Package: PropScrRand (via r-universe)

September 17, 2024

Type Package

Title Propensity Score Methods for Assigning Treatment in Randomized Trials
Version 1.1.2
Date 2024-04-19
Author Travis Loux

Maintainer Travis Loux <travis.loux@slu.edu>

Description Contains functions to run propensity-biased allocation to balance covariate distributions in sequential trials and propensity-constrained randomization to balance covariate distributions in trials with known baseline covariates at time of randomization. Currently only supports trials comparing two groups.

License GPL-3

NeedsCompilation no

Repository CRAN

Date/Publication 2024-04-19 22:32:43 UTC

Contents

Index

genPerms	2
getVar	3
pba	3
pcr	5
piFunction	6
plotpi	7
	- 9

genPerms

Description

Used within calls to pcr to generate a set of unique treatment permutations for randomization.

Usage

genPerms(n, n1, nPerms)

Arguments

n	Total number of units to be randomized.
n1	Number of units to receive treatment.
nPerms	Number of permutations to generate.

Details

This function randomly samples nPerms of the choose(n, n1) possible treatment permutations. If nPerms > choose(n, n1), then all choose(n, n1) permutations are generated systematically. Also, in the case of 1-to-1 allocation, the complement treatment vectors are also produced, so the returned matrix has 2*nPerms permutations. Uniqueness is checked throughout and duplicate permutations disgarded.

Value

The result is an $n1 \times nPerms$ (or $n1 \times choose(n, n1)$ or $n1 \times 2 \times nPerms$) matrix. Each column represents one treatment permutation, with the values in the column giving the index of the treated units.

Author(s)

Travis M. Loux

Examples

```
genPerms(n=50, n1=25, nPerms=500)
genPerms(n=50, n1=35, nPerms=500)
```

getVar

Description

Given a data set and vector of indices for treated units, computes the variance of the propensity score fitted via logistic regression.

Usage

getVar(covs, tIndex)

Arguments

COVS	A data frame of baseline covariates.
tIndex	A vector indicating which units are to receive treatment.

Value

Returns the variance of the fitted propensity scores.

Author(s)

Travis M. Loux

pba

Propensity-Biased Allocation

Description

Performs propensity-biased allocation for assigning a new unit to treatment in a sequential design with two treatment levels (i.e., treatment and control).

Usage

pba(x, tr, newx, k = 1, global = 0.5)
pbaAgain(previous, newx, k = NA)

Arguments

Х	A data frame of the covariate values of previously assigned units.
tr	A vector of treatment assignments (0 or 1) for previously assigned units.
newx	Data frame of covariate values of the new unit.
k	Balancing parameter.
global	Global target proportion to be treated.
previous	The output of a previous call to pba or pbaAgain
newx k global	Data frame of covariate values of the new unit. Balancing parameter. Global target proportion to be treated.

Details

4

The function pba generates a treatment assignment for a new unit. The steps of the process include regressesing tr on x by logistic regression, computing the fitted value of the new unit using covarate values in newx, and transforming the fitted propensity score into the probability of treatment by a call to piFunction using k and global as parameters. The balancing parameter k must be one of \emptyset , Inf, or the ratio of two positive odd integers. Small values of k result in less restrictive randomization while larger values of k result in more forced balance. In particular, $k = \emptyset$ is equivalent to pure randomization and k = Inf results in deterministic allocation. Finally, a treatment assignment for the new unit is generated via a Bernoulli trial with probability from piFunction.

The function pbaAgain takes as input the output from a previous call to pba or pbaAgain and runs pba for the new unit using the values of newx. If k = NA (the default), the value of k from previous is used; otherwise, the provided value of k is used. The parameter global is assumed to stay the same throughout the trial. The output of pbaAgain contains the same information as pba.

Value

results	A list of results from the PBA procedure.
phat	The fitted propensity score for the new unit.
ptreat	The probability of assignment to the treatment group for the new unit.
newtr	Result of random assignment using ptreat.
input	A list of inputs to PBA procdure. Used in future calls to pbaAgain.
x	Input x.
tr	Input tr.
newx	Input newx.
k	Input k.
global	Input global.

Author(s)

Travis Loux

References

Loux, T.M. (2013) A simple, flexible, and effective covariate-adaptive treatment allocation procedure. Statistics in Medicine 32(22), 3775-3787. DOI: 10.1002/sim.5837

Examples

```
x0 = data.frame(matrix(rnorm(60), ncol=3))
t0 = rbinom(nrow(x0), size=1, prob=0.5)
x1 = data.frame(matrix(rnorm(3), ncol=3))
trial1 = pba(x=x0, tr=t0, newx=x1, k=Inf)
x2 = data.frame(matrix(rnorm(3), ncol=3))
trial2 = pbaAgain(previous=trial1, newx=x2)
```

pba

```
x3 = data.frame(matrix(rnorm(3), ncol=3))
trial3 = pbaAgain(previous=trial2, newx=x3, k=5/3)
```

pcr

Propensity-Constrained Randomization

Description

Performs propensity-contstrained randomization on a given data set with measured covariates on all units.

Usage

pcr(x, nTreat, M, m)

Arguments

х	Data frame of covariates.
nTreat	Number of units to be treated.
Μ	Number of candidate permutations to create.
m	Number of permutations to keep.

Details

Given the parameters, pcr generates M unique permutations by calling genPerms. For each permutation, the empirical propensity scores are computed and the variance returned by getVar. Finally, the m permutations with the smallest propensity score variance are found. The m permutations returned in best can then be used to perform randomization and randomization inference. We suggest $M \ge 10000$ and $m/M \le 0.10$.

Value

treatments	The (approximately) M permutations generated by genPerms.
variance	A vector of the propensity score variances for all M permutations in treatments.
cutoff	The calculated m/M quantile of propensity score variances.
best	The column indices of the permutations in treatments with propensity score variance below cutoff.

Author(s)

Travis Loux

References

Loux, T.M. (2015) Randomization, matching, and propensity scores in the design and analysis of experimental studies with known covariates. Statistics in Medicine. 34(4), 558-570. DOI: 10.1002/sim.6361

Examples

```
# 1:1 allocation, M small
dat1 = data.frame(x1=rnorm(50),
                  x2=rnorm(50),
                  x3=sample(c('a','b','c'), size=50, replace=TRUE))
trial1 = pcr(x=dat1, nTreat=25, M=500, m=50)
# 1:1 allocation, M large
dat2 = data.frame(x1=rnorm(10),
                  x2=rnorm(10),
                  x3=sample(c('a','b','c'), size=10, replace=TRUE))
trial2 = pcr(x=dat2, nTreat=5, M=200, m=20)
# non-1:1 allocation, M small
dat3 = data.frame(x1=rnorm(50),
                  x2=rnorm(50),
                  x3=sample(c('a','b','c'), size=50, replace=TRUE))
trial3 = pcr(x=dat3, nTreat=35, M=200, m=20)
# non-1:1 allocation, M large
dat4 = data.frame(x1=rnorm(10),
                  x2=rnorm(10),
                  x3=sample(c('a','b','c'), size=10, replace=TRUE))
trial4 = pcr(x=dat4, nTreat=6, M=300, m=30)
```

piFunction	Get PBA Treatment Probability
------------	-------------------------------

Description

Used within calls to pba and pbaAgain to obtain the probability a unit is assigned treatment given its fitted propensity score.

Usage

piFunction(fit, kparam, qparam)

Arguments

fit	Fitted propensity score.
kparam	Balancing parameter.
qparam	Global target for proportion of units treated.

Details

The input kparam must be one of 0, Inf, or the ratio of two positive odd integers. Both fit and qparam must be between 0 and 1.

6

plotpi

Value

A numeric object. In the conext of PBA, the probability of assignment to treatment for the current unit.

Author(s)

Travis M. Loux

Examples

```
piFunction(fit=0.6, kparam=1, qparam=0.5)
piFunction(fit=0.6, kparam=5, qparam=0.5)
piFunction(fit=0.6, kparam=1/5, qparam=0.5)
piFunction(fit=0.6, kparam=1, qparam=2/3)
piFunction(fit=0.6, kparam=5, qparam=2/3)
piFunction(fit=0.6, kparam=1/5, qparam=2/3)
```

```
plotpi
```

Plots of piFunction

Description

Can be used to investigate the strength of balance forced by various values of the tuning parameter k.

Usage

plotpi(k, global = 0.5)
addpi(k, global = 0.5, ...)

Arguments

k	Balancing parameter.
global	Global target for proportion of units treated.
	Parameters in addpi passed to lines function.

Details

The function plotpi creates a plot of treatment probability against fitted propensity score for values of k and global. The function addpi adds a curve for a new combination of k and global to an existing plot.

Author(s)

Travis M. Loux

plotpi

Examples

```
plotpi(k=3, global=0.5)
addpi(k=5/3, lty=2, col='red')
plotpi(k=1/3, global=2/3)
```

Index

* design genPerms, 2 pba, 3 pcr, 5 * multivariate pba, 3 pcr, 5 addpi (plotpi), 7 genPerms, 2, 5 getVar, 3, 5 pba, 3 pbaAgain (pba), 3 pcr, 5 piFunction, 4, 6

plotpi,7