Package 'RKEEL'

Title: Using 'KEEL' in R Code
Description: 'KEEL' is a popular 'Java' software for a large number of different knowledge data discovery tasks. This package takes the advantages of 'KEEL' and R, allowing to use 'KEEL' algorithms in simple R code. The implemented R code layer between R and 'KEEL' makes easy both using 'KEEL' algorithms in R as implementing new algorithms for 'RKEEL' in a very simple way. It includes more than 100 algorithms for classification, regression, preprocess, association rules and imbalance learning, which allows a more complete experimentation process. For more information about 'KEEL', see <http://www.keel.es/>.
Authors: Jose M. Moyano [aut, cre], Luciano Sanchez [aut], Oliver Sanchez [ctb], Jesus Alcala-Fernandez [ctb]
Maintainer: Jose M. Moyano <[email protected]>
License: GPL
Version: 1.3.4
Built: 2024-12-08 07:18:01 UTC
Source: CRAN

Help Index


ABB_IEP_FS KEEL Preprocess Algorithm

Description

ABB_IEP_FS Preprocess Algorithm from KEEL.

Usage

ABB_IEP_FS(train, test, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::ABB_IEP_FS(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

AdaBoost_I KEEL Imbalanced Classification Algorithm

Description

AdaBoost_I Imbalanced Classification Algorithm from KEEL.

Usage

AdaBoost_I(train, test, pruned, confidence, instancesPerLeaf,
   numClassifiers, algorithm, trainMethod, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

pruned

pruned. Default value = TRUE

confidence

confidence. Default value = 0.25

instancesPerLeaf

instancesPerLeaf. Default value = 2

numClassifiers

numClassifiers. Default value = 10

algorithm

algorithm. Default value = "ADABOOST"

trainMethod

trainMethod. Default value = "NORESAMPLING"

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::AdaBoost_I(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

AdaBoostNC_C KEEL Classification Algorithm

Description

AdaBoostNC_C Classification Algorithm from KEEL.

Usage

AdaBoostNC_C(train, test, pruned, confidence, instancesPerLeaf,
   numClassifiers, algorithm, trainMethod, lambda, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

pruned

pruned. Default value = TRUE

confidence

confidence. Default value = 0.25

instancesPerLeaf

instancesPerLeaf. Default value = 2

numClassifiers

numClassifiers. Default value = 10

algorithm

algorithm. Default value = "ADABOOST.NC"

trainMethod

trainMethod. Default value = "NORESAMPLING"

lambda

lambda. Default value = 2

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::AdaBoostNC_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

Alatasetal_A KEEL Association Rules Algorithm

Description

Alatasetal_A Association Rules Algorithm from KEEL.

Usage

Alatasetal_A(dat, seed, NumberofEvaluations, InitialRandomChromosomes,
  rDividingPoints, TournamentSize, ProbabilityofCrossover,
  MinimumProbabilityofMutation, MaximumProbabilityofMutation,
  ImportanceofRulesSupport, ImportanceofRulesConfidence,
  ImportanceofNumberofInvolvedAttributes, ImportanceofIntervalsAmplitude,
  ImportanceofNumberofRecordsAlreadyCovered, AmplitudeFactor)

Arguments

dat

Dataset as a data.frame object

seed

seed. Default value = 1286082570

NumberofEvaluations

NumberofEvaluations. Default value = 50000

InitialRandomChromosomes

Initial Random Chromosomes. Default value = 12

rDividingPoints

r-Dividing Points. Default value = 3

TournamentSize

TournamentSize. Default value = 10

ProbabilityofCrossover

Probability of Crossover. Default value = 0.7

MinimumProbabilityofMutation

Minimum Probability of Mutation. Default value = 0.05

MaximumProbabilityofMutation

Maximum Probability of Mutation. Default value = 0.9

ImportanceofRulesSupport

Importance of Rules Support. Default value = 5

ImportanceofRulesConfidence

Importance of Rules Confidence. Default value = 20

ImportanceofNumberofInvolvedAttributes

Importance of Number of Involved Attributes. Default value = 0.05

ImportanceofIntervalsAmplitude

Importance of Intervals Amplitude. Default value = 0.02

ImportanceofNumberofRecordsAlreadyCovered

Importance of Number of Records Already Covered. Default value = 0.01

AmplitudeFactor

Amplitude Factor. Default value = 2.0

Details

$run() Run algorith

$showRules(numRules) Show a number of rules. By default all rules.

$getInterestMeasures() Return a data.frame with all interest measures of set rules.

$sortBy(interestMeasure) Order set rules by interest measure.

$writeCSV(fileName, sep) Create CSV file with set rules. Default fileName="rules" sep=","

$writePMML(fileName) Create PMML file with set rules. Default fileName="rules"

$addInterestMeasure(name, colName) Add interest measures to set rules. Some interest measures supported:

"allConfidence" (Omiencinski, 2003)

"crossSupportRatio", cross-support ratio (Xiong et al., 2003)

"lift", interest factor (Brin et al. 1997)

"support", supp (Agrawal et al., 1996)

"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)

"chiSquared", X^2 (Liu et al., 1999)

"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)

"collectiveStrength"

"confidence", conf (Agrawal et al., 1996)

"conviction" (Brin et al. 1997)

"cosine" (Tan et al., 2004)

"coverage", cover, LHS-support

"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)

"casualConfidence", casual confidence (Kodratoff, 1999)

"casualSupport", casual support (Kodratoff, 1999)

"counterexample", example and counterexample rate

"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)

"doc", difference of confidence (Hofmann and Wilhelm, 2001)

"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)

"gini", Gini index (Tan et al., 2004)

"hyperLift" (Hahsler and Hornik, 2007)

"hyperConfidence" (Hahsler and Hornik, 2007)

"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)

"implicationIndex", implication index (Gras, 1996)

"improvement" (Bayardo et al., 2000)

"jaccard", Jaccard coefficient (Tan and Kumar, 2000)

"jMeasure", J-measure, J (Smyth and Goodman, 1991)

"kappa" (Tan and Kumar, 2000)

"klosgen", Klosgen (Tan and Kumar, 2000)

"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)

"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)

"laplace", L (Tan and Kumar 2000)

"leastContradiction", least contradiction (Aze and Kodratoff, 2004

"lerman", Lerman similarity (Lerman, 1981)

"leverage", PS (Piatetsky-Shapiro 1991)

"mutualInformation", uncertainty, M (Tan et al., 2002)

"oddsRatio", odds ratio alpha (Tan et al., 2004)

"phi", correlation coefficient phi (Tan et al. 2004)

"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)

"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)

"sebag", Sebag measure (Sebag and Schoenauer, 1988)

"support", supp (Agrawal et al., 1996)

"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)

"yuleQ", Yule's Q (Tan and Kumar, 2000)

"yuleY", Yule's Y (Tan and Kumar, 2000)

For more information see ?arules::interestMeasure

Value

A arules class with the Association Rules for both dat dataset.

Examples

#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")

#Create algorithm
algorithm <- RKEEL::Alatasetal_A(dat)

#Run algorithm
algorithm$run()

#Rules in format arules
algorithm$rules

#Show a number of rules
algorithm$showRules(2)

#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()

#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")

#Sort by interest measure lift
algorithm$sortBy("lift")

#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))

Alcalaetal_A KEEL Association Rules Algorithm

Description

Alcalaetal_A Association Rules Algorithm from KEEL.

Usage

Alcalaetal_A(dat, seed, NumberofEvaluations, PopulationSize, NumberofBitsperGene, 
  DecreasingFactorofLthresholdNOTUSED, FactorforParentCentricBLXCrossover, 
  NumberofFuzzyRegionsforNumericAttributes, UseMaxOperatorfor1FrequentItemsets, 
  MinimumSupport, MinimumConfidence)

Arguments

dat

Dataset as a data.frame object

seed

seed. Default value = 1286082570

NumberofEvaluations

Number of Evaluations. Default value = 10000

PopulationSize

Population Size. Default value = 50

NumberofBitsperGene

Number of Bits per Gene. Default value = 30

DecreasingFactorofLthresholdNOTUSED

Decreasing Factor of Lthreshold NOT USED. Default value = 0.1

FactorforParentCentricBLXCrossover

Factor for Parent Centric BLXCrossover. Default value = 1.0

NumberofFuzzyRegionsforNumericAttributes

Number of Fuzzy Regions for Numeric Attributes. Default value = 3

UseMaxOperatorfor1FrequentItemsets

Use Max Operator for 1 Frequent Itemsets. Default value = "false"

MinimumSupport

Minimum Support. Default value = 0.1

MinimumConfidence

Minimum Confidence. Default value = 0.8

Details

$run() Run algorith

$showRules(numRules) Show a number of rules. By default all rules.

$getInterestMeasures() Return a data.frame with all interest measures of set rules.

$sortBy(interestMeasure) Order set rules by interest measure.

$writeCSV(fileName, sep) Create CSV file with set rules. Default fileName="rules" sep=","

$writePMML(fileName) Create PMML file with set rules. Default fileName="rules"

$addInterestMeasure(name, colName) Add interest measures to set rules. Some interest measures supported:

"allConfidence" (Omiencinski, 2003)

"crossSupportRatio", cross-support ratio (Xiong et al., 2003)

"lift", interest factor (Brin et al. 1997)

"support", supp (Agrawal et al., 1996)

"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)

"chiSquared", X^2 (Liu et al., 1999)

"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)

"collectiveStrength"

"confidence", conf (Agrawal et al., 1996)

"conviction" (Brin et al. 1997)

"cosine" (Tan et al., 2004)

"coverage", cover, LHS-support

"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)

"casualConfidence", casual confidence (Kodratoff, 1999)

"casualSupport", casual support (Kodratoff, 1999)

"counterexample", example and counterexample rate

"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)

"doc", difference of confidence (Hofmann and Wilhelm, 2001)

"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)

"gini", Gini index (Tan et al., 2004)

"hyperLift" (Hahsler and Hornik, 2007)

"hyperConfidence" (Hahsler and Hornik, 2007)

"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)

"implicationIndex", implication index (Gras, 1996)

"improvement" (Bayardo et al., 2000)

"jaccard", Jaccard coefficient (Tan and Kumar, 2000)

"jMeasure", J-measure, J (Smyth and Goodman, 1991)

"kappa" (Tan and Kumar, 2000)

"klosgen", Klosgen (Tan and Kumar, 2000)

"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)

"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)

"laplace", L (Tan and Kumar 2000)

"leastContradiction", least contradiction (Aze and Kodratoff, 2004

"lerman", Lerman similarity (Lerman, 1981)

"leverage", PS (Piatetsky-Shapiro 1991)

"mutualInformation", uncertainty, M (Tan et al., 2002)

"oddsRatio", odds ratio alpha (Tan et al., 2004)

"phi", correlation coefficient phi (Tan et al. 2004)

"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)

"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)

"sebag", Sebag measure (Sebag and Schoenauer, 1988)

"support", supp (Agrawal et al., 1996)

"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)

"yuleQ", Yule's Q (Tan and Kumar, 2000)

"yuleY", Yule's Y (Tan and Kumar, 2000)

For more information see ?arules::interestMeasure

Value

A arules class with the Association Rules for both dat dataset.

Examples

#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")

#Create algorithm
algorithm <- RKEEL::Alcalaetal_A(dat)

#Run algorithm
algorithm$run()

#Rules in format arules
algorithm$rules

#Show a number of rules
algorithm$showRules(2)

#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()

#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")

#Sort by interest measure lift
algorithm$sortBy("lift")

#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))

AllKNN_TSS KEEL Preprocess Algorithm

Description

AllKNN_TSS Preprocess Algorithm from KEEL.

Usage

AllKNN_TSS(train, test, k, distance)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

k

k. Default value = 3

distance

distance. Default value = "Euclidean"

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::AllKNN_TSS(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

AllPosible_MV KEEL Preprocess Algorithm

Description

AllPosible_MV Preprocess Algorithm from KEEL.

Usage

AllPosible_MV(train, test)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::AllPosible_MV(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

ANR_F KEEL Preprocess Algorithm

Description

ANR_F Preprocess Algorithm from KEEL.

Usage

ANR_F(train, test, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("zoo")
data_test <- RKEEL::loadKeelDataset("zoo")
  
#Create algorithm
algorithm <- RKEEL::ANR_F(data_train, data_test)
  
#Run algorithm
algorithm$run()
  
#See results
algorithm$preprocessed_test

Apriori_A KEEL Association Rules Algorithm

Description

Apriori_A Association Rules Algorithm from KEEL.

Usage

Apriori_A(dat, NumberofPartitionsforNumericAttributes, MinimumSupport, 
  MinimumConfidence)

Arguments

dat

Dataset as a data.frame object

NumberofPartitionsforNumericAttributes

Number of Partitions for Numeric Attributes. Default value = 4

MinimumSupport

Minimum Support. Default value = 0.1

MinimumConfidence

Minimum Confidence. Default value = 0.8

Details

$run() Run algorith

$showRules(numRules) Show a number of rules. By default all rules.

$getInterestMeasures() Return a data.frame with all interest measures of set rules.

$sortBy(interestMeasure) Order set rules by interest measure.

$writeCSV(fileName, sep) Create CSV file with set rules. Default fileName="rules" sep=","

$writePMML(fileName) Create PMML file with set rules. Default fileName="rules"

$addInterestMeasure(name, colName) Add interest measures to set rules. Some interest measures supported:

"allConfidence" (Omiencinski, 2003)

"crossSupportRatio", cross-support ratio (Xiong et al., 2003)

"lift", interest factor (Brin et al. 1997)

"support", supp (Agrawal et al., 1996)

"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)

"chiSquared", X^2 (Liu et al., 1999)

"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)

"collectiveStrength"

"confidence", conf (Agrawal et al., 1996)

"conviction" (Brin et al. 1997)

"cosine" (Tan et al., 2004)

"coverage", cover, LHS-support

"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)

"casualConfidence", casual confidence (Kodratoff, 1999)

"casualSupport", casual support (Kodratoff, 1999)

"counterexample", example and counterexample rate

"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)

"doc", difference of confidence (Hofmann and Wilhelm, 2001)

"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)

"gini", Gini index (Tan et al., 2004)

"hyperLift" (Hahsler and Hornik, 2007)

"hyperConfidence" (Hahsler and Hornik, 2007)

"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)

"implicationIndex", implication index (Gras, 1996)

"improvement" (Bayardo et al., 2000)

"jaccard", Jaccard coefficient (Tan and Kumar, 2000)

"jMeasure", J-measure, J (Smyth and Goodman, 1991)

"kappa" (Tan and Kumar, 2000)

"klosgen", Klosgen (Tan and Kumar, 2000)

"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)

"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)

"laplace", L (Tan and Kumar 2000)

"leastContradiction", least contradiction (Aze and Kodratoff, 2004

"lerman", Lerman similarity (Lerman, 1981)

"leverage", PS (Piatetsky-Shapiro 1991)

"mutualInformation", uncertainty, M (Tan et al., 2002)

"oddsRatio", odds ratio alpha (Tan et al., 2004)

"phi", correlation coefficient phi (Tan et al. 2004)

"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)

"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)

"sebag", Sebag measure (Sebag and Schoenauer, 1988)

"support", supp (Agrawal et al., 1996)

"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)

"yuleQ", Yule's Q (Tan and Kumar, 2000)

"yuleY", Yule's Y (Tan and Kumar, 2000)

For more information see ?arules::interestMeasure

Value

A arules class with the Association Rules for both dat dataset.

Examples

#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")

#Create algorithm
algorithm <- RKEEL::Apriori_A(dat)

#Run algorithm
algorithm$run()

#Rules in format arules
algorithm$rules

#Show a number of rules
algorithm$showRules(2)

#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()

#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")

#Sort by interest measure lift
algorithm$sortBy("lift")

#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))

ART_C KEEL Classification Algorithm

Description

ART_C Classification Algorithm from KEEL.

Usage

ART_C(train, test)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::ART_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

Association Rules Algorithm

Description

Class inheriting of KeelAlgorithm, to common methods for all KEEL Association Rules Algorithms. The specific association rules algorithms must inherit of this class.

The run() method receives three parameters. The folderPath parameter indicates where to place the folder with the experiments if wanted. If it is not indicated, the folder is placen ind a temporary random directory and then removed. If indicated, the experiment folder is not removed. The expUniqueName parameter indicates the name of the experiment folder. If not indicated, it is a random name. If indicated, ensure that the name is unique in the previously indicated folder. The javaOptions parameter indicates, if wanted, extra parameters to the java command line, as for example the maximum memory allowed by java.


Associative Classification Algorithm

Description

Class inheriting of ClassificationAlgorithm, to common methods for Associative Classification Algorithms.

The run() method receives three parameters. The folderPath parameter indicates where to place the folder with the experiments if wanted. If it is not indicated, the folder is placen ind a temporary random directory and then removed. If indicated, the experiment folder is not removed. The expUniqueName parameter indicates the name of the experiment folder. If not indicated, it is a random name. If indicated, ensure that the name is unique in the previously indicated folder. The javaOptions parameter indicates, if wanted, extra parameters to the java command line, as for example the maximum memory allowed by java.


Bayesian_D KEEL Preprocess Algorithm

Description

Bayesian_D Preprocess Algorithm from KEEL.

Usage

Bayesian_D(train, test)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::Bayesian_D(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

BNGE_C KEEL Classification Algorithm

Description

BNGE_C Classification Algorithm from KEEL.

Usage

BNGE_C(train, test, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::BNGE_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

Bojarczuk_GP_C KEEL Classification Algorithm

Description

Bojarczuk_GP_C Classification Algorithm from KEEL.

Usage

Bojarczuk_GP_C(train, test, population_size, max_generations,
   max_deriv_size, rec_prob, copy_prob, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

population_size

population_size. Default value = 200

max_generations

max_generations. Default value = 200

max_deriv_size

max_deriv_size. Default value = 20

rec_prob

rec_prob. Default value = 0.8

copy_prob

copy_prob. Default value = 0.01

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::Bojarczuk_GP_C(data_train, data_test)
algorithm <- RKEEL::Bojarczuk_GP_C(data_train, data_test, population_size=5, max_generations=10)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

BSE_C KEEL Classification Algorithm

Description

BSE_C Classification Algorithm from KEEL.

Usage

BSE_C(train, test, k, distance)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

k

k. Default value = 1

distance

distance. Default value = "Euclidean"

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::BSE_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

C_SVM_C KEEL Classification Algorithm

Description

C_SVM_C Classification Algorithm from KEEL.

Usage

C_SVM_C(train, test, KernelType, C, eps, degree, gamma, coef0,
   nu, p, shrinking, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

KernelType

KernelType. Default value = "RBF"

C

C. Default value = 100.0

eps

eps. Default value = 0.001

degree

degree. Default value = 1

gamma

gamma. Default value = 0.01

coef0

coef0. Default value = 0.0

nu

nu. Default value = 0.1

p

p. Default value = 1.0

shrinking

shrinking. Default value = 1

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::C_SVM_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

C45_C KEEL Classification Algorithm

Description

C45_C Classification Algorithm from KEEL.

Usage

C45_C(train, test, pruned, confidence, instancesPerLeaf)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

pruned

pruned. Default value = TRUE

confidence

confidence. Default value = 0.25

instancesPerLeaf

instancesPerLeaf. Default value = 2

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::C45_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

C45Binarization_C KEEL Classification Algorithm

Description

C45Binarization_C Classification Algorithm from KEEL.

Usage

C45Binarization_C(train, test, pruned, confidence, instancesPerLeaf,
   binarization, scoreFunction, bts)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

pruned

pruned. Default value = TRUE

confidence

confidence. Default value = 0.25

instancesPerLeaf

instancesPerLeaf. Default value = 2

binarization

binarization. Default value = "OVO"

scoreFunction

scoreFunction. Default value = "WEIGHTED"

bts

bts. Default value = 0.05

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
  
#Create algorithm
algorithm <- RKEEL::C45Binarization_C(data_train, data_test)
  
#Run algorithm
algorithm$run()
  
#See results
algorithm$testPredictions

C45Rules_C KEEL Classification Algorithm

Description

C45Rules_C Classification Algorithm from KEEL.

Usage

C45Rules_C(train, test, confidence, itemsetsPerLeaf, threshold,
   seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

confidence

confidence. Default value = 0.25

itemsetsPerLeaf

itemsetsPerLeaf. Default value = 2

threshold

threshold. Default value = 10

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::C45Rules_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

CamNN_C KEEL Classification Algorithm

Description

CamNN_C Classification Algorithm from KEEL.

Usage

CamNN_C(train, test, k)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

k

k. Default value = 1

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::CamNN_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

CART_C KEEL Classification Algorithm

Description

CART_C Classification Algorithm from KEEL.

Usage

CART_C(train, test, maxDepth)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

maxDepth

k. Default value = 90

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::CART_C(data_train, data_test, maxDepth=3)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

CART_R KEEL Regression Algorithm

Description

CART_R Regression Algorithm from KEEL.

Usage

CART_R(train, test, maxDepth)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

maxDepth

maxDepth. Default value = 90

Value

A data.frame with the actual and predicted values for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")

#Create algorithm
algorithm <- RKEEL::CART_R(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

CBA_C KEEL Associative Classification Algorithm

Description

CBA_C Associative Classification Algorithm from KEEL.

Usage

CBA_C(train, test, min_support, min_confidence, pruning, maxCandidates)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

min_support

min_support. Default value = 0.01

min_confidence

min_confidence. Default value = 0.5

pruning

indicates wether pruning or not. Default value = TRUE

maxCandidates

maxCandidates; if 0, no limit. Default value = 80000

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data <- loadKeelDataset("breast")

#Create algorithm
algorithm <- RKEEL::CBA_C(data, data)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

CenterNN_C KEEL Classification Algorithm

Description

CenterNN_C Classification Algorithm from KEEL.

Usage

CenterNN_C(train, test)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::CenterNN_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

CFAR_C KEEL Classification Algorithm

Description

CFAR_C Classification Algorithm from KEEL.

Usage

CFAR_C(train, test, min_support, min_confidence, threshold,
   num_labels, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

min_support

min_support. Default value = 0.1

min_confidence

min_confidence. Default value = 0.85

threshold

threshold. Default value = 0.15

num_labels

num_labels. Default value = 5

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::CFAR_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

CFKNN_C KEEL Classification Algorithm

Description

CFKNN_C Classification Algorithm from KEEL.

Usage

CFKNN_C(train, test, k, alpha, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

k

k. Default value = 3

alpha

alpha. Default value = 0.6

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::CFKNN_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

CHC_C KEEL Classification Algorithm

Description

CHC_C Classification Algorithm from KEEL.

Usage

CHC_C(train, test, pop_size, evaluations, alfa, restart_change,
   prob_restart, prob_diverge, k, distance, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

pop_size

pop_size. Default value = 50

evaluations

evaluations. Default value = 10000

alfa

alfa. Default value = 0.5

restart_change

restart_change. Default value = 0.35

prob_restart

prob_restart. Default value = 0.25

prob_diverge

prob_diverge. Default value = 0.05

k

k. Default value = 1

distance

distance. Default value = "Euclidean"

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::CHC_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

Classification Algorithm

Description

Class inheriting of KeelAlgorithm, to common methods for all KEEL Classification Algorithms. The specific classification algorithms must inherit of this class.

The run() method receives three parameters. The folderPath parameter indicates where to place the folder with the experiments if wanted. If it is not indicated, the folder is placen ind a temporary random directory and then removed. If indicated, the experiment folder is not removed. The expUniqueName parameter indicates the name of the experiment folder. If not indicated, it is a random name. If indicated, ensure that the name is unique in the previously indicated folder. The javaOptions parameter indicates, if wanted, extra parameters to the java command line, as for example the maximum memory allowed by java.


Classification Results

Description

Class to calculate and store some results for a ClassificationAlgorithm. It receives as parameter the prediction of a classification algorithm as a data.frame object.


CleanAttributes_TR KEEL Preprocess Algorithm

Description

CleanAttributes_TR Preprocess Algorithm from KEEL.

Usage

CleanAttributes_TR(train, test)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::CleanAttributes_TR(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

ClusterAnalysis_D KEEL Preprocess Algorithm

Description

ClusterAnalysis_D Preprocess Algorithm from KEEL.

Usage

ClusterAnalysis_D(train, test)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::ClusterAnalysis_D(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

CMAR_C KEEL Associative Classification Algorithm

Description

CMAR_C Associative Classification Algorithm from KEEL.

Usage

CMAR_C(train, test, min_confidence, min_support, databaseCoverage)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

min_confidence

min_confidence. Default value = 0.5

min_support

min_support. Default value = 0.01

databaseCoverage

databaseCoverage. Default value = 4

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data <- loadKeelDataset("breast")

#Create algorithm
algorithm <- RKEEL::CMAR_C(data, data)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

CNN_C KEEL Classification Algorithm

Description

CNN_C Classification Algorithm from KEEL.

Usage

CNN_C(train, test, k, distance, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

k

k. Default value = 1

distance

distance. Default value = "Euclidean"

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::CNN_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

CPAR_C KEEL Associative Classification Algorithm

Description

CPAR_C Associative Classification Algorithm from KEEL.

Usage

CPAR_C(train, test, delta, min_gain, alpha, rules_prediction)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

delta

delta. Default value = 0.05

min_gain

min_gain. Default value = 0.7

alpha

alpha. Default value = 0.66

rules_prediction

rules_prediction. Default value = 5

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data <- loadKeelDataset("breast")

#Create algorithm
algorithm <- RKEEL::CPAR_C(data, data)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

CPW_C KEEL Classification Algorithm

Description

CPW_C Classification Algorithm from KEEL.

Usage

CPW_C(train, test, beta, mu, ro, epsilon)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

beta

beta. Default value = 8.0

mu

mu. Default value = 0.001

ro

ro. Default value = 0.001

epsilon

epsilon. Default value = 0.001

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::CPW_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

CW_C KEEL Classification Algorithm

Description

CW_C Classification Algorithm from KEEL.

Usage

CW_C(train, test, beta, mu, epsilon)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

beta

beta. Default value = 8.0

mu

mu. Default value = 0.001

epsilon

epsilon. Default value = 0.001

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::CW_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

DecimalScaling_TR KEEL Preprocess Algorithm

Description

DecimalScaling_TR Preprocess Algorithm from KEEL.

Usage

DecimalScaling_TR(train, test)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::DecimalScaling_TR(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

DecrRBFN_C KEEL Classification Algorithm

Description

DecrRBFN_C Classification Algorithm from KEEL.

Usage

DecrRBFN_C(train, test, percent, num_neurons_ini, alfa, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

percent

percent. Default value = 0.1

num_neurons_ini

num_neurons_ini. Default value = 20

alfa

alfa. Default value = 0.3

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::DecrRBFN_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

Deeps_C KEEL Classification Algorithm

Description

Deeps_C Classification Algorithm from KEEL.

Usage

Deeps_C(train, test, beta)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

beta

beta. Default value = 0.12

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::Deeps_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

Download file from a mirror

Description

Downloads a file from a given mirror and checks its md5 sum. The file is stored in a given path

Usage

downloadFromMirror(mirror, file_path, md5_sum)

Arguments

mirror

URL from which to download the file.

file_path

Path or folder where the downloaded file will be stored.

md5_sum

md5 checksum string corresponding to the file to download. The method will check that the downloaded file checksum and the md5_sum parameter match.

Value

Returns 1 if the download was successful and -1 otherwise.

Examples

# Download RKEELjars file
dCode = RKEEL::downloadFromMirror("https://personal.us.es/jmoyano1/RKEELjars_1.1.zip", 
  downloadedJarFile, md5_sum)

# Check if the download was successful
if(dCode<0){
  print('There was an error during the download.')
}

DSM_C KEEL Classification Algorithm

Description

DSM_C Classification Algorithm from KEEL.

Usage

DSM_C(train, test, iterations, percentage, alpha_0, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

iterations

iterations. Default value = 100

percentage

percentage. Default value = 10

alpha_0

alpha_0. Default value = 0.1

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::DSM_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

DT_GA_C KEEL Classification Algorithm

Description

DT_GA_C Classification Algorithm from KEEL.

Usage

DT_GA_C(train, test, confidence, instancesPerLeaf,
   geneticAlgorithmApproach, threshold, numGenerations,
   popSize, crossoverProb, mutProb, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

confidence

confidence. Default value = 0.25

instancesPerLeaf

instancesPerLeaf. Default value = 2

geneticAlgorithmApproach

geneticAlgorithmApproach. Default value = "GA-LARGE-SN"

threshold

threshold. Default value = 10

numGenerations

numGenerations. Default value = 50

popSize

popSize. Default value = 200

crossoverProb

crossoverProb. Default value = 0.8

mutProb

mutProb. Default value = 0.01

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::DT_GA_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

EARMGA_A KEEL Association Rules Algorithm

Description

EARMGA_A Association Rules Algorithm from KEEL.

Usage

EARMGA_A(dat, seed, FixedLengthofAssociationRules, PopulationSize, 
  TotalNumberofEvaluations, DifferenceBoundaryNOTUSED, ProbabilityofSelection, 
  ProbabilityofCrossover, ProbabilityofMutation, 
  NumberofPartitionsforNumericAttributes)

Arguments

dat

Dataset as a data.frame object

seed

seed. Default value = 1286082570

FixedLengthofAssociationRules

Fixed Length of Association Rules. Default value = 2

PopulationSize

PopulationSize. Default value = 100

TotalNumberofEvaluations

Total Number of Evaluations. Default value = 50000

DifferenceBoundaryNOTUSED

Difference Boundary NOT USED. Default value = 0.01

ProbabilityofSelection

Probability of Selection. Default value = 0.75

ProbabilityofCrossover

Probability of Crossover. Default value = 0.7

ProbabilityofMutation

Probability of Mutation. Default value = 0.1

NumberofPartitionsforNumericAttributes

Number of Partitions for Numeric Attributes. Default value = 4

Details

$run() Run algorith

$showRules(numRules) Show a number of rules. By default all rules.

$getInterestMeasures() Return a data.frame with all interest measures of set rules.

$sortBy(interestMeasure) Order set rules by interest measure.

$writeCSV(fileName, sep) Create CSV file with set rules. Default fileName="rules" sep=","

$writePMML(fileName) Create PMML file with set rules. Default fileName="rules"

$addInterestMeasure(name, colName) Add interest measures to set rules. Some interest measures supported:

"allConfidence" (Omiencinski, 2003)

"crossSupportRatio", cross-support ratio (Xiong et al., 2003)

"lift", interest factor (Brin et al. 1997)

"support", supp (Agrawal et al., 1996)

"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)

"chiSquared", X^2 (Liu et al., 1999)

"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)

"collectiveStrength"

"confidence", conf (Agrawal et al., 1996)

"conviction" (Brin et al. 1997)

"cosine" (Tan et al., 2004)

"coverage", cover, LHS-support

"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)

"casualConfidence", casual confidence (Kodratoff, 1999)

"casualSupport", casual support (Kodratoff, 1999)

"counterexample", example and counterexample rate

"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)

"doc", difference of confidence (Hofmann and Wilhelm, 2001)

"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)

"gini", Gini index (Tan et al., 2004)

"hyperLift" (Hahsler and Hornik, 2007)

"hyperConfidence" (Hahsler and Hornik, 2007)

"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)

"implicationIndex", implication index (Gras, 1996)

"improvement" (Bayardo et al., 2000)

"jaccard", Jaccard coefficient (Tan and Kumar, 2000)

"jMeasure", J-measure, J (Smyth and Goodman, 1991)

"kappa" (Tan and Kumar, 2000)

"klosgen", Klosgen (Tan and Kumar, 2000)

"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)

"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)

"laplace", L (Tan and Kumar 2000)

"leastContradiction", least contradiction (Aze and Kodratoff, 2004

"lerman", Lerman similarity (Lerman, 1981)

"leverage", PS (Piatetsky-Shapiro 1991)

"mutualInformation", uncertainty, M (Tan et al., 2002)

"oddsRatio", odds ratio alpha (Tan et al., 2004)

"phi", correlation coefficient phi (Tan et al. 2004)

"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)

"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)

"sebag", Sebag measure (Sebag and Schoenauer, 1988)

"support", supp (Agrawal et al., 1996)

"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)

"yuleQ", Yule's Q (Tan and Kumar, 2000)

"yuleY", Yule's Y (Tan and Kumar, 2000)

For more information see ?arules::interestMeasure

Value

A arules class with the Association Rules for both dat dataset.

Examples

#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")

#Create algorithm
algorithm <- RKEEL::EARMGA_A(dat)

#Run algorithm
algorithm$run()

#Rules in format arules
algorithm$rules

#Show a number of rules
algorithm$showRules(2)

#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()

#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")

#Sort by interest measure lift
algorithm$sortBy("lift")

#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))

Eclat_A KEEL Association Rules Algorithm

Description

Eclat_A Association Rules Algorithm from KEEL.

Usage

Eclat_A(dat, NumberofPartitionsforNumericAttributes, MinimumSupport, 
  MinimumConfidence)

Arguments

dat

Dataset as a data.frame object

NumberofPartitionsforNumericAttributes

Number of Partitions for Numeric Attributes. Default value = 4

MinimumSupport

Minimum Support. Default value = 0.1

MinimumConfidence

Minimum Confidence. Default value = 0.8

Details

$run() Run algorith

$showRules(numRules) Show a number of rules. By default all rules.

$getInterestMeasures() Return a data.frame with all interest measures of set rules.

$sortBy(interestMeasure) Order set rules by interest measure.

$writeCSV(fileName, sep) Create CSV file with set rules. Default fileName="rules" sep=","

$writePMML(fileName) Create PMML file with set rules. Default fileName="rules"

$addInterestMeasure(name, colName) Add interest measures to set rules. Some interest measures supported:

"allConfidence" (Omiencinski, 2003)

"crossSupportRatio", cross-support ratio (Xiong et al., 2003)

"lift", interest factor (Brin et al. 1997)

"support", supp (Agrawal et al., 1996)

"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)

"chiSquared", X^2 (Liu et al., 1999)

"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)

"collectiveStrength"

"confidence", conf (Agrawal et al., 1996)

"conviction" (Brin et al. 1997)

"cosine" (Tan et al., 2004)

"coverage", cover, LHS-support

"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)

"casualConfidence", casual confidence (Kodratoff, 1999)

"casualSupport", casual support (Kodratoff, 1999)

"counterexample", example and counterexample rate

"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)

"doc", difference of confidence (Hofmann and Wilhelm, 2001)

"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)

"gini", Gini index (Tan et al., 2004)

"hyperLift" (Hahsler and Hornik, 2007)

"hyperConfidence" (Hahsler and Hornik, 2007)

"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)

"implicationIndex", implication index (Gras, 1996)

"improvement" (Bayardo et al., 2000)

"jaccard", Jaccard coefficient (Tan and Kumar, 2000)

"jMeasure", J-measure, J (Smyth and Goodman, 1991)

"kappa" (Tan and Kumar, 2000)

"klosgen", Klosgen (Tan and Kumar, 2000)

"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)

"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)

"laplace", L (Tan and Kumar 2000)

"leastContradiction", least contradiction (Aze and Kodratoff, 2004

"lerman", Lerman similarity (Lerman, 1981)

"leverage", PS (Piatetsky-Shapiro 1991)

"mutualInformation", uncertainty, M (Tan et al., 2002)

"oddsRatio", odds ratio alpha (Tan et al., 2004)

"phi", correlation coefficient phi (Tan et al. 2004)

"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)

"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)

"sebag", Sebag measure (Sebag and Schoenauer, 1988)

"support", supp (Agrawal et al., 1996)

"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)

"yuleQ", Yule's Q (Tan and Kumar, 2000)

"yuleY", Yule's Y (Tan and Kumar, 2000)

For more information see ?arules::interestMeasure

Value

A arules class with the Association Rules for both dat dataset.

Examples

#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")

#Create algorithm
algorithm <- RKEEL::Eclat_A(dat)

#Run algorithm
algorithm$run()

#Rules in format arules
algorithm$rules

#Show a number of rules
algorithm$showRules(2)

#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()

#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")

#Sort by interest measure lift
algorithm$sortBy("lift")

#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))

EPSILON_SVR_R KEEL Regression Algorithm

Description

EPSILON_SVR_R Regression Algorithm from KEEL.

Usage

EPSILON_SVR_R(train, test, KernelType, C, eps, degree, gamma,
   coef0, nu, p, shrinking, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

KernelType

KernelType. Default value = "RBF"

C

C. Default value = 100.0

eps

eps. Default value = 0.001

degree

degree. Default value = 3

gamma

gamma. Default value = 0.01

coef0

coef0. Default value = 0.0

nu

nu. Default value = 0.5

p

p. Default value = 1.0

shrinking

shrinking. Default value = 0

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted values for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")

#Create algorithm
algorithm <- RKEEL::EPSILON_SVR_R(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

Falco_GP_C KEEL Classification Algorithm

Description

Falco_GP_C Classification Algorithm from KEEL.

Usage

Falco_GP_C(train, test, population_size, max_generations,
   max_deriv_size, rec_prob, mut_prob, copy_prob, alpha, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

population_size

population_size. Default value = 200

max_generations

max_generations. Default value = 200

max_deriv_size

max_deriv_size. Default value = 20

rec_prob

rec_prob. Default value = 0.8

mut_prob

mut_prob. Default value = 0.1

copy_prob

copy_prob. Default value = 0.01

alpha

alpha. Default value = 0.9

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::Falco_GP_C(data_train, data_test)
algorithm <- RKEEL::Falco_GP_C(data_train, data_test, population_size = 5, max_generations = 10)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

FCRA_C KEEL Classification Algorithm

Description

FCRA_C Classification Algorithm from KEEL.

Usage

FCRA_C(train, test, generations, pop_size, length_S_C, WCAR,
   WV, crossover_prob, mut_prob, n1, n2, max_iter,
   linguistic_values, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

generations

generations. Default value = 50

pop_size

pop_size. Default value = 30

length_S_C

length_S_C. Default value = 10

WCAR

WCAR. Default value = 10.0

WV

WV. Default value = 1.0

crossover_prob

crossover_prob. Default value = 1.0

mut_prob

mut_prob. Default value = 0.01

n1

n1. Default value = 0.001

n2

n2. Default value = 0.1

max_iter

max_iter. Default value = 100

linguistic_values

linguistic_values. Default value = 5

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::FCRA_C(data_train, data_test, generations=10, pop_size=10)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

FPgrowth_A KEEL Association Rules Algorithm

Description

FPgrowth_A Association Rules Algorithm from KEEL.

Usage

FPgrowth_A(dat, NumberofPartitionsforNumericAttributes, MinimumSupport, 
  MinimumConfidence)

Arguments

dat

Dataset as a data.frame object

NumberofPartitionsforNumericAttributes

Number of Partitions for Numeric Attributes. Default value = 4

MinimumSupport

Minimum Support. Default value = 0.1

MinimumConfidence

MinimumConfidence. Default value = 0.8

Details

$run() Run algorith

$showRules(numRules) Show a number of rules. By default all rules.

$getInterestMeasures() Return a data.frame with all interest measures of set rules.

$sortBy(interestMeasure) Order set rules by interest measure.

$writeCSV(fileName, sep) Create CSV file with set rules. Default fileName="rules" sep=","

$writePMML(fileName) Create PMML file with set rules. Default fileName="rules"

$addInterestMeasure(name, colName) Add interest measures to set rules. Some interest measures supported:

"allConfidence" (Omiencinski, 2003)

"crossSupportRatio", cross-support ratio (Xiong et al., 2003)

"lift", interest factor (Brin et al. 1997)

"support", supp (Agrawal et al., 1996)

"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)

"chiSquared", X^2 (Liu et al., 1999)

"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)

"collectiveStrength"

"confidence", conf (Agrawal et al., 1996)

"conviction" (Brin et al. 1997)

"cosine" (Tan et al., 2004)

"coverage", cover, LHS-support

"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)

"casualConfidence", casual confidence (Kodratoff, 1999)

"casualSupport", casual support (Kodratoff, 1999)

"counterexample", example and counterexample rate

"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)

"doc", difference of confidence (Hofmann and Wilhelm, 2001)

"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)

"gini", Gini index (Tan et al., 2004)

"hyperLift" (Hahsler and Hornik, 2007)

"hyperConfidence" (Hahsler and Hornik, 2007)

"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)

"implicationIndex", implication index (Gras, 1996)

"improvement" (Bayardo et al., 2000)

"jaccard", Jaccard coefficient (Tan and Kumar, 2000)

"jMeasure", J-measure, J (Smyth and Goodman, 1991)

"kappa" (Tan and Kumar, 2000)

"klosgen", Klosgen (Tan and Kumar, 2000)

"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)

"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)

"laplace", L (Tan and Kumar 2000)

"leastContradiction", least contradiction (Aze and Kodratoff, 2004

"lerman", Lerman similarity (Lerman, 1981)

"leverage", PS (Piatetsky-Shapiro 1991)

"mutualInformation", uncertainty, M (Tan et al., 2002)

"oddsRatio", odds ratio alpha (Tan et al., 2004)

"phi", correlation coefficient phi (Tan et al. 2004)

"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)

"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)

"sebag", Sebag measure (Sebag and Schoenauer, 1988)

"support", supp (Agrawal et al., 1996)

"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)

"yuleQ", Yule's Q (Tan and Kumar, 2000)

"yuleY", Yule's Y (Tan and Kumar, 2000)

For more information see ?arules::interestMeasure

Value

A arules class with the Association Rules for both dat dataset.

Examples

#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")

#Create algorithm
algorithm <- RKEEL::FPgrowth_A(dat)

#Run algorithm
algorithm$run()

#Rules in format arules
algorithm$rules

#Show a number of rules
algorithm$showRules(2)

#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()

#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")

#Sort by interest measure lift
algorithm$sortBy("lift")

#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))

FRNN_C KEEL Classification Algorithm

Description

FRNN_C Classification Algorithm from KEEL.

Usage

FRNN_C(train, test)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::FRNN_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

FRSBM_R KEEL Regression Algorithm

Description

FRSBM_R Regression Algorithm from KEEL.

Usage

FRSBM_R(train, test, numrules, sigma, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

numrules

numrules. Default value = 1

sigma

sigma. Default value = 0.0001

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted values for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")

#Create algorithm
algorithm <- RKEEL::FRSBM_R(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

FURIA_C KEEL Classification Algorithm

Description

FURIA_C Classification Algorithm from KEEL.

Usage

FURIA_C(train, test, optimizations, folds, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

optimizations

optimizations. Default value = 2

folds

folds. Default value = 3

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::FURIA_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

FuzzyApriori_A KEEL Association Rules Algorithm

Description

FuzzyApriori_A Association Rules Algorithm from KEEL.

Usage

FuzzyApriori_A(dat, NumberofPartitionsforNumericAttributes,
  UseMaxOperatorfor1FrequentItemsets, MinimumSupport, MinimumConfidence)

Arguments

dat

Dataset as a data.frame object

NumberofPartitionsforNumericAttributes

Number of Partitions for Numeric Attributes. Default value = 4

UseMaxOperatorfor1FrequentItemsets

Use Max Operator for 1 Frequent Itemsets. Default value = "false"

MinimumSupport

Minimum Support. Default value = 0.1

MinimumConfidence

Minimum Confidence. Default value = 0.8

Details

$run() Run algorith

$showRules(numRules) Show a number of rules. By default all rules.

$getInterestMeasures() Return a data.frame with all interest measures of set rules.

$sortBy(interestMeasure) Order set rules by interest measure.

$writeCSV(fileName, sep) Create CSV file with set rules. Default fileName="rules" sep=","

$writePMML(fileName) Create PMML file with set rules. Default fileName="rules"

$addInterestMeasure(name, colName) Add interest measures to set rules. Some interest measures supported:

"allConfidence" (Omiencinski, 2003)

"crossSupportRatio", cross-support ratio (Xiong et al., 2003)

"lift", interest factor (Brin et al. 1997)

"support", supp (Agrawal et al., 1996)

"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)

"chiSquared", X^2 (Liu et al., 1999)

"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)

"collectiveStrength"

"confidence", conf (Agrawal et al., 1996)

"conviction" (Brin et al. 1997)

"cosine" (Tan et al., 2004)

"coverage", cover, LHS-support

"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)

"casualConfidence", casual confidence (Kodratoff, 1999)

"casualSupport", casual support (Kodratoff, 1999)

"counterexample", example and counterexample rate

"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)

"doc", difference of confidence (Hofmann and Wilhelm, 2001)

"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)

"gini", Gini index (Tan et al., 2004)

"hyperLift" (Hahsler and Hornik, 2007)

"hyperConfidence" (Hahsler and Hornik, 2007)

"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)

"implicationIndex", implication index (Gras, 1996)

"improvement" (Bayardo et al., 2000)

"jaccard", Jaccard coefficient (Tan and Kumar, 2000)

"jMeasure", J-measure, J (Smyth and Goodman, 1991)

"kappa" (Tan and Kumar, 2000)

"klosgen", Klosgen (Tan and Kumar, 2000)

"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)

"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)

"laplace", L (Tan and Kumar 2000)

"leastContradiction", least contradiction (Aze and Kodratoff, 2004

"lerman", Lerman similarity (Lerman, 1981)

"leverage", PS (Piatetsky-Shapiro 1991)

"mutualInformation", uncertainty, M (Tan et al., 2002)

"oddsRatio", odds ratio alpha (Tan et al., 2004)

"phi", correlation coefficient phi (Tan et al. 2004)

"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)

"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)

"sebag", Sebag measure (Sebag and Schoenauer, 1988)

"support", supp (Agrawal et al., 1996)

"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)

"yuleQ", Yule's Q (Tan and Kumar, 2000)

"yuleY", Yule's Y (Tan and Kumar, 2000)

For more information see ?arules::interestMeasure

Value

A arules class with the Association Rules for both dat dataset.

Examples

#Load KEEL dataset 
dat<-RKEEL::loadKeelDataset("car")

#Create algorithm
algorithm <- RKEEL::FuzzyApriori_A(dat)

#Run algorithm
algorithm$run()

#Rules in format arules
algorithm$rules

#Show a number of rules
algorithm$showRules(2)

#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()

#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")

#Sort by interest measure lift
algorithm$sortBy("lift")

#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))

FuzzyFARCHD_C KEEL Classification Algorithm

Description

FuzzyFARCHD_C Classification Algorithm from KEEL.

Usage

FuzzyFARCHD_C(train, test, linguistic_values, min_support,
   max_confidence, depth_max, K, max_evaluations, pop_size,
   alpha, bits_per_gen, inference_type, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

linguistic_values

linguistic_values. Default value = 5

min_support

min_support. Default value = 0.05

max_confidence

max_confidence. Default value = 0.8

depth_max

depth_max. Default value = 3

K

K. Default value = 2

max_evaluations

max_evaluations. Default value = 15000

pop_size

pop_size. Default value = 50

alpha

alpha. Default value = 0.15

bits_per_gen

bits_per_gen. Default value = 30

inference_type

inference_type. Default value = 1

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::FuzzyFARCHD_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

FuzzyKNN_C KEEL Classification Algorithm

Description

FuzzyKNN_C Classification Algorithm from KEEL.

Usage

FuzzyKNN_C(train, test, k, M, initialization, init_k)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

k

k. Default value = 3

M

M. Default value = 2.0

initialization

initialization. Default value = "CRISP"

init_k

init_k. Default value = 3

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::FuzzyKNN_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

FuzzyNPC_C KEEL Classification Algorithm

Description

FuzzyNPC_C Classification Algorithm from KEEL.

Usage

FuzzyNPC_C(train, test, M)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

M

M. Default value = 2.0

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::FuzzyNPC_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

GANN_C KEEL Classification Algorithm

Description

GANN_C Classification Algorithm from KEEL.

Usage

GANN_C(train, test, hidden_layers, hidden_nodes, transfer, eta,
   alpha, lambda, test_data, validation_data, cross_validation,
   BP_cycles, improve, tipify_inputs, save_all, elite,
   num_individuals, w_range, connectivity, P_bp, P_param,
   P_struct, max_generations, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

hidden_layers

hidden_layers. Default value = 2

hidden_nodes

hidden_nodes. Default value = 15

transfer

transfer. Default value = "Htan"

eta

eta. Default value = 0.15

alpha

alpha. Default value = 0.1

lambda

lambda. Default value = 0.0

test_data

test_data. Default value = TRUE

validation_data

validation_data. Default value = FALSE

cross_validation

cross_validation. Default value = FALSE

BP_cycles

BP_cycles. Default value = 10000

improve

improve. Default value = 0.01

tipify_inputs

tipify_inputs. Default value = TRUE

save_all

save_all. Default value = FALSE

elite

elite. Default value = 0.1

num_individuals

num_individuals. Default value = 100

w_range

w_range. Default value = 5.0

connectivity

connectivity. Default value = 0.5

P_bp

P_bp. Default value = 0.25

P_param

P_param. Default value = 0.1

P_struct

P_struct. Default value = 0.1

max_generations

max_generations. Default value = 100

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::GANN_C(data_train, data_test, hidden_layers=1, 
  hidden_nodes=5, max_generations=5)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

GAR_A KEEL Association Rules Algorithm

Description

GAR_A Association Rules Algorithm from KEEL.

Usage

GAR_A(dat, seed, NumberofItemsets, TotalNumberofEvaluations, PopulationSize,
  ProbabilityofSelection, ProbabilityofCrossover, ProbabilityofMutation,
  ImportanceofNumberofRecordsAlreadyCovered, ImportanceofIntervalsAmplitude,
  ImportanceofNumberofInvolvedAttributes, AmplitudeFactor, MinimumSupport,
  MinimumConfidence)

Arguments

dat

Dataset as a data.frame object

seed

seed. Default value = 1286082570

NumberofItemsets

Number of Itemsets. Default value = 100

TotalNumberofEvaluations

Total Number of Evaluations. Default value = 50000

PopulationSize

Population Size. Default value = 100

ProbabilityofSelection

Probability of Selection. Default value = 0.25

ProbabilityofCrossover

Probability of Crossover. Default value = 0.7

ProbabilityofMutation

Probability of Mutation. Default value = 0.1

ImportanceofNumberofRecordsAlreadyCovered

Importance of Number of Records Already Covered. Default value = 0.4

ImportanceofIntervalsAmplitude

Importance of Intervals Amplitude. Default value = 0.7

ImportanceofNumberofInvolvedAttributes

Importance of Number of Involved Attributes. Default value = 0.5

AmplitudeFactor

Amplitude Factor. Default value = 2.0

MinimumSupport

Minimum Support. Default value = 0.1

MinimumConfidence

Minimum Confidence. Default value = 0.8

Details

$run() Run algorith

$showRules(numRules) Show a number of rules. By default all rules.

$getInterestMeasures() Return a data.frame with all interest measures of set rules.

$sortBy(interestMeasure) Order set rules by interest measure.

$writeCSV(fileName, sep) Create CSV file with set rules. Default fileName="rules" sep=","

$writePMML(fileName) Create PMML file with set rules. Default fileName="rules"

$addInterestMeasure(name, colName) Add interest measures to set rules. Some interest measures supported:

"allConfidence" (Omiencinski, 2003)

"crossSupportRatio", cross-support ratio (Xiong et al., 2003)

"lift", interest factor (Brin et al. 1997)

"support", supp (Agrawal et al., 1996)

"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)

"chiSquared", X^2 (Liu et al., 1999)

"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)

"collectiveStrength"

"confidence", conf (Agrawal et al., 1996)

"conviction" (Brin et al. 1997)

"cosine" (Tan et al., 2004)

"coverage", cover, LHS-support

"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)

"casualConfidence", casual confidence (Kodratoff, 1999)

"casualSupport", casual support (Kodratoff, 1999)

"counterexample", example and counterexample rate

"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)

"doc", difference of confidence (Hofmann and Wilhelm, 2001)

"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)

"gini", Gini index (Tan et al., 2004)

"hyperLift" (Hahsler and Hornik, 2007)

"hyperConfidence" (Hahsler and Hornik, 2007)

"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)

"implicationIndex", implication index (Gras, 1996)

"improvement" (Bayardo et al., 2000)

"jaccard", Jaccard coefficient (Tan and Kumar, 2000)

"jMeasure", J-measure, J (Smyth and Goodman, 1991)

"kappa" (Tan and Kumar, 2000)

"klosgen", Klosgen (Tan and Kumar, 2000)

"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)

"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)

"laplace", L (Tan and Kumar 2000)

"leastContradiction", least contradiction (Aze and Kodratoff, 2004

"lerman", Lerman similarity (Lerman, 1981)

"leverage", PS (Piatetsky-Shapiro 1991)

"mutualInformation", uncertainty, M (Tan et al., 2002)

"oddsRatio", odds ratio alpha (Tan et al., 2004)

"phi", correlation coefficient phi (Tan et al. 2004)

"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)

"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)

"sebag", Sebag measure (Sebag and Schoenauer, 1988)

"support", supp (Agrawal et al., 1996)

"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)

"yuleQ", Yule's Q (Tan and Kumar, 2000)

"yuleY", Yule's Y (Tan and Kumar, 2000)

For more information see ?arules::interestMeasure

Value

A arules class with the Association Rules for both dat dataset.

Examples

#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("glass")

#Create algorithm
algorithm <- RKEEL::GAR_A(dat)

#Run algorithm
algorithm$run()

#Rules in format arules
algorithm$rules

#Show a number of rules
algorithm$showRules(2)

#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()

#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")

#Sort by interest measure lift
algorithm$sortBy("lift")

#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))

GENAR_A KEEL Association Rules Algorithm

Description

GENAR_A Association Rules Algorithm from KEEL.

Usage

GENAR_A(dat, seed, NumberofAssociationRules, TotalNumberofEvaluations, 
  PopulationSize, ProbabilityofSelection, ProbabilityofMutation, 
  PenalizationFactor, AmplitudeFactor)

Arguments

dat

Dataset as a data.frame object

seed

seed. Default value = 1286082570

NumberofAssociationRules

Number of Association Rules. Default value = 30

TotalNumberofEvaluations

Total Number of Evaluations. Default value = 50000

PopulationSize

Population Size. Default value = 100

ProbabilityofSelection

Probability of Selection. Default value = 0.25

ProbabilityofMutation

Probability of Mutation. Default value = 0.1

PenalizationFactor

Penalization Factor. Default value = 0.7

AmplitudeFactor

Amplitude Factor. Default value = 2.0

Details

$run() Run algorith

$showRules(numRules) Show a number of rules. By default all rules.

$getInterestMeasures() Return a data.frame with all interest measures of set rules.

$sortBy(interestMeasure) Order set rules by interest measure.

$writeCSV(fileName, sep) Create CSV file with set rules. Default fileName="rules" sep=","

$writePMML(fileName) Create PMML file with set rules. Default fileName="rules"

$addInterestMeasure(name, colName) Add interest measures to set rules. Some interest measures supported:

"allConfidence" (Omiencinski, 2003)

"crossSupportRatio", cross-support ratio (Xiong et al., 2003)

"lift", interest factor (Brin et al. 1997)

"support", supp (Agrawal et al., 1996)

"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)

"chiSquared", X^2 (Liu et al., 1999)

"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)

"collectiveStrength"

"confidence", conf (Agrawal et al., 1996)

"conviction" (Brin et al. 1997)

"cosine" (Tan et al., 2004)

"coverage", cover, LHS-support

"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)

"casualConfidence", casual confidence (Kodratoff, 1999)

"casualSupport", casual support (Kodratoff, 1999)

"counterexample", example and counterexample rate

"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)

"doc", difference of confidence (Hofmann and Wilhelm, 2001)

"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)

"gini", Gini index (Tan et al., 2004)

"hyperLift" (Hahsler and Hornik, 2007)

"hyperConfidence" (Hahsler and Hornik, 2007)

"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)

"implicationIndex", implication index (Gras, 1996)

"improvement" (Bayardo et al., 2000)

"jaccard", Jaccard coefficient (Tan and Kumar, 2000)

"jMeasure", J-measure, J (Smyth and Goodman, 1991)

"kappa" (Tan and Kumar, 2000)

"klosgen", Klosgen (Tan and Kumar, 2000)

"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)

"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)

"laplace", L (Tan and Kumar 2000)

"leastContradiction", least contradiction (Aze and Kodratoff, 2004

"lerman", Lerman similarity (Lerman, 1981)

"leverage", PS (Piatetsky-Shapiro 1991)

"mutualInformation", uncertainty, M (Tan et al., 2002)

"oddsRatio", odds ratio alpha (Tan et al., 2004)

"phi", correlation coefficient phi (Tan et al. 2004)

"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)

"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)

"sebag", Sebag measure (Sebag and Schoenauer, 1988)

"support", supp (Agrawal et al., 1996)

"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)

"yuleQ", Yule's Q (Tan and Kumar, 2000)

"yuleY", Yule's Y (Tan and Kumar, 2000)

For more information see ?arules::interestMeasure

Value

A arules class with the Association Rules for both dat dataset.

Examples

#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("glass")

#Create algorithm
algorithm <- RKEEL::GENAR_A(dat)

#Run algorithm
algorithm$run()

#Rules in format arules
algorithm$rules

#Show a number of rules
algorithm$showRules(2)

#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()

#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")

#Sort by interest measure lift
algorithm$sortBy("lift")

#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))

GeneticFuzzyApriori_A KEEL Association Rules Algorithm

Description

GeneticFuzzyApriori_A Association Rules Algorithm from KEEL.

Usage

GeneticFuzzyApriori_A(dat, seed, NumberofEvaluations, PopulationSize, 
  ProbabilityofMutation, ProbabilityofCrossover, ParameterdforMMACrossover, 
  NumberofFuzzyRegionsforNumericAttributes, UseMaxOperatorfor1FrequentItemsets, 
  MinimumSupport, MinimumConfidence)

Arguments

dat

Dataset as a data.frame object

seed

seed. Default value = 1286082570

NumberofEvaluations

Number of Evaluations. Default value = 10000

PopulationSize

Population Size. Default value = 50

ProbabilityofMutation

Probability of Mutation. Default value = 0.01

ProbabilityofCrossover

Probability of Crossover. Default value = 0.8

ParameterdforMMACrossover

Parameterd for MMA Crossover. Default value = 0.35

NumberofFuzzyRegionsforNumericAttributes

Number of Fuzzy Regions for Numeric Attributes. Default value = 3

UseMaxOperatorfor1FrequentItemsets

Use Max Operator for 1 Frequent Itemsets. Default value = "false"

MinimumSupport

Minimum Support. Default value = 0.1

MinimumConfidence

Minimum Confidence. Default value = 0.8

Details

$run() Run algorith

$showRules(numRules) Show a number of rules. By default all rules.

$getInterestMeasures() Return a data.frame with all interest measures of set rules.

$sortBy(interestMeasure) Order set rules by interest measure.

$writeCSV(fileName, sep) Create CSV file with set rules. Default fileName="rules" sep=","

$writePMML(fileName) Create PMML file with set rules. Default fileName="rules"

$addInterestMeasure(name, colName) Add interest measures to set rules. Some interest measures supported:

"allConfidence" (Omiencinski, 2003)

"crossSupportRatio", cross-support ratio (Xiong et al., 2003)

"lift", interest factor (Brin et al. 1997)

"support", supp (Agrawal et al., 1996)

"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)

"chiSquared", X^2 (Liu et al., 1999)

"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)

"collectiveStrength"

"confidence", conf (Agrawal et al., 1996)

"conviction" (Brin et al. 1997)

"cosine" (Tan et al., 2004)

"coverage", cover, LHS-support

"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)

"casualConfidence", casual confidence (Kodratoff, 1999)

"casualSupport", casual support (Kodratoff, 1999)

"counterexample", example and counterexample rate

"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)

"doc", difference of confidence (Hofmann and Wilhelm, 2001)

"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)

"gini", Gini index (Tan et al., 2004)

"hyperLift" (Hahsler and Hornik, 2007)

"hyperConfidence" (Hahsler and Hornik, 2007)

"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)

"implicationIndex", implication index (Gras, 1996)

"improvement" (Bayardo et al., 2000)

"jaccard", Jaccard coefficient (Tan and Kumar, 2000)

"jMeasure", J-measure, J (Smyth and Goodman, 1991)

"kappa" (Tan and Kumar, 2000)

"klosgen", Klosgen (Tan and Kumar, 2000)

"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)

"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)

"laplace", L (Tan and Kumar 2000)

"leastContradiction", least contradiction (Aze and Kodratoff, 2004

"lerman", Lerman similarity (Lerman, 1981)

"leverage", PS (Piatetsky-Shapiro 1991)

"mutualInformation", uncertainty, M (Tan et al., 2002)

"oddsRatio", odds ratio alpha (Tan et al., 2004)

"phi", correlation coefficient phi (Tan et al. 2004)

"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)

"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)

"sebag", Sebag measure (Sebag and Schoenauer, 1988)

"support", supp (Agrawal et al., 1996)

"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)

"yuleQ", Yule's Q (Tan and Kumar, 2000)

"yuleY", Yule's Y (Tan and Kumar, 2000)

For more information see ?arules::interestMeasure

Value

A arules class with the Association Rules for both dat dataset.

Examples

#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")

#Create algorithm
algorithm <- RKEEL::GeneticFuzzyApriori_A(dat)

#Run algorithm
algorithm$run()

#Rules in format arules
algorithm$rules

#Show a number of rules
algorithm$showRules(2)

#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()

#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")

#Sort by interest measure lift
algorithm$sortBy("lift")

#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))

GeneticFuzzyAprioriDC_A KEEL Association Rules Algorithm

Description

GeneticFuzzyAprioriDC_A Association Rules Algorithm from KEEL.

Usage

GeneticFuzzyAprioriDC_A(dat, seed, NumberofEvaluations, PopulationSize, 
  ProbabilityofMutation, ProbabilityofCrossover, ParameterdforMMACrossover, 
  NumberofFuzzyRegionsforNumericAttributes, UseMaxOperatorfor1FrequentItemsets, 
  MinimumSupport, MinimumConfidence)

Arguments

dat

Dataset as a data.frame object

seed

seed. Default value = 1286082570

NumberofEvaluations

Number of Evaluations. Default value = 10000

PopulationSize

Population Size. Default value = 50

ProbabilityofMutation

Probability of Mutation. Default value = 0.01

ProbabilityofCrossover

Probability of Crossover. Default value = 0.8

ParameterdforMMACrossover

Parameterd for MMA Crossover. Default value = 0.35

NumberofFuzzyRegionsforNumericAttributes

Number of Fuzzy Regions for Numeric Attributes. Default value = 3

UseMaxOperatorfor1FrequentItemsets

Use Max Operator for 1 Frequent Itemsets. Default value = "false"

MinimumSupport

Minimum Support. Default value = 0.1

MinimumConfidence

Minimum Confidence. Default value = 0.8

Details

$run() Run algorith

$showRules(numRules) Show a number of rules. By default all rules.

$getInterestMeasures() Return a data.frame with all interest measures of set rules.

$sortBy(interestMeasure) Order set rules by interest measure.

$writeCSV(fileName, sep) Create CSV file with set rules. Default fileName="rules" sep=","

$writePMML(fileName) Create PMML file with set rules. Default fileName="rules"

$addInterestMeasure(name, colName) Add interest measures to set rules. Some interest measures supported:

"allConfidence" (Omiencinski, 2003)

"crossSupportRatio", cross-support ratio (Xiong et al., 2003)

"lift", interest factor (Brin et al. 1997)

"support", supp (Agrawal et al., 1996)

"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)

"chiSquared", X^2 (Liu et al., 1999)

"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)

"collectiveStrength"

"confidence", conf (Agrawal et al., 1996)

"conviction" (Brin et al. 1997)

"cosine" (Tan et al., 2004)

"coverage", cover, LHS-support

"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)

"casualConfidence", casual confidence (Kodratoff, 1999)

"casualSupport", casual support (Kodratoff, 1999)

"counterexample", example and counterexample rate

"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)

"doc", difference of confidence (Hofmann and Wilhelm, 2001)

"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)

"gini", Gini index (Tan et al., 2004)

"hyperLift" (Hahsler and Hornik, 2007)

"hyperConfidence" (Hahsler and Hornik, 2007)

"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)

"implicationIndex", implication index (Gras, 1996)

"improvement" (Bayardo et al., 2000)

"jaccard", Jaccard coefficient (Tan and Kumar, 2000)

"jMeasure", J-measure, J (Smyth and Goodman, 1991)

"kappa" (Tan and Kumar, 2000)

"klosgen", Klosgen (Tan and Kumar, 2000)

"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)

"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)

"laplace", L (Tan and Kumar 2000)

"leastContradiction", least contradiction (Aze and Kodratoff, 2004

"lerman", Lerman similarity (Lerman, 1981)

"leverage", PS (Piatetsky-Shapiro 1991)

"mutualInformation", uncertainty, M (Tan et al., 2002)

"oddsRatio", odds ratio alpha (Tan et al., 2004)

"phi", correlation coefficient phi (Tan et al. 2004)

"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)

"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)

"sebag", Sebag measure (Sebag and Schoenauer, 1988)

"support", supp (Agrawal et al., 1996)

"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)

"yuleQ", Yule's Q (Tan and Kumar, 2000)

"yuleY", Yule's Y (Tan and Kumar, 2000)

For more information see ?arules::interestMeasure

Value

A arules class with the Association Rules for both dat dataset.

Examples

#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")

#Create algorithm
algorithm <- RKEEL::GeneticFuzzyAprioriDC_A(dat)

#Run algorithm
algorithm$run()

#Rules in format arules
algorithm$rules

#Show a number of rules
algorithm$showRules(2)

#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()

#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")

#Sort by interest measure lift
algorithm$sortBy("lift")

#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))

Get attribute lines from data.frames

Description

Method for getting the attribute lines from data.frame objects

Usage

getAttributeLinesFromDataframes(trainData, testData)

Arguments

trainData

Train dataset as data.frame

testData

Test dataset as data.frame

Value

Returns a list with the attribute names and types

Examples

iris_train <- RKEEL::loadKeelDataset("iris_train")
iris_test <- RKEEL::loadKeelDataset("iris_test")

attributeLines <- getAttributeLinesFromDataframes(iris_train, iris_test)

Get jar executable files Path

Description

Method for knowing the KEEL .jar files path.

Usage

getExePath()

Value

Returns a string with the path of the KEEL .jar files.

Examples

getExePath()

Get a list with all RKEEL algorithm jars

Description

Method that returns a list with the jar names from RKEEL

Usage

getJarList()

Value

Returns a list with the jar names from RKEEL.

Examples

getJarList()

Get RunKeel.jar Path

Description

Method for knowing the RunKeel.jar path.

Usage

getJarPath()

Value

Returns a string with the RunKeel.jar path.

Examples

getJarPath()

GFS_AdaBoost_C KEEL Classification Algorithm

Description

GFS_AdaBoost_C Classification Algorithm from KEEL.

Usage

GFS_AdaBoost_C(train, test, numLabels, numRules, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

numLabels

numLabels. Default value = 3

numRules

numRules. Default value = 8

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::GFS_AdaBoost_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

GFS_GP_R KEEL Regression Algorithm

Description

GFS_GP_R Regression Algorithm from KEEL.

Usage

GFS_GP_R(train, test, numLabels, numRules, popSize, numisland,
   steady, numIter, tourSize, mutProb, aplMut, probMigra,
   probOptimLocal, numOptimLocal, idOptimLocal, nichinggap,
   maxindniche, probintraniche, probcrossga, probmutaga,
   lenchaingap, maxtreeheight, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

numLabels

numLabels. Default value = 3

numRules

numRules. Default value = 8

popSize

popSize. Default value = 30

numisland

numisland. Default value = 2

steady

steady. Default value = 1

numIter

numIter. Default value = 100

tourSize

tourSize. Default value = 4

mutProb

mutProb. Default value = 0.01

aplMut

aplMut. Default value = 0.1

probMigra

probMigra. Default value = 0.001

probOptimLocal

probOptimLocal. Default value = 0.00

numOptimLocal

numOptimLocal. Default value = 0

idOptimLocal

idOptimLocal. Default value = 0

nichinggap

nichinggap. Default value = 0

maxindniche

maxindniche. Default value = 8

probintraniche

probintraniche. Default value = 0.75

probcrossga

probcrossga. Default value = 0.5

probmutaga

probmutaga. Default value = 0.5

lenchaingap

lenchaingap. Default value = 10

maxtreeheight

maxtreeheight. Default value = 8

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted values for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")

#Create algorithm
algorithm <- RKEEL::GFS_GP_R(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

GFS_GSP_R KEEL Regression Algorithm

Description

GFS_GSP_R Regression Algorithm from KEEL.

Usage

GFS_GSP_R(train, test, numLabels, numRules, deltafitsap,
   p0sap, p1sap, amplMut, nsubsap, probOptimLocal,
   numOptimLocal, idOptimLocal, probcrossga, probmutaga,
   lenchaingap, maxtreeheight, numItera, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

numLabels

numLabels. Default value = 3

numRules

numRules. Default value = 8

deltafitsap

deltafitsap. Default value = 0.5

p0sap

p0sap. Default value = 0.5

p1sap

p1sap. Default value = 0.5

amplMut

amplMut. Default value = 0.1

nsubsap

nsubsap. Default value = 10

probOptimLocal

probOptimLocal. Default value = 0.00

numOptimLocal

numOptimLocal. Default value = 0

idOptimLocal

idOptimLocal. Default value = 0

probcrossga

probcrossga. Default value = 0.5

probmutaga

probmutaga. Default value = 0.5

lenchaingap

lenchaingap. Default value = 10

maxtreeheight

maxtreeheight. Default value = 8

numItera

numItera. Default value = 10000

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted values for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")

#Create algorithm
algorithm <- RKEEL::GFS_GSP_R(data_train, data_test)
algorithm <- RKEEL::GFS_GSP_R(data_train, data_test, numRules=2, numItera=10, maxtreeheight=2)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

GFS_LogitBoost_C KEEL Classification Algorithm

Description

GFS_LogitBoost_C Classification Algorithm from KEEL.

Usage

GFS_LogitBoost_C(train, test, numLabels, numRules, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

numLabels

numLabels. Default value = 3

numRules

numRules. Default value = 25

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::GFS_LogitBoost_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

GFS_RB_MF_R KEEL Regression Algorithm

Description

GFS_RB_MF_R Regression Algorithm from KEEL.

Usage

GFS_RB_MF_R(train, test, numLabels, popSize, generations,
   crossProb, mutProb, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

numLabels

numLabels. Default value = 3

popSize

popSize. Default value = 50

generations

generations. Default value = 100

crossProb

crossProb. Default value = 0.9

mutProb

mutProb. Default value = 0.1

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted values for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")

#Create algorithm
algorithm <- RKEEL::GFS_RB_MF_R(data_train, data_test)
algorithm <- RKEEL::GFS_RB_MF_R(data_train, data_test, popSize = 5, generations = 10)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

Has Continuous Data

Description

Method for check if a dataset has continuous data

Usage

hasContinuousData(data)

Arguments

data

Dataset as data.frame

Value

Returns TRUE if the dataset has continuous data and FALSE if it has not.

Examples

iris <- RKEEL::loadKeelDataset("iris")
hasContinuousData(iris)

Has Missing Values

Description

Method for check if a dataset has missing values

Usage

hasMissingValues(data)

Arguments

data

Dataset as data.frame

Value

Returns TRUE if the dataset has missing values and FALSE if it has not.

Examples

iris <- RKEEL::loadKeelDataset("iris")
hasMissingValues(iris)

ID3_C KEEL Classification Algorithm

Description

ID3_C Classification Algorithm from KEEL.

Usage

ID3_C(train, test)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::ID3_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

ID3_D KEEL Preprocess Algorithm

Description

ID3_D Preprocess Algorithm from KEEL.

Usage

ID3_D(train, test)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::ID3_D(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

IF_KNN_C KEEL Classification Algorithm

Description

IF_KNN_C Classification Algorithm from KEEL.

Usage

IF_KNN_C(train, test, K, mA, vA, mR, vR, k)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

K

K. Default value = 3

mA

mA. Default value = 0.6

vA

vA. Default value = 0.4

mR

mR. Default value = 0.3

vR

vR. Default value = 0.7

k

k. Default value = 5

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::IF_KNN_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

Ignore_MV KEEL Preprocess Algorithm

Description

Ignore_MV Preprocess Algorithm from KEEL.

Usage

Ignore_MV(train, test)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::Ignore_MV(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

ImbalancedClassification Algorithm

Description

Class inheriting of ClassificationAlgorithm, to common methods for all KEEL Imbalanced Classification Algorithms. The specific imbalanced-classification algorithms must inherit of this class.


IncrRBFN_C KEEL Classification Algorithm

Description

IncrRBFN_C Classification Algorithm from KEEL.

Usage

IncrRBFN_C(train, test, epsilon, alfa, delta, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

epsilon

epsilon. Default value = 0.1

alfa

alfa. Default value = 0.3

delta

delta. Default value = 0.5

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::IncrRBFN_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

Is Multi-class

Description

Method for check if a dataset is multi-class

Usage

isMultiClass(data)

Arguments

data

Dataset as data.frame

Value

Returns TRUE if the dataset is multi-class and FALSE if it is not.

Examples

iris <- RKEEL::loadKeelDataset("iris")
isMultiClass(iris)

IterativePartitioningFilter_F KEEL Preprocess Algorithm

Description

IterativePartitioningFilter_F Preprocess Algorithm from KEEL.

Usage

IterativePartitioningFilter_F(train, test, numPartitions,
   filterType, confidence, itemsetsPerLeaf, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

numPartitions

numPartitions. Default value = 5

filterType

filterType. Default value = "consensus"

confidence

confidence. Default value = 0.25

itemsetsPerLeaf

itemsetsPerLeaf. Default value = 2

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::IterativePartitioningFilter_F(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

JFKNN_C KEEL Classification Algorithm

Description

JFKNN_C Classification Algorithm from KEEL.

Usage

JFKNN_C(train, test)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::JFKNN_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

Keel Algorithm

Description

Principal class for implementing KEEL Algorithms. The distinct types of algorithms must inherit of this class.


Kernel_C KEEL Classification Algorithm

Description

Kernel_C Classification Algorithm from KEEL.

Usage

Kernel_C(train, test, sigma, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

sigma

sigma. Default value = 0.01

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::Kernel_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

KMeans_MV KEEL Preprocess Algorithm

Description

KMeans_MV Preprocess Algorithm from KEEL.

Usage

KMeans_MV(train, test, k, error, iterations, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

k

k. Default value = 10

error

error. Default value = 100

iterations

iterations. Default value = 100

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::KMeans_MV(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

KNN-C KEEL Classification Algorithm

Description

KNN-C Classification Algorithm from KEEL.

Usage

KNN_C(train, test, k, distance)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

k

Number of neighbors

distance

Distance function

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::KNN_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

KNN_MV KEEL Preprocess Algorithm

Description

KNN_MV Preprocess Algorithm from KEEL.

Usage

KNN_MV(train, test, k)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

k

k. Default value = 10

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::KNN_MV(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

KSNN_C KEEL Classification Algorithm

Description

KSNN_C Classification Algorithm from KEEL.

Usage

KSNN_C(train, test, k)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

k

k. Default value = 1

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::KSNN_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

KStar_C KEEL Classification Algorithm

Description

KStar_C Classification Algorithm from KEEL.

Usage

KStar_C(train, test, selection_method, blend, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

selection_method

selection_method. Default value = "Fixed"

blend

blend. Default value = 0.2

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::KStar_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

LDA_C KEEL Classification Algorithm

Description

LDA_C Classification Algorithm from KEEL.

Usage

LDA_C(train, test, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::LDA_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

LinearLMS_C KEEL Classification Algorithm

Description

LinearLMS_C Classification Algorithm from KEEL.

Usage

LinearLMS_C(train, test, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::LinearLMS_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

LinearLMS_R KEEL Regression Algorithm

Description

LinearLMS_R Regression Algorithm from KEEL.

Usage

LinearLMS_R(train, test, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted values for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")

#Create algorithm
algorithm <- RKEEL::LinearLMS_R(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

Load KEEL Dataset

Description

Loads a dataset of the KEEL datasets repository. The included datasets names are available at the getKeelDatasetList method of RKEELdata.

Usage

loadKeelDataset(dataName)

Arguments

dataName

String with the correct data name of one of the KEEL datasets

Value

Returns a data.frame with the KEEL dataset.

Examples

RKEEL::loadKeelDataset("iris")

Logistic_C KEEL Classification Algorithm

Description

Logistic_C Classification Algorithm from KEEL.

Usage

Logistic_C(train, test, ridge, maxIter)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

ridge

ridge. Default value = 1e-8

maxIter

maxIter. Default value = -1

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::Logistic_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

LVF_IEP_FS KEEL Preprocess Algorithm

Description

LVF_IEP_FS Preprocess Algorithm from KEEL.

Usage

LVF_IEP_FS(train, test, paramKNN, maxLoops, inconAllow, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

paramKNN

paramKNN. Default value = 1

maxLoops

maxLoops. Default value = 770

inconAllow

inconAllow. Default value = 0

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::LVF_IEP_FS(data_train, data_test)
algorithm <- RKEEL::LVF_IEP_FS(data_train, data_test, maxLoops = 30, 
  inconAllow=2)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

M5_R KEEL Regression Algorithm

Description

M5_R Regression Algorithm from KEEL.

Usage

M5_R(train, test, type, pruningFactor, unsmoothed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

type

type. Default value = "m"

pruningFactor

pruningFactor. Default value = 2

unsmoothed

unsmoothed. Default value = TRUE

Value

A data.frame with the actual and predicted values for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")

#Create algorithm
algorithm <- RKEEL::M5_R(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

M5Rules_R KEEL Regression Algorithm

Description

M5Rules_R Regression Algorithm from KEEL.

Usage

M5Rules_R(train, test, pruningFactor, heuristic)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

pruningFactor

pruningFactor. Default value = 2

heuristic

heuristic. Default value = "Coverage"

Value

A data.frame with the actual and predicted values for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")

#Create algorithm
algorithm <- RKEEL::M5Rules_R(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

MinMax_TR KEEL Preprocess Algorithm

Description

MinMax_TR Preprocess Algorithm from KEEL.

Usage

MinMax_TR(train, test, newMin, newMax)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

newMin

newMin. Default value = 0.0

newMax

newMax. Default value = 1.0

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::MinMax_TR(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

MLP_BP_C KEEL Classification Algorithm

Description

MLP_BP_C Classification Algorithm from KEEL.

Usage

MLP_BP_C(train, test, hidden_layers, hidden_nodes, transfer,
   eta, alpha, lambda, test_data, validation_data,
   cross_validation, cycles, improve, tipify_inputs,
   save_all, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

hidden_layers

hidden_layers. Default value = 2

hidden_nodes

hidden_nodes. Default value = 15

transfer

transfer. Default value = "Htan"

eta

eta. Default value = 0.15

alpha

alpha. Default value = 0.1

lambda

lambda. Default value = 0.0

test_data

test_data. Default value = TRUE

validation_data

validation_data. Default value = FALSE

cross_validation

cross_validation. Default value = FALSE

cycles

cycles. Default value = 10000

improve

improve. Default value = 0.01

tipify_inputs

tipify_inputs. Default value = TRUE

save_all

save_all. Default value = FALSE

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::MLP_BP_C(data_train, data_test, )

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

MLP_BP_R KEEL Regression Algorithm

Description

MLP_BP_R Regression Algorithm from KEEL.

Usage

MLP_BP_R(train, test, hidden_layers, hidden_nodes, transfer,
   eta, alpha, lambda, test_data, validation_data,
   cross_validation, cycles, improve, tipify_inputs,
   save_all, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

hidden_layers

hidden_layers. Default value = 2

hidden_nodes

hidden_nodes. Default value = 15

transfer

transfer. Default value = "Htan"

eta

eta. Default value = 0.15

alpha

alpha. Default value = 0.1

lambda

lambda. Default value = 0.0

test_data

test_data. Default value = TRUE

validation_data

validation_data. Default value = FALSE

cross_validation

cross_validation. Default value = FALSE

cycles

cycles. Default value = 10000

improve

improve. Default value = 0.01

tipify_inputs

tipify_inputs. Default value = TRUE

save_all

save_all. Default value = FALSE

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted values for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")

#Create algorithm
algorithm <- RKEEL::MLP_BP_R(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

ModelCS_TSS KEEL Preprocess Algorithm

Description

ModelCS_TSS Preprocess Algorithm from KEEL.

Usage

ModelCS_TSS(train, test, k, distance)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

k

k. Default value = 3

distance

distance. Default value = "Euclidean"

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::ModelCS_TSS(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

MODENAR_A KEEL Association Rules Algorithm

Description

MODENAR_A Association Rules Algorithm from KEEL.

Usage

MODENAR_A(dat, seed, PopulationSize, NumberofEvaluations, CrossoverrateCR, 
  Thresholdforthenumberofnondominatedsolutions, 
  Thefactorofamplitudeforeachattributeofthedataset, WeightforSupport, 
  WeightforConfidence, WeightforComprehensibility, 
  WeightforAmplitudeoftheIntervals)

Arguments

dat

Dataset as a data.frame object

seed

seed. Default value = 1286082570

PopulationSize

Population Size. Default value = 100

NumberofEvaluations

Number of Evaluations. Default value = 50000

CrossoverrateCR

Crossover rate CR. Default value = 0.3

Thresholdforthenumberofnondominatedsolutions

Threshold for the number of non-dominated solutions. Default value = 60

Thefactorofamplitudeforeachattributeofthedataset

The factor of amplitude for each attribute of the dataset. Default value = 2

WeightforSupport

Weight for Support. Default value = 0.8

WeightforConfidence

Weight for Confidence. Default value = 0.2

WeightforComprehensibility

Weight for Comprehensibility. Default value = 0.1

WeightforAmplitudeoftheIntervals

Weight for Amplitude of the Intervals. Default value = 0.4

Details

$run() Run algorith

$showRules(numRules) Show a number of rules. By default all rules.

$getInterestMeasures() Return a data.frame with all interest measures of set rules.

$sortBy(interestMeasure) Order set rules by interest measure.

$writeCSV(fileName, sep) Create CSV file with set rules. Default fileName="rules" sep=","

$writePMML(fileName) Create PMML file with set rules. Default fileName="rules"

$addInterestMeasure(name, colName) Add interest measures to set rules. Some interest measures supported:

"allConfidence" (Omiencinski, 2003)

"crossSupportRatio", cross-support ratio (Xiong et al., 2003)

"lift", interest factor (Brin et al. 1997)

"support", supp (Agrawal et al., 1996)

"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)

"chiSquared", X^2 (Liu et al., 1999)

"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)

"collectiveStrength"

"confidence", conf (Agrawal et al., 1996)

"conviction" (Brin et al. 1997)

"cosine" (Tan et al., 2004)

"coverage", cover, LHS-support

"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)

"casualConfidence", casual confidence (Kodratoff, 1999)

"casualSupport", casual support (Kodratoff, 1999)

"counterexample", example and counterexample rate

"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)

"doc", difference of confidence (Hofmann and Wilhelm, 2001)

"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)

"gini", Gini index (Tan et al., 2004)

"hyperLift" (Hahsler and Hornik, 2007)

"hyperConfidence" (Hahsler and Hornik, 2007)

"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)

"implicationIndex", implication index (Gras, 1996)

"improvement" (Bayardo et al., 2000)

"jaccard", Jaccard coefficient (Tan and Kumar, 2000)

"jMeasure", J-measure, J (Smyth and Goodman, 1991)

"kappa" (Tan and Kumar, 2000)

"klosgen", Klosgen (Tan and Kumar, 2000)

"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)

"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)

"laplace", L (Tan and Kumar 2000)

"leastContradiction", least contradiction (Aze and Kodratoff, 2004

"lerman", Lerman similarity (Lerman, 1981)

"leverage", PS (Piatetsky-Shapiro 1991)

"mutualInformation", uncertainty, M (Tan et al., 2002)

"oddsRatio", odds ratio alpha (Tan et al., 2004)

"phi", correlation coefficient phi (Tan et al. 2004)

"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)

"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)

"sebag", Sebag measure (Sebag and Schoenauer, 1988)

"support", supp (Agrawal et al., 1996)

"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)

"yuleQ", Yule's Q (Tan and Kumar, 2000)

"yuleY", Yule's Y (Tan and Kumar, 2000)

For more information see ?arules::interestMeasure

Value

A arules class with the Association Rules for both dat dataset.

Examples

#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")

#Create algorithm
algorithm <- RKEEL::MODENAR_A(dat)

#Run algorithm
algorithm$run()

#Rules in format arules
algorithm$rules

#Show a number of rules
algorithm$showRules(2)

#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()

#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")

#Sort by interest measure lift
algorithm$sortBy("lift")

#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))

MOEA_Ghosh_A KEEL Association Rules Algorithm

Description

MOEA_Ghosh_A Association Rules Algorithm from KEEL.

Usage

MOEA_Ghosh_A(dat, seed, NumberofObjetives, NumberofEvaluations, PopulationSize, 
  PointCrossover, ProbabilityofCrossover, ProbabilityofMutation, 
  Thefactorofamplitudeforeachattributeofthedataset)

Arguments

dat

Dataset as a data.frame object

seed

seed. Default value = 1286082570

NumberofObjetives

Number of Objetives. Default value = 3

NumberofEvaluations

Number of Evaluations. Default value = 50000

PopulationSize

Population Size. Default value = 100

PointCrossover

Point Crossover. Default value = 2

ProbabilityofCrossover

Probability of Crossover. Default value = 0.8

ProbabilityofMutation

Probability of Mutation. Default value = 0.02

Thefactorofamplitudeforeachattributeofthedataset

The factor of amplitude for each attribute of the dataset. Default value = 2.0

Details

$run() Run algorith

$showRules(numRules) Show a number of rules. By default all rules.

$getInterestMeasures() Return a data.frame with all interest measures of set rules.

$sortBy(interestMeasure) Order set rules by interest measure.

$writeCSV(fileName, sep) Create CSV file with set rules. Default fileName="rules" sep=","

$writePMML(fileName) Create PMML file with set rules. Default fileName="rules"

$addInterestMeasure(name, colName) Add interest measures to set rules. Some interest measures supported:

"allConfidence" (Omiencinski, 2003)

"crossSupportRatio", cross-support ratio (Xiong et al., 2003)

"lift", interest factor (Brin et al. 1997)

"support", supp (Agrawal et al., 1996)

"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)

"chiSquared", X^2 (Liu et al., 1999)

"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)

"collectiveStrength"

"confidence", conf (Agrawal et al., 1996)

"conviction" (Brin et al. 1997)

"cosine" (Tan et al., 2004)

"coverage", cover, LHS-support

"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)

"casualConfidence", casual confidence (Kodratoff, 1999)

"casualSupport", casual support (Kodratoff, 1999)

"counterexample", example and counterexample rate

"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)

"doc", difference of confidence (Hofmann and Wilhelm, 2001)

"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)

"gini", Gini index (Tan et al., 2004)

"hyperLift" (Hahsler and Hornik, 2007)

"hyperConfidence" (Hahsler and Hornik, 2007)

"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)

"implicationIndex", implication index (Gras, 1996)

"improvement" (Bayardo et al., 2000)

"jaccard", Jaccard coefficient (Tan and Kumar, 2000)

"jMeasure", J-measure, J (Smyth and Goodman, 1991)

"kappa" (Tan and Kumar, 2000)

"klosgen", Klosgen (Tan and Kumar, 2000)

"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)

"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)

"laplace", L (Tan and Kumar 2000)

"leastContradiction", least contradiction (Aze and Kodratoff, 2004

"lerman", Lerman similarity (Lerman, 1981)

"leverage", PS (Piatetsky-Shapiro 1991)

"mutualInformation", uncertainty, M (Tan et al., 2002)

"oddsRatio", odds ratio alpha (Tan et al., 2004)

"phi", correlation coefficient phi (Tan et al. 2004)

"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)

"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)

"sebag", Sebag measure (Sebag and Schoenauer, 1988)

"support", supp (Agrawal et al., 1996)

"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)

"yuleQ", Yule's Q (Tan and Kumar, 2000)

"yuleY", Yule's Y (Tan and Kumar, 2000)

For more information see ?arules::interestMeasure

Value

A arules class with the Association Rules for both dat dataset.

Examples

#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")

#Create algorithm
algorithm <- RKEEL::MOEA_Ghosh_A(dat)

#Run algorithm
algorithm$run()

#Rules in format arules
algorithm$rules

#Show a number of rules
algorithm$showRules(2)

#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()

#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")

#Sort by interest measure lift
algorithm$sortBy("lift")

#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))

MOPNAR_A KEEL Association Rules Algorithm

Description

MOPNAR_A Association Rules Algorithm from KEEL.

Usage

MOPNAR_A(dat, seed, objetives, evaluations, parameter, weightNeighborhood, 
  wrobabilitySolutionsNeighborhood, maxSolutions, probabilityMutation, 
  amplitude, threshold)

Arguments

dat

Dataset as a data.frame object

seed

seed. Default value = 1286082570

objetives

objetives. Default value = 3

evaluations

evaluations. Default value = 50000

parameter

parameter. Default value = 13

weightNeighborhood

weightNeighborhood. Default value = 10

wrobabilitySolutionsNeighborhood

wrobabilitySolutionsNeighborhood. Default value = 0.9

maxSolutions

maxSolutions. Default value = 2

probabilityMutation

probabilityMutation. Default value = 0.1

amplitude

amplitude. Default value = 2.0

threshold

threshold. Default value = 5.0

Details

$run() Run algorith

$showRules(numRules) Show a number of rules. By default all rules.

$getInterestMeasures() Return a data.frame with all interest measures of set rules.

$sortBy(interestMeasure) Order set rules by interest measure.

$writeCSV(fileName, sep) Create CSV file with set rules. Default fileName="rules" sep=","

$writePMML(fileName) Create PMML file with set rules. Default fileName="rules"

$addInterestMeasure(name, colName) Add interest measures to set rules. Some interest measures supported:

"allConfidence" (Omiencinski, 2003)

"crossSupportRatio", cross-support ratio (Xiong et al., 2003)

"lift", interest factor (Brin et al. 1997)

"support", supp (Agrawal et al., 1996)

"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)

"chiSquared", X^2 (Liu et al., 1999)

"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)

"collectiveStrength"

"confidence", conf (Agrawal et al., 1996)

"conviction" (Brin et al. 1997)

"cosine" (Tan et al., 2004)

"coverage", cover, LHS-support

"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)

"casualConfidence", casual confidence (Kodratoff, 1999)

"casualSupport", casual support (Kodratoff, 1999)

"counterexample", example and counterexample rate

"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)

"doc", difference of confidence (Hofmann and Wilhelm, 2001)

"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)

"gini", Gini index (Tan et al., 2004)

"hyperLift" (Hahsler and Hornik, 2007)

"hyperConfidence" (Hahsler and Hornik, 2007)

"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)

"implicationIndex", implication index (Gras, 1996)

"improvement" (Bayardo et al., 2000)

"jaccard", Jaccard coefficient (Tan and Kumar, 2000)

"jMeasure", J-measure, J (Smyth and Goodman, 1991)

"kappa" (Tan and Kumar, 2000)

"klosgen", Klosgen (Tan and Kumar, 2000)

"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)

"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)

"laplace", L (Tan and Kumar 2000)

"leastContradiction", least contradiction (Aze and Kodratoff, 2004

"lerman", Lerman similarity (Lerman, 1981)

"leverage", PS (Piatetsky-Shapiro 1991)

"mutualInformation", uncertainty, M (Tan et al., 2002)

"oddsRatio", odds ratio alpha (Tan et al., 2004)

"phi", correlation coefficient phi (Tan et al. 2004)

"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)

"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)

"sebag", Sebag measure (Sebag and Schoenauer, 1988)

"support", supp (Agrawal et al., 1996)

"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)

"yuleQ", Yule's Q (Tan and Kumar, 2000)

"yuleY", Yule's Y (Tan and Kumar, 2000)

For more information see ?arules::interestMeasure

Value

A arules class with the Association Rules for both dat dataset.

Examples

#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")

#Create algorithm
algorithm <- RKEEL::MOPNAR_A(dat)

#Run algorithm
algorithm$run()

#Rules in format arules
algorithm$rules

#Show a number of rules
algorithm$showRules(2)

#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()

#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")

#Sort by interest measure lift
algorithm$sortBy("lift")

#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))

MostCommon_MV KEEL Preprocess Algorithm

Description

MostCommon_MV Preprocess Algorithm from KEEL.

Usage

MostCommon_MV(train, test)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::MostCommon_MV(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

NB_C KEEL Classification Algorithm

Description

NB_C Classification Algorithm from KEEL.

Usage

NB_C(train, test)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::NB_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

NICGAR_A KEEL Association Rules Algorithm

Description

NICGAR_A Association Rules Algorithm from KEEL.

Usage

NICGAR_A(dat, seed, NumberofEvaluations, PopulationSize, ProbabilityofMutation, 
  Thefactorofamplitudeforeachattributeofthedataset, NichingThreshold, 
  QualityThreshold, PercentUpdate)

Arguments

dat

Dataset as a data.frame object

seed

seed. Default value = 1286082570

NumberofEvaluations

Number of Evaluations. Default value = 1286082570

PopulationSize

Population Size. Default value = 1286082570

ProbabilityofMutation

Probability of Mutation. Default value = 1286082570

Thefactorofamplitudeforeachattributeofthedataset

The factor of amplitude for each attribute of the dataset. Default value = 1286082570

NichingThreshold

Niching Threshold. Default value = 1286082570

QualityThreshold

Quality Threshold. Default value = 1286082570

PercentUpdate

Percent Update. Default value = 1286082570

Details

$run() Run algorith

$showRules(numRules) Show a number of rules. By default all rules.

$getInterestMeasures() Return a data.frame with all interest measures of set rules.

$sortBy(interestMeasure) Order set rules by interest measure.

$writeCSV(fileName, sep) Create CSV file with set rules. Default fileName="rules" sep=","

$writePMML(fileName) Create PMML file with set rules. Default fileName="rules"

$addInterestMeasure(name, colName) Add interest measures to set rules. Some interest measures supported:

"allConfidence" (Omiencinski, 2003)

"crossSupportRatio", cross-support ratio (Xiong et al., 2003)

"lift", interest factor (Brin et al. 1997)

"support", supp (Agrawal et al., 1996)

"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)

"chiSquared", X^2 (Liu et al., 1999)

"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)

"collectiveStrength"

"confidence", conf (Agrawal et al., 1996)

"conviction" (Brin et al. 1997)

"cosine" (Tan et al., 2004)

"coverage", cover, LHS-support

"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)

"casualConfidence", casual confidence (Kodratoff, 1999)

"casualSupport", casual support (Kodratoff, 1999)

"counterexample", example and counterexample rate

"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)

"doc", difference of confidence (Hofmann and Wilhelm, 2001)

"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)

"gini", Gini index (Tan et al., 2004)

"hyperLift" (Hahsler and Hornik, 2007)

"hyperConfidence" (Hahsler and Hornik, 2007)

"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)

"implicationIndex", implication index (Gras, 1996)

"improvement" (Bayardo et al., 2000)

"jaccard", Jaccard coefficient (Tan and Kumar, 2000)

"jMeasure", J-measure, J (Smyth and Goodman, 1991)

"kappa" (Tan and Kumar, 2000)

"klosgen", Klosgen (Tan and Kumar, 2000)

"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)

"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)

"laplace", L (Tan and Kumar 2000)

"leastContradiction", least contradiction (Aze and Kodratoff, 2004

"lerman", Lerman similarity (Lerman, 1981)

"leverage", PS (Piatetsky-Shapiro 1991)

"mutualInformation", uncertainty, M (Tan et al., 2002)

"oddsRatio", odds ratio alpha (Tan et al., 2004)

"phi", correlation coefficient phi (Tan et al. 2004)

"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)

"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)

"sebag", Sebag measure (Sebag and Schoenauer, 1988)

"support", supp (Agrawal et al., 1996)

"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)

"yuleQ", Yule's Q (Tan and Kumar, 2000)

"yuleY", Yule's Y (Tan and Kumar, 2000)

For more information see ?arules::interestMeasure

Value

A arules class with the Association Rules for both dat dataset.

Examples

#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")

#Create algorithm
algorithm <- RKEEL::NICGAR_A(dat)

#Run algorithm
algorithm$run()

#Rules in format arules
algorithm$rules

#Show a number of rules
algorithm$showRules(2)

#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()

#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")

#Sort by interest measure lift
algorithm$sortBy("lift")

#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))

NM_C KEEL Classification Algorithm

Description

NM_C Classification Algorithm from KEEL.

Usage

NM_C(train, test)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::NM_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

NNEP_C KEEL Classification Algorithm

Description

NNEP_C Classification Algorithm from KEEL.

Usage

NNEP_C(train, test, hidden_nodes, transfer, generations, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

hidden_nodes

hidden_nodes. Default value = 4

transfer

transfer. Default value = "Product_Unit"

generations

generations. Default value = 200

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::NNEP_C(data_train, data_test)
algorithm <- RKEEL::NNEP_C(data_train, data_test, generations = 5)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

Nominal2Binary_TR KEEL Preprocess Algorithm

Description

Nominal2Binary_TR Preprocess Algorithm from KEEL.

Usage

Nominal2Binary_TR(train, test)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::Nominal2Binary_TR(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

NU_SVM_C KEEL Classification Algorithm

Description

NU_SVM_C Classification Algorithm from KEEL.

Usage

NU_SVM_C(train, test, KernelType, C, eps, degree, gamma, coef0,
   nu, p, shrinking, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

KernelType

KernelType. Default value = 1

C

C. Default value = "RBF"

eps

eps. Default value = 1000.0

degree

degree. Default value = 0.001

gamma

gamma. Default value = 10

coef0

coef0. Default value = 0.01

nu

nu. Default value = 0.1

p

p. Default value = 1.0

shrinking

shrinking. Default value = 1

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::NU_SVM_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

NU_SVR_R KEEL Regression Algorithm

Description

NU_SVR_R Regression Algorithm from KEEL.

Usage

NU_SVR_R(train, test, KernelType, C, eps, degree, gamma,
   coef0, nu, p, shrinking, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

KernelType

KernelType. Default value = ?

C

C. Default value = ?

eps

eps. Default value = ?

degree

degree. Default value = ?

gamma

gamma. Default value = ?

coef0

coef0. Default value = ?

nu

nu. Default value = ?

p

p. Default value = ?

shrinking

shrinking. Default value = ?

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted values for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")

#Create algorithm
algorithm <- RKEEL::NU_SVR_R(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

PART_C KEEL Classification Algorithm

Description

PART_C Classification Algorithm from KEEL.

Usage

PART_C(train, test, confidence, itemsetsPerLeaf)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

confidence

confidence. Default value = 0.25

itemsetsPerLeaf

itemsetsPerLeaf. Default value = 2

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::PART_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

PDFC_C KEEL Classification Algorithm

Description

PDFC_C Classification Algorithm from KEEL.

Usage

PDFC_C(train, test, C, d, tolerance, epsilon, PDRFtype,
   nominal_to_binary, preprocess_type, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

C

C. Default value = 100.0

d

d. Default value = 0.25

tolerance

tolerance. Default value = 0.001

epsilon

epsilon. Default value = 1.0E-12

PDRFtype

PDRFtype. Default value = "Gaussian

nominal_to_binary

nominal_to_binary. Default value = TRUE

preprocess_type

preprocess_type. Default value = "Normalize"

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::PDFC_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

PFKNN_C KEEL Classification Algorithm

Description

PFKNN_C Classification Algorithm from KEEL.

Usage

PFKNN_C(train, test, k, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

k

k. Default value = 3

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::PFKNN_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

PNN_C KEEL Classification Algorithm

Description

PNN_C Classification Algorithm from KEEL.

Usage

PNN_C(train, test, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::PNN_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

PolQuadraticLMS_C KEEL Classification Algorithm

Description

PolQuadraticLMS_C Classification Algorithm from KEEL.

Usage

PolQuadraticLMS_C(train, test, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::PolQuadraticLMS_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

PolQuadraticLMS_R KEEL Regression Algorithm

Description

PolQuadraticLMS_R Regression Algorithm from KEEL.

Usage

PolQuadraticLMS_R(train, test, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted values for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")

#Create algorithm
algorithm <- RKEEL::PolQuadraticLMS_R(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

POP_TSS KEEL Preprocess Algorithm

Description

POP_TSS Preprocess Algorithm from KEEL.

Usage

POP_TSS(train, test)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::POP_TSS(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

Preprocess Algorithm

Description

Class inheriting of KeelAlgorithm, to common methods for all KEEL Preprocess Algorithms. The specific preprocessing algorithms must inherit of this class.

The run() method receives three parameters. The folderPath parameter indicates where to place the folder with the experiments if wanted. If it is not indicated, the folder is placen ind a temporary random directory and then removed. If indicated, the experiment folder is not removed. The expUniqueName parameter indicates the name of the experiment folder. If not indicated, it is a random name. If indicated, ensure that the name is unique in the previously indicated folder. The javaOptions parameter indicates, if wanted, extra parameters to the java command line, as for example the maximum memory allowed by java.


PRISM_C KEEL Classification Algorithm

Description

PRISM_C Classification Algorithm from KEEL.

Usage

PRISM_C(train, test, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::PRISM_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

Proportional_D KEEL Preprocess Algorithm

Description

Proportional_D Preprocess Algorithm from KEEL.

Usage

Proportional_D(train, test, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::Proportional_D(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

PSO_ACO_C KEEL Classification Algorithm

Description

PSO_ACO_C Classification Algorithm from KEEL.

Usage

PSO_ACO_C(train, test, max_uncovered_samples, min_saples_by_rule,
   max_iterations_without_converge, enviromentSize, numParticles,
   x, c1, c2, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

max_uncovered_samples

max_uncovered_samples. Default value = 20

min_saples_by_rule

min_saples_by_rule. Default value = 2

max_iterations_without_converge

max_iterations_without_converge. Default value = 100

enviromentSize

enviromentSize. Default value = 3

numParticles

numParticles. Default value = 100

x

x. Default value = 0.72984

c1

c1. Default value = 2.05

c2

c2. Default value = 2.05

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::PSO_ACO_C(data_train, data_test, 
  max_iterations_without_converge=2, numParticles=5)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

PSRCG_TSS KEEL Preprocess Algorithm

Description

PSRCG_TSS Preprocess Algorithm from KEEL.

Usage

PSRCG_TSS(train, test, distance)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

distance

distance. Default value = "Euclidean"

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::PSRCG_TSS(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

PUBLIC_C KEEL Classification Algorithm

Description

PUBLIC_C Classification Algorithm from KEEL.

Usage

PUBLIC_C(train, test, nodesBetweenPrune, estimateToPrune)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

nodesBetweenPrune

nodesBetweenPrune. Default value = 25

estimateToPrune

estimateToPrune. Default value = "PUBLIC(1)"

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::PUBLIC_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

PW_C KEEL Classification Algorithm

Description

PW_C Classification Algorithm from KEEL.

Usage

PW_C(train, test, beta, ro, epsilon)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

beta

beta. Default value = 8.0

ro

ro. Default value = 0.001

epsilon

epsilon. Default value = 0.001

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::PW_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

QAR_CIP_NSGAII_A KEEL Association Rules Algorithm

Description

QAR_CIP_NSGAII_A Association Rules Algorithm from KEEL.

Usage

QAR_CIP_NSGAII_A(dat, seed, NumberofObjetives, NumberofEvaluations, 
  PopulationSize, ProbabilityofMutation, 
  Thefactorofamplitudeforeachattributeofthedataset, Differencethreshold)

Arguments

dat

Dataset as a data.frame object

seed

seed. Default value = 1286082570

NumberofObjetives

Number of Objetives. Default value = 3

NumberofEvaluations

Number of Evaluations. Default value = 50000

PopulationSize

Population Size. Default value = 100

ProbabilityofMutation

Probability of Mutation. Default value = 0.1

Thefactorofamplitudeforeachattributeofthedataset

The factor of amplitude for each attribute of the dataset. Default value = 2.0

Differencethreshold

Difference threshold. Default value = 5.0

Details

$run() Run algorith

$showRules(numRules) Show a number of rules. By default all rules.

$getInterestMeasures() Return a data.frame with all interest measures of set rules.

$sortBy(interestMeasure) Order set rules by interest measure.

$writeCSV(fileName, sep) Create CSV file with set rules. Default fileName="rules" sep=","

$writePMML(fileName) Create PMML file with set rules. Default fileName="rules"

$addInterestMeasure(name, colName) Add interest measures to set rules. Some interest measures supported:

"allConfidence" (Omiencinski, 2003)

"crossSupportRatio", cross-support ratio (Xiong et al., 2003)

"lift", interest factor (Brin et al. 1997)

"support", supp (Agrawal et al., 1996)

"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)

"chiSquared", X^2 (Liu et al., 1999)

"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)

"collectiveStrength"

"confidence", conf (Agrawal et al., 1996)

"conviction" (Brin et al. 1997)

"cosine" (Tan et al., 2004)

"coverage", cover, LHS-support

"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)

"casualConfidence", casual confidence (Kodratoff, 1999)

"casualSupport", casual support (Kodratoff, 1999)

"counterexample", example and counterexample rate

"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)

"doc", difference of confidence (Hofmann and Wilhelm, 2001)

"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)

"gini", Gini index (Tan et al., 2004)

"hyperLift" (Hahsler and Hornik, 2007)

"hyperConfidence" (Hahsler and Hornik, 2007)

"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)

"implicationIndex", implication index (Gras, 1996)

"improvement" (Bayardo et al., 2000)

"jaccard", Jaccard coefficient (Tan and Kumar, 2000)

"jMeasure", J-measure, J (Smyth and Goodman, 1991)

"kappa" (Tan and Kumar, 2000)

"klosgen", Klosgen (Tan and Kumar, 2000)

"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)

"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)

"laplace", L (Tan and Kumar 2000)

"leastContradiction", least contradiction (Aze and Kodratoff, 2004

"lerman", Lerman similarity (Lerman, 1981)

"leverage", PS (Piatetsky-Shapiro 1991)

"mutualInformation", uncertainty, M (Tan et al., 2002)

"oddsRatio", odds ratio alpha (Tan et al., 2004)

"phi", correlation coefficient phi (Tan et al. 2004)

"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)

"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)

"sebag", Sebag measure (Sebag and Schoenauer, 1988)

"support", supp (Agrawal et al., 1996)

"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)

"yuleQ", Yule's Q (Tan and Kumar, 2000)

"yuleY", Yule's Y (Tan and Kumar, 2000)

For more information see ?arules::interestMeasure

Value

A arules class with the Association Rules for both dat dataset.

Examples

#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")

#Create algorithm
algorithm <- RKEEL::QAR_CIP_NSGAII_A(dat)

#Run algorithm
algorithm$run()

#Rules in format arules
algorithm$rules

#Show a number of rules
algorithm$showRules(2)

#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()

#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")

#Sort by interest measure lift
algorithm$sortBy("lift")

#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))

QDA_C KEEL Classification Algorithm

Description

QDA_C Classification Algorithm from KEEL.

Usage

QDA_C(train, test, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::QDA_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

RBFN_C KEEL Classification Algorithm

Description

RBFN_C Classification Algorithm from KEEL.

Usage

RBFN_C(train, test, neurons, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

neurons

neurons. Default value = 50

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::RBFN_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

RBFN_R KEEL Regression Algorithm

Description

RBFN_R Regression Algorithm from KEEL.

Usage

RBFN_R(train, test, neurons, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

neurons

neurons. Default value = 50

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted values for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")

#Create algorithm
algorithm <- RKEEL::RBFN_R(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

Read keel dataset

Description

Method for read datasets in .dat KEEL format

Usage

read.keel(file)

Arguments

file

File containing the dataset to be read. It must be in KEEL .dat format.

Value

Returns a data.frame object with the dataset


Regression Algorithm

Description

Class inheriting of KeelAlgorithm, to common methods for all KEEL Regression Algorithms. The specific regression algorithms must inherit of this class.

The run() method receives three parameters. The folderPath parameter indicates where to place the folder with the experiments if wanted. If it is not indicated, the folder is placen ind a temporary random directory and then removed. If indicated, the experiment folder is not removed. The expUniqueName parameter indicates the name of the experiment folder. If not indicated, it is a random name. If indicated, ensure that the name is unique in the previously indicated folder. The javaOptions parameter indicates, if wanted, extra parameters to the java command line, as for example the maximum memory allowed by java.


Regression Results

Description

Class to calculate and store some results for a RegressionAlgorithm. It receives as parameter the prediction of a regression algorithm as a data.frame object.


Relief_FS KEEL Preprocess Algorithm

Description

Relief_FS Preprocess Algorithm from KEEL.

Usage

Relief_FS(train, test, paramKNN, relevanceThreshold,
   numInstancesSampled, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

paramKNN

paramKNN. Default value = 1

relevanceThreshold

relevanceThreshold. Default value = 0.20

numInstancesSampled

numInstancesSampled. Default value = 1000

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::Relief_FS(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

Ripper_C KEEL Classification Algorithm

Description

Ripper_C Classification Algorithm from KEEL.

Usage

Ripper_C(train, test, grow_pct, k, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

grow_pct

grow_pct. Default value = 0.66

k

k. Default value = 2

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::Ripper_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

RISE_C KEEL Classification Algorithm

Description

RISE_C Classification Algorithm from KEEL.

Usage

RISE_C(train, test, Q, S)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

Q

Q. Default value = 1

S

S. Default value = 2

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::RISE_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

Run Cross-Validation

Description

Run a cross-validation experiment

Usage

runCV(algorithm, dataset, numFolds, cores)

Arguments

algorithm

Algorithm to be executed in the CV. It must has the parameters to be used in the executions.

dataset

Dataset to perform the CV. It is divided in numFolds disjoint partitions and in each iteration, one is used for test and the rest for train.

numFolds

Number of folds for the cross-validation procedure.

cores

Number of cores to execute in parallel. If it is missed, default value is 1 (sequential execution).

Value

Returns a list with the mean results of the numFolds executions.

Examples

#Load datasets
iris <- RKEEL::loadKeelDataset("iris")

#Create algorithm
learner_C45_C <- RKEEL::C45_C(iris, iris)

#Perform 5-folds CV
results <- RKEEL::runCV(learner_C45_C, iris, 5)

Run Parallel

Description

Run a set of RKEEL algorithms in parallel

Usage

runParallel(algorithmList, cores)

Arguments

algorithmList

List of RKEEL Algorithms to be executed

cores

Number of cores to execute in parallel. If it is not specified, it detects the cores automatically and execute the experiment in all of them

Value

Returns a list with the executed algorithms

Examples

#Load datasets
iris_train <- RKEEL::loadKeelDataset("iris_train")
iris_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithms
learner_C45_C <- RKEEL::C45_C(iris_train, iris_test)
learner_KNN_C <- RKEEL::KNN_C(iris_train, iris_test)
learner_Logistic_C <- RKEEL::Logistic_C(iris_train, iris_test)
learner_LDA_C <- RKEEL::LDA_C(iris_train, iris_test)

#Create list
algorithms <- list(learner_C45_C, learner_KNN_C, learner_Logistic_C, 
  learner_LDA_C)

#Run algorithms in parallel in two cores
par <- RKEEL::runParallel(algorithms, 2)

Run Sequential

Description

Run a set of RKEEL algorithms in sequential.

Usage

runSequential(algorithmList)

Arguments

algorithmList

List of RKEEL Algorithms to be executed

Value

Returns a list with the executed algorithms

Examples

#Load datasets
iris_train <- RKEEL::loadKeelDataset("iris_train")
iris_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithms
learner_C45_C <- RKEEL::C45_C(iris_train, iris_test)
learner_KNN_C <- RKEEL::KNN_C(iris_train, iris_test)
learner_Logistic_C <- RKEEL::Logistic_C(iris_train, iris_test)
learner_LDA_C <- RKEEL::LDA_C(iris_train, iris_test)

#Create list
algorithms <- list(learner_C45_C, learner_KNN_C, learner_Logistic_C, 
  learner_LDA_C)

#Run algorithms
seq <- RKEEL::runSequential(algorithms)

SaturationFilter_F KEEL Preprocess Algorithm

Description

SaturationFilter_F Preprocess Algorithm from KEEL.

Usage

SaturationFilter_F(train, test, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::SaturationFilter_F(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

SFS_IEP_FS KEEL Preprocess Algorithm

Description

SFS_IEP_FS Preprocess Algorithm from KEEL.

Usage

SFS_IEP_FS(train, test, threshold, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

threshold

threshold. Default value = 0.005

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::SFS_IEP_FS(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

SGA_C KEEL Classification Algorithm

Description

SGA_C Classification Algorithm from KEEL.

Usage

SGA_C(train, test, mut_prob_1to0, mut_prob_0to1, cross_prob,
   pop_size, evaluations, alfa, selection_type, k,
   distance, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

mut_prob_1to0

mut_prob_1to0. Default value = 0.01

mut_prob_0to1

mut_prob_0to1. Default value = 0.001

cross_prob

cross_prob. Default value = 1

pop_size

pop_size. Default value = 50

evaluations

evaluations. Default value = 10000

alfa

alfa. Default value = 0.5

selection_type

selection_type. Default value = "orden_based"

k

k. Default value = 1

distance

distance. Default value = "Euclidean"

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::SGA_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

Shrink_C KEEL Classification Algorithm

Description

Shrink_C Classification Algorithm from KEEL.

Usage

Shrink_C(train, test, k, distance)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

k

k. Default value = 1

distance

distance. Default value = "Euclidean"

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::Shrink_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

Slipper_C KEEL Classification Algorithm

Description

Slipper_C Classification Algorithm from KEEL.

Usage

Slipper_C(train, test, grow_pct, numBoosting, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

grow_pct

grow_pct. Default value = 0.66

numBoosting

numBoosting. Default value = 100

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::Slipper_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

SMO_C KEEL Classification Algorithm

Description

SMO_C Classification Algorithm from KEEL.

Usage

SMO_C(train, test, C, toleranceParameter, epsilon,
   RBFKernel_gamma, normalized_PolyKernel_exponent,
   normalized_PolyKernel_useLowerOrder, PukKernel_omega,
   PukKernel_sigma, StringKernel_lambda,
   StringKernel_subsequenceLength,
   StringKernel_maxSubsequenceLength, StringKernel_normalize,
   StringKernel_pruning, KernelType, FitLogisticModels,
   ConvertNominalAttributesToBinary, PreprocessType, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

C

C. Default value = 1.0

toleranceParameter

toleranceParameter. Default value = 0.001

epsilon

epsilon. Default value = 1.0e-12

RBFKernel_gamma

RBFKernel_gamma. Default value = 0.01

normalized_PolyKernel_exponent

normalized_PolyKernel_exponent. Default value = 1

normalized_PolyKernel_useLowerOrder

normalized_PolyKernel_useLowerOrder. Default value = FALSE

PukKernel_omega

PukKernel_omega. Default value = 1.0

PukKernel_sigma

PukKernel_sigma. Default value = 1.0

StringKernel_lambda

StringKernel_lambda. Default value = 0.5

StringKernel_subsequenceLength

StringKernel_subsequenceLength. Default value = 3

StringKernel_maxSubsequenceLength

StringKernel_maxSubsequenceLength. Default value = 9

StringKernel_normalize

StringKernel_normalize. Default value = FALSE

StringKernel_pruning

StringKernel_pruning. Default value = "None"

KernelType

KernelType. Default value = "PolyKernel"

FitLogisticModels

FitLogisticModels. Default value = FALSE

ConvertNominalAttributesToBinary

ConvertNominalAttributesToBinary. Default value = TRUE

PreprocessType

PreprocessType. Default value = "Normalize"

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::SMO_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

SSGA_Integer_knn_FS KEEL Preprocess Algorithm

Description

SSGA_Integer_knn_FS Preprocess Algorithm from KEEL.

Usage

SSGA_Integer_knn_FS(train, test, paramKNN, nEval, pop_size,
   numFeatures, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

paramKNN

paramKNN. Default value = 1

nEval

nEval. Default value = 5000

pop_size

pop_size. Default value = 100

numFeatures

numFeatures. Default value = 3

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::SSGA_Integer_knn_FS(data_train, data_test)
algorithm <- RKEEL::SSGA_Integer_knn_FS(data_train, data_test, nEval = 10, pop_size = 10)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

Tan_GP_C KEEL Classification Algorithm

Description

Tan_GP_C Classification Algorithm from KEEL.

Usage

Tan_GP_C(train, test, population_size, max_generations,
   max_deriv_size, rec_prob, mut_prob, copy_prob, w1, w2,
   elitist_prob, support, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

population_size

population_size. Default value = 150

max_generations

max_generations. Default value = 100

max_deriv_size

max_deriv_size. Default value = 20

rec_prob

rec_prob. Default value = 0.8

mut_prob

mut_prob. Default value = 0.1

copy_prob

copy_prob. Default value = 0.01

w1

w1. Default value = 0.7

w2

w2. Default value = 0.8

elitist_prob

elitist_prob. Default value = 0.06

support

support. Default value = 0.03

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::Tan_GP_C(data_train, data_test)
algorithm <- RKEEL::Tan_GP_C(data_train, data_test, population_size = 5, max_generations = 10)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

Thrift_R KEEL Regression Algorithm

Description

Thrift_R Regression Algorithm from KEEL.

Usage

Thrift_R(train, test, numLabels, popSize, evaluations,
   crossProb, mutProb, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

numLabels

numLabels. Default value = 3

popSize

popSize. Default value = 61

evaluations

evaluations. Default value = 10000

crossProb

crossProb. Default value = 0.6

mutProb

mutProb. Default value = 0.1

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted values for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")

#Create algorithm
algorithm <- RKEEL::Thrift_R(data_train, data_test)
algorithm <- RKEEL::Thrift_R(data_train, data_test, popSize = 5, evaluations = 10)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

UniformFrequency_D KEEL Preprocess Algorithm

Description

UniformFrequency_D Preprocess Algorithm from KEEL.

Usage

UniformFrequency_D(train, test, numIntervals, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

numIntervals

numIntervals. Default value = 10

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::UniformFrequency_D(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

UniformWidth_D KEEL Preprocess Algorithm

Description

UniformWidth_D Preprocess Algorithm from KEEL.

Usage

UniformWidth_D(train, test, numIntervals)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

numIntervals

numIntervals. Default value = 10

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::UniformWidth_D(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test

VWFuzzyKNN_C KEEL Classification Algorithm

Description

VWFuzzyKNN_C Classification Algorithm from KEEL.

Usage

VWFuzzyKNN_C(train, test, k, init_k)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

k

k. Default value = 3

init_k

init_k. Default value = 3

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::VWFuzzyKNN_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

WM_R KEEL Regression Algorithm

Description

WM_R Regression Algorithm from KEEL.

Usage

WM_R(train, test, numlabels, KB)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

numlabels

numlabels. Default value = 5

KB

KB. Default value = FALSE

Value

A data.frame with the actual and predicted values for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")

#Create algorithm
algorithm <- RKEEL::WM_R(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

Write .dat from data.frame

Description

Method for writing a .dat dataset file in KEEL format given a data.frame dataset

Usage

writeDatFromDataframe(data, fileName)

Arguments

data

data.frame dataset

fileName

String with the file name to store the dataset

Examples

data(iris)
writeDatFromDataframe(iris, paste0(tempdir(), "/iris.dat"))

Write .dat from data.frames

Description

Method for writing both train and test .dat dataset files in KEEL format.

Usage

writeDatFromDataframes(trainData, testData,
   trainFileName, testFileName)

Arguments

trainData

Train data as data.frame object

testData

Test data as data.frame object

trainFileName

String with the file name to store the train dataset

testFileName

String with the file name to store the test dataset


ZScore_TR KEEL Preprocess Algorithm

Description

ZScore_TR Preprocess Algorithm from KEEL.

Usage

ZScore_TR(train, test)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

Value

A data.frame with the preprocessed data for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")

#Create algorithm
algorithm <- RKEEL::ZScore_TR(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$preprocessed_test