=.001") plot(out2$Y, pch=19, col=label, main="SPP::reltol=.01") plot(out3$Y, pch=19, col=label, main="SPP::reltol=.1") par(opar) ## End(Not run)
This unsupervised feature selection method is based on self-expression model, which means that the cost function involves difference in self-representation. It does not explicitly require learning the clusterings and different features are weighted individually based on their relative importance. The cost function involves two penalties, sparsity and preservation of local structure.
do.spufs( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), alpha = 1, beta = 1, bandwidth = 1 )
do.spufs( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), alpha = 1, beta = 1, bandwidth = 1 )
X |
an |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
alpha |
nonnegative number to control sparsity in rows of matrix of representation coefficients. |
beta |
nonnegative number to control the degree of local-structure preservation. |
bandwidth |
positive number for Gaussian kernel bandwidth to define similarity. |
a named list containing
an matrix whose rows are embedded observations.
a length- vector of indices with highest scores.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Lu Q, Li X, Dong Y (2018). “Structure Preserving Unsupervised Feature Selection.” Neurocomputing, 301, 36–45.
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) #### try different bandwidth values out1 = do.spufs(X, bandwidth=0.1) out2 = do.spufs(X, bandwidth=1) out3 = do.spufs(X, bandwidth=10) #### visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="SPUFS::bandwidth=0.1") plot(out2$Y, pch=19, col=label, main="SPUFS::bandwidth=1") plot(out3$Y, pch=19, col=label, main="SPUFS::bandwidth=10") par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) #### try different bandwidth values out1 = do.spufs(X, bandwidth=0.1) out2 = do.spufs(X, bandwidth=1) out3 = do.spufs(X, bandwidth=10) #### visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="SPUFS::bandwidth=0.1") plot(out2$Y, pch=19, col=label, main="SPUFS::bandwidth=1") plot(out3$Y, pch=19, col=label, main="SPUFS::bandwidth=10") par(opar)
Semi-Supervised Locally Discriminant Projection (SSLDP) is a semi-supervised extension of LDP. It utilizes unlabeled data to overcome the small-sample-size problem under the situation where labeled data have the small number. Using two information, it both constructs the within- and between-class weight matrices incorporating the neighborhood information of the data set.
do.ssldp( X, label, ndim = 2, type = c("proportion", 0.1), preprocess = c("center", "scale", "cscale", "whiten", "decorrelate"), beta = 0.5 )
do.ssldp( X, label, ndim = 2, type = c("proportion", 0.1), preprocess = c("center", "scale", "cscale", "whiten", "decorrelate"), beta = 0.5 )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
beta |
balancing parameter for intra- and inter-class information in |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Zhang S, Lei Y, Wu Y (2011). “Semi-Supervised Locally Discriminant Projection for Classification and Recognition.” Knowledge-Based Systems, 24(2), 341–346.
## use iris data data(iris) X = as.matrix(iris[,1:4]) label = as.integer(iris$Species) ## copy a label and let 10% of elements be missing nlabel = length(label) nmissing = round(nlabel*0.10) label_missing = label label_missing[sample(1:nlabel, nmissing)]=NA ## compute with 3 different levels of 'beta' values out1 = do.ssldp(X, label_missing, beta=0.1) out2 = do.ssldp(X, label_missing, beta=0.5) out3 = do.ssldp(X, label_missing, beta=0.9) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, main="SSLDP::beta=0.1") plot(out2$Y, col=label, main="SSLDP::beta=0.5") plot(out3$Y, col=label, main="SSLDP::beta=0.9") par(opar)
## use iris data data(iris) X = as.matrix(iris[,1:4]) label = as.integer(iris$Species) ## copy a label and let 10% of elements be missing nlabel = length(label) nmissing = round(nlabel*0.10) label_missing = label label_missing[sample(1:nlabel, nmissing)]=NA ## compute with 3 different levels of 'beta' values out1 = do.ssldp(X, label_missing, beta=0.1) out2 = do.ssldp(X, label_missing, beta=0.5) out3 = do.ssldp(X, label_missing, beta=0.9) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, main="SSLDP::beta=0.1") plot(out2$Y, col=label, main="SSLDP::beta=0.5") plot(out3$Y, col=label, main="SSLDP::beta=0.9") par(opar)
-distributed Stochastic Neighbor Embedding (t-SNE) is a variant of Stochastic Neighbor Embedding (SNE)
that mimicks patterns of probability distributinos over pairs of high-dimensional objects on low-dimesional
target embedding space by minimizing Kullback-Leibler divergence. While conventional SNE uses gaussian
distributions to measure similarity, t-SNE, as its name suggests, exploits a heavy-tailed Student t-distribution.
do.tsne( X, ndim = 2, perplexity = 30, eta = 0.05, maxiter = 2000, jitter = 0.3, jitterdecay = 0.99, momentum = 0.5, pca = TRUE, pcascale = FALSE, symmetric = FALSE, BHuse = TRUE, BHtheta = 0.25 )
do.tsne( X, ndim = 2, perplexity = 30, eta = 0.05, maxiter = 2000, jitter = 0.3, jitterdecay = 0.99, momentum = 0.5, pca = TRUE, pcascale = FALSE, symmetric = FALSE, BHuse = TRUE, BHtheta = 0.25 )
X |
an |
ndim |
an integer-valued target dimension. |
perplexity |
desired level of perplexity; ranging [5,50]. |
eta |
learning parameter. |
maxiter |
maximum number of iterations. |
jitter |
level of white noise added at the beginning. |
jitterdecay |
decay parameter in (0,1). The closer to 0, the faster artificial noise decays. |
momentum |
level of acceleration in learning. |
pca |
whether to use PCA as preliminary step; |
pcascale |
a logical; |
symmetric |
a logical; |
BHuse |
a logical; |
BHtheta |
speed-accuracy tradeoff. If set as 0.0, it reduces to exact t-SNE. |
a named Rdimtools
S3 object containing
an matrix whose rows are embedded observations.
name of the algorithm.
Kisung You
van der Maaten L, Hinton G (2008). “Visualizing Data Using T-SNE.” The Journal of Machine Learning Research, 9(2579-2605), 85.
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## compare different perplexity out1 <- do.tsne(X, ndim=2, perplexity=5) out2 <- do.tsne(X, ndim=2, perplexity=10) out3 <- do.tsne(X, ndim=2, perplexity=15) ## Visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=lab, main="tSNE::perplexity=5") plot(out2$Y, pch=19, col=lab, main="tSNE::perplexity=10") plot(out3$Y, pch=19, col=lab, main="tSNE::perplexity=15") par(opar)
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## compare different perplexity out1 <- do.tsne(X, ndim=2, perplexity=5) out2 <- do.tsne(X, ndim=2, perplexity=10) out3 <- do.tsne(X, ndim=2, perplexity=15) ## Visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=lab, main="tSNE::perplexity=5") plot(out2$Y, pch=19, col=lab, main="tSNE::perplexity=10") plot(out3$Y, pch=19, col=lab, main="tSNE::perplexity=15") par(opar)
Though it may sound weird, this method aims at finding discriminative features under the unsupervised learning framework. It assumes that the class label could be predicted by a linear classifier and iteratively updates its discriminative nature while attaining row-sparsity scores for selecting features.
do.udfs( X, ndim = 2, lbd = 1, gamma = 1, k = 5, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate") )
do.udfs( X, ndim = 2, lbd = 1, gamma = 1, k = 5, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate") )
X |
an |
ndim |
an integer-valued target dimension. |
lbd |
regularization parameter for local Gram matrix to be invertible. |
gamma |
regularization parameter for row-sparsity via |
k |
size of nearest neighborhood for each data point. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
a named list containing
an matrix whose rows are embedded observations.
a length- vector of indices with highest scores.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Yang Y, Shen HT, Ma Z, Huang Z, Zhou X (2011). “L2,1-Norm Regularized Discriminative Feature Selection for Unsupervised Learning.” In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence - Volume Volume Two, IJCAI'11, 1589–1594.
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) #### try different neighborhood size out1 = do.udfs(X, k=5) out2 = do.udfs(X, k=10) out3 = do.udfs(X, k=25) #### visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="UDFS::k=5") plot(out2$Y, pch=19, col=label, main="UDFS::k=10") plot(out3$Y, pch=19, col=label, main="UDFS::k=25") par(opar)
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) #### try different neighborhood size out1 = do.udfs(X, k=5) out2 = do.udfs(X, k=10) out3 = do.udfs(X, k=25) #### visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="UDFS::k=5") plot(out2$Y, pch=19, col=label, main="UDFS::k=10") plot(out3$Y, pch=19, col=label, main="UDFS::k=25") par(opar)
Unsupervised Discriminant Projection (UDP) aims finding projection that balances local and global scatter. Even though the name contains the word Discriminant, this algorithm is unsupervised. The term there reflects its algorithmic tactic to discriminate distance points not in the neighborhood of each data point. It performs PCA as intermittent preprocessing for rank singularity issue. Authors clearly mentioned that it is inspired by Locality Preserving Projection, which minimizes the local scatter only.
do.udp( X, ndim = 2, type = c("proportion", 0.1), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
do.udp( X, ndim = 2, type = c("proportion", 0.1), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
the number of PCA target dimension used in preprocessing.
Kisung You
Yang J, Zhang D, Yang J, Niu B (2007). “Globally Maximizing, Locally Minimizing: Unsupervised Discriminant Projection with Applications to Face and Palm Biometrics.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(4), 650–664.
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## use different connectivity level out1 <- do.udp(X, type=c("proportion",0.05)) out2 <- do.udp(X, type=c("proportion",0.10)) out3 <- do.udp(X, type=c("proportion",0.25)) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, pch=19, main="connectivity 5%") plot(out2$Y, col=label, pch=19, main="connectivity 10%") plot(out3$Y, col=label, pch=19, main="connectivity 25%") par(opar)
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## use different connectivity level out1 <- do.udp(X, type=c("proportion",0.05)) out2 <- do.udp(X, type=c("proportion",0.10)) out3 <- do.udp(X, type=c("proportion",0.25)) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, pch=19, main="connectivity 5%") plot(out2$Y, col=label, pch=19, main="connectivity 10%") plot(out3$Y, col=label, pch=19, main="connectivity 25%") par(opar)
UGFS is an unsupervised feature selection method with two parameters nbdk
and varthr
that it constructs
an affinity graph using local variance computation and scores variables based on PageRank algorithm.
do.ugfs( X, ndim = 2, nbdk = 5, varthr = 2, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate") )
do.ugfs( X, ndim = 2, nbdk = 5, varthr = 2, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate") )
X |
an |
ndim |
an integer-valued target dimension. |
nbdk |
the size of neighborhood for local variance computation. |
varthr |
threshold value for affinity graph construction. If too small so that the graph of variables is not constructed, it returns an error. |
preprocess |
an additional option for preprocessing the data. Default is "null". See also |
a named list containing
an matrix whose rows are embedded observations.
a length- vector of score computed from PageRank algorithm. Indices with largest values are selected.
a length- vector of indices with highest scores.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Henni K, Mezghani N, Gouin-Vallerand C (2018). “Unsupervised Graph-Based Feature Selection via Subspace and Pagerank Centrality.” Expert Systems with Applications, 114, 46–53. ISSN 09574174.
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) iris.dat <- as.matrix(iris[,1:4]) iris.lab <- as.factor(iris[,5]) ## try multiple thresholding values out1 = do.ugfs(iris.dat, nbdk=10, varthr=0.5) out2 = do.ugfs(iris.dat, nbdk=10, varthr=5.0) out3 = do.ugfs(iris.dat, nbdk=10, varthr=9.5) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=iris.lab, main="bandwidth=0.1") plot(out2$Y, pch=19, col=iris.lab, main="bandwidth=1") plot(out3$Y, pch=19, col=iris.lab, main="bandwidth=10") par(opar)
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) iris.dat <- as.matrix(iris[,1:4]) iris.lab <- as.factor(iris[,5]) ## try multiple thresholding values out1 = do.ugfs(iris.dat, nbdk=10, varthr=0.5) out2 = do.ugfs(iris.dat, nbdk=10, varthr=5.0) out3 = do.ugfs(iris.dat, nbdk=10, varthr=9.5) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=iris.lab, main="bandwidth=0.1") plot(out2$Y, pch=19, col=iris.lab, main="bandwidth=1") plot(out3$Y, pch=19, col=iris.lab, main="bandwidth=10") par(opar)
Uncorrelated LDA (Jin et al. 2001) is an extension of LDA by using the uncorrelated discriminant transformation and Kahrunen-Loeve expansion of the basis.
do.ulda( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate") )
do.ulda( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate") )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Jin Z, Yang J, Hu Z, Lou Z (2001). “Face Recognition Based on the Uncorrelated Discriminant Transformation.” Pattern Recognition, 34(7), 1405–1416.
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare with LDA out1 = do.lda(X, label) out2 = do.ulda(X, label) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, pch=19, col=label, main="LDA") plot(out2$Y, pch=19, col=label, main="Uncorrelated LDA") par(opar)
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare with LDA out1 = do.lda(X, label) out2 = do.ulda(X, label) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, pch=19, col=label, main="LDA") plot(out2$Y, pch=19, col=label, main="Uncorrelated LDA") par(opar)
Built upon do.wdfs
, this method selects features step-by-step to opt out the redundant sets
by iteratively update feature scores via scaling by the correlation between target and previously chosen variables.
do.uwdfs( X, label, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten") )
do.uwdfs( X, label, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
a named list containing
an matrix whose rows are embedded observations.
a length- vector of indices with highest scores.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Liao S, Gao Q, Nie F, Liu Y, Zhang X (2019). “Worst-Case Discriminative Feature Selection.” In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, 2973–2979.
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) set.seed(100) subid = sample(1:150,50) iris.dat = as.matrix(iris[subid,1:4]) iris.lab = as.factor(iris[subid,5]) ## compare with other algorithms out1 = do.lda(iris.dat, iris.lab) out2 = do.wdfs(iris.dat, iris.lab) out3 = do.uwdfs(iris.dat, iris.lab) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=iris.lab, main="LDA") plot(out2$Y, pch=19, col=iris.lab, main="WDFS") plot(out3$Y, pch=19, col=iris.lab, main="UWDFS") par(opar)
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) set.seed(100) subid = sample(1:150,50) iris.dat = as.matrix(iris[subid,1:4]) iris.lab = as.factor(iris[subid,5]) ## compare with other algorithms out1 = do.lda(iris.dat, iris.lab) out2 = do.wdfs(iris.dat, iris.lab) out3 = do.uwdfs(iris.dat, iris.lab) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=iris.lab, main="LDA") plot(out2$Y, pch=19, col=iris.lab, main="WDFS") plot(out3$Y, pch=19, col=iris.lab, main="UWDFS") par(opar)
As a supervised feature selection method, WDFS searches over all pairs of between-class and within-class scatters and chooses the highest-scoring features.
do.wdfs( X, label, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten") )
do.wdfs( X, label, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten") )
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
a named list containing
an matrix whose rows are embedded observations.
a length- vector of indices with highest scores.
a list containing information for out-of-sample prediction.
a whose columns are basis for projection.
Kisung You
Liao S, Gao Q, Nie F, Liu Y, Zhang X (2019). “Worst-Case Discriminative Feature Selection.” In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, 2973–2979.
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) set.seed(100) subid = sample(1:150,50) iris.dat = as.matrix(iris[subid,1:4]) iris.lab = as.factor(iris[subid,5]) ## compare with other algorithms out1 = do.lda(iris.dat, iris.lab) out2 = do.fscore(iris.dat, iris.lab) out3 = do.wdfs(iris.dat, iris.lab) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=iris.lab, main="LDA") plot(out2$Y, pch=19, col=iris.lab, main="FSCORE") plot(out3$Y, pch=19, col=iris.lab, main="WDFS") par(opar)
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) set.seed(100) subid = sample(1:150,50) iris.dat = as.matrix(iris[subid,1:4]) iris.lab = as.factor(iris[subid,5]) ## compare with other algorithms out1 = do.lda(iris.dat, iris.lab) out2 = do.fscore(iris.dat, iris.lab) out3 = do.wdfs(iris.dat, iris.lab) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=iris.lab, main="LDA") plot(out2$Y, pch=19, col=iris.lab, main="FSCORE") plot(out3$Y, pch=19, col=iris.lab, main="WDFS") par(opar)
Box-counting dimension, also known as Minkowski-Bouligand dimension, is a popular way of figuring out the fractal dimension of a set in a Euclidean space. Its idea is to measure the number of boxes required to cover the set repeatedly by decreasing the length of each side of a box. It is defined as
as , where
is
the number of boxes counted to cover a given set for each corresponding
.
est.boxcount(X, nlevel = 50, cut = c(0.1, 0.9))
est.boxcount(X, nlevel = 50, cut = c(0.1, 0.9))
X |
an |
nlevel |
the number of |
cut |
a vector of ratios for computing estimated dimension in |
a named list containing containing
estimated dimension using cut
ratios.
a vector of radius used.
a vector of boxes counted for each corresponding r
.
Even though we could use arbitrary cut
to compute estimated dimension, it is also possible to
use visual inspection. According to the theory, if the function returns an output
, we can plot
plot(log(1/output$r),log(output$Nr))
and use the linear slope in the middle as desired dimension of data.
The least value for radius must have non-degenerate counts, while the maximal value should be the
maximum distance among all pairs of data points across all coordinates.
nlevel
controls the number of interim points
in a log-equidistant manner.
Kisung You
Hentschel HGE, Procaccia I (1983). “The Infinite Number of Generalized Dimensions of Fractals and Strange Attractors.” Physica D: Nonlinear Phenomena, 8(3), 435–444.
Ott E (2002). Chaos in Dynamical Systems, 2nd ed edition. Cambridge University Press, Cambridge, U.K. ; New York. ISBN 978-0-521-81196-5 978-0-521-01084-9.
## generate three different dataset X1 = aux.gensamples(dname="swiss") X2 = aux.gensamples(dname="ribbon") X3 = aux.gensamples(dname="twinpeaks") ## compute boxcount dimension out1 = est.boxcount(X1) out2 = est.boxcount(X2) out3 = est.boxcount(X3) ## visually verify : all should have approximate slope of 2. opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(log(1/out1$r), log(out1$Nr), main="swiss roll") plot(log(1/out2$r), log(out2$Nr), main="ribbon") plot(log(1/out3$r), log(out3$Nr), main="twinpeaks") par(opar)
## generate three different dataset X1 = aux.gensamples(dname="swiss") X2 = aux.gensamples(dname="ribbon") X3 = aux.gensamples(dname="twinpeaks") ## compute boxcount dimension out1 = est.boxcount(X1) out2 = est.boxcount(X2) out3 = est.boxcount(X3) ## visually verify : all should have approximate slope of 2. opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(log(1/out1$r), log(out1$Nr), main="swiss roll") plot(log(1/out2$r), log(out2$Nr), main="ribbon") plot(log(1/out3$r), log(out3$Nr), main="twinpeaks") par(opar)
Instead of directly using neighborhood information, est.clustering
adopts hierarchical
neighborhood information using hclust
by recursively merging leafs
over the range of radii.
est.clustering(X, kmin = round(sqrt(nrow(X))))
est.clustering(X, kmin = round(sqrt(nrow(X))))
X |
an |
kmin |
minimal number of neighborhood size to search over. |
a named list containing containing
estimated intrinsic dimension.
Kisung You
Eriksson B, Crovella M (2012). “Estimating Intrinsic Dimension via Clustering.” In 2012 IEEE Statistical Signal Processing Workshop (SSP), 760–763.
## create 'swiss' roll dataset X = aux.gensamples(dname="swiss") ## try different k values out1 = est.clustering(X, kmin=5) out2 = est.clustering(X, kmin=25) out3 = est.clustering(X, kmin=50) ## print the results line1 = paste0("* est.clustering : kmin=5 gives ",round(out1$estdim,2)) line2 = paste0("* est.clustering : kmin=25 gives ",round(out2$estdim,2)) line3 = paste0("* est.clustering : kmin=50 gives ",round(out3$estdim,2)) cat(paste0(line1,"\n",line2,"\n",line3))
## create 'swiss' roll dataset X = aux.gensamples(dname="swiss") ## try different k values out1 = est.clustering(X, kmin=5) out2 = est.clustering(X, kmin=25) out3 = est.clustering(X, kmin=50) ## print the results line1 = paste0("* est.clustering : kmin=5 gives ",round(out1$estdim,2)) line2 = paste0("* est.clustering : kmin=25 gives ",round(out2$estdim,2)) line3 = paste0("* est.clustering : kmin=50 gives ",round(out3$estdim,2)) cat(paste0(line1,"\n",line2,"\n",line3))
Correlation dimension is a measure of determining the dimension of a given set. It is often referred to as a type of fractal dimension. Its mechanism is somewhat similar to that of box-counting dimension, but has the advantage of being intuitive as well as efficient in terms of computation with some robustness contingent on the lack of availability for large dataset.
as , where
.
est.correlation(X, nlevel = 50, method = c("lm", "cut"), cut = c(0.1, 0.9))
est.correlation(X, nlevel = 50, method = c("lm", "cut"), cut = c(0.1, 0.9))
X |
an |
nlevel |
the number of |
method |
method to estimate the intrinsic dimension; |
cut |
a vector of ratios for computing estimated dimension in |
a named list containing containing
estimated dimension using cut
values.
a vector of radius used.
a vector of as decribed above.
Even though we could use arbitrary cut
to compute estimated dimension, it is also possible to
use visual inspection. According to the theory, if the function returns an output
, we can plot
plot(log(output$r), log(output$Cr))
and use the linear slope in the middle as desired dimension of data.
The least value for radius must have non-degenerate counts, while the maximal value should be the
maximum distance among all pairs of data points across all coordinates.
nlevel
controls the number of interim points
in a log-equidistant manner.
Kisung You
Grassberger P, Procaccia I (1983). “Measuring the Strangeness of Strange Attractors.” Physica D: Nonlinear Phenomena, 9(1-2), 189–208.
## generate three different dataset set.seed(1) X1 = aux.gensamples(dname="swiss") X2 = aux.gensamples(dname="ribbon") X3 = aux.gensamples(dname="twinpeaks") ## compute out1 = est.correlation(X1) out2 = est.correlation(X2) out3 = est.correlation(X3) ## visually verify : all should have approximate slope of 2. opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(log(out1$r), log(out1$Cr), main="swiss roll") plot(log(out2$r), log(out2$Cr), main="ribbon") plot(log(out3$r), log(out3$Cr), main="twinpeaks") par(opar)
## generate three different dataset set.seed(1) X1 = aux.gensamples(dname="swiss") X2 = aux.gensamples(dname="ribbon") X3 = aux.gensamples(dname="twinpeaks") ## compute out1 = est.correlation(X1) out2 = est.correlation(X2) out3 = est.correlation(X3) ## visually verify : all should have approximate slope of 2. opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(log(out1$r), log(out1$Cr), main="swiss roll") plot(log(out2$r), log(out2$Cr), main="ribbon") plot(log(out3$r), log(out3$Cr), main="twinpeaks") par(opar)
DANCo exploits the balanced information of both the normalized nearest neighbor distances as well as the angles of data pairs in the neighboring points.
est.danco(X, k = 5)
est.danco(X, k = 5)
X |
an |
k |
the neighborhood size used for estimating local intrinsic dimension. |
a named list containing containing
estimated dimension via the method.
Ceruti C, Bassis S, Rozza A, Lombardi G, Casiraghi E, Campadelli P (2014). “DANCo: An Intrinsic Dimensionality Estimator Exploiting Angle and Norm Concentration.” Pattern Recognition, 47(8), 2569–2581.
## create 3 datasets of intrinsic dimension 2. X1 = aux.gensamples(n=50, dname="swiss") X2 = aux.gensamples(n=50, dname="ribbon") X3 = aux.gensamples(n=50, dname="saddle") ## acquire an estimate for intrinsic dimension out1 = est.danco(X1, k=10) out2 = est.danco(X2, k=10) out3 = est.danco(X3, k=10) ## print the results line1 = paste0("* est.danco : 'swiss' estiamte is ",round(out1$estdim,2)) line2 = paste0("* est.danco : 'ribbon' estiamte is ",round(out2$estdim,2)) line3 = paste0("* est.danco : 'saddle' estiamte is ",round(out3$estdim,2)) cat(paste0(line1,"\n",line2,"\n",line3))
## create 3 datasets of intrinsic dimension 2. X1 = aux.gensamples(n=50, dname="swiss") X2 = aux.gensamples(n=50, dname="ribbon") X3 = aux.gensamples(n=50, dname="saddle") ## acquire an estimate for intrinsic dimension out1 = est.danco(X1, k=10) out2 = est.danco(X2, k=10) out3 = est.danco(X3, k=10) ## print the results line1 = paste0("* est.danco : 'swiss' estiamte is ",round(out1$estdim,2)) line2 = paste0("* est.danco : 'ribbon' estiamte is ",round(out2$estdim,2)) line3 = paste0("* est.danco : 'saddle' estiamte is ",round(out3$estdim,2)) cat(paste0(line1,"\n",line2,"\n",line3))
As the name suggests, this function assumes that the data is sampled from the manifold in that
graph representing the underlying manifold is first estimated via -nn. Then graph distance
is employed as an approximation of geodesic distance to locally estimate intrinsic dimension.
est.gdistnn(X, k = 5, k1 = 3, k2 = 10)
est.gdistnn(X, k = 5, k1 = 3, k2 = 10)
X |
an |
k |
the neighborhood size used for constructing a graph. We suggest it to be large enough to build a connected graph. |
k1 |
local neighborhood parameter (smaller radius) for graph distance. |
k2 |
local neighborhood parameter (larger radius) for graph distance. |
a named list containing containing
the global estimated dimension, which is averaged local dimension.
a length- vector of locally estimated dimension at each point.
Kisung You
He J, Ding L, Jiang L, Li Z, Hu Q (2014). “Intrinsic Dimensionality Estimation Based on Manifold Assumption.” Journal of Visual Communication and Image Representation, 25(5), 740–747.
## create 3 datasets of intrinsic dimension 2. X1 = aux.gensamples(dname="swiss") X2 = aux.gensamples(dname="ribbon") X3 = aux.gensamples(dname="saddle") ## acquire an estimate for intrinsic dimension out1 = est.gdistnn(X1, k=10) out2 = est.gdistnn(X2, k=10) out3 = est.gdistnn(X3, k=10) ## print the results sprintf("* est.gdistnn : estimated dimension for 'swiss' data is %.2f.",out1$estdim) sprintf("* est.gdistnn : estimated dimension for 'ribbon' data is %.2f.",out2$estdim) sprintf("* est.gdistnn : estimated dimension for 'saddle' data is %.2f.",out3$estdim) line1 = paste0("* est.gdistnn : 'swiss' estiamte is ",round(out1$estdim,2)) line2 = paste0("* est.gdistnn : 'ribbon' estiamte is ",round(out2$estdim,2)) line3 = paste0("* est.gdistnn : 'saddle' estiamte is ",round(out3$estdim,2)) cat(paste0(line1,"\n",line2,"\n",line3)) ## compare with local-dimension estimate opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) hist(out1$estloc, main="Result-'Swiss'", xlab="local dimension") abline(v=out1$estdim, lwd=3, col="red") hist(out2$estloc, main="Result-'Ribbon'", xlab="local dimension") abline(v=out2$estdim, lwd=3, col="red") hist(out3$estloc, main="Result-'Saddle'", xlab="local dimension") abline(v=out2$estdim, lwd=3, col="red") par(opar)
## create 3 datasets of intrinsic dimension 2. X1 = aux.gensamples(dname="swiss") X2 = aux.gensamples(dname="ribbon") X3 = aux.gensamples(dname="saddle") ## acquire an estimate for intrinsic dimension out1 = est.gdistnn(X1, k=10) out2 = est.gdistnn(X2, k=10) out3 = est.gdistnn(X3, k=10) ## print the results sprintf("* est.gdistnn : estimated dimension for 'swiss' data is %.2f.",out1$estdim) sprintf("* est.gdistnn : estimated dimension for 'ribbon' data is %.2f.",out2$estdim) sprintf("* est.gdistnn : estimated dimension for 'saddle' data is %.2f.",out3$estdim) line1 = paste0("* est.gdistnn : 'swiss' estiamte is ",round(out1$estdim,2)) line2 = paste0("* est.gdistnn : 'ribbon' estiamte is ",round(out2$estdim,2)) line3 = paste0("* est.gdistnn : 'saddle' estiamte is ",round(out3$estdim,2)) cat(paste0(line1,"\n",line2,"\n",line3)) ## compare with local-dimension estimate opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) hist(out1$estloc, main="Result-'Swiss'", xlab="local dimension") abline(v=out1$estdim, lwd=3, col="red") hist(out2$estloc, main="Result-'Ribbon'", xlab="local dimension") abline(v=out2$estdim, lwd=3, col="red") hist(out3$estloc, main="Result-'Saddle'", xlab="local dimension") abline(v=out2$estdim, lwd=3, col="red") par(opar)
Incising ball methods exploits the exponential relationship of the number of samples contained in a ball and the radius of the incising ball.
est.incisingball(X)
est.incisingball(X)
X |
an |
a named list containing containing
estimated intrinsic dimension.
Kisung You
Fan M, Qiao H, Zhang B (2009). “Intrinsic Dimension Estimation of Manifolds by Incising Balls.” Pattern Recognition, 42(5), 780–787.
## create an example data with intrinsic dimension 2 X = cbind(aux.gensamples(dname="swiss"),aux.gensamples(dname="swiss")) ## acquire an estimate for intrinsic dimension output = est.incisingball(X) sprintf("* est.incisingball : estimated dimension is %d.",output$estdim)
## create an example data with intrinsic dimension 2 X = cbind(aux.gensamples(dname="swiss"),aux.gensamples(dname="swiss")) ## acquire an estimate for intrinsic dimension output = est.incisingball(X) sprintf("* est.incisingball : estimated dimension is %d.",output$estdim)
do.made
first aims at finding local dimesion estimates using nearest neighbor techniques based on
the first-order approximation of the probability mass function and then combines them to get a single global estimate. Due to the rate of convergence of such
estimate to be independent of assumed dimensionality, authors claim this method to be
manifold-adaptive.
est.made( X, k = round(sqrt(ncol(X))), maxdim = min(ncol(X), 15), combine = c("mean", "median", "vote") )
est.made( X, k = round(sqrt(ncol(X))), maxdim = min(ncol(X), 15), combine = c("mean", "median", "vote") )
X |
an |
k |
size of neighborhood for analysis. |
maxdim |
maximum possible dimension allowed for the algorithm to investigate. |
combine |
method to aggregate local estimates for a single global estimate. |
a named list containing containing
estimated global intrinsic dimension.
a length- vector estimated dimension at each point.
Kisung You
Farahmand AM, Szepesvári C, Audibert J (2007). “Manifold-Adaptive Dimension Estimation.” In ICML, volume 227 of ACM International Conference Proceeding Series, 265–272.
## create a data set of intrinsic dimension 2. X = aux.gensamples(dname="swiss") ## compare effect of 3 combining scheme out1 = est.made(X, combine="mean") out2 = est.made(X, combine="median") out3 = est.made(X, combine="vote") ## print the results line1 = paste0("* est.made : 'mean' estiamte is ",round(out1$estdim,2)) line2 = paste0("* est.made : 'median' estiamte is ",round(out2$estdim,2)) line3 = paste0("* est.made : 'vote' estiamte is ",round(out3$estdim,2)) cat(paste0(line1,"\n",line2,"\n",line3))
## create a data set of intrinsic dimension 2. X = aux.gensamples(dname="swiss") ## compare effect of 3 combining scheme out1 = est.made(X, combine="mean") out2 = est.made(X, combine="median") out3 = est.made(X, combine="vote") ## print the results line1 = paste0("* est.made : 'mean' estiamte is ",round(out1$estdim,2)) line2 = paste0("* est.made : 'median' estiamte is ",round(out2$estdim,2)) line3 = paste0("* est.made : 'vote' estiamte is ",round(out3$estdim,2)) cat(paste0(line1,"\n",line2,"\n",line3))
It is a minimum neighbor distance estimator of the intrinsic dimension based on Kullback Leibler divergence estimator.
est.mindkl(X, k = 5)
est.mindkl(X, k = 5)
X |
an |
k |
the neighborhood size for defining locality. |
a named list containing containing
the global estimated dimension.
Kisung You
Lombardi G, Rozza A, Ceruti C, Casiraghi E, Campadelli P (2011). “Minimum Neighbor Distance Estimators of Intrinsic Dimension.” In Gunopulos D, Hofmann T, Malerba D, Vazirgiannis M (eds.), Machine Learning and Knowledge Discovery in Databases, volume 6912, 374–389. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-642-23782-9 978-3-642-23783-6.
## create 3 datasets of intrinsic dimension 2. X1 = aux.gensamples(dname="swiss") X2 = aux.gensamples(dname="ribbon") X3 = aux.gensamples(dname="saddle") ## acquire an estimate for intrinsic dimension out1 = est.mindkl(X1, k=5) out2 = est.mindkl(X2, k=5) out3 = est.mindkl(X3, k=5) ## print the results line1 = paste0("* est.mindkl : 'swiss' estiamte is ",round(out1$estdim,2)) line2 = paste0("* est.mindkl : 'ribbon' estiamte is ",round(out2$estdim,2)) line3 = paste0("* est.mindkl : 'saddle' estiamte is ",round(out3$estdim,2)) cat(paste0(line1,"\n",line2,"\n",line3))
## create 3 datasets of intrinsic dimension 2. X1 = aux.gensamples(dname="swiss") X2 = aux.gensamples(dname="ribbon") X3 = aux.gensamples(dname="saddle") ## acquire an estimate for intrinsic dimension out1 = est.mindkl(X1, k=5) out2 = est.mindkl(X2, k=5) out3 = est.mindkl(X3, k=5) ## print the results line1 = paste0("* est.mindkl : 'swiss' estiamte is ",round(out1$estdim,2)) line2 = paste0("* est.mindkl : 'ribbon' estiamte is ",round(out2$estdim,2)) line3 = paste0("* est.mindkl : 'saddle' estiamte is ",round(out3$estdim,2)) cat(paste0(line1,"\n",line2,"\n",line3))
It is a minimum neighbor distance estimator of the intrinsic dimension based on Maximum Likelihood principle.
est.mindml(X, k = 5)
est.mindml(X, k = 5)
X |
an |
k |
the neighborhood size for defining locality. |
a named list containing containing
the global estimated dimension.
Kisung You
Lombardi G, Rozza A, Ceruti C, Casiraghi E, Campadelli P (2011). “Minimum Neighbor Distance Estimators of Intrinsic Dimension.” In Gunopulos D, Hofmann T, Malerba D, Vazirgiannis M (eds.), Machine Learning and Knowledge Discovery in Databases, volume 6912, 374–389. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-642-23782-9 978-3-642-23783-6.
## create 3 datasets of intrinsic dimension 2. set.seed(100) X1 = aux.gensamples(dname="swiss") X2 = aux.gensamples(dname="ribbon") X3 = aux.gensamples(dname="saddle") ## acquire an estimate for intrinsic dimension out1 = est.mindml(X1, k=10) out2 = est.mindml(X2, k=10) out3 = est.mindml(X3, k=10) ## print the results line1 = paste0("* est.mindml : 'swiss' estiamte is ",round(out1$estdim,2)) line2 = paste0("* est.mindml : 'ribbon' estiamte is ",round(out2$estdim,2)) line3 = paste0("* est.mindml : 'saddle' estiamte is ",round(out3$estdim,2)) cat(paste0(line1,"\n",line2,"\n",line3))
## create 3 datasets of intrinsic dimension 2. set.seed(100) X1 = aux.gensamples(dname="swiss") X2 = aux.gensamples(dname="ribbon") X3 = aux.gensamples(dname="saddle") ## acquire an estimate for intrinsic dimension out1 = est.mindml(X1, k=10) out2 = est.mindml(X2, k=10) out3 = est.mindml(X3, k=10) ## print the results line1 = paste0("* est.mindml : 'swiss' estiamte is ",round(out1$estdim,2)) line2 = paste0("* est.mindml : 'ribbon' estiamte is ",round(out2$estdim,2)) line3 = paste0("* est.mindml : 'saddle' estiamte is ",round(out3$estdim,2)) cat(paste0(line1,"\n",line2,"\n",line3))
Assuming the density in a hypersphere is constant, authors proposed to build
a likelihood structure based on modeling local spread of information via Poisson Process.
est.mle1
requires two parameters that model the reasonable range of neighborhood size
to reflect inhomogeneity of distribution across data points.
est.mle1(X, k1 = 10, k2 = 20)
est.mle1(X, k1 = 10, k2 = 20)
X |
an |
k1 |
minimum neighborhood size, larger than 1. |
k2 |
maximum neighborhood size, smaller than |
a named list containing containing
estimated intrinsic dimension.
Kisung You
Levina E, Bickel PJ (2005). “Maximum Likelihood Estimation of Intrinsic Dimension.” In Saul LK, Weiss Y, Bottou L (eds.), Advances in Neural Information Processing Systems 17, 777–784. MIT Press.
## create example data sets with intrinsic dimension 2 X1 = aux.gensamples(dname="swiss") X2 = aux.gensamples(dname="ribbon") X3 = aux.gensamples(dname="saddle") ## acquire an estimate for intrinsic dimension out1 = est.mle1(X1) out2 = est.mle1(X2) out3 = est.mle1(X3) ## print the estimates line1 = paste0("* est.mle1 : 'swiss' estiamte is ",round(out1$estdim,2)) line2 = paste0("* est.mle1 : 'ribbon' estiamte is ",round(out2$estdim,2)) line3 = paste0("* est.mle1 : 'saddle' estiamte is ",round(out3$estdim,2)) cat(paste0(line1,"\n",line2,"\n",line3))
## create example data sets with intrinsic dimension 2 X1 = aux.gensamples(dname="swiss") X2 = aux.gensamples(dname="ribbon") X3 = aux.gensamples(dname="saddle") ## acquire an estimate for intrinsic dimension out1 = est.mle1(X1) out2 = est.mle1(X2) out3 = est.mle1(X3) ## print the estimates line1 = paste0("* est.mle1 : 'swiss' estiamte is ",round(out1$estdim,2)) line2 = paste0("* est.mle1 : 'ribbon' estiamte is ",round(out2$estdim,2)) line3 = paste0("* est.mle1 : 'saddle' estiamte is ",round(out3$estdim,2)) cat(paste0(line1,"\n",line2,"\n",line3))
Authors argue that the approach proposed in est.mle1
is
empirically bias-prone in that the averaging of sample statistics over
all data points is taken to be a harmonic manner.
est.mle2(X, k1 = 10, k2 = 20)
est.mle2(X, k1 = 10, k2 = 20)
X |
an |
k1 |
minimum neighborhood size, larger than 1. |
k2 |
maximum neighborhood size, smaller than |
a named list containing containing
estimated intrinsic dimension.
Kisung You
MacKay DJC, Ghahramani Z (2005). “Comments on 'Maximum Likelihood Estimation of Intrinsic Dimension' by E. Levina and P. Bickel (2004).” https://www.inference.org.uk/mackay/dimension/.
## create example data sets with intrinsic dimension 2 X1 = aux.gensamples(dname="swiss") X2 = aux.gensamples(dname="ribbon") X3 = aux.gensamples(dname="saddle") ## acquire an estimate for intrinsic dimension out1 = est.mle2(X1) out2 = est.mle2(X2) out3 = est.mle2(X3) line1 = paste0("* est.mle2 : dimension of 'swiss' data is ",round(out1$estdim,2)) line2 = paste0("* est.mle2 : dimension of 'ribbon' data is ",round(out2$estdim,2)) line3 = paste0("* est.mle2 : dimension of 'saddle' data is ",round(out3$estdim,2)) cat(paste0(line1,"\n",line2,"\n",line3))
## create example data sets with intrinsic dimension 2 X1 = aux.gensamples(dname="swiss") X2 = aux.gensamples(dname="ribbon") X3 = aux.gensamples(dname="saddle") ## acquire an estimate for intrinsic dimension out1 = est.mle2(X1) out2 = est.mle2(X2) out3 = est.mle2(X3) line1 = paste0("* est.mle2 : dimension of 'swiss' data is ",round(out1$estdim,2)) line2 = paste0("* est.mle2 : dimension of 'ribbon' data is ",round(out2$estdim,2)) line3 = paste0("* est.mle2 : dimension of 'saddle' data is ",round(out3$estdim,2)) cat(paste0(line1,"\n",line2,"\n",line3))
Based on an assumption of data points being locally uniformly distributed,
est.nearneighbor1
estimates the intrinsic dimension based on the
local distance information in an iterative manner.
est.nearneighbor1(X, K = max(2, round(ncol(X)/5)))
est.nearneighbor1(X, K = max(2, round(ncol(X)/5)))
X |
an |
K |
maximum neighborhood size, smaller than |
a named list containing containing
estimated intrinsic dimension.
Kisung You
Pettis KW, Bailey TA, Jain AK, Dubes RC (1979). “An Intrinsic Dimensionality Estimator from Near-Neighbor Information.” IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(1), 25–37.
## create an example data with intrinsic dimension 2 X = cbind(aux.gensamples(dname="swiss"),aux.gensamples(dname="swiss")) ## acquire an estimate for intrinsic dimension output = est.nearneighbor1(X) sprintf("* est.nearneighbor1 : estimated dimension is %.2f.",output$estdim)
## create an example data with intrinsic dimension 2 X = cbind(aux.gensamples(dname="swiss"),aux.gensamples(dname="swiss")) ## acquire an estimate for intrinsic dimension output = est.nearneighbor1(X) sprintf("* est.nearneighbor1 : estimated dimension is %.2f.",output$estdim)
Though similar to est.nearneighbor1
, authors of the reference
argued that there exists innate bias in the method and proposed a non-iterative algorithm
to reflect local distance information under a range of neighborhood sizes.
est.nearneighbor2(X, kmin = 2, kmax = max(3, round(ncol(X)/2)))
est.nearneighbor2(X, kmin = 2, kmax = max(3, round(ncol(X)/2)))
X |
an |
kmin |
minimum neighborhood size, larger than 1. |
kmax |
maximum neighborhood size, smaller than |
a named list containing containing
estimated intrinsic dimension.
Kisung You
Verveer PJ, Duin RPW (1995). “An Evaluation of Intrinsic Dimensionality Estimators.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(1), 81–86.
## create an example data with intrinsic dimension 2 X = cbind(aux.gensamples(dname="swiss"),aux.gensamples(dname="swiss")) ## acquire an estimate for intrinsic dimension output = est.nearneighbor2(X) sprintf("* est.nearneighbor2 : estimated dimension is %.2f.",output$estdim)
## create an example data with intrinsic dimension 2 X = cbind(aux.gensamples(dname="swiss"),aux.gensamples(dname="swiss")) ## acquire an estimate for intrinsic dimension output = est.nearneighbor2(X) sprintf("* est.nearneighbor2 : estimated dimension is %.2f.",output$estdim)
Instead of covering numbers which are expensive to compute in many fractal-based methods,
est.packing
exploits packing numbers as a proxy to describe spatial density. Since
it involves random permutation of the dataset at each iteration, every run might have
different results.
est.packing(X, eps = 0.01)
est.packing(X, eps = 0.01)
X |
an |
eps |
small positive number for stopping threshold. |
a named list containing containing
estimated intrinsic dimension.
Kisung You
Kégl B (2002). “Intrinsic Dimension Estimation Using Packing Numbers.” In Proceedings of the 15th International Conference on Neural Information Processing Systems, NIPS'02, 697–704.
## create 'swiss' roll dataset X = aux.gensamples(dname="swiss") ## try different eps values out1 = est.packing(X, eps=0.1) out2 = est.packing(X, eps=0.01) out3 = est.packing(X, eps=0.001) ## print the results line1 = paste0("* est.packing : eps=0.1 gives ",round(out1$estdim,2)) line2 = paste0("* est.packing : eps=0.01 gives ",round(out2$estdim,2)) line3 = paste0("* est.packing : eps=0.001 gives ",round(out3$estdim,2)) cat(paste0(line1,"\n",line2,"\n",line3))
## create 'swiss' roll dataset X = aux.gensamples(dname="swiss") ## try different eps values out1 = est.packing(X, eps=0.1) out2 = est.packing(X, eps=0.01) out3 = est.packing(X, eps=0.001) ## print the results line1 = paste0("* est.packing : eps=0.1 gives ",round(out1$estdim,2)) line2 = paste0("* est.packing : eps=0.01 gives ",round(out2$estdim,2)) line3 = paste0("* est.packing : eps=0.001 gives ",round(out3$estdim,2)) cat(paste0(line1,"\n",line2,"\n",line3))
Principal Component Analysis exploits sample covariance matrix whose
eigenvectors and eigenvalues are principal components and projected
variance, correspondingly. Given varratio
, it thresholds the
accumulated variance and selects the estimated dimension. Note that other than
linear submanifold case, the naive selection scheme from this algorithm
lacks flexibility in discovering intrinsic dimension.
est.pcathr(X, varratio = 0.95)
est.pcathr(X, varratio = 0.95)
X |
an |
varratio |
target explainability for accumulated variance in |
a named list containing containing
estimated dimension according to varratio
.
eigenvalues of sample covariance matrix.
Kisung You
## generate 3-dimensional normal data X = matrix(rnorm(100*3), nrow=100) ## replicate 3 times with translations Y = cbind(X-10,X,X+10) ## use PCA thresholding estimation with 95% variance explainability ## desired return is for dimension 3. output = est.pcathr(Y) pmessage = paste("* estimated dimension is ",output$estdim, sep="") print(pmessage) ## use screeplot opar <- par(no.readonly=TRUE) plot(output$values, main="scree plot", type="b") par(opar)
## generate 3-dimensional normal data X = matrix(rnorm(100*3), nrow=100) ## replicate 3 times with translations Y = cbind(X-10,X,X+10) ## use PCA thresholding estimation with 95% variance explainability ## desired return is for dimension 3. output = est.pcathr(Y) pmessage = paste("* estimated dimension is ",output$estdim, sep="") print(pmessage) ## use screeplot opar <- par(no.readonly=TRUE) plot(output$values, main="scree plot", type="b") par(opar)
Unlike many intrinsic dimension (ID) estimation methods, est.twonn
only requires
two nearest datapoints from a target point and their distances. This extremely minimal approach
is claimed to redue the effects of curvature and density variation across different locations
in an underlying manifold.
est.twonn(X)
est.twonn(X)
X |
an |
a named list containing containing
estimated intrinsic dimension.
Kisung You
Facco E, d'Errico M, Rodriguez A, Laio A (2017). “Estimating the Intrinsic Dimension of Datasets by a Minimal Neighborhood Information.” Scientific Reports, 7(1).
## create 3 datasets of intrinsic dimension 2. X1 = aux.gensamples(dname="swiss") X2 = aux.gensamples(dname="ribbon") X3 = aux.gensamples(dname="saddle") ## acquire an estimate for intrinsic dimension out1 = est.twonn(X1) out2 = est.twonn(X2) out3 = est.twonn(X3) ## print the results line1 = paste0("* est.twonn : 'swiss' gives ",round(out1$estdim,2)) line2 = paste0("* est.twonn : 'ribbon' gives ",round(out2$estdim,2)) line3 = paste0("* est.twonn : 'saddle' gives ",round(out3$estdim,2)) cat(paste0(line1,"\n",line2,"\n",line3))
## create 3 datasets of intrinsic dimension 2. X1 = aux.gensamples(dname="swiss") X2 = aux.gensamples(dname="ribbon") X3 = aux.gensamples(dname="saddle") ## acquire an estimate for intrinsic dimension out1 = est.twonn(X1) out2 = est.twonn(X2) out3 = est.twonn(X3) ## print the results line1 = paste0("* est.twonn : 'swiss' gives ",round(out1$estdim,2)) line2 = paste0("* est.twonn : 'ribbon' gives ",round(out2$estdim,2)) line3 = paste0("* est.twonn : 'saddle' gives ",round(out3$estdim,2)) cat(paste0(line1,"\n",line2,"\n",line3))
-statistic is built upon theoretical arguments with the language of
smooth manifold. The convergence rate of the statistic is achieved as a proxy
for the estimated dimension by, at least partially, considering
the scale and influence of extrinsic curvature. The method returns integer valued
estimate in that there is no need for rounding the result for practical usage.
est.Ustat(X, maxdim = min(ncol(X), 15))
est.Ustat(X, maxdim = min(ncol(X), 15))
X |
an |
maxdim |
maximum possible dimension allowed for the algorithm to investigate. |
a named list containing containing
estimated intrinsic dimension.
Kisung You
Hein M, Audibert J (2005). “Intrinsic Dimensionality Estimation of Submanifolds in $R^ d$.” In Proceedings of the 22nd International Conference on Machine Learning, 289–296.
## create 3 datasets of intrinsic dimension 2. X1 = aux.gensamples(dname="swiss") X2 = aux.gensamples(dname="ribbon") X3 = aux.gensamples(dname="saddle") ## acquire an estimate for intrinsic dimension out1 = est.Ustat(X1) out2 = est.Ustat(X2) out3 = est.Ustat(X3) ## print the results line1 = paste0("* est.Ustat : 'swiss' gives ",round(out1$estdim,2)) line2 = paste0("* est.Ustat : 'ribbon' gives ",round(out2$estdim,2)) line3 = paste0("* est.Ustat : 'saddle' gives ",round(out3$estdim,2)) cat(paste0(line1,"\n",line2,"\n",line3))
## create 3 datasets of intrinsic dimension 2. X1 = aux.gensamples(dname="swiss") X2 = aux.gensamples(dname="ribbon") X3 = aux.gensamples(dname="saddle") ## acquire an estimate for intrinsic dimension out1 = est.Ustat(X1) out2 = est.Ustat(X2) out3 = est.Ustat(X3) ## print the results line1 = paste0("* est.Ustat : 'swiss' gives ",round(out1$estdim,2)) line2 = paste0("* est.Ustat : 'ribbon' gives ",round(out2$estdim,2)) line3 = paste0("* est.Ustat : 'saddle' gives ",round(out3$estdim,2)) cat(paste0(line1,"\n",line2,"\n",line3))
This is the identical dataset as original iris
data where numeric values of
Sepal.Length
, Sepal.Width
, Petal.Length
, Petal.Width
measured in centimeters are given for 50 flowers from each of 3 species of iris.
data(iris)
data(iris)
a data.frame containing
sepal length
sepal width
petal length
petal width
(factor) one of 'setosa','versicolor', and 'virginica'.
# load the data data(iris) # visualize opar <- par(no.readonly=TRUE) plot(iris[,1:4]) par(opar)
# load the data data(iris) # visualize opar <- par(no.readonly=TRUE) plot(iris[,1:4]) par(opar)
The simplest way of out-of-sample extension might be linear regression even though the original embedding is not the linear type by solving
and use the estimate to acquire
.
oos.linproj(Xold, Yold, Xnew)
oos.linproj(Xold, Yold, Xnew)
Xold |
an |
Yold |
an |
Xnew |
an |
an matrix whose rows are embedded observations.
Kisung You
## generate sample data and separate them data(iris, package="Rdimtools") X = as.matrix(iris[,1:4]) lab = as.factor(as.vector(iris[,5])) ids = sample(1:150, 30) Xold = X[setdiff(1:150,ids),] # 80% of data for training Xnew = X[ids,] # 20% of data for testing ## run PCA for train data & use the info for prediction training = do.pca(Xold,ndim=2) Yold = training$Y Ynew = Xnew%*%training$projection Yplab = lab[ids] ## perform out-of-sample prediction Yoos = oos.linproj(Xold, Yold, Xnew) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(Ynew, pch=19, col=Yplab, main="true prediction") plot(Yoos, pch=19, col=Yplab, main="OOS prediction") par(opar)
## generate sample data and separate them data(iris, package="Rdimtools") X = as.matrix(iris[,1:4]) lab = as.factor(as.vector(iris[,5])) ids = sample(1:150, 30) Xold = X[setdiff(1:150,ids),] # 80% of data for training Xnew = X[ids,] # 20% of data for testing ## run PCA for train data & use the info for prediction training = do.pca(Xold,ndim=2) Yold = training$Y Ynew = Xnew%*%training$projection Yplab = lab[ids] ## perform out-of-sample prediction Yoos = oos.linproj(Xold, Yold, Xnew) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(Ynew, pch=19, col=Yplab, main="true prediction") plot(Yoos, pch=19, col=Yplab, main="OOS prediction") par(opar)
The well-known USPS handwritten digits from "0" to "9". Though the original version
of each digit is given as a matrix of grayscale image, it is
convention to vectorize it. For each digit, 1100 examples are given.
data(usps)
data(usps)
a named list containing
an matrix where each row is a number.
(factor) a length- class label in
.
# load the data data(usps) # visualize opar <- par(no.readonly=TRUE, mfrow=c(1,3), pty="s") image(t(matrix(usps$data[4400,],nrow=16)[16:1,])) # last of digit 4 image(t(matrix(usps$data[9900,],nrow=16)[16:1,])) # last of digit 9 image(t(matrix(usps$data[6600,],nrow=16)[16:1,])) # last of digit 6 par(opar)
# load the data data(usps) # visualize opar <- par(no.readonly=TRUE, mfrow=c(1,3), pty="s") image(t(matrix(usps$data[4400,],nrow=16)[16:1,])) # last of digit 4 image(t(matrix(usps$data[9900,],nrow=16)[16:1,])) # last of digit 9 image(t(matrix(usps$data[6600,],nrow=16)[16:1,])) # last of digit 6 par(opar)