
Package: RcppSMC (via r-universe)
October 21, 2024

Type Package

Title Rcpp Bindings for Sequential Monte Carlo

Version 0.2.7

Date 2023-03-22

Author Dirk Eddelbuettel, Adam M. Johansen, Leah F. South and Ilya
Zarubin

Maintainer Dirk Eddelbuettel <edd@debian.org>

Description R access to the Sequential Monte Carlo Template Classes by
Johansen <doi:10.18637/jss.v030.i06> is provided. At present,
four additional examples have been added, and the first example
from the JSS paper has been extended. Further integration and
extensions are planned.

License GPL (>= 2)

LazyLoad yes

Imports Rcpp (>= 0.11.0), methods, FKF

Suggests pkgKitten (>= 0.2.2)

LinkingTo Rcpp, RcppArmadillo

LazyData true

URL https://github.com/rcppsmc/rcppsmc,

https://dirk.eddelbuettel.com/code/rcpp.smc.html

BugReports https://github.com/rcppsmc/rcppsmc/issues

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-03-22 12:30:02 UTC

Contents
blockpfGaussianOpt . 2
compareNCestimates . 3

1

https://doi.org/10.18637/jss.v030.i06
https://github.com/rcppsmc/rcppsmc
https://dirk.eddelbuettel.com/code/rcpp.smc.html
https://github.com/rcppsmc/rcppsmc/issues

2 blockpfGaussianOpt

LinReg . 6
nonLinPMMH . 8
pfLineartBS . 9
pfNonlinBS . 11
radiata . 12
RcppSMC.package.skeleton . 12
simNonlin . 14

Index 16

blockpfGaussianOpt Block Sampling Particle Filter (Linear Gaussian Model; Optimal Pro-
posal)

Description

The blockpfGaussianOpt function provides a simple example for RcppSMC. It is based on a
block sampling particle filter for a linear Gaussian model. This is intended only to illustrate the
potential of block sampling; one would not ordinarily use a particle filter for a model in which
analytic solutions are available. The ’optimal’ block sampler in the sense of Doucet, Briers and
Senecal (2006) can be implemented in this case.

The simGaussian function simulates data from the associated linear Gaussian state space model.

Usage

blockpfGaussianOpt(data, particles=1000, lag=5, plot=FALSE)
simGaussian(len)

Arguments

data A vector variable containing the sequence of observations.

particles An integer specifying the number of particles.

lag An integer specifying the length of block to use.

plot A boolean variable describing whether plot should illustrate the estimated path
along with the uncertainty.

len The length of the data sequence to simulate.

Details

The blockpfGaussianOpt function provides a simple example for RcppSMC. It is based on a
simple linear Gaussian state space model in which the state evolution and observation equations
are: x(n) = x(n-1) + e(n) and y(n) = x(n) + f(n) where e(n) and f(n) are mutually-independent
standard normal random variables. The ’optimal’ block-sampling proposal described by Doucet et
al (2006) is employed.

The simGaussian function simulates from the same model returning both the state and observation
vectors.

compareNCestimates 3

Value

The blockpfGaussianOpt function returns a matrix containing the final sample paths and a vector
containing their weights. The logarithm of the estimated ratio of normalising constants between the
final and initial distributions is also returned.

The simGaussian function returns a list containing the state and data sequences.

Author(s)

Adam M. Johansen and Dirk Eddelbuettel

References

A. Doucet, M. Briers, and S. Senecal. Efficient Block Sampling Strategies for sequential Monte
Carlo methods. Journal of Computational and Graphical Statistics, 15(3):693-711, 2006.

Examples

sim <- simGaussian(len=250)
res <- blockpfGaussianOpt(sim$data,lag=5,plot=TRUE)

compareNCestimates Conditional Sequential Monte Carlo Examples

Description

The compareNCestimates function generates a Monte Carlo study to compare log-likelihood (nor-
malizing constant) estimates in the standard linear Gaussian state space (LGSS) model: Kalman
filter estimates, as the benchmark, are compared to the standard bootstrap particle filter and the
conditional bootstrap particle filter estimates (see Details).

The simGaussianSSM function simulates data from a LGSS model (can be used manually to simu-
late data or runs as a default, if no data is provided, with a default parameter setup, see parameters).

The kalmanFFBS function runs a Kalman (exact) forward filter, computes a log-likelihood estimate
and generates a joint smoothing state trajectory via a backward simulation pass.

Usage

compareNCestimates(dataY,
trueStates = NULL,
numParticles = 1000L,
simNumber = 100L,
modelParameters = list(stateInit = 0,

phi = 0.7,
varStateEvol = 1,
varObs = 1),

plot = FALSE)
simGaussianSSM(len = 100,

4 compareNCestimates

stateInit = 0,
phi = 0.7,
varStateEvol = 1,
varObs = 1)

kalmanFFBS(dataY,
stateInit,
phi,
varStateEvol,
varObs,
simNumber)

Arguments

dataY A one-column matrix or dataframe or vector containing measurements (y val-
ues) from a standard linear Gaussian SSM. If not provided, defaults to a LGSS
model with time series lenght len=250 and parameter setup specified with de-
fault values in the parameters argument, see simGaussianSSM or compareNCestimates.

trueStates defaults to NULL for a real dataset as the true state values are not observed; for
simulated data, these can be passed and then will alse be plotted if plot=TRUE

numParticles An integer specifying the number of particles.

simNumber An integer specifying the number of repeated simulation runs of each of which
produces 2x4=8 normalizing constant esimtates: BPF and conditional BPF es-
imates under four conditional resampling schemes, as well as a ground truth
Kalman forward filter estimate and a backward filter output required for the ref-
erence trajectory of the conditional sampler.

modelParameters

a named list of parameters of the LGSSM model in the following order:

• phi: autoregressive parameter

• stateInit: initial state value (i.e. X0)

• varStateEvol: state process variance

• varObs: measurement/observation process variance

These parameters are used to for the Kalman forward filtering and backward
simulation pass, and, if no data argument is provided, to simulate data from a
linear Gaussian state space model internally via simGaussianSSM.

phi autoregressive parameter

stateInit initial state value (i.e. X0)

varStateEvol state process variance

varObs measurement/observation process variance

plot A boolean variable describing whether plot should illustrate the estimated results
along with the data.

len Length of data series to simulate.

compareNCestimates 5

Details

compareNCestimates runs a simulation study that provides log-likelihood (normalizing constant)
estimates; there are simNumber runs of the standard BPF and the conditional BPF under four re-
sampling schmes:

• multinomial

• stratified

• systematic

• residual

The "ground truth" Kalman forward filter estimate of the normalizing constant is compared to the
BPF normalizing constant estimates, which are unbiased for all above schemes; specifically the con-
ditional BPF estimate is unbiased if the reference trajectory is simulated from the target distribution
which is obtained here as a backward simulation run of the Kalman filter.

Box plots illustrate the unbiasedness of standard BPF and conditional BPF estimates for the nor-
mailizing constant estimate in the linear Gaussian SSM, and serve as an small example for to il-
lustrate conditional SMC algorithms (in their most basic BPF version) with different conditonal
resampling schemes as implemented within RcppSMC.

simGaussianSSM simulates from a Linear Gaussian state space model of the following form:

xt = ϕxt−1 + ut

yt = xt + wt

where ϕ is set via the phi argument, ut ∼ N(0, σ2
x), wt ∼ N(0, σ2

y) for which the innovation (σ2
x)

and measurement (σ2
y) variances are set via arguments varStateEvol and varObs, respectively.

Value

compareNCestimates returns a named list of two

• outSMC a named list of two:

– smcOut: a matrix of dimension simNum x 4 which contains single log-likelihood estimates
of the standard BPF for each of the 4 resampling schemes and for each simulation run

– csmcOut: a matrix of dimension simNum x 4 which contains single log-likelihood esti-
mates of the conditional BPF for each of the 4 resampling schemes and for each simula-
tion run

• outKalman the output of kalmanFFBS, see below

kalmanFFBS returns a named list of two:

• logLikeliEstim: (exact) estimate of the log-likelihood

• xBackwardSimul: a backward simulation (joint smoothing) trajectory of latent states given
parameters and measurement

Author(s)

Adam M. Johansen, Dirk Eddelbuettel, Leah South and Ilya Zarubin

6 LinReg

References

A. M. Johansen. SMCTC: Sequential Monte Carlo in C++. Journal of Statistical Software, 30(6):1-
41, April 2009. https://www.jstatsoft.org/article/view/v030i06

See Also

The SMCTC paper and code at https://www.jstatsoft.org/article/view/v030i06.

LinReg Simple Linear Regression

Description

A simple example based on estimating the parameters of a linear regression model using

* Data annealing sequential Monte Carlo (LinReg).

* Likelihood annealing sequential Monte Carlo (LinRegLA).

* Likelihood annealing sequential Monte Carlo with the temperature schedule, number of MCMC
repeats and random walk covariance matrices adapted online (LinRegLA_adapt).

Usage

LinReg(model, particles = 1000, plot = FALSE)

LinRegLA(model, particles = 1000, temperatures = seq(0, 1, 0.05)^5)

LinRegLA_adapt(model, particles = 1000, resampTol = 0.5, tempTol = 0.9)

Arguments

model Choice of regression model (1 for density as the predictor and 2 for adjusted
density as the predictor).

particles An integer specifying the number of particles.

plot A boolean variable to determine whether to plot the posterior estimates.

temperatures In likelihood annealing SMC the targets are defined as P (y|θ)γtP (θ) where
0 = γ0 ≤ . . . ≤ γT = 1 can be referred to as the temperatures, P (y|θ) is the
likelihood and P (θ) is the prior.

resampTol The adaptive implementation of likelihood annealing SMC allows for the resam-
pling tolerance to be specified. This parameter can be set to a value in the range
[0,1) corresponding to a fraction of the size of the particle set or it may be set to
an integer corresponding to an actual effective sample size.

tempTol A tolerance for adaptive choice of the temperature schedule such that the condi-
tional ESS is maintained at tempTol*particles.

https://www.jstatsoft.org/article/view/v030i06
https://www.jstatsoft.org/article/view/v030i06

LinReg 7

Details

Williams (1959) considers two competing linear regression models for the maximum compression
strength parallel to the grain for radiata pine. Both models are of the form

yi = α+ β(xi − x̄) + ϵi,

where ϵi N(0, σ2) and i = 1, . . . , 42. Here y is the maximum compression strength in pounds
per square inch. The density (in pounds per cubic foot) of the radiata pine is considered a useful
predictor, so model 1 uses density for x. Model 2 instead considers the density adjusted for resin
content, which is associated with high density but not with strength.

This example is frequently used as a test problem in model choice (see for example Carlin and Chib
(1995) and Friel and Pettitt (2008)). We use the standard uninformative normal and inverse gamma
priors for this example along with the transformation ϕ = log(σ2) so that all parameters are on the
real line and θ = [α, β, ϕ]. The evidence can be computed using numerical estimation for both of
the competing models. The log evidence is -309.9 for model 1 and -301.4 for model 2.

The LinReg function implements a data annealing approach to this example.

The LinRegLA function implements a likelihood annealing approach to this example.

The LinRegLA_adapt function implements a likelihood annealing approach to this example with
adaptation of the temperature schedule, number of MCMC repeats and random walk covariance
matrices.

Value

The LinReg function returns a list containing the final particle approximation to the target (θ and
the corresponding weights) as well as the logarithm of the estimated model evidence.

The LinRegLA function returns a list containing the population of particles and their associates
log likelihoods, log priors and weights at each iteration. The effective sample size at each of the
iterations and several different estimates of the logarithm of the model evidence are also returned.

The LinRegLA_adapt function returns a list containing all of the same output as LinRegLA, in
addition to the adaptively chosen temperature schedule and number of MCMC repeats.

Author(s)

Adam M. Johansen, Dirk Eddelbuettel and Leah F. South

References

B. P. Carlin and S. Chib. Bayesian model choice via Markov chain Monte Carlo. Journal of the
Royal Statistical Society: Series B (Statistical Methodology). 57(3):473-484, 1995.

N. Friel and A. N. Pettitt. Marginal likelihood estimation via power posteriors. Journal of the Royal
Statistical Society: Series B (Statistical Methodology). 70(3):589-607, 2008.

Williams, E. (1959). Regression analysis. Wiley.

Examples

res <- LinReg(model=1, particles=1000, plot=TRUE)

res <- LinRegLA(model=1, particles=1000)

8 nonLinPMMH

res <- LinRegLA_adapt(model=1, particles=1000)

nonLinPMMH Particle marginal Metropolis-Hastings for a non-linear state space
model.

Description

The nonLinPMMH function implements particle marginal Metropolis Hastings for the non-linear state
space model described in Section 3.1 of Andrieu et al. (2010).

Usage

nonLinPMMH(data, particles = 5000, iterations = 10000, burnin = 0,
verbose = FALSE, msg_freq = 100, plot = FALSE)

Arguments

data A vector of the observed data.
particles An integer specifying the number of particles in the particle filtering estimates

of the likelihood.
iterations An integer specifying the number of MCMC iterations.
burnin The number of iterations to remove from the beginning of the MCMC chain (for

plotting purposes only).
verbose Logical; if TRUE convergence diagnostics are printed to the console (each msg_freq

iterations) displaying the running means of parameters, the log-prior, the log-
likelihood and the MH acceptance rates up to the current iteration; defaults to
FALSE in which case only percentage completion of the procedure is printed.

msg_freq Specifies the printing frequency of percentage completion or, if verbose = TRUE,
percentage completion as well as convergence diagnostics.

plot A boolean variable to determine whether to plot the posterior estimates and
MCMC chain.

Details

This example uses particle marginal Metropolis Hastings to estimate the standard deviation of the
evolution and observation noise in the following non-linear state space model:

x(n) = 0.5x(n− 1) + 25x(n− 1)/(1 + x(n− 1)2) + 8cos(1.2n) + e(n) and

y(n) = x(n)2/20 + f(n)

where e(n) and f(n) are mutually-independent normal random variables of variances var_evol and
var_obs, respectively, and x(0) N(0, 5).

Following Andrieu, Doucet and Holenstein (2010), the priors are varevol IG(0.01, 0.01) and
varobs IG(0.01, 0.01) where IG is the inverse gamma distribution.

Data can be simulated from the model using simNonlin.

pfLineartBS 9

Value

A data.frame containing the chain of simulated σv and σw values, as well as the corresponding
log likelihood estimates and log prior values.

Author(s)

Adam M. Johansen, Dirk Eddelbuettel and Leah F. South

References

C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo methods. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 72(3):269-342, 2010.

See Also

simNonlin for a function to simulate from the model and pfNonlinBS for a simple bootrap particle
filter applied to a similar non-linear state space model.

Examples

Not run:
sim <- simNonlin(len=500,var_init=5,var_evol=10,var_obs=1,cosSeqOffset=0)
res <- nonLinPMMH(sim$data,particles=5000,iterations=50000,burnin=10000,plot=TRUE)

End(Not run)

pfLineartBS Particle Filter Example

Description

The pfLineartBS function provides a simple example for RcppSMC. It is based on the first ex-
ample in SMCTC and the discussion in Section 5.1 of Johansen (2009). A simple ’vehicle tracking’
problem of 100 observations is solved with 1000 particles.

The pfLineartBSOnlinePlot function provides a simple default ‘online’ plotting function that is
invoked during the estimation process.

The simLineart function simulates data from the model.

Usage

pfLineartBS(data, particles=1000, plot=FALSE, onlinePlot)
pfLineartBSOnlinePlot(xm, ym)
simLineart(len)

10 pfLineartBS

Arguments

data A two-column matrix or dataframe containing x and y values. The default data
set from Johansen (2009) is used as the default if no data is supplied.

particles An integer specifying the number of particles.

plot A boolean variable describing whether plot should illustrate the estimated path
along with the data.

onlinePlot A user-supplied callback function which is called with the x and y position vec-
tors during each iteration of the algorithm; see pfExOnlinePlot for a simple
example.

xm Vector with x position.

ym Vector with y position.

len Length of sequence to simulate

Details

The pfLineartBS function provides a simple example for RcppSMC. The model is linear with
t-distributed innovations. It is based on the pf example in the SMCTC library, and discussed in the
Section 5.1 of his corresponding paper (Johansen, 2009). simLineart simulates from the model.

Using the simple pfExOnlinePlot function illustrates how callbacks into R, for example for plot-
ting, can be made during the operation of SMC algorithm.

Value

The pfLineartBS function returns a data.frame containing as many rows as in the input data, and
four columns corresponding to the estimated x and y coordinates as well as the estimated velocity
in these two directions.

The simLineart function returns a list containing the vector of states and the associated vector of
observations.

Author(s)

Adam M. Johansen and Dirk Eddelbuettel

References

A. M. Johansen. SMCTC: Sequential Monte Carlo in C++. Journal of Statistical Software, 30(6):1-
41, April 2009, doi:10.18637/jss.v030.i06.

See Also

The SMCTC paper and code at doi:10.18637/jss.v030.i06.

Examples

res <- pfLineartBS(plot=TRUE)
if (interactive()) ## if not running R CMD check etc

res <- pfLineartBS(onlinePlot=pfLineartBSOnlinePlot)

https://doi.org/10.18637/jss.v030.i06
https://doi.org/10.18637/jss.v030.i06

pfNonlinBS 11

pfNonlinBS Nonlinear Bootstrap Particle Filter (Univariate Non-Linear State
Space Model)

Description

The pfNonlinBS function provides a simple example for RcppSMC. It is a simple “bootstrap”
particle filter which employs multinomial resampling after each iteration applied to the ubiquitous
"nonlinear state space model" following Gordon, Salmond and Smith (1993).

Usage

pfNonlinBS(data, particles=500, plot=FALSE)

Arguments

data A vector variable containing the sequence of observations.

particles An integer specifying the number of particles.

plot A boolean variable describing whether a plot should illustrate the (posterior
mean) estimated path along with one and two standard deviation intervals.

Details

The pfNonlinbs function provides a simple example for RcppSMC. It is based on a simple nonlin-
ear state space model in which the state evolution and observation equations are: x(n) = 0.5 x(n-1) +
25 x(n-1) / (1+x(n-1)^2) + 8 cos(1.2(n-1))+ e(n) and y(n) = x(n)^2 / 20 + f(n) where e(n) and f(n) are
mutually-independent normal random variables of variances 10.0 and 1.0, respectively. A boostrap
proposal (i.e. sampling from the state equation) is used, together with multinomial resampling after
each iteration.

Value

The pfNonlinBS function returns two vectors, the first containing the posterior filtering means; the
second the posterior filtering standard deviations.

Author(s)

Adam M. Johansen, Dirk Eddelbuettel and Leah F. South

References

N. J. Gordon, S. J. Salmond, and A. F. M. Smith. Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. IEE Proceedings-F, 140(2):107-113, April 1993.

See Also

simNonlin for a function to simulate from the model and nonLinPMMH for an example of particle
marginal Metropolis Hastings applied to a non-linear state space model.

12 RcppSMC.package.skeleton

Examples

sim <- simNonlin(len=50)
res <- pfNonlinBS(sim$data,particles=500,plot=TRUE)

radiata Radiata pine dataset (linear regression example)

Description

This dataset was originally presented in Table 5.1 of Williams (1959) where two non-nested linear
regression models were considered.

Usage

radiata

Format

A data frame with 42 rows and three variables:

y Maximum compression strength (response) in pounds per square inch

x1 Density (predictor 1) in pounds per cubic foot

x2 Adjusted density (predictor 2) in pounds per cubic foot

Source

E. Williams. Regression analysis. Wiley, 1959.

RcppSMC.package.skeleton

Create a skeleton for a new package that intends to use RcpSMCp

Description

RcppSMC.package.skeleton automates the creation of a new source package that intends to use
features of RcppSMC.

It is based on the package.skeleton and kitten (from pkgKitten) functions, the latter being a Wrapper
around package.skeleton to make a package pass ‘R CMD check’ without complaints. If pkgKitten is
not installed, package.skeleton is executed instead.

Usage

RcppSMC.package.skeleton(name = "anRpackage", list = character(),
environment = .GlobalEnv, path = ".")

RcppSMC.package.skeleton 13

Arguments

name See package.skeleton

list See package.skeleton

environment See package.skeleton

path See package.skeleton

Details

In addition to package.skeleton :

The ‘DESCRIPTION’ file gains a Depends line requesting that the package depends on Rcpp, Rcp-
pArmadillo and RcppSMC and a LinkingTo line so that the package finds the associated header
files.

The ‘NAMESPACE’, if any, gains a useDynLib directive.

The ‘src’ directory is created if it does not exists and a ‘Makevars’ file is added setting the envi-
ronment variable ‘PKG_LIBS’ to accomodate the necessary flags to link with the Rcpp library.

An example file ‘rcppsmc_hello_world.cpp’ is created in the ‘src’. An R file ‘rcppsmc_hello_world.R’
is expanded in the ‘R’ directory, the rcppsmc_hello_world function defined in this files makes use
of the C++ function ‘rcppsmc_hello_world’ defined in the C++ file. These files are given as an
example and should eventually by removed from the generated package.

Value

Nothing, used for its side effects

References

Read the Writing R Extensions manual for more details.

Once you have created a source package you need to install it: see the R Installation and Adminis-
tration manual, INSTALL and install.packages.

See Also

package.skeleton kitten

Examples

Not run:
RcppSMC.package.skeleton("foobar")

End(Not run)

14 simNonlin

simNonlin Simulates from a simple nonlinear state space model.

Description

The simNonlin function simulates data from the models used in link{pfNonlinBS} and link{nonLinPMMH}.

Usage

simNonlin(len = 50, var_init = 10, var_evol = 10, var_obs = 1,
cosSeqOffset = -1)

Arguments

len The length of data sequence to simulate.

var_init The variance of the noise for the initial state.

var_evol The variance of the noise for the state evolution .

var_obs The variance of the observation noise.

cosSeqOffset This is related to the indexing in the cosine function in the evoluation equa-
tion. A value of -1 can be used to follow the specification of Gordon, Salmond
and Smith (1993) and 0 can be used to follow Andrieu, Doucet and Holenstein
(2010).

Details

The simNonlin function simulates from a simple nonlinear state space model with state evolution
and observation equations:

x(n) = 0.5x(n− 1) + 25x(n− 1)/(1 + x(n− 1)2) + 8cos(1.2(n+ cosSeqOffset)) + e(n) and

y(n) = x(n)2/20 + f(n)

where e(n) and f(n) are mutually-independent normal random variables of variances var_evol and
var_obs, respectively, and x(0) N(0, varinit).

Different variations of this model can be found in Gordon, Salmond and Smith (1993) and Andrieu,
Doucet and Holenstein (2010). A cosSeqOffset of -1 is consistent with the former and 0 is consistent
with the latter.

Value

The simNonlin function returns a list containing the state and data sequences.

Author(s)

Adam M. Johansen, Dirk Eddelbuettel and Leah F. South

simNonlin 15

References

C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo methods. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 72(3):269-342, 2010.

N. J. Gordon, S. J. Salmond, and A. F. M. Smith. Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. IEE Proceedings-F, 140(2):107-113, April 1993.

See Also

pfNonlinBS for a simple bootrap particle filter applied to this model and nonLinPMMH for particle
marginal Metropolis Hastings applied to estimating the standard deviation of the state evolution and
observation noise.

Index

∗ Bayesian PMMH PF
nonLinPMMH, 8

∗ datasets
radiata, 12

∗ programming
blockpfGaussianOpt, 2
compareNCestimates, 3
LinReg, 6
nonLinPMMH, 8
pfLineartBS, 9
pfNonlinBS, 11
RcppSMC.package.skeleton, 12

∗
nonLinPMMH, 8

blockpfGaussianOpt, 2

compareNCestimates, 3, 4

INSTALL, 13
install.packages, 13

kalmanFFBS (compareNCestimates), 3
kitten, 12, 13

LinReg, 6
LinRegLA (LinReg), 6
LinRegLA_adapt (LinReg), 6

nonLinPMMH, 8, 11, 15

package.skeleton, 12, 13
pfLineartBS, 9
pfLineartBSOnlinePlot (pfLineartBS), 9
pfNonlinBS, 9, 11, 15
pkgKitten, 12

radiata, 12
RcppSMC.package.skeleton, 12

simGaussian (blockpfGaussianOpt), 2

simGaussianSSM, 4
simGaussianSSM (compareNCestimates), 3
simLineart (pfLineartBS), 9
simNonlin, 8, 9, 11, 14

16

	blockpfGaussianOpt
	compareNCestimates
	LinReg
	nonLinPMMH
	pfLineartBS
	pfNonlinBS
	radiata
	RcppSMC.package.skeleton
	simNonlin
	Index

