Package: RESIDE (via r-universe)

October 18, 2024

Version 0.3.2

Description Developed to assist researchers with planning analysis, prior to obtaining data from Trusted Research Environments (TREs) also known as safe havens. With functionality to export and import marginal distributions as well as synthesise data, both with and without correlations from these marginal

distributions. Using a multivariate cumulative distribution (COPULA). Additionally the International Stroke Trial (IST) is included as an example dataset under ODC-By licence Sandercock et al. (2011) <doi:10.7488/ds/104>, Sandercock et al. (2011)

<doi:10.1186/1745-6215-12-101>.

Title Rapid Easy Synthesis to Inform Data Extraction

License GPL (>= 3)**Encoding UTF-8** RoxygenNote 7.3.2 VignetteBuilder knitr **Suggests** testthat (>= 3.0.0), lifecycle, knitr, rmarkdown, DT **Depends** R (>= 2.10) Imports dplyr, magrittr, bestNormalize, RDP, methods, tibble, simstudy, matrixcalc LazyData true Config/testthat/edition 3 URL https://hehta.github.io/RESIDE/ NeedsCompilation no Author Ryan Field [aut, cre] (<https://orcid.org/0000-0002-4424-9890>), David McAllister [aut] (https://orcid.org/0000-0003-3550-1764), Claudia Geue [ctb] (<https://orcid.org/0000-0003-2243-0733>)

Maintainer Ryan Field < ryan.field@glasgow.ac.uk>

Repository CRAN

Date/Publication 2024-10-17 17:10:09 UTC

2 RESIDE-package

Contents

	RESIDE-package	2
	export_empty_cor_matrix	3
	export_marginal_distributions	4
	get_marginal_distributions	5
	import_cor_matrix	6
	import_marginal_distributions	7
	IST	8
	print.RESIDE	2
	synthesise_data	.3
Index	1	5
		_

RESIDE-package

RESIDE: Rapid Easy Synthesis to Inform Data Extraction

Description

Developed to assist researchers with planning analysis, prior to obtaining data from Trusted Research Environments (TREs) also known as safe havens. With functionality to export and import marginal distributions as well as synthesise data, both with and without correlations from these marginal distributions. Using a multivariate cumulative distribution (COPULA). Additionally the International Stroke Trial (IST) is included as an example dataset under ODC-By licence Sandercock et al. (2011) doi: 10.7488/ds/104, Sandercock et al. (2011) doi: 10.1186/1745621512101.

Details

[Experimental]

The RESIDE Package

This work was supported by the UKRI Strength in Places Fund (SIPF) Competition, #' project number 107140. The project title is SIPF The Living Laboratory driving economic growth in Glasgow through real world implementation of precision medicine.

Author(s)

Maintainer: Ryan Field < ryan.field@glasgow.ac.uk > (ORCID)

Authors:

• David McAllister <david.mcallister@glasgow.ac.uk> (ORCID)

Other contributors:

• Claudia Geue <cladia.geue@glasgow.ac.uk> (ORCID) [contributor]

See Also

Useful links:

• https://hehta.github.io/RESIDE/

```
export_empty_cor_matrix
```

Export an empty correlation matrix

Description

A function to export a correlation matrix with the required variables as a csv file.

Usage

```
export_empty_cor_matrix(
  marginals,
  folder_path,
  file_name = "correlation_matrix.csv",
  create_folder = TRUE
)
```

Arguments

```
marginals The marginal distributions

folder_path Folder to export to.

file_name (optional) file name, Default: 'correlation_matrix.csv'

create_folder Whether the folder should be created, Default: TRUE
```

Details

This function will export an empty correlation matrix as a csv file, it will contain all the necessary variables including dummy variables for factors. Dummy variables for factors may contain a missing category to represent missing data. Correlations should be added to the empty CSV and the imported using the import_marginal_distributions function. Correlations should be supplied using rank order correlations. The correlation matrix should be symmetric and positive semi definite.

Value

No return value, called for exportation of files.

```
import_marginal_distributions import_cor_matrix
```

Examples

```
## Not run:
marginals <- import_marginal_distributions()
export_empty_cor_matrix(
   marginals,
   folder_path = tempdir()
)
## End(Not run)</pre>
```

export_marginal_distributions

Export Marginal Distributions

Description

Export the marginal distributions to CSV files

Usage

```
export_marginal_distributions(
  marginals,
  folder_path,
  create_folder = FALSE,
  force = FALSE
)
```

Arguments

marginals an Object of type RESIDE from import_cor_matrix

folder_path path to folder where to save files.

create_folder if the folder does not exist should it be created, Default: FALSE

force if the folder already contains marginal distribution files should they be removed,

Default: FALSE

Details

Exports each of the marginal distributions to CSV files within a given folder, along with the continuous quantiles.

Value

No return value, called for exportation of files.

```
get_marginal_distributions
```

Examples

```
marginal_distributions <- get_marginal_distributions(IST)
export_marginal_distributions(
  marginal_distributions,
  folder_path = tempdir()
)</pre>
```

get_marginal_distributions

Generate Marginal Distributions for a given data frame

Description

Generate Marginal Distributions from a given data frame with options to specify which variables to use.

Usage

```
get_marginal_distributions(df, variables = c(), print = FALSE)
```

Arguments

df Data frame to get the marginal distributions from variables (Optional) variable (columns) to select, Default: c()

print Whether to print the marginal distributions to the console, Default: FALSE

Details

A function to generate marginal distributions from a given data frame, depending on the variable type the marginals will differ, for binary variables a mean and number of missing is generated for continuous variables, they are first transformed and both mean and sd of the transformed variables are stored along with the quantile mapping for back transformation. For categorical variables, the number of each category is stored, missing values are categorise as "missing".

Value

A list of marginal distributions of an S3 RESIDE Class

```
export_marginal_distributions
```

6 import_cor_matrix

Examples

```
marginal_distributions <- get_marginal_distributions(
   IST,
   variables <- c(
        "SEX",
        "AGE",
        "ID14",
        "RSBP",
        "RATRIAL"
   )
)</pre>
```

import_cor_matrix

Import a correlation matrix

Description

Imports a correlation matrix from a csv file generated by export_empty_cor_matrix

Usage

```
import_cor_matrix(file_path = "./correlation_matrix.csv")
```

Arguments

file_path

A path to the csv file, Default: './correlation_matrix.csv'

Details

A function to import the user specified correlations generated from the csv file exported by the export_empty_cor_matrix function. Correlations should be entered into the CSV file, using rank order correlations. The correlation matrix should be symmetric and be positive semi definite.

Value

a matrix of correlations that can be used with synthesise_data

See Also

```
export_empty_cor_matrix is.positive.semi.definite
```

Examples

```
## Not run:
  import_cor_matrix("correlation_matrix.csv")
## End(Not run)
```

```
{\it Import\_marginal\_distributions} \\ {\it Import\ Marginal\ Distributions}
```

Description

Import the marginal distribution as exported from a Trusted Research Environment (TRE)

Usage

```
import_marginal_distributions(
  folder_path = ".",
  binary_variables_file = "",
  categorical_variables_file = ""
  continuous_variables_file = "",
  continuous_quantiles_file = "",
  summary_file = "summary.csv"
)
```

Arguments

Details

This function will import marginal distributions as generated within a Trusted Research Environment (TRE) using the function <code>export_marginal_distributions</code>. The folder_path allows the path of the files provided by the TRE to be imported, this will default to the current working directory. The file parameters will provide the default file names if no filenames are specified.

Value

Returns an object of a RESIDE class

```
synthesise_data
```

Examples

```
## Not run:
   marginals <- import_marginal_distributions()
## End(Not run)</pre>
```

IST

IST Dataset

Description

The International Stroke Trial Dataset

Usage

IST

Format

A data frame with 19435 rows and 112 columns:

AGE Randomisation data: Age in years

CMPLASP Other data and derived variables: Compliant for aspirin

CMPLHEP Other data and derived variables: Compliant for heparin

CNTRYNUM Other data and derived variables: Country code

COUNTRY Other data and derived variables: Abbreviated country code

DALIVE Recurrent stroke within 14 days: Discharged alive from hospital

DALIVED Recurrent stroke within 14 days: Date Discharged alive from hospital

DAP Data collected on 14 day/discharge form about treatments given in hospital: Non trial antiplatelet drug (Y/N)

DASP14 Data collected on 14 day/discharge form about treatments given in hospital: Aspirin given for 14 days or till death or discharge (Y/N)

DASPLT Data collected on 14 day/discharge form about treatments given in hospital: Discharged on long term aspirin (Y/N)

DAYLOCAL Randomisation data: Estimate of local day of week (assuming RDATE is Oxford)

DCAA Data collected on 14 day/discharge form about treatments given in hospital: Calcium antagonists (Y/N)

DCAREND Data collected on 14 day/discharge form about treatments given in hospital: Carotid surgery (Y/N)

DDEAD Other events within 14 days: Dead on discharge form

DDEADC Other events within 14 days: Cause of death (1-Initial stroke/2-Recurrent stroke (ischaemic or unknown/3-Recurrent stroke (haemorrhagic)/4-Pneumonia/5-Coronary heart disease/6-Pulmonary embolism/7-Other vascular or unknown/8-Non-vascular/0-unknown)

DDEADD Date of dead on discharge form (yyyy/mm/dd); NOTE: this death is not necessarily within 14 days of randomisation

DDEADX Other events within 14 days: Comment on death

DDIAGHA Final diagnosis of initial event: Haemorrhagic stroke

DDIAGISC Final diagnosis of initial event: Ischaemic stroke

DDIAGUN Final diagnosis of initial event: Indeterminate stroke

DEAD1 Indicator variables for specific causes of death: Initial stroke

DEAD2 Indicator variables for specific causes of death: Reccurent ischaemic/unknown stroke

DEAD3 Indicator variables for specific causes of death: Reccurent haemorrhagic stroke

DEAD4 Indicator variables for specific causes of death: Pneumonia

DEAD5 Indicator variables for specific causes of death: Coronary heart disease

DEAD6 Indicator variables for specific causes of death: Pulmonary embolism

DEAD7 Indicator variables for specific causes of death: Other vascular or unknown

DEAD8 Indicator variables for specific causes of death: Non vascular

DGORM Data collected on 14 day/discharge form about treatments given in hospital: Glycerol or manitol (Y/N)

DHAEMD Data collected on 14 day/discharge form about treatments given in hospital: Haemodilution (Y/N)

DHH14 Data collected on 14 day/discharge form about treatments given in hospital: Medium dose heparin given for 14 days etc in pilot (combine with above)

DIED Other data and derived variables: Indicator variable for death (1=died; 0=did not die)

DIVH Data collected on 14 day/discharge form about treatments given in hospital: Non trial intravenous heparin (Y/N)

DLH14 Data collected on 14 day/discharge form about treatments given in hospital: Low dose heparin given for 14 days or till death/discharge (Y/N)

DMAJNCH Data collected on 14 day/discharge form about treatments given in hospital: Major non-cerebral haemorrhage (Y/N)

DMAJNCHD Data collected on 14 day/discharge form about treatments given in hospital: Date of Major non-cerebral haemorrhage (yyyy/mm/dd)

DMAJNCHX Data collected on 14 day/discharge form about treatments given in hospital: Comment of Major non-cerebral haemorrhage

DMH14 Data collected on 14 day/discharge form about treatments given in hospital: Date of Major non-cerebral haemorrhage (yyyy/mm/dd)

DNOSTRK Final diagnosis of initial event: Not a stroke

DNOSTRKX Final diagnosis of initial event: Comment on Not a stroke

DOAC Data collected on 14 day/discharge form about treatments given in hospital: Other anticoagulants (Y/N)

DPE Other events within 14 days: Pulmonary embolism

DPED Other events within 14 days: Date of Pulmonary embolism (yyyy/mm/dd)

DPLACE Other events within 14 days: Discharge destination (A-Home /B-Relatives home /C-Residential care /D-Nursing home /E-Other hospital departments /U-Unknown)

DRSH Recurrent stroke within 14 days: Haemorrhagic stroke

DRSHD Recurrent stroke within 14 days: Date of Haemorrhagic stroke (yyyy/mm/dd)

DRSISC Recurrent stroke within 14 days: Ischaemic recurrent stroke

DRSISCD Recurrent stroke within 14 days: Date of Ischaemic recurrent stroke (yyyy/mm/dd)

DRSUNK Recurrent stroke within 14 days: Unknown type

DRSUNKD Recurrent stroke within 14 days: Date of Unknown type (yyyy/mm/dd)

DSCH Data collected on 14 day/discharge form about treatments given in hospital: Non trial subcutaneous heparin (Y/N)

DSIDE Data collected on 14 day/discharge form about treatments given in hospital: Other side effect (Y/N)

DSIDED Data collected on 14 day/discharge form about treatments given in hospital: Date of Other side effect

DSIDEX Data collected on 14 day/discharge form about treatments given in hospital: Comment of Other side effect

DSTER Data collected on 14 day/discharge form about treatments given in hospital: Steroids (Y/N)

DTHROMB Data collected on 14 day/discharge form about treatments given in hospital: Thrombolysis (Y/N)

DVT14 Indicator variables for specific causes of death: Indicator of deep vein thrombosis on discharge form

EXPD14 Other data and derived variables: Predicted probability of death at 14 days

EXPD6 Other data and derived variables: Predicted probability of death at 6 month

EXPDD Other data and derived variables: Predicted probability of death/dependence at 6 month

FAP Data collected at 6 months: On antiplatelet drugs

FDEAD Data collected at 6 months: Dead at six month follow-up (Y/N)

FDEADC Data collected at 6 months: Cause of death (1-Initial stroke /2-Recurrent stroke (ischaemic or unknown) /3-Recurrent stroke (haemorrhagic) /4-Pneumonia /5-Coronary heart disease /6-Pulmonary embolism /7-Other vascular or unknown /8-Non-vascular /0-unknown)

FDEADD Data collected at 6 months: Date of death; NOTE: this death is not necessarily within 6 months of randomisation

FDEADX Data collected at 6 months: Comment on death

FDENNIS Data collected at 6 months: Dependent at 6 month follow-up (Y/N)

FLASTD Data collected at 6 months: Date of last contact

FOAC Data collected at 6 months: On anticoagulants

FPLACE Data collected at 6 months: Place of residence at 6 month follow-up (A-Home /B-Relatives home /C-Residential care /D-Nursing home /E-Other hospital departments /U-Unknown)

FRECOVER Data collected at 6 months: Fully recovered at 6 month follow-up (Y/N)

FU1_COMP Other data and derived variables: Date discharge form completed

FU1_RECD Other data and derived variables: Date discharge form received

FU2_DONE Other data and derived variables: Date 6 month follow-up done

H14 Indicator variables for specific causes of death: Cerebral bleed/heamorrhagic stroke within 14 days; this is slightly wider definition than DRSH an is used for analysis of cerebral bleeds

HOSPNUM Randomisation data: Hospital number

HOURLOCAL Randomisation data: Local time – hours

HTI14 Indicator variables for specific causes of death: Indicator of haemorrhagic transformation within 14 days

ID14 Other data and derived variables: Indicator of death at 14 days

ISC14 Indicator variables for specific causes of death: Indicator of ischaemic stroke within 14 days

MINLOCAL Randomisation data: Local time – minutes

NCB14 Indicator variables for specific causes of death: Indicator of any non-cerebral bleed within 14 days

NCCODE Other data and derived variables: Coding of compliance (see Table 3) doi: 10.1186/174562151324

NK14 Indicator variables for specific causes of death: Indicator of indeterminate stroke within 14 days

OCCODE Other data and derived variables: Six month outcome (1-dead /2-dependent /3-not recovered /4-recovered /8 or 9 – missing status

ONDRUG Data collected on 14 day/discharge form about treatments given in hospital: Estimate of time in days on trial treatment

PE14 Indicator variables for specific causes of death: Indicator of pulmonary embolism within 14 days

RASP3 Randomisation data: Aspirin within 3 days prior to randomisation (Y/N)

RATRIAL Randomisation data: Atrial fibrillation (Y/N); not coded for pilot phase - 984 patients

RCONSC Randomisation data: Conscious state at randomisation (F - fully alert, D - drowsy, U - unconscious)

RCT Randomisation data: CT before randomisation (Y/N)

RDATE Randomisation data: Date of randomisation

RDEF1 Randomisation data: Face deficit (Y/N/C=can't assess)

RDEF2 Randomisation data: Arm/hand deficit (Y/N/C=can't assess)

RDEF3 Randomisation data: Leg/foot deficit (Y/N/C=can't assess)

RDEF4 Randomisation data: Dysphasia (Y/N/C=can't assess)

RDEF5 Randomisation data: Hemianopia (Y/N/C=can't assess)

RDEF6 Randomisation data: Visuospatial disorder (Y/N/C=can't assess)

RDEF7 Randomisation data: Brainstem/cerebellar signs (Y/N/C=can't assess)

RDEF8 Randomisation data: Other deficit (Y/N/C=can't assess)

RDELAY Randomisation data: Delay between stroke and randomisation in hours

RHEP24 Randomisation data: Heparin within 24 hours prior to randomisation (Y/N)

12 print.RESIDE

RSBP Randomisation data: Systolic blood pressure at randomisation (mmHg)

RSLEEP Randomisation data: Symptoms noted on waking (Y/N)

RVISINF Randomisation data: Infarct visible on CT (Y/N)

RXASP Randomisation data: Trial aspirin allocated (Y/N)

RXHEP Randomisation data: Trial heparin allocated (M/L/N) \[M\] is coded as H=high in pilot\]

SET14D Other data and derived variables: Know to be dead or alive at 14 days (1=Yes, 0=No); this does not necessarily mean that we know outcome at 6 monts – see OCCODE for this

SEX Randomisation data: M=male; F=female

STRK14 Indicator variables for specific causes of death: Indicator of any stroke within 14 days

STYPE Randomisation data: Stroke subtype (TACS/PACS/POCS/LACS/other)

TD Other data and derived variables: Time of death or censoring in days

TRAN14 Indicator variables for specific causes of death: Indicator of major non-cerebral bleed within 14 days ...

Details

Obtained from Sandercock, Peter; Niewada, Maciej; Czlonkowska, Anna. (2011). International Stroke Trial database (version 2), [dataset]. University of Edinburgh. Department of Clinical Neurosciences. doi: 10.7488/ds/104 Under ODC-by licence

Author(s)

Sandercock P et al. <Peter.Sandercock@ed.ac.uk>

References

doi: 10.7488/ds/104

print.RESIDE

print.RESIDE

Description

S3 override for print RESIDE

Usage

```
## S3 method for class 'RESIDE'
print(x, ...)
```

Arguments

x an object of class RESIDE

... Other parameters currently none are used

synthesise_data 13

Details

S3 Override for RESIDE Class

Value

No return value, called to print to the terminal.

Examples

```
print(
   marginal_distributions <- get_marginal_distributions(
    IST,
   variables <- c(
        "SEX",
        "AGE",
        "ID14",
        "RSBP",
        "RATRIAL"
   )
)
)</pre>
```

synthesise_data

Synthesise data from marginal distributions

Description

Allows the synthesis of data from marginal distributions obtained from a Trusted Research Environment (TRE)

Usage

```
synthesise_data(marginals, correlation_matrix = NULL, ...)
synthesize_data(marginals, correlation_matrix = NULL, ...)
```

Arguments

```
marginals an object of class RESIDE

correlation_matrix

Correlation Matrix see export_empty_cor_matrix and import_cor_matrix,

Default: NULL

Additional parameters currently none are used.
```

14 synthesise_data

Details

This function will synthesise a dataset from marginals imported using import_marginal_distributions. By default the dataset will not contain correlations, however user specified correlations can be added using the correlation_matrix parameter, see export_empty_cor_matrix and import_cor_matrix for more details.

Value

a data frame of simulated data

See Also

```
export_empty_cor_matrix import_cor_matrix
```

Examples

```
## Not run:
    marginals <- import_marginal_distributions()
    df <- synthesise_data(marginals)
## End(Not run)</pre>
```

Index

```
* datasets
IST, 8

export_empty_cor_matrix, 3, 6, 13, 14
export_marginal_distributions, 4, 5, 7

get_marginal_distributions, 4, 5

import_cor_matrix, 3, 4, 6, 13, 14
import_marginal_distributions, 3, 7, 14
is.positive.semi.definite, 6

IST, 8

print.RESIDE, 12

RESIDE (RESIDE-package), 2

RESIDE-package, 2

synthesise_data, 6, 7, 13
synthesize_data (synthesise_data), 13
```