Package 'RTaxometrics'

Title: Taxometric Analysis
Description: We provide functions to perform taxometric analyses. This package contains 46 functions, but only 5 should be called directly by users. CheckData() should be run prior to any taxometric analysis to ensure that the data are appropriate for taxometric analysis. RunTaxometrics() performs taxometric analyses for a sample of data. RunCCFIProfile() performs a series of taxometric analyses to generate a CCFI profile. CreateData() generates a sample of categorical or dimensional data. ClassifyCases() assigns cases to groups using the base-rate classification method.
Authors: John Ruscio <[email protected]> and Shirley Wang <[email protected]>
Maintainer: John Ruscio <[email protected]>
License: MIT + file LICENSE
Version: 3.2.1
Built: 2024-12-08 06:57:56 UTC
Source: CRAN

Help Index


Adds variance

Description

This function adds variance if necessary

Usage

AddVariance(x, k, parameters)

Arguments

x

The supplied data matrix.

k

The number of variables.

parameters

The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Data with necessary variance added

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Assigns variables to input/output for MAMBAC procedure

Description

This function assigns variables to input/output configurations for MAMBAC analysis.

Usage

AssignMAMBAC(parameters)

Arguments

parameters

The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Input/output variables per curve

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Assigns variables to input/output for MAXEIG procedure

Description

This function assigns variables to input/output configurations for MAXEIG analysis.

Usage

AssignMAXEIG(parameters)

Arguments

parameters

The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Input/output variables per curve

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Calculates and returns base rate estimates for taxometric analysis

Description

This function calculates and reports base rate estimates for taxometric analysis.

Usage

CalculateBaseRates(x.results, parameters)

Arguments

x.results

Empirical data results

parameters

The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

This program returns nothing, and provides text output only.

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Calculates CCFIs

Description

This function calculates CCFIs for a MAMBAC, MAXEIG, or MAXSLOPE curve

Usage

CalculateCCFI(curve, curve.dim, curve.cat)

Arguments

curve

Empirical data curve

curve.dim

Average curve for dimensional comparison data

curve.cat

Average curve for categorical comparison data

Details

Called by higher-order functions; users do not need to call this function directly.

Value

CCFI value

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Calculates CCFIs for profiles

Description

This function calculates CCFI results for CCFI profiles

Usage

CalculateCCFIs(x.results, x.dim.results, x.cat.results, parameters)

Arguments

x.results

Empirical data results

x.dim.results

Dimensional comparison data results

x.cat.results

Categorical comparison data results

parameters

The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

CCFI values

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Calculates CCFIs for profiles

Description

This function calculates CCFI results for CCFI profiles

Usage

CalculateCCFIsProfile(x.results, x.dim.results, x.cat.results, parameters)

Arguments

x.results

Empirical data results

x.dim.results

Dimensional comparison data results

x.cat.results

Categorical comparison data results

parameters

The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

CCFI values

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Calculates fit

Description

This function calculates fit for L-Mode curves

Usage

CalculateFitDensities(shift, data)

Arguments

shift

Horizontal shift

data

Curves for empirical and comparison data

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Fit value

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Calculates kurtosis

Description

This function calculates the sample kurtosis of a distribution

Usage

CalculateKurtosis(x)

Arguments

x

The data vector

Details

Called by higher-order functions; users do not need to call this function directly.

Value

The sample kurtosis of x

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Calculates L-Mode CCFI

Description

This function calculates CCFI for an L-Mode curve

Usage

CalculateLModeCCFI(curve.x, curve.y, curve.dim.x, curve.dim.y, curve.cat.x, curve.cat.y)

Arguments

curve.x

Empirical data curve, x

curve.y

Empirical data curve, y

curve.dim.x

Average curve for dimensional comparison data, x

curve.dim.y

Average curve for dimensional comparison data, y

curve.cat.x

Average curve for categorical comparison data, x

curve.cat.y

Average curve for categorical comparison data, y

Details

Called by higher-order functions; users do not need to call this function directly.

Value

CCFI value

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Calculates MAMBAC curve

Description

This function calculates one MAMBAC curve

Usage

CalculateMAMBAC(input, output, parameters)

Arguments

input

Input indicator

output

Output indicator

parameters

The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

One MAMBAC curve

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Calculates MAXEIG curve

Description

This function calculates one MAXEIG curve

Usage

CalculateMAXEIG(input, outputs, parameters)

Arguments

input

Input indicator

outputs

Output indicators

parameters

The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

List object with one MAXEIG curve:

curve.x

x values

curve.y

y values

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Calculates MAXSLOPE curve

Description

This function calculates one MAXSLOPE curve

Usage

CalculateMAXSLOPE(x, curve)

Arguments

x

The data matrix

curve

Curve number

Details

Called by higher-order functions; users do not need to call this function directly.

Value

List object with one MAXSLOPE curve:

curve.x

x values

curve.y

y values

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Provides aggregated CCFIs and base rate estimates for CCFI profile

Description

This function provides aggregated CCFIs and base rate estimates for CCFI profile

Usage

CalculateProfileOutput(CCFIs, parameters)

Arguments

CCFIs

CCFI values across base rates and procedures

parameters

The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

This function returns aggregated CCFI values.

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Calculates skew

Description

This function calculates the sample skewness of a distribution

Usage

CalculateSkew(x)

Arguments

x

The data vector

Details

Called by higher-order functions; users do not need to call this function directly.

Value

The sample skewness of x

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Calculates Validity

Description

This function calculates the standardized mean difference between two groups (Cohen's D)

Usage

CalculateValidity(x.1, x.2)

Arguments

x.1

Data for the first group

x.2

Data for the second group

Details

Called by higher-order functions; users do not need to call this function directly.

Value

The standardized mean difference between groups

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Checks classification

Description

This function checks classification for problems, and terminates the program if necessary

Usage

CheckClassification(group, n)

Arguments

group

Classification of cases

n

Sample size

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Nothing; text output if problem occurs

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Checks supplied data set

Description

This function checks whether the supplied empirical data set is appropriate for taxometric analysis, and provides descriptive statistics about the data set. If data do not meet certain requirements, the program prints warnings in the output, with details about which specific criteria are not met.

Usage

CheckData(x)

Arguments

x

The supplied data matrix. Cases missing any data will be removed prior to analysis.

Details

This function should be called directly by users before performing any taxometric procedures.

Value

This program returns nothing, and provides text output only.

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>

Examples

# create or import data set

# creates a categorical data set
test.cat <- CreateData("cat")
# Checks data
CheckData(test.cat)

# creates a dimensional data set
test.dim <- CreateData("dim")
# Checks data
CheckData(test.dim)

Checks parameters

Description

This function checks the parameter specifications for problems, and adjusts these parameters as needed.

Usage

CheckParameters(x, parameters)

Arguments

x

The data matrix

parameters

The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Data parameters, adjusted as needed

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Assigns cases to groups

Description

This function assigns cases to groups using the base-rate classification technique. Cases are sorted according to their total scores on all indicators, and the highest-scoring cases are assigned to the taxon such that the proportion of taxon members equals the specified base rate estimate.

Usage

ClassifyCases(x, p, cols = 0)

Arguments

x

The supplied data matrix.

p

The base rate estimate that will be used to classify cases.

cols

The column numbers that contain variables

Details

Users should call this function directly if they wish to assign cases to groups.

Value

Data matrix with a new classification variable.

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>

References

Ruscio, J. (2009). Assigning cases to groups using taxometric results: an empirical comparison of classification techniques. Assessment, 16(1), 55-70.


Creates a data set

Description

This function creates an artificial data set based on either dimensional or categorical latent structure, which can vary according to a number of basic parameters. Such data can be useful for getting to know the taxometric programs and becoming familiar with their output by conducting analyses using data sets whose parameters are known.

Usage

CreateData(str, n = 600, k = 4, p = 0.5, d = 2, r = 0, r.tax = 0, r.comp = 0, 
g = 0, h = 0, cuts = 0, uniform = F, seed = 1)

Arguments

str

The type of data to be generated. Specify either "dim" for dimensional data or "cat" (or anything else) for categorical data.

n

Sample size. The default value is 600.

k

Number of variables. The default value is 4.

p

Taxon base rate. The default value is .5.

d

Standardized mean difference between groups. The default value is 2.

r

Correlation among variables. The default value is 0.

r.tax

Correlation among variables within the taxon. The default value is 0.

r.comp

Correlation among variables within the complement. The default value is 0.

g

Parameter used to control asymmetry (scalar); sign indicates direction and absolute value indicates magnitude of skew (e.g., +/- .30 yields substantial asymmetry).

h

Parameter used to control tail weight (scalar); positive values yield tails that are longer/thinner than a standard normal curve, negative values do the reverse (e.g., +/- .15 is a substantial departure from normality).

cuts

Parameter used to create ordered categorieas, if nonzero (scalar); number of categories will be cuts + 1.

uniform

Whether to generate random values (the program default) or use uniformly distributed quantiles (T/F).

seed

Random number seed; specifying the same seed enables users to generate and analyze identical data sets. The default value is 1.

Details

Users should call this function directly if they wish to create an artificial data set.

Value

Data matrix; k columns contain data, final column contains classification.

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>

Examples

# creates a categorical data set
test.cat <- CreateData("cat")

# creates a dimensional data set
test.dim <- CreateData("dim")

Creates sample of data

Description

Generates sample of correlated data with univariate g-and-h distributions.

Usage

CreateSample(n, k, r, g, h, uniform)

Arguments

n

Sample size

k

Number of variables

r

Correlation among variables

g

Parameter used to control asymmetry (scalar); sign indicates direction and absolute value indicates magnitude of skew (e.g., +/- .30 yields substantial asymmetry).

h

Parameter used to control tail weight (scalar); positive values yield tails that are longer/thinner than a standard normal curve, negative values do the reverse (e.g., +/- .15 is a substantial departure from normality).

uniform

Whether to generate random values (the program default) or use uniformly distributed quantiles (T/F).

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Sample of data

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Creates a variable

Description

Generates variable with g-and-h distribution.

Usage

CreateVariable(n, g, h, uniform)

Arguments

n

Size of sample to create

g

Parameter used to control asymmetry (scalar); sign indicates direction and absolute value indicates magnitude of skew (e.g., +/- .30 yields substantial asymmetry).

h

Parameter used to control tail weight (scalar); positive values yield tails that are longer/thinner than a standard normal curve, negative values do the reverse (e.g., +/- .15 is a substantial departure from normality).

uniform

Whether to generate random values (the program default) or use uniformly distributed quantiles (T/F).

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Single variable

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Displays panels of graphs

Description

This function provides panels of graphs for taxometric analysis

Usage

DisplayPanels(x.results, x.dim.results, x.cat.results, parameters)

Arguments

x.results

Empirical data results

x.dim.results

Dimensional comparison data results

x.cat.results

Categorical comparison data results

parameters

The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

This function returns nothing, and provides graphical output only

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Plots CCFI Profiles

Description

This function plots CCFI profiles

Usage

DisplayProfiles(CCFIs, parameters)

Arguments

CCFIs

CCFI values across base rates and procedures

parameters

The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

This function returns nothing, and provides graphical output only

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Estimates L-Mode base rate

Description

This function estimates the taxon base rate for an L-Mode curve

Usage

EstimateLMode(curve.x, curve.y, parameters)

Arguments

curve.x

X values of density

curve.y

Y values of density

parameters

The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

List of base rate estimates:

p.r

Based on location of left mode

p.l

Based on location of right mode

p.estimate

mean

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Estimates MAMBAC base rate

Description

This function estimates the taxon base rate for a MAMBAC curve

Usage

EstimateMAMBAC(curve)

Arguments

curve

MAMBAC curve

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Base rate estimate

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Estimates MAXEIG base rate

Description

This function estimates the taxon base rate for a MAXEIG curve

Usage

EstimateMAXEIG(curve)

Arguments

curve

MAXEIG curve

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Base rate estiamte

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Estimates MAXSLOPE base rate

Description

This function estimates the taxon base rate for a MAXSLOPE curve

Usage

EstimateMAXSLOPE(curve.x, curve.y)

Arguments

curve.x

X values of curve

curve.y

Y values of curve

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Base rate estimate

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Generates comparison data

Description

This function generates a population of comparison data

Usage

GenerateData(x, n, n.factors = 0, max.trials = 5, initial.multiplier = 1)

Arguments

x

The data matrix

n

Size of population to create

n.factors

The number of factors used to reproduce correlations. The default value is 0.

max.trials

Maximum number of trials. The default value is 5.

initial.multiplier

Size of multiplier to adjust target correlations. The default value is 1.

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Population of comparison data

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Provides analytic specifications

Description

This function provides analytic specifications

Usage

GetSpecifications(parameters)

Arguments

parameters

The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

This function returns nothing, and provides text output only

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Plots a panel of curves

Description

This function plots a two-panel graph with results for empirical and comparison data

Usage

PlotPanel(x.results, x.dim.results, x.cat.results, parameters, procedure)

Arguments

x.results

Empirical data results

x.dim.results

Dimensional comparison data results

x.cat.results

Categorical comparison data results

parameters

The data and program parameters

procedure

Name of taxometric procedure

Details

Called by higher-order functions; users do not need to call this function directly.

Value

This function returns nothing, and provides graphical output only

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Calculates CCFIs and base rates for CCFI profile

Description

This function calculates the aggregated CCFI and base rate estimate for one CCFI profile

Usage

ProcessProfile(CCFIs, parameters)

Arguments

CCFIs

CCFI values across base rates for a single procedure

parameters

The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

List of aggregated CCFI and base rate estimate

CCFI

Aggregated CCFI

p.est

Base rate estimate

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Removes missing data

Description

This function performs listwise deletion of missing data

Usage

RemoveMissingData(x)

Arguments

x

The data matrix

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Data after listwise deletion of missing data

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Performs taxometric analyses to generate a CCFI profile

Description

This function performs a series of taxometric analysis using categorical comparison data sets that vary in taxon base rates, and plots a profile of CCFI values across this range of base rates. Results can be assigned to an object to store results; otherwise results will be displayed on-screen.

Usage

RunCCFIProfile(x, seed = 0, min.p = 0.025, max.p = 0.975, num.p = 39, 
n.pop = 1e+05, n.samples = 100, reps = 1, MAMBAC = TRUE, assign.MAMBAC = 1, 
n.cuts = 50, n.end = 25, MAXEIG = TRUE, assign.MAXEIG = 1, windows = 50, 
overlap = 0.9, LMode = TRUE, mode.l = -0.001, mode.r = 0.001, MAXSLOPE = FALSE, 
graph = 1, text.file = FALSE, profile = TRUE)

Arguments

x

Supplied data matrix. Cases missing any data will be removed prior to analysis.

seed

Random number seed provided prior to analysis of empirical data as well as prior to generating each population of comparison data. The default value is 0.

min.p

Minimum base rate for CCFI profile. The default value is .025.

max.p

Maximum base rate for CCFI profile. The default value is .975.

num.p

Number of base rates for CCFI profile. The default value is 39.

n.pop

Size of the finite populations of categorical and dimensional comparison data. The default value is 100,000.

n.samples

Number of comparison data sets of each structure to generate and analyze. The default value is 100.

reps

Number of times to resort cases along the input indicator at random and redo the calculations (if tied scores are found), averaging to obtain final results.The default value is 1 if no tied scores are found, and 10 if tied scores are found.

MAMBAC

Whether the MAMBAC procedure is performed. The default value is TRUE.

assign.MAMBAC

How variables are assigned as input and output variables in the MAMBAC procedure. Variables may be used in all possible input-output pairings (assing.MAMBAC = 1), or variables may be summed to form the input variable (assign.MAMBAC = 2). The default value is 1.

n.cuts

The total number of cuts to make along the input variable when performing the MAMBAC procedure. The default value is 25.

n.end

The number of cases to set aside at each extreme along the input variable before making the first and last cuts when performing the MAMBAC procedure. The default value is 25.

MAXEIG

Whether the MAXEIG procedure is performed. The default value is TRUE if k is >= 3, and FALSE if k < 3.

assign.MAXEIG

How variables are assigned as input and output variables in the MAXEIG procedure. Variables may be used in all input-output triplets (assign.MAXEIG = 1), each variable may serve as input once (assign.MAXEIG = 2), or variables may be summed to form the input (assign.MAXEIG = 3). The default value is 1.

windows

The nubmer of overlapping windows to use when performing the MAXEIG procedure. The default value is 50.

overlap

The amount of overlap between windows when performing the MAXEIG procedure. The default value is .90.

LMode

Whether the L-Mode procedure is performed. The default value is TRUE if k is >= 3, and FALSE if k < 3.

mode.l

Position beyond which to serach for the left mode when performing the L-Mode procedure. The default value is -.001.

mode.r

Position beyond which to serach for the right mode when performing the L-Mode procedure. The default value is .001.

MAXSLOPE

Whether the MAXSLOPE procedure is performed. The default value is FALSE if k >= 3, and TRUE if k < 3.

graph

Whether to display graphs on screen (1), save as a compressed .jpeg file (2), or save as a high-resolution .tiff file (3). The default value is 1.

text.file

Whether to divert text output to a .txt file (T/F). The default value is FALSE.

profile

Whether a CCFI profile is generated. The default value is TRUE.

Details

This function should be called directly by users who wish to perform taxometric analyses to generate a CCFI profile.

Value

This program returns CCFI values, and provides text and graphical output. Note that any CCFI values of 0 represent missing values, as analyses will never yield a CCFI of 0.

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Performs factor analysis

Description

This function performs factor analysis

Usage

RunFactorAnalysis(x, cor.matrix = FALSE, n.factors = 0, max.iter = 50, criterion = 0.01)

Arguments

x

The data or correlation matrix

cor.matrix

Whether x is a correlation matrix. The default is FALSE.

n.factors

The number of factors to use. The default value is 0.

max.iter

The maximum number of iterations. The default value is 50.

criterion

Acceptably small change in h2 between interations. The default value is .01.

Details

Called by higher-order functions; users do not need to call this function directly.

Value

List of factor loadings and number of factors

loadings

The factor loadings

factors

The number of factors

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Performs L-Mode

Description

This function performs the L-Mode analysis

Usage

RunLMode(x)

Arguments

x

The data matrix

Details

Called by higher-order functions; users do not need to call this function directly.

Value

L-Mode curve:

curve.x

X values of curve

curve.y

Y values of curve

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>

References

Waller, N.G., & Meehl, P.E. (1998). Multivariate taxometric procedures: Distinguishing types from continua. Thousand Oaks, CA, US: Sage Publications, Inc.


Performs MAMBAC

Description

This function performs the MAMBAC analysis

Usage

RunMAMBAC(x, parameters)

Arguments

x

The data matrix

parameters

The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Panel of MAMBAC curves

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>

References

Meehl, P.E., & Yonce, L.J. (1994). Taxometric analysis: I. Detecting taxonomy with two quantitative indicators using means above and below a sliding cut (MAMBAC procedure). Psychological Reports, 74(3, Pt 2), 1059-1274.


Performs MAXEIG

Description

This function performs the MAXEIG analysis

Usage

RunMAXEIG(x, parameters)

Arguments

x

The data matrix

parameters

The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Panel of MAXEIG curves:

curve.x

X values of curve

curve.y

Y values of curve

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>

References

Waller, N.G., & Meehl, P.E. (1998). Multivariate taxometric procedures: Distinguishing types from continua. Thousand Oaks, CA, US: Sage Publications, Inc.


Performs MAXSLOPE

Description

This function performs the MAXSLOPE analysis

Usage

RunMAXSLOPE(x)

Arguments

x

The data matrix

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Panel of MAXSLOPE curves

curve.x

X values of curve

curve.y

Y values of curve

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>

References

Grove, W.M., & Meehl, P.E. (1993). Simple regression-based procedures for taxometric investigations. Psychological Reports, 73, 707-737.


Runs taxometric procedures for empirical data

Description

This function runs the MAMBAC, MAXEIG, L-Mode, and MAXSLOPE analyses for empirical data

Usage

RunProcedures(x, parameters)

Arguments

x

The data matrix

parameters

The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

A list of curve-level data for each procedure performed:

MAMBAC

MAMBAC curve

MAXEIG.x

X values of MAXEIG curve

MAXEIG.y

Y values of MAXEIG curve

LMode.x

X values of LMode curve

LMode.y

Y values of LMode curve

MAXSLOPE.x

X values of MAXSLOPE curve

MAXSLOPE.y

Y values of MAXSLOPE curve

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Runs taxometric procedures for comparison data

Description

This function runs the MAMBAC, MAXEIG, L-Mode, and MAXSLOPE analyses for comparison data

Usage

RunProceduresComp(x, parameters)

Arguments

x

The data matrix

parameters

The data and program parameters.

Details

Called by higher-order functions; users do not need to call this function directly.

Value

A list of averaged curves for each procedure performed:

MAMBAC

MAMBAC curve

MAXEIG.x

X values of MAXEIG curve

MAXEIG.y

Y values of MAXEIG curve

LMode.x

X values of LMode curve

LMode.y

Y values of LMode curve

MAXSLOPE.x

X values of MAXSLOPE curve

MAXSLOPE.y

Y values of MAXSLOPE curve

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Taxometric analysis for a sample of data

Description

Performs taxometric analysis for a sample of data and provides text (analytic specifications, CCFI values, base rate estimates) and graphical (panels of empirical data curves superimposed above comparison data curves) output. By default, the function will run MAMBAC, MAXEIG, and L-Mode, unless only 2 variables are provided, in which case the program will run MAMBAC and MAXSLOPE. Results can be assigned to an object to store results; otherwise results will be displayed on-screen.

Usage

RunTaxometrics(x, seed = 0, n.pop = 1e+05, n.samples = 100, reps = 1, 
MAMBAC = TRUE, assign.MAMBAC = 1, n.cuts = 50, n.end = 25, MAXEIG =
TRUE, assign.MAXEIG = 1, windows = 50, overlap = 0.9, LMode = TRUE, mode.l = 
-0.001, mode.r = 0.001, MAXSLOPE = FALSE, graph = 1)

Arguments

x

The supplied data matrix. Cases missing any data will be removed prior to analysis.

seed

Random number seed provided prior to analysis of empirical data as well as prior to generating each population of comparison data. The default value is 0.

n.pop

Size of the finite populations of categorical and dimensional comparison data. The default value is 100,000.

n.samples

Number of comparison data sets of each structure to generate and analyze. The default value is 100.

reps

Number of times to resort cases along the input indicator at random and redo the calculations (if tied scores are found), averaging to obtain final results.The default value is 1 if no tied scores are found, and 10 if tied scores are found.

MAMBAC

Whether the MAMBAC procedure is performed. The default value is TRUE.

assign.MAMBAC

How variables are assigned as input and output variables in the MAMBAC procedure. Variables may be used in all possible input-output pairings (assing.MAMBAC = 1), or variables may be summed to form the input variable (assign.MAMBAC = 2). The default value is 1.

n.cuts

The total number of cuts to make along the input variable when performing the MAMBAC procedure. The default value is 25.

n.end

The number of cases to set aside at each extreme along the input variable before making the first and last cuts when performing the MAMBAC procedure. The default value is 25.

MAXEIG

Whether the MAXEIG procedure is performed. The default value is TRUE if k is >= 3, and FALSE if k < 3.

assign.MAXEIG

How variables are assigned as input and output variables in the MAXEIG procedure. Variables may be used in all input-output triplets (assign.MAXEIG = 1), each variable may serve as input once (assign.MAXEIG = 2), or variables may be summed to form the input (assign.MAXEIG = 3). The default value is 1.

windows

The nubmer of overlapping windows to use when performing the MAXEIG procedure. The default value is 50.

overlap

The amount of overlap between windows when performing the MAXEIG procedure. The default value is .90.

LMode

Whether the L-Mode procedure is performed. The default value is TRUE if k is >= 3, and FALSE if k < 3.

mode.l

Position beyond which to serach for the left mode when performing the L-Mode procedure. The default value is -.001.

mode.r

Position beyond which to serach for the right mode when performing the L-Mode procedure. The default value is .001.

MAXSLOPE

Whether the MAXSLOPE procedure is performed. The default value is FALSE if k >= 3, and TRUE if k < 3.

graph

Whether to display graphs on screen (1), save as a compressed .jpeg file (2), or save as a high-resolution .tiff file (3). The default value is 1.

Details

This function should be called directly by users who wish to perform taxometric analyses for a sample of data.

Value

This program returns CCFI values, and provides text and graphical output. Note that any CCFI values of 0 represent missing values, as analyses will never yield a CCFI of 0.

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>


Summarizes distribution

Description

This function calculates the sample mean, standard deviation, skewness, and kurtosis

Usage

SummarizeDist(x)

Arguments

x

The data vector

Details

Called by higher-order functions; users do not need to call this function directly.

Value

The sample mean, standard deviation, skewness, and kurtosis of x.

Author(s)

John Ruscio <[email protected]> and Shirley Wang <[email protected]> Maintainer: John Ruscio <[email protected]>