--- title: "Log-Linear Poisson Graphical Model with Hot-Deck Multiple Imputation" author: - affiliation: MIAT, Université de Toulouse, INRA, Castanet-Tolosan, France name: Nathalie Vialaneix - affiliation: MIAT, Université de Toulouse, INRA, Castanet-Tolosan, France name: Alyssa Imbert output: html_document: toc: yes pdf_document: toc: yes package: RNAseqNet abstract: | Short vignette pointing to RNAseqNet User's Guide. vignette: | %\VignetteIndexEntry{Log-Linear Poisson Graphical Model with Hot-Deck Multiple Imputation} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} --- # Description The **R** package `RNAseqNet` can be used to infer networks from RNA-seq expression data. The count data are given as a $n \times p$ matrix in which $n$ is the number of individuals and $p$ the number of genes. This matrix is denoted by $\mathbf{X}$ in the sequel. Eventually, the RNA-seq dataset is complemented with an $n' \times d$ matrix, $\mathbf{Y}$ which can be used to impute missing individuals in $\mathbf{X}$ as described in [Imbert *et al.*, 2018]. The RNAseqNet User's Guide can be opened with: ```{r PDF, eval=FALSE} RNAseqNetUsersGuide() ``` The location of the source file is given by: ```{r Rmd, eval=FALSE} RNAseqNetUsersGuide(html = FALSE) ``` # Reference Imbert, A., Valsesia, A., Le Gall, C., Armenise, C., Lefebvre, G., Gourraud, P.A., Viguerie, N. and Villa-Vialaneix, N. (2018) Multiple hot-deck imputation for network inference from RNA sequencing data. *Bioinformatics*. DOI: http://dx.doi.org/10.1093/bioinformatics/btx819. # Session information for the vignette ```{r sessionInfo} sessionInfo() ```