Title: | Recursive Modified Pattern Search on Hyper-Rectangle |
---|---|
Description: | Optimization of any Black-Box/Non-Convex Function on Hyper-Rectangular Parameter Space. It uses a Variation of Pattern Search Technique. Described in the paper : Das (2016) <arXiv:1604.08616> . |
Authors: | Priyam Das [cre, aut], Debsurya De [aut] |
Maintainer: | Priyam Das <[email protected]> |
License: | GPL-3 |
Version: | 1.1.1 |
Built: | 2024-12-23 06:19:24 UTC |
Source: | CRAN |
'RMPSolveH' can be Used to Minimize any Non-Convex Blackbox Function where Each Parameter has an Upper Bound and Lower Bound.
RMPSolveH( x0, func, lb, ub, rho_1 = 2, rho_2 = 2, phi = 1e-06, no_runs = 1000, max_iter = 10000, s_init = 2, tol_fun = 1e-06, tol_fun_2 = 1e-20, max_time = 36000, print_output = FALSE )
RMPSolveH( x0, func, lb, ub, rho_1 = 2, rho_2 = 2, phi = 1e-06, no_runs = 1000, max_iter = 10000, s_init = 2, tol_fun = 1e-06, tol_fun_2 = 1e-20, max_time = 36000, print_output = FALSE )
x0 |
Vector of Initial Guess provided by User. |
func |
The Function to be Optimized, should be provided by the User. |
lb |
Vector of Lower Bounds, of same Dimension as 'x0'. |
ub |
Vector of Upper Bound, of same Dimension as 'x0' |
rho_1 |
'Step Decay Rate' for the First Run Only (Default is 2). |
rho_2 |
'Step Decay Rate' for Second Run Onwards (Default is 2). |
phi |
Lower Bound for 'Global Step Size'. Default value is |
no_runs |
Max Number of 'Runs'. Default Value is 1000. |
max_iter |
Max Number of Iterations in each 'Run'. Default Value is 10000. |
s_init |
Initial 'Global Step Size'. Default Value is 2. It must be set Less than or Equal to 2. |
tol_fun |
Termination Tolerance on when to decrease the 'Global Step Size'. Default Value is |
tol_fun_2 |
Termination Tolerance on the Difference of Norms of solution points in two Consecutive Runs. Default Value is |
max_time |
Time Alloted (In Seconds) for Execution of RMPSH. Default is 36000 secs (10 Hours). |
print_output |
Binary Command to Print Optimized Value of Objective Function after Each Iteration. Default is set as FALSE. |
The Optimal Solution Point.
Das, Priyam
"Black-box optimization on hyper-rectangle using Recursive Modified Pattern Search and application to ROC-based Classification Problem"
(available at 'arXiv http://arxiv.org/abs/1604.08616).
g <- function(y) return(-20 * exp(-0.2 * sqrt(0.5 * (y[1] ^ 2 + y[2] ^ 2))) - exp(0.5 * (cos(2 * pi * y[1]) + cos(2 * pi * y[2]))) + exp(1) + 20) starting_point <- rep(1, 10) g(starting_point) solution <- RMPSolveH(starting_point, g, rep(-33, 10), rep(33, 10)) g(solution) RMPSolveH(c(2, 4, 6, 2, 1), g, rep(-3, 5), rep(23, 5), print_output = TRUE) # Will Print the Updates after Each Iteration g <- function(y) return(sum(y ^ 2)) RMPSolveH(rep(2.3, 100), g, rep(-11, 100), rep(13, 100), max_time = 2, print = 1) # Will Exit and Return Result after 2 Seconds
g <- function(y) return(-20 * exp(-0.2 * sqrt(0.5 * (y[1] ^ 2 + y[2] ^ 2))) - exp(0.5 * (cos(2 * pi * y[1]) + cos(2 * pi * y[2]))) + exp(1) + 20) starting_point <- rep(1, 10) g(starting_point) solution <- RMPSolveH(starting_point, g, rep(-33, 10), rep(33, 10)) g(solution) RMPSolveH(c(2, 4, 6, 2, 1), g, rep(-3, 5), rep(23, 5), print_output = TRUE) # Will Print the Updates after Each Iteration g <- function(y) return(sum(y ^ 2)) RMPSolveH(rep(2.3, 100), g, rep(-11, 100), rep(13, 100), max_time = 2, print = 1) # Will Exit and Return Result after 2 Seconds