Package 'RNAseqNet'

Title: Log-Linear Poisson Graphical Model with Hot-Deck Multiple Imputation
Description: Infer log-linear Poisson Graphical Model with an auxiliary data set. Hot-deck multiple imputation method is used to improve the reliability of the inference with an auxiliary dataset. Standard log-linear Poisson graphical model can also be used for the inference and the Stability Approach for Regularization Selection (StARS) is implemented to drive the selection of the regularization parameter. The method is fully described in <doi:10.1093/bioinformatics/btx819>.
Authors: Alyssa Imbert [aut], Nathalie Vialaneix [aut, cre]
Maintainer: Nathalie Vialaneix <[email protected]>
License: GPL (>= 3)
Version: 0.1.5
Built: 2024-11-17 06:40:14 UTC
Source: CRAN

Help Index


Select the threshold sigma for hd-MI.

Description

chooseSigma computes the average intra-donor pool variance for different values of sigma. It helps choosing a sigma that makes a good trade-off between homogeneity within the pool of donors and variety (large enough number of donors in every pool).

Usage

chooseSigma(X, Y, sigma_list, seed = NULL)

Arguments

X

n x p numeric matrix containing RNA-seq expression with missing rows (numeric matrix or data frame)

Y

auxiliary dataset (n' x q numeric matrix or data frame)

sigma_list

a sequence of increasing positive values for sigma (numeric vector)

seed

single value, interpreted as an in integer, used to initialize the random number generation state

Details

The average intra-donor pool variance is described in (Imbert et al., 2018).

Value

a data frame with the values of sigma and the corresponding intra-donor pool variances

Author(s)

Alyssa Imbert, [email protected]

Nathalie Vialaneix, [email protected]

References

Imbert, A., Valsesia, A., Le Gall, C., Armenise, C., Lefebvre, G. Gourraud, P.A., Viguerie, N. and Villa-Vialaneix, N. (2018) Multiple hot-deck imputation for network inference from RNA sequencing data. Bioinformatics. doi:10.1093/bioinformatics/btx819.

See Also

varIntra

Examples

data(lung)
data(thyroid)
nobs <- nrow(lung)
miss_ind <- sample(1:nobs, round(0.2 * nobs), replace = FALSE)
lung[miss_ind, ] <- NA
lung <- na.omit(lung)
sigma_stats <- chooseSigma(lung, thyroid, 1:5)
## Not run: plot(sigma_stats, type = "b")

Convert the result of imputedGLMnetwork or a matrix into a network.

Description

GLMnetToGraph combines the m inferred networks, obtained from m imputed datasets, into a single stable network or convert a matrix of coefficients of a GLM model into a network (non zero coefficients are converted to edges)

Usage

GLMnetToGraph(object, threshold = 0.9)

Arguments

object

an object of class HDpath as obtained from the function imputedGLMnetwork or a squared matrix with zero and non zero values

threshold

the percentage of times, among the m imputed networks, that an edge has to be predicted to be in the final network. Used only for objects of class HDpath. Default to 0.9

Value

an 'igraph' object. See igraph

Author(s)

Alyssa Imbert, [email protected]

Nathalie Vialaneix, [email protected]

References

Imbert, A., Valsesia, A., Le Gall, C., Armenise, C., Lefebvre, G. Gourraud, P.A., Viguerie, N. and Villa-Vialaneix, N. (2018) Multiple hot-deck imputation for network inference from RNA sequencing data. Bioinformatics. doi:10.1093/bioinformatics/btx819.

See Also

imputedGLMnetwork, igraph

Examples

data(lung)
data(thyroid)
nobs <- nrow(lung)
miss_ind <- sample(1:nobs, round(0.2 * nobs), replace = FALSE)
lung[miss_ind, ] <- NA
lung <- na.omit(lung)
lambdas <- 4 * 10^(seq(0, -2, length = 10))
## Not run: 
lung_hdmi <- imputedGLMnetwork(lung, thyroid, sigma = 2, lambdas = lambdas,
                               m = 10, B = 5)
lung_net <- GLMnetToGraph(lung_hdmi, 0.75)
lung_net
plot(lung_net)

## End(Not run)

Infer a network from RNA-seq expression.

Description

GLMnetwork infers a network from RNA-seq expression with the log-linear Poisson graphical model of (Allen and Liu, 2012).

Usage

GLMnetwork(counts, lambdas = NULL, normalize = TRUE)

Arguments

counts

a n x p matrix of RNA-seq expression (numeric matrix or data frame)

lambdas

a sequence of decreasing positive numbers to control the regularization (numeric vector). Default to NULL

normalize

logical value to normalize predictors in the log-linear Poisson graphical model. If TRUE, log normalization and scaling are performed prior the model is fit. Default to TRUE

Details

When input lambdas are null the default sequence of glmnet for the first model (the one with the first column of count as the target) is used.

Value

S3 object of class GLMnetwork: a list consisting of

lambda

regularization parameters used for LLGM path(vector)

path

a list having the same length than lambda. It contains the estimated coefficients (in a matrix) along the path

Author(s)

Alyssa Imbert, [email protected]

Nathalie Vialaneix, [email protected]

References

Allen, G. and Liu, Z. (2012) A log-linear model for inferring genetic networks from high-throughput sequencing data. In Proceedings of IEEE International Conference on Bioinformatics and Biomedecine (BIBM).

See Also

stabilitySelection

Examples

data(lung)
lambdas <- 4 * 10^(seq(0, -2, length = 10))
ref_lung <- GLMnetwork(lung, lambdas = lambdas)

Methods for 'GLMpath' objects.

Description

Methods for the result of GLMnetwork (GLMpath object)

Usage

## S3 method for class 'GLMpath'
summary(object, ...)

## S3 method for class 'GLMpath'
print(x, ...)

Arguments

object

GLMpath object

...

not used

x

GLMpath object

Author(s)

Alyssa Imbert, [email protected]

Nathalie Vialaneix, [email protected]

See Also

GLMnetwork


Methods for 'HDImputed' objects.

Description

Methods for the result of imputeHD (HDImputed object)

Usage

## S3 method for class 'HDimputed'
summary(object, ...)

## S3 method for class 'HDImputed'
print(x, ...)

Arguments

object

HDImputed object

...

not used

x

HDImputed object

Author(s)

Alyssa Imbert, [email protected]

Nathalie Vialaneix, [email protected]

See Also

imputeHD


Methods for 'HDpath' objects.

Description

Methods for the result of imputedGLMnetwork (HDpath object)

Usage

## S3 method for class 'HDpath'
summary(object, ...)

## S3 method for class 'HDpath'
print(x, ...)

## S3 method for class 'HDpath'
plot(x, ...)

Arguments

object

HDpath object

...

not used

x

HDpath object

Author(s)

Alyssa Imbert, [email protected]

Nathalie Vialaneix, [email protected]

See Also

imputedGLMnetwork

Examples

data(lung)
data(thyroid)
nobs <- nrow(lung)
miss_ind <- sample(1:nobs, round(0.2 * nobs), replace = FALSE)
lung[miss_ind, ] <- NA
lung <- na.omit(lung)
lambdas <- 4 * 10^(seq(0, -2, length = 10))
## Not run: 
lung_hdmi <- imputedGLMnetwork(lung, thyroid, sigma = 2, lambdas = lambdas,
                               m = 10, B = 5)
plot(lung_hdmi)

## End(Not run)

Multiple hot-deck imputation and network inference from RNA-seq data.

Description

imputedGLMnetwork performs a multiple hot-deck imputation and infers a network for each imputed dataset with a log-linear Poisson graphical model (LLGM).

Usage

imputedGLMnetwork(X, Y, sigma, m = 50, lambdas = NULL, B = 20)

Arguments

X

n x p numeric matrix containing RNA-seq expression with missing rows (numeric matrix or data frame)

Y

auxiliary dataset (n' x q numeric matrix or data frame)

sigma

affinity threshold for donor pool

m

number of replicates in multiple imputation (integer). Default to 50

lambdas

a sequence of decreasing positive numbers to control the regularization (numeric vector). Default to NULL

B

number of iterations for stability selection. Default to 20

Details

When input lambdas are null the default sequence of glmnet for the first model (the one with the first column of count as the target) is used. A common default sequence is generated for all imputed datasets using this method.

Value

S3 object of class HDpath: a list consisting of

path

a list of m data frames, each containing the adjacency matrix of the inferred network obtained from the corresonding imputed dataset. The regularization parameter is selected by StARS

efreq

a numeric matrix of size p x p, which indicates the number of times an edge has been predicted among the m inferred networks

Author(s)

Alyssa Imbert, [email protected]

Nathalie Vialaneix, [email protected]

References

Imbert, A., Valsesia, A., Le Gall, C., Armenise, C., Lefebvre, G. Gourraud, P.A., Viguerie, N. and Villa-Vialaneix, N. (2018) Multiple hot-deck imputation for network inference from RNA sequencing data. Bioinformatics. doi:10.1093/bioinformatics/btx819.

Examples

data(lung)
data(thyroid)
nobs <- nrow(lung)
miss_ind <- sample(1:nobs, round(0.2 * nobs), replace = FALSE)
lung[miss_ind, ] <- NA
lung <- na.omit(lung)
lambdas <- 4 * 10^(seq(0, -2, length = 10))
## Not run: 
lung_hdmi <- imputedGLMnetwork(lung, thyroid, sigma = 2, lambdas = lambdas,
                               m = 10, B = 5)

## End(Not run)

Impute missing row datasets with multiple hot deck.

Description

imputeHD performs multiple hot-deck imputation on an input data frame with missing rows. Each missing row is imputed with a unique donor. This method requires an auxiliary dataset to compute similaritities between individuals and create the pool of donors.

Usage

imputeHD(X, Y, sigma, m = 50, seed = NULL)

Arguments

X

n x p numeric matrix containing RNA-seq expression with missing rows (numeric matrix or data frame)

Y

auxiliary dataset (n' x q numeric matrix or data frame)

sigma

threshold for hot-deck imputation (numeric, positive)

m

number of replicates in multiple imputation (integer). Default to 50

seed

single value, interpreted as an in integer, used to initialize the random number generation state. Default to NULL (not used in this case)

Details

Missing values are identified by matching rownames in X and Y. If rownames are not provided the missing rows in X are supposed to correspond to the last rows of Y.

Value

S3 object of class HDImputed: a list consisting of

donors

a list. Each element of this list contains the donor pool for every missing observations

draws

a data frame which indicates which donor was chosen for each missing samples

data

a list of m imputed datasets

Author(s)

Alyssa Imbert, [email protected]

Nathalie Vialaneix, [email protected]

References

Imbert, A., Valsesia, A., Le Gall, C., Armenise, C., Lefebvre, G. Gourraud, P.A., Viguerie, N. and Villa-Vialaneix, N. (2018) Multiple hot-deck imputation for network inference from RNA sequencing data. Bioinformatics. doi:10.1093/bioinformatics/btx819.

See Also

chooseSigma, imputedGLMnetwork

Examples

data(lung)
data(thyroid)
nobs <- nrow(lung)
miss_ind <- sample(1:nobs, round(0.2 * nobs), replace = FALSE)
lung[miss_ind, ] <- NA
lung <- na.omit(lung)
imputed_lung <- imputeHD(lung, thyroid, sigma = 2)

RNA-seq expression from lung tissue (GTEx).

Description

This data set is a small subset of the full data set from GTEx. It contains RNA-seq expressions measured from lung tissue. The RNA-seq expressions have been normalized with the TMM method.

Format

a data frame with 221 rows and 100 variables (genes). Row names are identifiers for individuals.

Author(s)

Alyssa Imbert <[email protected]>

Source

The raw data were download from https://gtexportal.org/home/index.html. The TMM normalization of RNA-seq expression was performed with the R package edgeR.


View RNAseqNet User's Guide

Description

Find the location of the RNAseqNet User's Guide and optionnaly opens it

Usage

RNAseqNetUsersGuide(html = TRUE, view = html)

Arguments

html

logical. Should the document returned by the function be the compiled PDF or the Rmd source. Default to TRUE

view

logical. Should the document be opened using the default HTML viewer? Default to html. It has no effect if html = FALSE

Details

The function vignette("RNAseqNet") will find the short RNAseqNet vignette that describes how to obtain the RNAseqNet User's Guide. The User's Guide is not itself a true vignette because it is not automatically generated during the package build process. However, the location of the Rmarkdown source is returned by the function if html = FALSE. If the operating system is not Windows, then the HTML viewer used is that given by Sys.getenv("R_BROWSER"). The HTML viewer can be changed using Sys.setenv(R_BROWSER = ).

Value

Character string giving the file location. If html = TRUE and view = TRUE, the HTML document reader is started and the User's Guide is opened in it.

Author(s)

Alyssa Imbert, [email protected]

Nathalie Vialaneix, [email protected]

Examples

RNAseqNetUsersGuide(view = FALSE)
RNAseqNetUsersGuide(html = FALSE)
## Not run: RNAseqNetUsersGuide()

Selection of the regularization parameter by StARS (Liu et al., 2010).

Description

stabilitySelection implements the regularization parameter selection of (Liu et al., 2010) called 'Stability Approach to Regularization Selection' (StARS).

Usage

stabilitySelection(counts, lambdas = NULL, B = 20)

Arguments

counts

a n x p matrix of RNA-seq expression (numeric matrix or data frame)

lambdas

a sequence of decreasing positive numbers to control the regularization (numeric vector). Default to NULL

B

number of iterations for stability selection. Default to 20

Details

When input lambdas are null the default sequence of glmnet (see GLMnetwork for details).

Value

S3 object of class stabilitySelection : a list consisting of

lambdas

numeric regularization parameters used for regularization path

B

number of iterations for stability selection

best

index of the regularization parameter selected by StARS in lambdas

variabilities

numeric vector having same length than lambdas and providing the variability value as defined by StARS along the path

Author(s)

Alyssa Imbert, [email protected] Nathalie Vialaneix, [email protected]

References

Liu, H., Roeber, K. and Wasserman, L. (2010) Stability approach to regularization selection (StARS) for high dimensional graphical models. In Proceedings of Neural Information Processing Systems (NIPS 2010), 23, 1432-1440, Vancouver, Canada.

See Also

GLMnetwork

Examples

data(lung)
lambdas <- 4 * 10^(seq(0, -2, length = 5))
stability_lung <- stabilitySelection(lung, lambdas = lambdas, B = 4)
## Not run: plot(stability_lung)

Methods for 'stars' objects.

Description

Methods for the result of stabilitySelection (stars object)

Usage

## S3 method for class 'stars'
summary(object, ...)

## S3 method for class 'stars'
print(x, ...)

## S3 method for class 'stars'
plot(x, ...)

Arguments

object

stars object

...

not used

x

stars object

Author(s)

Alyssa Imbert, [email protected]

Nathalie Vialaneix, [email protected]

See Also

stabilitySelection


RNA-seq expression from thyroid tissue (GTEx).

Description

This data set is a small subset of the full data set from GTEx. It contains RNA-seq expressions measured from thyroid tissue. The RNA-seq expressions have been normalized with the TMM method.

Format

a data frame with 221 rows and 50 variables (genes). Rown ames are identifiers for individuals.

Author(s)

Alyssa Imbert <[email protected]>

Source

The raw data were downloaded from https://gtexportal.org/home/index.html. The TMM normalisation of RNA-seq expression was performed with the R package edgeR.


Average intra-donor pool variance.

Description

varIntra computes the average intra-donor pool variance.

Usage

varIntra(X, Y, donors)

Arguments

X

n x p numeric matrix containing RNA-seq expression with missing rows (numeric matrix or data frame)

Y

auxiliary dataset (n' x q numeric matrix or data frame)

donors

donor pool (a list, as given $donors obtained from the function imputeHD)

Value

varIntra returns a numeric value which is the average intra-donor pool variance, as described in (Imbert et al., 2018).

Author(s)

Alyssa Imbert, [email protected]

Nathalie Vialaneix, [email protected]

References

Imbert, A., Valsesia, A., Le Gall, C., Armenise, C., Lefebvre, G. Gourraud, P.A., Viguerie, N. and Villa-Vialaneix, N. (2018) Multiple hot-deck imputation for network inference from RNA sequencing data. Bioinformatics. doi:10.1093/bioinformatics/btx819.

See Also

imputeHD, chooseSigma