
Package: RAFS (via r-universe)
November 6, 2024

Title Robust Aggregative Feature Selection

Version 0.2.4

Date 2024-05-11

URL https://www.mdfs.it/

Description A cross-validated minimal-optimal feature selection
algorithm. It utilises popularity counting, hierarchical
clustering with feature dissimilarity measures, and
prefiltering with all-relevant feature selection method to
obtain the minimal-optimal set of features.

Depends R (>= 4.2.0)

License GPL-3

Encoding UTF-8

RoxygenNote 7.2.3

Imports fastcluster, MDFS (>= 1.5.3), splitTools

NeedsCompilation no

Author Radosław Piliszek [aut, cre], Witold Remigiusz Rudnicki [ths,
aut]

Maintainer Radosław Piliszek <radoslaw.piliszek@gmail.com>

Repository CRAN

Date/Publication 2024-05-11 17:23:06 UTC

Contents
builtin_dist_funs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
compute_fs_results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
cor_dist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
create_seeded_folds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
default_dist_funs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
default_fs_fun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
default_hclust_methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
get_rafs_all_reps_from_popcnts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1

https://www.mdfs.it/


2 builtin_dist_funs

get_rafs_occurrence_matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
get_rafs_reps_popcnts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
get_rafs_rep_tuples_matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
get_rafs_rep_tuples_popcnts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
get_rafs_tops_popcnts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
get_rafs_top_reps_from_popcnts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
get_rafs_top_rep_tuples_from_popcnts . . . . . . . . . . . . . . . . . . . . . . . . . . 12
get_run_id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
run_rafs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
run_rafs_with_fs_results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
stig_dist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
stig_from_ig_dist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
stig_stable_dist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
vi_dist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Index 18

builtin_dist_funs All built-in feature dissimilarity functions

Description

To be used in run_rafs.

Usage

builtin_dist_funs

Format

An object of class list of length 5.

Details

See also default_dist_funs.



compute_fs_results 3

compute_fs_results Compute preliminary feature selection results for RAFS

Description

This is a secondary function, useful when experimenting with different feature selection filters
and rankings. Its output is used in run_rafs_with_fs_results and it is called for the user in
run_rafs.

Usage

compute_fs_results(data, decision, k, seeds, fs_fun = default_fs_fun)

Arguments

data input data where columns are variables and rows are observations (all numeric)

decision decision variable as a binary sequence of length equal to number of observations

k number of folds for internal cross validation

seeds a vector of seeds used for fold generation for internal cross validation

fs_fun function to compute feature selection p-values, it must have the same signature
as default_fs_fun (which is the default, see its help to learn more)

Value

A list with feature selection results, e.g. from default_fs_fun.

Examples

library(MDFS)
mdfs_omp_set_num_threads(1) # only to pass CRAN checks
data(madelon)
fs_results <- compute_fs_results(madelon$data, madelon$decision, 2, c(12345))
run_rafs_with_fs_results(madelon$data, madelon$decision, fs_results)

cor_dist Feature dissimilarity based on Pearson’s Correlation (cor)

Description

To be used as one of the dist_funs in run_rafs.

Usage

cor_dist(relevant_train_data, train_decision = NULL, seed = NULL)



4 default_dist_funs

Arguments

relevant_train_data

input data where columns are variables and rows are observations (all numeric);
assumed to contain only relevant data

train_decision decision variable as a binary sequence of length equal to number of observations

seed a numerical seed

Value

A matrix of distances (dissimilarities).

create_seeded_folds Create seeded folds

Description

A utility function used in RAFS but useful also for external cross-validation.

Usage

create_seeded_folds(decision, k, seed)

Arguments

decision decision variable as a binary sequence of length equal to number of observations

k number of folds for cross validation

seed a numerical seed

Value

A vector of folds. Each fold being a vector of selected indices.

default_dist_funs Default feature dissimilarity functions

Description

As used in run_rafs.

Usage

default_dist_funs



default_fs_fun 5

Format

An object of class list of length 3.

Details

The default functions compute: Pearson’s correlation (cor: cor_dist), Variation of Information
(vi: vi_dist) and Symmetric Target Information Gain (stig: stig_dist).

These functions follow a similar protocol to default_fs_fun. They expect the same input except
for the assumption that the data passed in is relevant. Each of them outputs a matrix of distances
(dissimilarities) between features.

See also builtin_dist_funs.

default_fs_fun Default (example) feature selection function for RAFS

Description

See run_rafs for how it is used. Only the train portion of the dataset is to be fed into this function.

Usage

default_fs_fun(train_data, train_decision, seed)

Arguments

train_data input data where columns are variables and rows are observations (all numeric)

train_decision decision variable as a binary sequence of length equal to number of observations

seed a numerical seed

Details

The function MUST use this train_data and MAY ignore the train_decision.

If the function depends on randomness, it MUST use the seed parameter to seed the PRNG.

The function needs to return a list with at least two elements: rel_vars and rel_vars_rank,
which are vectors and contain, respectively, the indices of variables considered relevant and the
rank for each relevant variable. The function MAY return a list with more elements.

Other examples of sensible functions are included in the tests of this package.

Value

A list with at least two fields: rel_vars and rel_vars_rank, which are vectors and contain,
respectively, the indices of variables considered relevant and the rank for each relevant variable.



6 get_rafs_all_reps_from_popcnts

default_hclust_methods

Default hclust methods

Description

As used in run_rafs to call hclust.

Usage

default_hclust_methods

Format

An object of class character of length 4.

get_rafs_all_reps_from_popcnts

Get all representatives from their popcnts

Description

This helper function works on results of get_rafs_reps_popcnts to obtain all representatives at
the chosen number of clusters.

Usage

get_rafs_all_reps_from_popcnts(reps_popcnts, n_clusters)

Arguments

reps_popcnts representatives’ popcnts for the chosen variant as obtained from get_rafs_reps_popcnts

n_clusters the desired number of clusters

Value

A vector of all representatives.

Examples

library(MDFS)
mdfs_omp_set_num_threads(1) # only to pass CRAN checks
data(madelon)
rafs_results <- run_rafs(madelon$data, madelon$decision, 2, c(12345))
rafs_reps_popcnts <- get_rafs_reps_popcnts(rafs_results, 5)
get_rafs_all_reps_from_popcnts(rafs_reps_popcnts$stig_single, 5)



get_rafs_occurrence_matrix 7

get_rafs_occurrence_matrix

Get co-occurrence matrix from RAFS results

Description

This function obtains a matrix describing a graph of co-occurrence at each count of clusters (from
n_clusters_range) computed over all runs of RAFS.

Usage

get_rafs_occurrence_matrix(
rafs_results,
interesting_reps,
n_clusters_range = 2:15

)

Arguments

rafs_results RAFS results as obtained from run_rafs

interesting_reps

the interesting representatives to build matrices for (in principle, these need not
be representatives but it is more common)

n_clusters_range

range of clusters number to obtain matrices for

Details

If a single result over a cluster number range is desired, the selected matrices can be summed.

Value

A nested list with matrices. The first level is per the RAFS variant (combination of feature dis-
similarity function and hclust method). The second level is per the number of clusters. The third
(and last) level is the co-occurrence matrix.

Examples

library(MDFS)
mdfs_omp_set_num_threads(1) # only to pass CRAN checks
data(madelon)
rafs_results <- run_rafs(madelon$data, madelon$decision, 2, c(12345))
rafs_reps_popcnts <- get_rafs_reps_popcnts(rafs_results, 5)
rafs_top_reps <- get_rafs_top_reps_from_popcnts(rafs_reps_popcnts$stig_single, 5)
get_rafs_occurrence_matrix(rafs_results, rafs_top_reps, 5)



8 get_rafs_rep_tuples_matrix

get_rafs_reps_popcnts Get representatives’ popularity counts (popcnts) from RAFS results

Description

This function obtains popularity counts (popcnts) of representatives present at each count of clusters
(from n_clusters_range) computed over all runs of RAFS.

Usage

get_rafs_reps_popcnts(rafs_results, n_clusters_range = 2:15)

Arguments

rafs_results RAFS results as obtained from run_rafs
n_clusters_range

range of clusters number to obtain popcnts for

Details

These results might be fed into further helper functions: get_rafs_top_reps_from_popcnts and
get_rafs_all_reps_from_popcnts.

Value

A nested list with popcnts. The first level is per the RAFS variant (combination of feature dissim-
ilarity function and hclust method). The second level is per the number of clusters. The third (and
last) level is popcnts per representative.

Examples

library(MDFS)
mdfs_omp_set_num_threads(1) # only to pass CRAN checks
data(madelon)
rafs_results <- run_rafs(madelon$data, madelon$decision, 2, c(12345))
get_rafs_reps_popcnts(rafs_results, 2:5)

get_rafs_rep_tuples_matrix

Get representatives’ tuples’ co-representation matrix from RAFS re-
sults

Description

This function obtains a matrix of representatives’s describing a graph of co-representation at each
count of clusters (from n_clusters_range) computed over all runs of RAFS.



get_rafs_rep_tuples_popcnts 9

Usage

get_rafs_rep_tuples_matrix(
rafs_results,
interesting_reps,
n_clusters_range = 2:15

)

Arguments

rafs_results RAFS results as obtained from run_rafs
interesting_reps

the interesting representatives to build matrices for
n_clusters_range

range of clusters number to obtain matrices for

Details

If a single result over a cluster number range is desired, the selected matrices can be summed.

Value

A nested list with matrices. The first level is per the RAFS variant (combination of feature dis-
similarity function and hclust method). The second level is per the number of clusters. The third
(and last) level is the co-representation matrix.

Examples

library(MDFS)
mdfs_omp_set_num_threads(1) # only to pass CRAN checks
data(madelon)
rafs_results <- run_rafs(madelon$data, madelon$decision, 2, c(12345))
rafs_reps_popcnts <- get_rafs_reps_popcnts(rafs_results, 5)
rafs_top_reps <- get_rafs_top_reps_from_popcnts(rafs_reps_popcnts$stig_single, 5)
get_rafs_rep_tuples_matrix(rafs_results, rafs_top_reps, 5)

get_rafs_rep_tuples_popcnts

Get representatives’ tuples’ popularity counts (popcnts) from RAFS
results

Description

This function obtains popularity counts (popcnts) of representatives’ tuples present at each count of
clusters (from n_clusters_range) computed over all runs of RAFS.

Usage

get_rafs_rep_tuples_popcnts(rafs_results, n_clusters_range = 2:15)



10 get_rafs_tops_popcnts

Arguments

rafs_results RAFS results as obtained from run_rafs

n_clusters_range

range of clusters number to obtain popcnts for

Value

A nested list with popcnts. The first level is per the RAFS variant (combination of feature dissim-
ilarity function and hclust method). The second level is per the number of clusters. The third (and
last) level is popcnts per representatives’ tuple.

Examples

library(MDFS)
mdfs_omp_set_num_threads(1) # only to pass CRAN checks
data(madelon)
rafs_results <- run_rafs(madelon$data, madelon$decision, 2, c(12345))
get_rafs_rep_tuples_popcnts(rafs_results, 2:5)

get_rafs_tops_popcnts Get top popularity counts (popcnts) from FS results

Description

This function obtains popularity counts (popcnts) of top variables computed over all runs of FS.

Usage

get_rafs_tops_popcnts(fs_results, n_top_range = 2:15)

Arguments

fs_results RAFS FS results as obtained from compute_fs_results

n_top_range range of top number to obtain popcnts for

Details

These results might be fed into further helper functions: get_rafs_top_reps_from_popcnts and
get_rafs_all_reps_from_popcnts.

Value

A nested list with popcnts. The first level is per the number of top variables. The second (and
last) level is popcnts per top variable.



get_rafs_top_reps_from_popcnts 11

Examples

library(MDFS)
mdfs_omp_set_num_threads(1) # only to pass CRAN checks
data(madelon)
fs_results <- compute_fs_results(madelon$data, madelon$decision, 2, c(12345))
get_rafs_tops_popcnts(fs_results, 2:5)

get_rafs_top_reps_from_popcnts

Get top (i.e., most common) representatives from their popcnts

Description

This helper function works on results of get_rafs_reps_popcnts to obtain the desired number of
top (most common) representatives at the chosen number of clusters.

Usage

get_rafs_top_reps_from_popcnts(reps_popcnts, n_clusters, n_reps = n_clusters)

Arguments

reps_popcnts popcnts for the chosen variant as obtained from get_rafs_reps_popcnts

n_clusters the desired number of clusters

n_reps the desired number of top representatives

Value

A vector of top representatives.

Examples

library(MDFS)
mdfs_omp_set_num_threads(1) # only to pass CRAN checks
data(madelon)
rafs_results <- run_rafs(madelon$data, madelon$decision, 2, c(12345))
rafs_reps_popcnts <- get_rafs_reps_popcnts(rafs_results, 5)
get_rafs_top_reps_from_popcnts(rafs_reps_popcnts$stig_single, 5)



12 get_run_id

get_rafs_top_rep_tuples_from_popcnts

Get top (i.e., most common) representatives’s tuples from their popcnts

Description

This helper function works on results of get_rafs_rep_tuples_popcnts to obtain the desired
number of top (most common) representatives’ tuples at the chosen number of clusters.

Usage

get_rafs_top_rep_tuples_from_popcnts(
rep_tuples_popcnts,
n_clusters,
n_tuples = 1

)

Arguments

rep_tuples_popcnts

tuples’ popcnts for the chosen variant as obtained from get_rafs_rep_tuples_popcnts

n_clusters the desired number of clusters

n_tuples the desired number of top tuples

Value

A list of top tuples (each tuple being a vector of representatives).

Examples

library(MDFS)
mdfs_omp_set_num_threads(1) # only to pass CRAN checks
data(madelon)
rafs_results <- run_rafs(madelon$data, madelon$decision, 2, c(12345))
rafs_rep_tuples_popcnts <- get_rafs_rep_tuples_popcnts(rafs_results, 5)
get_rafs_top_rep_tuples_from_popcnts(rafs_rep_tuples_popcnts$stig_single, 5)

get_run_id Generate CV run identifiers

Description

A utility function used in RAFS to generate cross validation run identifiers, thus useful also for
external cross-validation.



run_rafs 13

Usage

get_run_id(seed, k, i)

Arguments

seed a numerical seed

k number of folds for cross validation

i current fold number (1 to k)

Value

A string with the run identifier.

run_rafs Robust Aggregative Feature Selection (RAFS)

Description

This is the main function of the RAFS library to run for analysis.

Usage

run_rafs(
data,
decision,
k = 5,
seeds = sample.int(32767, 10),
fs_fun = default_fs_fun,
dist_funs = default_dist_funs,
hclust_methods = default_hclust_methods

)

Arguments

data input data where columns are variables and rows are observations (all numeric)

decision decision variable as a binary sequence of length equal to number of observations

k number of folds for internal cross validation

seeds a vector of seeds used for fold generation for internal cross validation

fs_fun function to compute feature selection p-values, it must have the same signature
as default_fs_fun (which is the default, see its help to learn more)

dist_funs a list of feature dissimilarity functions computed over the relevant portion of the
training dataset (see the example default_dist_funs and builtin_dist_funs
to learn more)

hclust_methods a vector of hclust methods to use



14 run_rafs_with_fs_results

Details

Depending on your pipeline, you may want to also check out run_rafs_with_fs_results and
compute_fs_results which this function simply wraps over.

The results from this function can be fed into one of the helper functions to analyse them further:
get_rafs_reps_popcnts, get_rafs_rep_tuples_popcnts, get_rafs_rep_tuples_matrix and
get_rafs_occurrence_matrix.

Value

A nested list with hclust results. The first level is per the cross validation run. The second level
is per the feature dissimilarity function. The third (and last) level is per the hclust method.

Examples

library(MDFS)
mdfs_omp_set_num_threads(1) # only to pass CRAN checks
data(madelon)
run_rafs(madelon$data, madelon$decision, 2, c(12345))

run_rafs_with_fs_results

Robust Aggregative Feature Selection (RAFS) from feature selection
results

Description

This is a secondary function, useful when experimenting with different feature selection filters and
rankings. The output is exactly the same as from run_rafs.

Usage

run_rafs_with_fs_results(
data,
decision,
fs_results,
dist_funs = default_dist_funs,
hclust_methods = default_hclust_methods

)

Arguments

data input data where columns are variables and rows are observations (all numeric)

decision decision variable as a binary sequence of length equal to number of observations

fs_results output from compute_fs_results computed for the same data and decision

dist_funs a list of feature dissimilarity functions computed over the relevant portion of the
training dataset (see the example default_dist_funs to learn more)

hclust_methods a vector of hclust methods to use



stig_dist 15

Value

A nested list with hclust results. The first level is per the cross validation run. The second level
is per the feature dissimilarity function. The third (and last) level is per the hclust method.

Examples

library(MDFS)
mdfs_omp_set_num_threads(1) # only to pass CRAN checks
data(madelon)
fs_results <- compute_fs_results(madelon$data, madelon$decision, 2, c(12345))
run_rafs_with_fs_results(madelon$data, madelon$decision, fs_results)

stig_dist Symmetric Target Information Gain (STIG) computed directly

Description

To be used as one of the dist_funs in run_rafs.

Usage

stig_dist(relevant_train_data, train_decision, seed)

Arguments

relevant_train_data

input data where columns are variables and rows are observations (all numeric);
assumed to contain only relevant data

train_decision decision variable as a binary sequence of length equal to number of observations

seed a numerical seed

Details

This function computes the STIG metric directly from the data, maximising it over 30 discretisa-
tions.

Value

A matrix of distances (dissimilarities).



16 stig_stable_dist

stig_from_ig_dist Symmetric Target Information Gain (STIG) computed from single In-
formation Gains (IGs)

Description

To be used as one of the dist_funs in run_rafs.

Usage

stig_from_ig_dist(relevant_train_data, train_decision, seed)

Arguments

relevant_train_data

input data where columns are variables and rows are observations (all numeric);
assumed to contain only relevant data

train_decision decision variable as a binary sequence of length equal to number of observations

seed a numerical seed

Details

This function computes the STIG metric from single Information Gains (IGs) maximised over 30
discretisations and then summed pair-wise.

This function is similar to stig_dist but the results differ slightly. We recommend the direct
computation in general.

Value

A matrix of distances (dissimilarities).

stig_stable_dist Symmetric Target Information Gain (STIG) computed directly but with
pre-computed 1D conditional entropy (aka stable)

Description

To be used as one of the dist_funs in run_rafs.

Usage

stig_stable_dist(relevant_train_data, train_decision, seed)



vi_dist 17

Arguments

relevant_train_data

input data where columns are variables and rows are observations (all numeric);
assumed to contain only relevant data

train_decision decision variable as a binary sequence of length equal to number of observations

seed a numerical seed

Details

This function computes the STIG metric directly from the data, maximising it over 30 discretisa-
tions, but reusing the common 1D conditional entropy.

Value

A matrix of distances (dissimilarities).

vi_dist Variation of Information (VI)

Description

To be used as one of the dist_funs in run_rafs.

Usage

vi_dist(relevant_train_data, train_decision = NULL, seed)

Arguments

relevant_train_data

input data where columns are variables and rows are observations (all numeric);
assumed to contain only relevant data

train_decision decision variable as a binary sequence of length equal to number of observations

seed a numerical seed

Details

This function computes the Variation of Information (VI) averaged over 30 discretisations.

Value

A matrix of distances (dissimilarities).



Index

∗ datasets
builtin_dist_funs, 2
default_dist_funs, 4
default_hclust_methods, 6

builtin_dist_funs, 2, 5, 13

compute_fs_results, 3, 10, 14
cor_dist, 3, 5
create_seeded_folds, 4

default_dist_funs, 2, 4, 13, 14
default_fs_fun, 3, 5, 5, 13
default_hclust_methods, 6

get_rafs_all_reps_from_popcnts, 6, 8, 10
get_rafs_occurrence_matrix, 7, 14
get_rafs_rep_tuples_matrix, 8, 14
get_rafs_rep_tuples_popcnts, 9, 12, 14
get_rafs_reps_popcnts, 6, 8, 11, 14
get_rafs_top_rep_tuples_from_popcnts,

12
get_rafs_top_reps_from_popcnts, 8, 10,

11
get_rafs_tops_popcnts, 10
get_run_id, 12

hclust, 6, 13–15

list, 3, 5, 7–10, 14, 15

run_rafs, 2–10, 13, 14–17
run_rafs_with_fs_results, 3, 14, 14

stig_dist, 5, 15, 16
stig_from_ig_dist, 16
stig_stable_dist, 16

vi_dist, 5, 17

18


	builtin_dist_funs
	compute_fs_results
	cor_dist
	create_seeded_folds
	default_dist_funs
	default_fs_fun
	default_hclust_methods
	get_rafs_all_reps_from_popcnts
	get_rafs_occurrence_matrix
	get_rafs_reps_popcnts
	get_rafs_rep_tuples_matrix
	get_rafs_rep_tuples_popcnts
	get_rafs_tops_popcnts
	get_rafs_top_reps_from_popcnts
	get_rafs_top_rep_tuples_from_popcnts
	get_run_id
	run_rafs
	run_rafs_with_fs_results
	stig_dist
	stig_from_ig_dist
	stig_stable_dist
	vi_dist
	Index

