Package 'PreProcessing'

Title: Various Preprocessing Transformations of Numeric Data Matrices
Description: Preprocess numeric data matrices into desired transformed representations. Standardization, Unitization, Cubitization and adaptive intervals are offered.
Authors: Swamiji Pravedson
Maintainer: Swamiji Pravedson <[email protected]>
License: GPL-3
Version: 0.1.0
Built: 2024-11-28 06:30:46 UTC
Source: CRAN

Help Index


Cubitizes the matrix given as input

Description

Cubitizes the matrix given as input

Usage

cubitize(xx)

Arguments

xx

Matrix or a data frame of numeric entries

Value

Matrix with columns that have minimum zero and maximum one

Examples

## Not run: 
# I don't want you to run this

## End(Not run)
n<-450; x <- data.frame(cbind(rnorm(n, 162, 4), rnorm(n, 108, 2),
rnorm(n, 117, 3), rnorm(n, 36, 2), rnorm(n, 45, 2)))
p <- ncol(x)
x.cube <- cubitize(x)
round(head(x),2)
round(head(x.cube),2)
round(rbind(apply(x, 2, min), apply(x.cube, 2, min)),2)
round(rbind(apply(x, 2, max),apply(x.cube, 2, max)),2)
oldpar<-par(mfrow=c(1,2))
boxplot(x[,1:min(5,p)], main='Original Data', col=rainbow(9))
boxplot(x.cube[,1:min(5,p)], main='PreProcessed Data', col=rainbow(7))
par(oldpar)

Intervalizes the matrix given as input

Description

Intervalizes the matrix given as input

Usage

intervalize(xx, a = -1, b = 1)

Arguments

xx

Matrix or a data frame of numeric entries

a

lower bound of the target interval

b

upper bound of the target interval

Value

Matrix with columns that have minimum zero and maximum one

Examples

## Not run: 
# I don't want you to run this

## End(Not run)
n<-450; x <- data.frame(cbind(rnorm(n, 162, 4), rnorm(n, 108, 2),
rnorm(n, 117, 3), rnorm(n, 36, 2), rnorm(n, 45, 2)))
p <- ncol(x)
x.inter <- intervalize(x,a=-1,b=1)
round(head(x),2)
round(head(x.inter),2)
round(rbind(apply(x, 2, min), apply(x.inter, 2, min)),2)
round(rbind(apply(x, 2, max),apply(x.inter, 2, max)),2)
oldpar<-par(mfrow=c(1,2))
boxplot(x[,1:min(5,p)], main='Original Data', col=rainbow(9))
boxplot(x.inter[,1:min(5,p)], main='PreProcessed Data', col=rainbow(7))
par(oldpar)

Standardizes the matrix given as input

Description

This function takes as input a matrix of numeric values and then transforms it so that each column has a mean of zero and a variance of one

Usage

standardize(xx)

Arguments

xx

Matrix or a data frame of numeric entries

Value

Matrix with columns that have mean zero and variance one

Examples

## Not run: 
# I don't want you to run this

## End(Not run)
n<-450; x <- data.frame(cbind(rnorm(n, 162, 4), rnorm(n, 108, 2),
rnorm(n, 117, 3), rnorm(n, 36, 2), rnorm(n, 45, 2)))
p <- ncol(x)
x.stan <- standardize(x)
round(head(x),2)
round(head(x.stan),2)
round(rbind(apply(x, 2, mean), apply(x.stan, 2, mean)),2)
round(rbind(apply(x, 2, sd),apply(x.stan, 2, sd)),2)

oldpar <- par(mfrow=c(1,2))
boxplot(x[,1:min(5,p)], main='Original Data', col=rainbow(9))
boxplot(x.stan[,1:min(5,p)], main='PreProcessed Data', col=rainbow(7))
par(oldpar)

Unitizes the matrix given as input

Description

Unitizes the matrix given as input

Usage

unitize(xx)

Arguments

xx

Matrix or a data frame of numeric entries

Value

Matrix with columns that have mean zero and length one

Examples

## Not run: 
# I don't want you to run this

## End(Not run)
n<-450; x <- data.frame(cbind(rnorm(n, 162, 4), rnorm(n, 108, 2),
rnorm(n, 117, 3), rnorm(n, 36, 2), rnorm(n, 45, 2)))
p <- ncol(x)
x.unit <- unitize(x)
round(head(x),2)
round(head(x.unit),2)
round(rbind(apply(x, 2, mean), apply(x.unit, 2, mean)),2)
round(rbind(apply(x, 2, sd),apply(x.unit, 2, sd)),2)
oldpar<-par(mfrow=c(1,2))
boxplot(x[,1:min(5,p)], main='Original Data', col=rainbow(9))
boxplot(x.unit[,1:min(5,p)], main='PreProcessed Data', col=rainbow(7))
par(oldpar)