Approximate Procedures

Ordinary Poisson Binomial Distribution

Poisson Approximation

The Poisson Approximation (DC) approach is requested with method = "Poisson". It is based on a Poisson distribution, whose parameter is the sum of the probabilities of success.

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)

dpbinom(NULL, pp, wt, "Poisson")
#>  [1] 2.263593e-16 8.154460e-15 1.468798e-13 1.763753e-12 1.588454e-11
#>  [6] 1.144462e-10 6.871428e-10 3.536273e-09 1.592402e-08 6.373926e-08
#> [11] 2.296169e-07 7.519830e-07 2.257479e-06 6.255718e-06 1.609704e-05
#> [16] 3.865908e-05 8.704191e-05 1.844490e-04 3.691482e-04 6.999128e-04
#> [21] 1.260697e-03 2.162661e-03 3.541299e-03 5.546660e-03 8.325631e-03
#> [26] 1.199704e-02 1.662255e-02 2.217842e-02 2.853445e-02 3.544609e-02
#> [31] 4.256414e-02 4.946284e-02 5.568342e-02 6.078674e-02 6.440607e-02
#> [36] 6.629115e-02 6.633610e-02 6.458699e-02 6.122916e-02 5.655755e-02
#> [41] 5.093630e-02 4.475488e-02 3.838734e-02 3.216003e-02 2.633059e-02
#> [46] 2.107875e-02 1.650760e-02 1.265269e-02 9.495953e-03 6.981348e-03
#> [51] 5.029979e-03 3.552981e-03 2.461424e-03 1.673044e-03 1.116119e-03
#> [56] 7.310458e-04 4.702766e-04 2.972182e-04 1.846053e-04 1.127169e-04
#> [61] 6.767601e-05 9.288901e-05
ppbinom(NULL, pp, wt, "Poisson")
#>  [1] 2.263593e-16 8.380820e-15 1.552606e-13 1.919013e-12 1.780355e-11
#>  [6] 1.322498e-10 8.193925e-10 4.355666e-09 2.027968e-08 8.401894e-08
#> [11] 3.136359e-07 1.065619e-06 3.323097e-06 9.578815e-06 2.567585e-05
#> [16] 6.433494e-05 1.513768e-04 3.358259e-04 7.049740e-04 1.404887e-03
#> [21] 2.665584e-03 4.828245e-03 8.369543e-03 1.391620e-02 2.224184e-02
#> [26] 3.423887e-02 5.086142e-02 7.303984e-02 1.015743e-01 1.370204e-01
#> [31] 1.795845e-01 2.290474e-01 2.847308e-01 3.455175e-01 4.099236e-01
#> [36] 4.762147e-01 5.425508e-01 6.071378e-01 6.683670e-01 7.249245e-01
#> [41] 7.758608e-01 8.206157e-01 8.590031e-01 8.911631e-01 9.174937e-01
#> [46] 9.385724e-01 9.550800e-01 9.677327e-01 9.772287e-01 9.842100e-01
#> [51] 9.892400e-01 9.927930e-01 9.952544e-01 9.969275e-01 9.980436e-01
#> [56] 9.987746e-01 9.992449e-01 9.995421e-01 9.997267e-01 9.998394e-01
#> [61] 9.999071e-01 1.000000e+00

A comparison with exact computation shows that the approximation quality of the PA procedure increases with smaller probabilities of success. The reason is that the Poisson Binomial distribution approaches a Poisson distribution when the probabilities are very small.

set.seed(1)

# U(0, 1) random probabilities of success
pp <- runif(20)
dpbinom(NULL, pp, method = "Poisson")
#>  [1] 0.0000150619 0.0001672374 0.0009284471 0.0034362888 0.0095385726
#>  [6] 0.0211820073 0.0391985129 0.0621763578 0.0862956727 0.1064633767
#> [11] 0.1182099310 0.1193204840 0.1104046811 0.0942969970 0.0747865595
#> [16] 0.0553587178 0.0384166744 0.0250913815 0.0154776776 0.0090449448
#> [21] 0.0101904160
dpbinom(NULL, pp)
#>  [1] 4.401037e-11 7.873212e-09 3.624610e-07 7.952504e-06 1.014602e-04
#>  [6] 8.311558e-04 4.642470e-03 1.838525e-02 5.297347e-02 1.129135e-01
#> [11] 1.798080e-01 2.148719e-01 1.926468e-01 1.289706e-01 6.384266e-02
#> [16] 2.299142e-02 5.871700e-03 1.021142e-03 1.129421e-04 6.977021e-06
#> [21] 1.747603e-07
summary(dpbinom(NULL, pp, method = "Poisson") - dpbinom(NULL, pp))
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -9.555e-02  1.506e-05  9.437e-03  0.000e+00  2.407e-02  4.379e-02

# U(0, 0.01) random probabilities of success
pp <- runif(20, 0, 0.01)
dpbinom(NULL, pp, method = "Poisson")
#>  [1] 9.095763e-01 8.620639e-02 4.085167e-03 1.290592e-04 3.057942e-06
#>  [6] 5.796418e-08 9.156063e-10 1.239684e-11 1.468661e-13 1.546605e-15
#> [11] 1.465817e-17 1.262953e-19 9.974852e-22 7.272161e-24 4.923067e-26
#> [16] 3.110605e-28 1.842575e-30 1.027251e-32 5.408845e-35 2.698058e-37
#> [21] 1.284357e-39
dpbinom(NULL, pp)
#>  [1] 9.093051e-01 8.672423e-02 3.861917e-03 1.066765e-04 2.048094e-06
#>  [6] 2.902198e-08 3.145829e-10 2.667571e-12 1.794592e-14 9.656258e-17
#> [11] 4.170114e-19 1.444465e-21 3.994453e-24 8.738444e-27 1.490372e-29
#> [16] 1.938487e-32 1.859939e-35 1.249654e-38 5.381374e-42 1.245845e-45
#> [21] 9.511846e-50
summary(dpbinom(NULL, pp, method = "Poisson") - dpbinom(NULL, pp))
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -5.178e-04  0.000e+00  0.000e+00  0.000e+00  6.000e-10  2.712e-04

Arithmetic Mean Binomial Approximation

The Arithmetic Mean Binomial Approximation (AMBA) approach is requested with method = "Mean". It is based on a Binomial distribution, whose parameter is the arithmetic mean of the probabilities of success.

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
mean(rep(pp, wt))
#> [1] 0.5905641

dpbinom(NULL, pp, wt, "Mean")
#>  [1] 2.204668e-24 1.939788e-22 8.393759e-21 2.381049e-19 4.979863e-18
#>  [6] 8.188480e-17 1.102354e-15 1.249300e-14 1.216331e-13 1.033156e-12
#> [11] 7.749086e-12 5.182139e-11 3.114432e-10 1.693217e-09 8.373498e-09
#> [16] 3.784379e-08 1.569327e-07 5.991812e-07 2.112610e-06 6.896287e-06
#> [21] 2.088890e-05 5.882491e-05 1.542694e-04 3.773093e-04 8.616897e-04
#> [26] 1.839474e-03 3.673702e-03 6.868933e-03 1.203071e-02 1.974641e-02
#> [31] 3.038072e-02 4.382068e-02 5.925587e-02 7.510979e-02 8.921887e-02
#> [36] 9.927353e-02 1.034154e-01 1.007871e-01 9.181496e-02 7.810121e-02
#> [41] 6.195859e-02 4.577391e-02 3.143980e-02 2.003761e-02 1.182352e-02
#> [46] 6.442647e-03 3.232269e-03 1.487928e-03 6.259647e-04 2.395401e-04
#> [51] 8.292214e-05 2.579729e-05 7.155695e-06 1.752667e-06 3.745215e-07
#> [56] 6.875325e-08 1.062521e-08 1.344354e-09 1.337294e-10 9.807924e-12
#> [61] 4.715599e-13 1.115034e-14
ppbinom(NULL, pp, wt, "Mean")
#>  [1] 2.204668e-24 1.961834e-22 8.589942e-21 2.466948e-19 5.226557e-18
#>  [6] 8.711136e-17 1.189465e-15 1.368247e-14 1.353155e-13 1.168472e-12
#> [11] 8.917558e-12 6.073895e-11 3.721822e-10 2.065399e-09 1.043890e-08
#> [16] 4.828268e-08 2.052154e-07 8.043966e-07 2.917007e-06 9.813294e-06
#> [21] 3.070220e-05 8.952711e-05 2.437965e-04 6.211058e-04 1.482796e-03
#> [26] 3.322270e-03 6.995972e-03 1.386490e-02 2.589561e-02 4.564203e-02
#> [31] 7.602274e-02 1.198434e-01 1.790993e-01 2.542091e-01 3.434279e-01
#> [36] 4.427015e-01 5.461169e-01 6.469040e-01 7.387189e-01 8.168201e-01
#> [41] 8.787787e-01 9.245526e-01 9.559924e-01 9.760300e-01 9.878536e-01
#> [46] 9.942962e-01 9.975285e-01 9.990164e-01 9.996424e-01 9.998819e-01
#> [51] 9.999648e-01 9.999906e-01 9.999978e-01 9.999995e-01 9.999999e-01
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00

A comparison with exact computation shows that the approximation quality of the AMBA procedure increases when the probabilities of success are closer to each other. The reason is that, although the expectation remains unchanged, the distribution’s variance becomes smaller the less the probabilities differ. Since this variance is minimized by equal probabilities (but still underestimated), the AMBA method is best suited for situations with very similar probabilities of success.

set.seed(1)

# U(0, 1) random probabilities of success
pp <- runif(20)
dpbinom(NULL, pp, method = "Mean")
#>  [1] 9.203176e-08 2.297178e-06 2.723611e-05 2.039497e-04 1.081780e-03
#>  [6] 4.320318e-03 1.347977e-02 3.364646e-02 6.823695e-02 1.135495e-01
#> [11] 1.558851e-01 1.768638e-01 1.655492e-01 1.271454e-01 7.934094e-02
#> [16] 3.960811e-02 1.544760e-02 4.536271e-03 9.435709e-04 1.239589e-04
#> [21] 7.735255e-06
dpbinom(NULL, pp)
#>  [1] 4.401037e-11 7.873212e-09 3.624610e-07 7.952504e-06 1.014602e-04
#>  [6] 8.311558e-04 4.642470e-03 1.838525e-02 5.297347e-02 1.129135e-01
#> [11] 1.798080e-01 2.148719e-01 1.926468e-01 1.289706e-01 6.384266e-02
#> [16] 2.299142e-02 5.871700e-03 1.021142e-03 1.129421e-04 6.977021e-06
#> [21] 1.747603e-07
summary(dpbinom(NULL, pp, method = "Mean") - dpbinom(NULL, pp))
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -3.801e-02  2.290e-06  6.360e-04  0.000e+00  8.837e-03  1.662e-02

# U(0.3, 0.5) random probabilities of success
pp <- runif(20, 0.3, 0.5)
dpbinom(NULL, pp, method = "Mean")
#>  [1] 4.348271e-05 5.672598e-04 3.515127e-03 1.375712e-02 3.813748e-02
#>  [6] 7.960444e-02 1.298114e-01 1.693472e-01 1.795010e-01 1.561137e-01
#> [11] 1.120132e-01 6.642197e-02 3.249439e-02 1.304339e-02 4.253984e-03
#> [16] 1.109919e-03 2.262438e-04 3.472347e-05 3.774915e-06 2.591904e-07
#> [21] 8.453263e-09
dpbinom(NULL, pp)
#>  [1] 4.015121e-05 5.344728e-04 3.370391e-03 1.338738e-02 3.756479e-02
#>  [6] 7.915145e-02 1.299445e-01 1.702071e-01 1.806555e-01 1.569062e-01
#> [11] 1.121277e-01 6.604356e-02 3.200604e-02 1.269255e-02 4.078679e-03
#> [16] 1.045709e-03 2.088926e-04 3.133484e-05 3.320483e-06 2.216332e-07
#> [21] 7.008006e-09
summary(dpbinom(NULL, pp, method = "Mean") - dpbinom(NULL, pp))
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -1.155e-03  1.400e-09  1.735e-05  0.000e+00  3.508e-04  5.727e-04

# U(0.39, 0.41) random probabilities of success
pp <- runif(20, 0.39, 0.41)
dpbinom(NULL, pp, method = "Mean")
#>  [1] 3.638616e-05 4.854405e-04 3.076305e-03 1.231262e-02 3.490673e-02
#>  [6] 7.451247e-02 1.242621e-01 1.657824e-01 1.797056e-01 1.598344e-01
#> [11] 1.172824e-01 7.112295e-02 3.558286e-02 1.460687e-02 4.871885e-03
#> [16] 1.299951e-03 2.709859e-04 4.253314e-05 4.728746e-06 3.320414e-07
#> [21] 1.107470e-08
dpbinom(NULL, pp)
#>  [1] 3.636149e-05 4.851935e-04 3.075192e-03 1.230970e-02 3.490204e-02
#>  [6] 7.450845e-02 1.242626e-01 1.657891e-01 1.797153e-01 1.598415e-01
#> [11] 1.172840e-01 7.112011e-02 3.557873e-02 1.460374e-02 4.870251e-03
#> [16] 1.299328e-03 2.708111e-04 4.249771e-05 4.723809e-06 3.316172e-07
#> [21] 1.105772e-08
summary(dpbinom(NULL, pp, method = "Mean") - dpbinom(NULL, pp))
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -9.641e-06  1.700e-11  1.747e-07  0.000e+00  2.844e-06  4.689e-06

Geometric Mean Binomial Approximation - Variant A

The Geometric Mean Binomial Approximation (Variant A) (GMBA-A) approach is requested with method = "GeoMean". It is based on a Binomial distribution, whose parameter is the geometric mean of the probabilities of success: $$\hat{p} = \sqrt[n]{p_1 \cdot ... \cdot p_n}$$

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
prod(rep(pp, wt))^(1/sum(wt))
#> [1] 0.4669916

dpbinom(NULL, pp, wt, "GeoMean")
#>  [1] 2.141782e-17 1.144670e-15 3.008684e-14 5.184208e-13 6.586057e-12
#>  [6] 6.578175e-11 5.379195e-10 3.703028e-09 2.189958e-08 1.129911e-07
#> [11] 5.147813e-07 2.091103e-06 7.633772e-06 2.520966e-05 7.572779e-05
#> [16] 2.078916e-04 5.236606e-04 1.214475e-03 2.601021e-03 5.157435e-03
#> [21] 9.489168e-03 1.623184e-02 2.585712e-02 3.841422e-02 5.328923e-02
#> [26] 6.909972e-02 8.382634e-02 9.520502e-02 1.012875e-01 1.009827e-01
#> [31] 9.437363e-02 8.268481e-02 6.791600e-02 5.229152e-02 3.772988e-02
#> [36] 2.550094e-02 1.613623e-02 9.552467e-03 5.285892e-03 2.731219e-03
#> [41] 1.316117e-03 5.906156e-04 2.464113e-04 9.539397e-05 3.419132e-05
#> [46] 1.131690e-05 3.448772e-06 9.643463e-07 2.464308e-07 5.728188e-08
#> [51] 1.204491e-08 2.276152e-09 3.835067e-10 5.705775e-11 7.406038e-12
#> [56] 8.258409e-13 7.752374e-14 5.958061e-15 3.600079e-16 1.603823e-17
#> [61] 4.683928e-19 6.727527e-21
ppbinom(NULL, pp, wt, "GeoMean")
#>  [1] 2.141782e-17 1.166088e-15 3.125293e-14 5.496737e-13 7.135731e-12
#>  [6] 7.291748e-11 6.108370e-10 4.313865e-09 2.621345e-08 1.392046e-07
#> [11] 6.539859e-07 2.745088e-06 1.037886e-05 3.558852e-05 1.113163e-04
#> [16] 3.192079e-04 8.428685e-04 2.057343e-03 4.658364e-03 9.815799e-03
#> [21] 1.930497e-02 3.553681e-02 6.139393e-02 9.980815e-02 1.530974e-01
#> [26] 2.221971e-01 3.060234e-01 4.012285e-01 5.025160e-01 6.034986e-01
#> [31] 6.978723e-01 7.805571e-01 8.484731e-01 9.007646e-01 9.384945e-01
#> [36] 9.639954e-01 9.801316e-01 9.896841e-01 9.949700e-01 9.977012e-01
#> [41] 9.990173e-01 9.996080e-01 9.998544e-01 9.999498e-01 9.999840e-01
#> [46] 9.999953e-01 9.999987e-01 9.999997e-01 9.999999e-01 1.000000e+00
#> [51] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00

It is known that the geometric mean of the probabilities of success is always smaller than their arithmetic mean. Thus, we get a stochastically smaller binomial distribution. A comparison with exact computation shows that the approximation quality of the GMBA-A procedure increases when the probabilities of success are closer to each other:

set.seed(1)

# U(0, 1) random probabilities of success
pp <- runif(20)
dpbinom(NULL, pp, method = "GeoMean")
#>  [1] 4.557123e-06 7.742984e-05 6.249130e-04 3.185359e-03 1.150098e-02
#>  [6] 3.126602e-02 6.640491e-02 1.128282e-01 1.557610e-01 1.764351e-01
#> [11] 1.648790e-01 1.273387e-01 8.113517e-02 4.241734e-02 1.801777e-02
#> [16] 6.122779e-03 1.625497e-03 3.249263e-04 4.600672e-05 4.114199e-06
#> [21] 1.747603e-07
dpbinom(NULL, pp)
#>  [1] 4.401037e-11 7.873212e-09 3.624610e-07 7.952504e-06 1.014602e-04
#>  [6] 8.311558e-04 4.642470e-03 1.838525e-02 5.297347e-02 1.129135e-01
#> [11] 1.798080e-01 2.148719e-01 1.926468e-01 1.289706e-01 6.384266e-02
#> [16] 2.299142e-02 5.871700e-03 1.021142e-03 1.129421e-04 6.977021e-06
#> [21] 1.747603e-07
summary(dpbinom(NULL, pp, method = "GeoMean") - dpbinom(NULL, pp))
#>     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
#> -0.11151 -0.01493  0.00000  0.00000  0.01140  0.10279

# U(0.4, 0.6) random probabilities of success
pp <- runif(20, 0.4, 0.6)
dpbinom(NULL, pp, method = "GeoMean")
#>  [1] 1.317886e-06 2.551200e-05 2.345875e-04 1.362363e-03 5.604265e-03
#>  [6] 1.735823e-02 4.200318e-02 8.131092e-02 1.278907e-01 1.650496e-01
#> [11] 1.757292e-01 1.546280e-01 1.122499e-01 6.686047e-02 3.235759e-02
#> [16] 1.252775e-02 3.789307e-03 8.629936e-04 1.392173e-04 1.418425e-05
#> [21] 6.864565e-07
dpbinom(NULL, pp)
#>  [1] 1.046635e-06 2.098187e-05 1.993006e-04 1.192678e-03 5.043114e-03
#>  [6] 1.601621e-02 3.964022e-02 7.829406e-02 1.253351e-01 1.642218e-01
#> [11] 1.770816e-01 1.574210e-01 1.151700e-01 6.896627e-02 3.347297e-02
#> [16] 1.296524e-02 3.913788e-03 8.873960e-04 1.421738e-04 1.435144e-05
#> [21] 6.864565e-07
summary(dpbinom(NULL, pp, method = "GeoMean") - dpbinom(NULL, pp))
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -0.0029201 -0.0004375  0.0000000  0.0000000  0.0005612  0.0030169

# U(0.49, 0.51) random probabilities of success
pp <- runif(20, 0.49, 0.51)
dpbinom(NULL, pp, method = "GeoMean")
#>  [1] 9.491177e-07 1.899145e-05 1.805052e-04 1.083550e-03 4.607292e-03
#>  [6] 1.475040e-02 3.689366e-02 7.382266e-02 1.200193e-01 1.601024e-01
#> [11] 1.761970e-01 1.602558e-01 1.202494e-01 7.403508e-02 3.703527e-02
#> [16] 1.482120e-02 4.633845e-03 1.090839e-03 1.818935e-04 1.915586e-05
#> [21] 9.582517e-07
dpbinom(NULL, pp)
#>  [1] 9.472606e-07 1.895984e-05 1.802539e-04 1.082315e-03 4.603107e-03
#>  [6] 1.474011e-02 3.687497e-02 7.379784e-02 1.199969e-01 1.600932e-01
#> [11] 1.762060e-01 1.602781e-01 1.202742e-01 7.405383e-02 3.704562e-02
#> [16] 1.482542e-02 4.635093e-03 1.091093e-03 1.819256e-04 1.915775e-05
#> [21] 9.582517e-07
summary(dpbinom(NULL, pp, method = "GeoMean") - dpbinom(NULL, pp))
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -2.485e-05 -4.219e-06  0.000e+00  0.000e+00  4.185e-06  2.482e-05

Geometric Mean Binomial Approximation - Variant B

The Geometric Mean Binomial Approximation (Variant B) (GMBA-B) approach is requested with method = "GeoMeanCounter". It is based on a Binomial distribution, whose parameter is 1 minus the geometric mean of the probabilities of failure: $$\hat{p} = 1 - \sqrt[n]{(1 - p_1) \cdot ... \cdot (1 - p_n)}$$

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
1 - prod(1 - rep(pp, wt))^(1/sum(wt))
#> [1] 0.7275426

dpbinom(NULL, pp, wt, "GeoMeanCounter")
#>  [1] 3.574462e-35 5.822379e-33 4.664248e-31 2.449471e-29 9.484189e-28
#>  [6] 2.887121e-26 7.195512e-25 1.509685e-23 2.721134e-22 4.279009e-21
#> [11] 5.941642e-20 7.356037e-19 8.184508e-18 8.237686e-17 7.541858e-16
#> [16] 6.310225e-15 4.844429e-14 3.424255e-13 2.235148e-12 1.350769e-11
#> [21] 7.574609e-11 3.948978e-10 1.917264e-09 8.681177e-09 3.670379e-08
#> [26] 1.450549e-07 5.363170e-07 1.856461e-06 6.019586e-06 1.829121e-05
#> [31] 5.209921e-05 1.391205e-04 3.482749e-04 8.172712e-04 1.797236e-03
#> [36] 3.702208e-03 7.139892e-03 1.288219e-02 2.172588e-02 3.421374e-02
#> [41] 5.024851e-02 6.872559e-02 8.738947e-02 1.031108e-01 1.126377e-01
#> [46] 1.136267e-01 1.055364e-01 8.994057e-02 7.004907e-02 4.962603e-02
#> [51] 3.180393e-02 1.831737e-02 9.406320e-03 4.265268e-03 1.687339e-03
#> [56] 5.734528e-04 1.640669e-04 3.843049e-05 7.077304e-06 9.609416e-07
#> [61] 8.553338e-08 3.744258e-09
ppbinom(NULL, pp, wt, "GeoMeanCounter")
#>  [1] 3.574462e-35 5.858123e-33 4.722829e-31 2.496699e-29 9.733859e-28
#>  [6] 2.984460e-26 7.493958e-25 1.584624e-23 2.879597e-22 4.566969e-21
#> [11] 6.398339e-20 7.995871e-19 8.984095e-18 9.136095e-17 8.455467e-16
#> [16] 7.155772e-15 5.560007e-14 3.980256e-13 2.633173e-12 1.614086e-11
#> [21] 9.188695e-11 4.867847e-10 2.404049e-09 1.108523e-08 4.778901e-08
#> [26] 1.928440e-07 7.291610e-07 2.585622e-06 8.605207e-06 2.689642e-05
#> [31] 7.899562e-05 2.181161e-04 5.663910e-04 1.383662e-03 3.180899e-03
#> [36] 6.883107e-03 1.402300e-02 2.690519e-02 4.863107e-02 8.284481e-02
#> [41] 1.330933e-01 2.018189e-01 2.892084e-01 3.923192e-01 5.049569e-01
#> [46] 6.185836e-01 7.241200e-01 8.140606e-01 8.841097e-01 9.337357e-01
#> [51] 9.655396e-01 9.838570e-01 9.932633e-01 9.975286e-01 9.992159e-01
#> [56] 9.997894e-01 9.999534e-01 9.999919e-01 9.999989e-01 9.999999e-01
#> [61] 1.000000e+00 1.000000e+00

It is known that the geometric mean of the probabilities of failure is always smaller than their arithmetic mean. As a result, 1 minus the geometric mean is larger than 1 minus the arithmetic mean. Thus, we get a stochastically larger binomial distribution. A comparison with exact computation shows that the approximation quality of the GMBA-B procedure again increases when the probabilities of success are closer to each other:

set.seed(1)

# U(0, 1) random probabilities of success
pp <- runif(20)
dpbinom(NULL, pp, method = "GeoMeanCounter")
#>  [1] 4.401037e-11 2.019854e-09 4.403304e-08 6.062685e-07 5.912743e-06
#>  [6] 4.341843e-05 2.490859e-04 1.143179e-03 4.262876e-03 1.304297e-02
#> [11] 3.292337e-02 6.868258e-02 1.182069e-01 1.669263e-01 1.915269e-01
#> [16] 1.758024e-01 1.260695e-01 6.807004e-02 2.603394e-02 6.288561e-03
#> [21] 7.215333e-04
dpbinom(NULL, pp)
#>  [1] 4.401037e-11 7.873212e-09 3.624610e-07 7.952504e-06 1.014602e-04
#>  [6] 8.311558e-04 4.642470e-03 1.838525e-02 5.297347e-02 1.129135e-01
#> [11] 1.798080e-01 2.148719e-01 1.926468e-01 1.289706e-01 6.384266e-02
#> [16] 2.299142e-02 5.871700e-03 1.021142e-03 1.129421e-04 6.977021e-06
#> [21] 1.747603e-07
summary(dpbinom(NULL, pp, method = "GeoMeanCounter") - dpbinom(NULL, pp))
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -1.469e-01 -1.724e-02 -3.200e-07  0.000e+00  2.592e-02  1.528e-01

# U(0.4, 0.6) random probabilities of success
pp <- runif(20, 0.4, 0.6)
dpbinom(NULL, pp, method = "GeoMeanCounter")
#>  [1] 1.046635e-06 2.073844e-05 1.951870e-04 1.160254e-03 4.885321e-03
#>  [6] 1.548796e-02 3.836059e-02 7.600922e-02 1.223688e-01 1.616443e-01
#> [11] 1.761588e-01 1.586582e-01 1.178895e-01 7.187414e-02 3.560358e-02
#> [16] 1.410928e-02 4.368234e-03 1.018282e-03 1.681387e-04 1.753458e-05
#> [21] 8.685930e-07
dpbinom(NULL, pp)
#>  [1] 1.046635e-06 2.098187e-05 1.993006e-04 1.192678e-03 5.043114e-03
#>  [6] 1.601621e-02 3.964022e-02 7.829406e-02 1.253351e-01 1.642218e-01
#> [11] 1.770816e-01 1.574210e-01 1.151700e-01 6.896627e-02 3.347297e-02
#> [16] 1.296524e-02 3.913788e-03 8.873960e-04 1.421738e-04 1.435144e-05
#> [21] 6.864565e-07
summary(dpbinom(NULL, pp, method = "GeoMeanCounter") - dpbinom(NULL, pp))
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -0.0029663 -0.0005283  0.0000000  0.0000000  0.0004544  0.0029079

# U(0.49, 0.51) random probabilities of success
pp <- runif(20, 0.49, 0.51)
dpbinom(NULL, pp, method = "GeoMeanCounter")
#>  [1] 9.472606e-07 1.895800e-05 1.802225e-04 1.082065e-03 4.601880e-03
#>  [6] 1.473596e-02 3.686475e-02 7.377926e-02 1.199722e-01 1.600709e-01
#> [11] 1.761969e-01 1.602871e-01 1.202964e-01 7.407854e-02 3.706427e-02
#> [16] 1.483571e-02 4.639289e-03 1.092334e-03 1.821786e-04 1.918963e-05
#> [21] 9.601293e-07
dpbinom(NULL, pp)
#>  [1] 9.472606e-07 1.895984e-05 1.802539e-04 1.082315e-03 4.603107e-03
#>  [6] 1.474011e-02 3.687497e-02 7.379784e-02 1.199969e-01 1.600932e-01
#> [11] 1.762060e-01 1.602781e-01 1.202742e-01 7.405383e-02 3.704562e-02
#> [16] 1.482542e-02 4.635093e-03 1.091093e-03 1.819256e-04 1.915775e-05
#> [21] 9.582517e-07
summary(dpbinom(NULL, pp, method = "GeoMeanCounter") - dpbinom(NULL, pp))
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -2.467e-05 -4.159e-06  0.000e+00  0.000e+00  4.196e-06  2.470e-05

Normal Approximation

The Normal Approximation (NA) approach is requested with method = "Normal". It is based on a Normal distribution, whose parameters are derived from the theoretical mean and variance of the input probabilities of success.

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)

dpbinom(NULL, pp, wt, "Normal")
#>  [1] 2.552770e-32 1.207834e-30 5.219650e-29 2.022022e-27 7.021785e-26
#>  [6] 2.185917e-24 6.100302e-23 1.526188e-21 3.423032e-20 6.882841e-19
#> [11] 1.240755e-17 2.005270e-16 2.905604e-15 3.774712e-14 4.396661e-13
#> [16] 4.591569e-12 4.299381e-11 3.609645e-10 2.717342e-09 1.834224e-08
#> [21] 1.110185e-07 6.025326e-07 2.932337e-06 1.279682e-05 5.007841e-05
#> [26] 1.757379e-04 5.530339e-04 1.560683e-03 3.949650e-03 8.963710e-03
#> [31] 1.824341e-02 3.329786e-02 5.450317e-02 8.000636e-02 1.053238e-01
#> [36] 1.243451e-01 1.316535e-01 1.250080e-01 1.064497e-01 8.129267e-02
#> [41] 5.567468e-02 3.419491e-02 1.883477e-02 9.303614e-03 4.121280e-03
#> [46] 1.637186e-03 5.832371e-04 1.863241e-04 5.337829e-05 1.371282e-05
#> [51] 3.159002e-06 6.525712e-07 1.208800e-07 2.007813e-08 2.990389e-09
#> [56] 3.993563e-10 4.782059e-11 5.134327e-12 4.942641e-13 4.266130e-14
#> [61] 3.301422e-15 2.441468e-16
ppbinom(NULL, pp, wt, "Normal")
#>  [1] 2.552770e-32 1.233362e-30 5.342987e-29 2.075452e-27 7.229330e-26
#>  [6] 2.258210e-24 6.326123e-23 1.589449e-21 3.581977e-20 7.241039e-19
#> [11] 1.313165e-17 2.136587e-16 3.119262e-15 4.086639e-14 4.805325e-13
#> [16] 5.072102e-12 4.806591e-11 4.090305e-10 3.126373e-09 2.146861e-08
#> [21] 1.324871e-07 7.350197e-07 3.667357e-06 1.646417e-05 6.654258e-05
#> [26] 2.422805e-04 7.953144e-04 2.355997e-03 6.305647e-03 1.526936e-02
#> [31] 3.351276e-02 6.681062e-02 1.213138e-01 2.013201e-01 3.066439e-01
#> [36] 4.309891e-01 5.626426e-01 6.876506e-01 7.941003e-01 8.753930e-01
#> [41] 9.310676e-01 9.652625e-01 9.840973e-01 9.934009e-01 9.975222e-01
#> [46] 9.991594e-01 9.997426e-01 9.999290e-01 9.999823e-01 9.999960e-01
#> [51] 9.999992e-01 9.999999e-01 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00

A comparison with exact computation shows that the approximation quality of the NA procedure increases with larger numbers of probabilities of success:

set.seed(1)

# 10 random probabilities of success
pp <- runif(10)
dpn <- dpbinom(NULL, pp, method = "Normal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -0.0053305 -0.0010422  0.0005271  0.0000000  0.0016579  0.0026553

# 1000 random probabilities of success
pp <- runif(1000)
dpn <- dpbinom(NULL, pp, method = "Normal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -8.412e-06  0.000e+00  0.000e+00  0.000e+00  0.000e+00  3.815e-06

# 100000 random probabilities of success
pp <- runif(100000)
dpn <- dpbinom(NULL, pp, method = "Normal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -4.484e-09  0.000e+00  8.990e-13  0.000e+00  4.919e-10  2.734e-09

Refined Normal Approximation

The Refined Normal Approximation (RNA) approach is requested with method = "RefinedNormal". It is based on a Normal distribution, whose parameters are derived from the theoretical mean, variance and skewness of the input probabilities of success.

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)

dpbinom(NULL, pp, wt, "RefinedNormal")
#>  [1] 2.579548e-31 1.128297e-29 4.507210e-28 1.611452e-26 5.156486e-25
#>  [6] 1.476806e-23 3.785627e-22 8.685911e-21 1.783953e-19 3.280039e-18
#> [11] 5.399492e-17 7.959230e-16 1.050796e-14 1.242802e-13 1.317210e-12
#> [16] 1.251531e-11 1.066498e-10 8.155390e-10 5.599786e-09 3.455053e-08
#> [21] 1.917106e-07 9.574753e-07 4.308224e-06 1.748069e-05 6.401569e-05
#> [26] 2.117447e-04 6.329842e-04 1.710740e-03 4.180480e-03 9.234968e-03
#> [31] 1.843341e-02 3.322175e-02 5.401115e-02 7.912655e-02 1.043358e-01
#> [36] 1.236782e-01 1.316360e-01 1.256489e-01 1.074322e-01 8.218619e-02
#> [41] 5.618825e-02 3.428872e-02 1.865323e-02 9.032795e-03 3.886960e-03
#> [46] 1.483178e-03 5.004545e-04 1.487517e-04 3.873113e-05 8.757189e-06
#> [51] 1.693868e-06 2.722346e-07 3.388544e-08 2.218356e-09 0.000000e+00
#> [56] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [61] 0.000000e+00 0.000000e+00
ppbinom(NULL, pp, wt, "RefinedNormal")
#>  [1] 2.579548e-31 1.154092e-29 4.622620e-28 1.657678e-26 5.322254e-25
#>  [6] 1.530028e-23 3.938629e-22 9.079774e-21 1.874750e-19 3.467514e-18
#> [11] 5.746244e-17 8.533855e-16 1.136134e-14 1.356415e-13 1.452852e-12
#> [16] 1.396817e-11 1.206179e-10 9.361569e-10 6.535943e-09 4.108647e-08
#> [21] 2.327971e-07 1.190272e-06 5.498496e-06 2.297918e-05 8.699487e-05
#> [26] 2.987396e-04 9.317238e-04 2.642463e-03 6.822944e-03 1.605791e-02
#> [31] 3.449132e-02 6.771307e-02 1.217242e-01 2.008508e-01 3.051866e-01
#> [36] 4.288648e-01 5.605008e-01 6.861497e-01 7.935820e-01 8.757682e-01
#> [41] 9.319564e-01 9.662451e-01 9.848984e-01 9.939312e-01 9.978181e-01
#> [46] 9.993013e-01 9.998018e-01 9.999505e-01 9.999892e-01 9.999980e-01
#> [51] 9.999997e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00

A comparison with exact computation shows that the approximation quality of the RNA procedure increases with larger numbers of probabilities of success:

set.seed(1)

# 10 random probabilities of success
pp <- runif(10)
dpn <- dpbinom(NULL, pp, method = "RefinedNormal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -0.0039538 -0.0006920  0.0003543  0.0000000  0.0017167  0.0023597

# 1000 random probabilities of success
pp <- runif(1000)
dpn <- dpbinom(NULL, pp, method = "RefinedNormal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -2.974e-06  0.000e+00  0.000e+00  0.000e+00  0.000e+00  2.270e-06

# 100000 random probabilities of success
pp <- runif(100000)
dpn <- dpbinom(NULL, pp, method = "RefinedNormal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -3.126e-09  0.000e+00  6.337e-13  0.000e+00  4.632e-10  2.293e-09

Processing Speed Comparisons

To assess the performance of the approximation procedures, we use the microbenchmark package. Each algorithm has to calculate the PMF repeatedly based on random probability vectors. The run times are then summarized in a table that presents, among other statistics, their minima, maxima and means. The following results were recorded on an AMD Ryzen 9 5900X with 64 GiB of RAM and Windows 10 Education (22H2).

library(microbenchmark)
set.seed(1)

f1 <- function() dpbinom(NULL, runif(4000), method = "Normal")
f2 <- function() dpbinom(NULL, runif(4000), method = "Poisson")
f3 <- function() dpbinom(NULL, runif(4000), method = "RefinedNormal")
f4 <- function() dpbinom(NULL, runif(4000), method = "Mean")
f5 <- function() dpbinom(NULL, runif(4000), method = "GeoMean")
f6 <- function() dpbinom(NULL, runif(4000), method = "GeoMeanCounter")
f7 <- function() dpbinom(NULL, runif(4000), method = "DivideFFT")

microbenchmark(f1(), f2(), f3(), f4(), f5(), f6(), f7(), times = 51)
#> Unit: microseconds
#>  expr       min         lq       mean    median         uq       max neval
#>  f1()   652.669   657.2025   685.9348   667.397   676.6845  1462.973    51
#>  f2()   871.899   879.8740   906.2233   887.207   894.0305  1763.104    51
#>  f3()   880.826   886.6520  1025.2515   890.684   903.4730  2840.977    51
#>  f4()   664.481   670.6580   696.5130   674.901   687.0380  1484.974    51
#>  f5()   693.436   699.4520   731.9917   706.570   716.6785  1784.304    51
#>  f6()   687.454   695.8245   722.3078   698.565   711.8945  1551.078    51
#>  f7() 27003.457 27089.6475 27310.0641 27131.696 27208.6295 29223.664    51

Clearly, the NA procedure is the fastest, followed by the PA and RNA methods. The next fastest algorithms are AMBA, GMBA-A and GMBA-B. They exhibit almost equal mean execution speed, with the AMBA algorithm being slightly faster. All of the approximation procedures outperform the fastest exact approach, DC-FFT, by far.

Generalized Poisson Binomial Distribution

Generalized Normal Approximation

The Generalized Normal Approximation (G-NA) approach is requested with method = "Normal". It is based on a Normal distribution, whose parameters are derived from the theoretical mean and variance of the input probabilities of success (see Introduction.

set.seed(2)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)

dgpbinom(NULL, pp, va, vb, wt, "Normal")
#>   [1] 5.607923e-34 8.868899e-34 2.266907e-33 5.759009e-33 1.454159e-32
#>   [6] 3.649437e-32 9.103112e-32 2.256856e-31 5.561194e-31 1.362016e-30
#>  [11] 3.315478e-30 8.021587e-30 1.928965e-29 4.610400e-29 1.095224e-28
#>  [16] 2.585931e-28 6.068497e-28 1.415453e-27 3.281403e-27 7.560907e-27
#>  [21] 1.731562e-26 3.941418e-26 8.916960e-26 2.005077e-25 4.481212e-25
#>  [26] 9.954281e-25 2.197730e-24 4.822684e-24 1.051849e-23 2.280173e-23
#>  [31] 4.912836e-23 1.052075e-22 2.239296e-22 4.737247e-22 9.960718e-22
#>  [36] 2.081639e-21 4.323844e-21 8.926573e-21 1.831680e-20 3.735634e-20
#>  [41] 7.572323e-20 1.525612e-19 3.054984e-19 6.080284e-19 1.202787e-18
#>  [46] 2.364851e-18 4.621350e-18 8.976023e-18 1.732802e-17 3.324790e-17
#>  [51] 6.340586e-17 1.201834e-16 2.264174e-16 4.239603e-16 7.890246e-16
#>  [56] 1.459506e-15 2.683313e-15 4.903282e-15 8.905378e-15 1.607563e-14
#>  [61] 2.884254e-14 5.143387e-14 9.116221e-14 1.605945e-13 2.811877e-13
#>  [66] 4.893417e-13 8.464047e-13 1.455104e-12 2.486337e-12 4.222561e-12
#>  [71] 7.127579e-12 1.195799e-11 1.993996e-11 3.304764e-11 5.443857e-11
#>  [76] 8.912982e-11 1.450405e-10 2.345880e-10 3.771137e-10 6.025440e-10
#>  [81] 9.568753e-10 1.510330e-09 2.369401e-09 3.694497e-09 5.725614e-09
#>  [86] 8.819398e-09 1.350224e-08 2.054578e-08 3.107347e-08 4.670967e-08
#>  [91] 6.978689e-08 1.036313e-07 1.529531e-07 2.243755e-07 3.271469e-07
#>  [96] 4.740893e-07 6.828536e-07 9.775638e-07 1.390954e-06 1.967117e-06
#> [101] 2.765018e-06 3.862920e-06 5.363935e-06 7.402890e-06 1.015475e-05
#> [106] 1.384482e-05 1.876097e-05 2.526814e-05 3.382528e-05 4.500488e-05
#> [111] 5.951520e-05 7.822512e-05 1.021915e-04 1.326884e-04 1.712386e-04
#> [116] 2.196444e-04 2.800198e-04 3.548195e-04 4.468649e-04 5.593647e-04
#> [121] 6.959275e-04 8.605635e-04 1.057674e-03 1.292025e-03 1.568701e-03
#> [126] 1.893038e-03 2.270537e-03 2.706749e-03 3.207136e-03 3.776912e-03
#> [131] 4.420856e-03 5.143112e-03 5.946968e-03 6.834635e-03 7.807017e-03
#> [136] 8.863494e-03 1.000172e-02 1.121747e-02 1.250446e-02 1.385431e-02
#> [141] 1.525651e-02 1.669842e-02 1.816543e-02 1.964112e-02 2.110749e-02
#> [146] 2.254536e-02 2.393468e-02 2.525505e-02 2.648616e-02 2.760831e-02
#> [151] 2.860294e-02 2.945314e-02 3.014411e-02 3.066363e-02 3.100235e-02
#> [156] 3.115414e-02 3.111624e-02 3.088932e-02 3.047753e-02 2.988830e-02
#> [161] 2.913216e-02 2.822242e-02 2.717477e-02 2.600684e-02 2.473770e-02
#> [166] 2.338736e-02 2.197622e-02 2.052462e-02 1.905228e-02 1.757799e-02
#> [171] 1.611912e-02 1.469141e-02 1.330871e-02 1.198280e-02 1.072335e-02
#> [176] 9.537908e-03 8.431904e-03 7.408807e-03 6.470249e-03 5.616215e-03
#> [181] 4.845254e-03 4.154698e-03 3.540890e-03 2.999407e-03 2.525274e-03
#> [186] 2.113156e-03 1.757538e-03 1.452874e-03 1.193717e-03 9.748208e-04
#> [191] 7.912218e-04 6.382955e-04 5.117942e-04 4.078674e-04 3.230671e-04
#> [196] 2.543411e-04 1.990171e-04 1.547798e-04 1.196432e-04 9.192046e-05
#> [201] 7.019178e-05 5.327340e-05 4.018691e-05 3.013068e-05 2.245346e-05
#> [206] 1.663059e-05 1.224284e-05 8.957907e-06 6.514501e-06 1.614725e-05
pgpbinom(NULL, pp, va, vb, wt, "Normal")
#>   [1] 5.607923e-34 1.447682e-33 3.714589e-33 9.473598e-33 2.401518e-32
#>   [6] 6.050955e-32 1.515407e-31 3.772263e-31 9.333457e-31 2.295361e-30
#>  [11] 5.610840e-30 1.363243e-29 3.292208e-29 7.902608e-29 1.885484e-28
#>  [16] 4.471416e-28 1.053991e-27 2.469444e-27 5.750847e-27 1.331175e-26
#>  [21] 3.062738e-26 7.004156e-26 1.592112e-25 3.597189e-25 8.078401e-25
#>  [26] 1.803268e-24 4.000998e-24 8.823682e-24 1.934217e-23 4.214390e-23
#>  [31] 9.127226e-23 1.964798e-22 4.204093e-22 8.941340e-22 1.890206e-21
#>  [36] 3.971844e-21 8.295689e-21 1.722226e-20 3.553906e-20 7.289540e-20
#>  [41] 1.486186e-19 3.011798e-19 6.066782e-19 1.214707e-18 2.417494e-18
#>  [46] 4.782345e-18 9.403695e-18 1.837972e-17 3.570774e-17 6.895564e-17
#>  [51] 1.323615e-16 2.525449e-16 4.789624e-16 9.029227e-16 1.691947e-15
#>  [56] 3.151453e-15 5.834767e-15 1.073805e-14 1.964343e-14 3.571905e-14
#>  [61] 6.456159e-14 1.159955e-13 2.071577e-13 3.677521e-13 6.489399e-13
#>  [66] 1.138282e-12 1.984686e-12 3.439790e-12 5.926127e-12 1.014869e-11
#>  [71] 1.727627e-11 2.923425e-11 4.917421e-11 8.222186e-11 1.366604e-10
#>  [76] 2.257903e-10 3.708308e-10 6.054188e-10 9.825325e-10 1.585076e-09
#>  [81] 2.541952e-09 4.052282e-09 6.421683e-09 1.011618e-08 1.584179e-08
#>  [86] 2.466119e-08 3.816343e-08 5.870922e-08 8.978268e-08 1.364924e-07
#>  [91] 2.062792e-07 3.099106e-07 4.628636e-07 6.872392e-07 1.014386e-06
#>  [96] 1.488475e-06 2.171329e-06 3.148893e-06 4.539847e-06 6.506964e-06
#> [101] 9.271982e-06 1.313490e-05 1.849884e-05 2.590173e-05 3.605648e-05
#> [106] 4.990129e-05 6.866226e-05 9.393040e-05 1.277557e-04 1.727606e-04
#> [111] 2.322758e-04 3.105009e-04 4.126924e-04 5.453808e-04 7.166194e-04
#> [116] 9.362638e-04 1.216284e-03 1.571103e-03 2.017968e-03 2.577333e-03
#> [121] 3.273260e-03 4.133824e-03 5.191498e-03 6.483523e-03 8.052224e-03
#> [126] 9.945263e-03 1.221580e-02 1.492255e-02 1.812968e-02 2.190660e-02
#> [131] 2.632745e-02 3.147056e-02 3.741753e-02 4.425217e-02 5.205918e-02
#> [136] 6.092268e-02 7.092440e-02 8.214187e-02 9.464633e-02 1.085006e-01
#> [141] 1.237572e-01 1.404556e-01 1.586210e-01 1.782621e-01 1.993696e-01
#> [146] 2.219150e-01 2.458497e-01 2.711047e-01 2.975909e-01 3.251992e-01
#> [151] 3.538021e-01 3.832553e-01 4.133994e-01 4.440630e-01 4.750653e-01
#> [156] 5.062195e-01 5.373357e-01 5.682250e-01 5.987026e-01 6.285909e-01
#> [161] 6.577230e-01 6.859454e-01 7.131202e-01 7.391271e-01 7.638648e-01
#> [166] 7.872521e-01 8.092283e-01 8.297529e-01 8.488052e-01 8.663832e-01
#> [171] 8.825023e-01 8.971938e-01 9.105025e-01 9.224853e-01 9.332086e-01
#> [176] 9.427465e-01 9.511784e-01 9.585872e-01 9.650575e-01 9.706737e-01
#> [181] 9.755189e-01 9.796736e-01 9.832145e-01 9.862139e-01 9.887392e-01
#> [186] 9.908524e-01 9.926099e-01 9.940628e-01 9.952565e-01 9.962313e-01
#> [191] 9.970225e-01 9.976608e-01 9.981726e-01 9.985805e-01 9.989036e-01
#> [196] 9.991579e-01 9.993569e-01 9.995117e-01 9.996314e-01 9.997233e-01
#> [201] 9.997935e-01 9.998467e-01 9.998869e-01 9.999171e-01 9.999395e-01
#> [206] 9.999561e-01 9.999684e-01 9.999773e-01 9.999839e-01 1.000000e+00

A comparison with exact computation shows that the approximation quality of the NA procedure increases with larger numbers of probabilities of success:

set.seed(2)

# 10 random probabilities of success
pp <- runif(10)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "Normal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -0.0346309 -0.0042919  0.0001378  0.0000000  0.0038447  0.0317044

# 100 random probabilities of success
pp <- runif(100)
va <- sample(0:100, 100, TRUE)
vb <- sample(0:100, 100, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "Normal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -3.006e-05 -1.126e-09  0.000e+00  0.000e+00  1.854e-09  2.967e-05

# 1000 random probabilities of success
pp <- runif(1000)
va <- sample(0:1000, 1000, TRUE)
vb <- sample(0:1000, 1000, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "Normal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -3.152e-08  0.000e+00  3.060e-12  0.000e+00  8.992e-10  3.707e-08

Generalized Refined Normal Approximation

The Generalized Refined Normal Approximation (G-RNA) approach is requested with method = "RefinedNormal". It is based on a Normal distribution, whose parameters are derived from the theoretical mean, variance and skewness of the input probabilities of success.

set.seed(2)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)
dgpbinom(NULL, pp, va, vb, wt, "RefinedNormal")
#>   [1] 5.100768e-32 7.816039e-32 1.959106e-31 4.880045e-31 1.208047e-30
#>   [6] 2.971921e-30 7.265798e-30 1.765311e-29 4.262362e-29 1.022751e-28
#>  [11] 2.438814e-28 5.779315e-28 1.361012e-27 3.185186e-27 7.407878e-27
#>  [16] 1.712136e-26 3.932484e-26 8.975930e-26 2.035985e-25 4.589352e-25
#>  [21] 1.028037e-24 2.288476e-24 5.062470e-24 1.112900e-23 2.431235e-23
#>  [26] 5.278047e-23 1.138660e-22 2.441116e-22 5.200621e-22 1.101015e-21
#>  [31] 2.316333e-21 4.842591e-21 1.006056e-20 2.076983e-20 4.260973e-20
#>  [36] 8.686571e-20 1.759748e-19 3.542530e-19 7.086575e-19 1.408697e-18
#>  [41] 2.782630e-18 5.461965e-18 1.065359e-17 2.064884e-17 3.976912e-17
#>  [46] 7.611065e-17 1.447413e-16 2.735176e-16 5.135966e-16 9.582999e-16
#>  [51] 1.776730e-15 3.273256e-15 5.992053e-15 1.089949e-14 1.970017e-14
#>  [56] 3.538058e-14 6.313772e-14 1.119541e-13 1.972495e-13 3.453144e-13
#>  [61] 6.006676e-13 1.038179e-12 1.782897e-12 3.042246e-12 5.157913e-12
#>  [66] 8.688860e-12 1.454315e-11 2.418568e-11 3.996319e-11 6.560867e-11
#>  [71] 1.070186e-10 1.734408e-10 2.792769e-10 4.467944e-10 7.101774e-10
#>  [76] 1.121527e-09 1.759679e-09 2.743061e-09 4.248282e-09 6.536785e-09
#>  [81] 9.992759e-09 1.517660e-08 2.289965e-08 3.432780e-08 5.112383e-08
#>  [86] 7.564129e-08 1.111860e-07 1.623661e-07 2.355550e-07 3.394997e-07
#>  [91] 4.861107e-07 6.914779e-07 9.771650e-07 1.371840e-06 1.913307e-06
#>  [96] 2.651012e-06 3.649099e-06 4.990081e-06 6.779222e-06 9.149662e-06
#> [101] 1.226837e-05 1.634294e-05 2.162919e-05 2.843967e-05 3.715276e-05
#> [106] 4.822249e-05 6.218875e-05 7.968764e-05 1.014618e-04 1.283702e-04
#> [111] 1.613972e-04 2.016606e-04 2.504176e-04 3.090698e-04 3.791651e-04
#> [116] 4.623982e-04 5.606082e-04 6.757744e-04 8.100102e-04 9.655553e-04
#> [121] 1.144767e-03 1.350110e-03 1.584150e-03 1.849543e-03 2.149024e-03
#> [126] 2.485405e-03 2.861561e-03 3.280420e-03 3.744950e-03 4.258135e-03
#> [131] 4.822941e-03 5.442277e-03 6.118927e-03 6.855467e-03 7.654163e-03
#> [136] 8.516833e-03 9.444692e-03 1.043817e-02 1.149671e-02 1.261856e-02
#> [141] 1.380053e-02 1.503782e-02 1.632377e-02 1.764978e-02 1.900514e-02
#> [146] 2.037702e-02 2.175055e-02 2.310888e-02 2.443348e-02 2.570445e-02
#> [151] 2.690096e-02 2.800177e-02 2.898579e-02 2.983278e-02 3.052397e-02
#> [156] 3.104271e-02 3.137515e-02 3.151071e-02 3.144261e-02 3.116818e-02
#> [161] 3.068902e-02 3.001109e-02 2.914456e-02 2.810352e-02 2.690563e-02
#> [166] 2.557147e-02 2.412399e-02 2.258773e-02 2.098813e-02 1.935073e-02
#> [171] 1.770044e-02 1.606093e-02 1.445398e-02 1.289904e-02 1.141287e-02
#> [176] 1.000927e-02 8.699011e-03 7.489773e-03 6.386301e-03 5.390581e-03
#> [181] 4.502114e-03 3.718233e-03 3.034469e-03 2.444914e-03 1.942594e-03
#> [186] 1.519822e-03 1.168521e-03 8.805066e-04 6.477360e-04 4.625001e-04
#> [191] 2.621189e-04 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [196] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [201] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [206] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
pgpbinom(NULL, pp, va, vb, wt, "RefinedNormal")
#>   [1] 5.100768e-32 1.291681e-31 3.250786e-31 8.130831e-31 2.021130e-30
#>   [6] 4.993051e-30 1.225885e-29 2.991196e-29 7.253558e-29 1.748106e-28
#>  [11] 4.186920e-28 9.966236e-28 2.357636e-27 5.542822e-27 1.295070e-26
#>  [16] 3.007206e-26 6.939690e-26 1.591562e-25 3.627547e-25 8.216899e-25
#>  [21] 1.849727e-24 4.138203e-24 9.200673e-24 2.032968e-23 4.464203e-23
#>  [26] 9.742250e-23 2.112885e-22 4.554002e-22 9.754623e-22 2.076477e-21
#>  [31] 4.392810e-21 9.235402e-21 1.929596e-20 4.006579e-20 8.267552e-20
#>  [36] 1.695412e-19 3.455160e-19 6.997690e-19 1.408427e-18 2.817123e-18
#>  [41] 5.599754e-18 1.106172e-17 2.171531e-17 4.236415e-17 8.213328e-17
#>  [46] 1.582439e-16 3.029852e-16 5.765028e-16 1.090099e-15 2.048399e-15
#>  [51] 3.825129e-15 7.098385e-15 1.309044e-14 2.398993e-14 4.369010e-14
#>  [56] 7.907068e-14 1.422084e-13 2.541625e-13 4.514120e-13 7.967264e-13
#>  [61] 1.397394e-12 2.435573e-12 4.218470e-12 7.260717e-12 1.241863e-11
#>  [66] 2.110749e-11 3.565064e-11 5.983632e-11 9.979950e-11 1.654082e-10
#>  [71] 2.724267e-10 4.458675e-10 7.251445e-10 1.171939e-09 1.882116e-09
#>  [76] 3.003643e-09 4.763322e-09 7.506383e-09 1.175466e-08 1.829145e-08
#>  [81] 2.828421e-08 4.346081e-08 6.636046e-08 1.006883e-07 1.518121e-07
#>  [86] 2.274534e-07 3.386394e-07 5.010055e-07 7.365605e-07 1.076060e-06
#>  [91] 1.562171e-06 2.253649e-06 3.230814e-06 4.602653e-06 6.515960e-06
#>  [96] 9.166972e-06 1.281607e-05 1.780615e-05 2.458537e-05 3.373504e-05
#> [101] 4.600341e-05 6.234634e-05 8.397554e-05 1.124152e-04 1.495680e-04
#> [106] 1.977905e-04 2.599792e-04 3.396668e-04 4.411286e-04 5.694988e-04
#> [111] 7.308960e-04 9.325566e-04 1.182974e-03 1.492044e-03 1.871209e-03
#> [116] 2.333607e-03 2.894215e-03 3.569990e-03 4.380000e-03 5.345555e-03
#> [121] 6.490322e-03 7.840432e-03 9.424583e-03 1.127413e-02 1.342315e-02
#> [126] 1.590855e-02 1.877011e-02 2.205053e-02 2.579549e-02 3.005362e-02
#> [131] 3.487656e-02 4.031884e-02 4.643777e-02 5.329323e-02 6.094740e-02
#> [136] 6.946423e-02 7.890892e-02 8.934709e-02 1.008438e-01 1.134624e-01
#> [141] 1.272629e-01 1.423007e-01 1.586245e-01 1.762743e-01 1.952794e-01
#> [146] 2.156564e-01 2.374070e-01 2.605159e-01 2.849493e-01 3.106538e-01
#> [151] 3.375548e-01 3.655565e-01 3.945423e-01 4.243751e-01 4.548991e-01
#> [156] 4.859418e-01 5.173169e-01 5.488276e-01 5.802702e-01 6.114384e-01
#> [161] 6.421274e-01 6.721385e-01 7.012831e-01 7.293866e-01 7.562922e-01
#> [166] 7.818637e-01 8.059877e-01 8.285754e-01 8.495636e-01 8.689143e-01
#> [171] 8.866147e-01 9.026757e-01 9.171296e-01 9.300287e-01 9.414415e-01
#> [176] 9.514508e-01 9.601498e-01 9.676396e-01 9.740259e-01 9.794165e-01
#> [181] 9.839186e-01 9.876368e-01 9.906713e-01 9.931162e-01 9.950588e-01
#> [186] 9.965786e-01 9.977471e-01 9.986276e-01 9.992754e-01 9.997379e-01
#> [191] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [196] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [201] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [206] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00

A comparison with exact computation shows that the approximation quality of the RNA procedure increases with larger numbers of probabilities of success:

set.seed(2)

# 10 random probabilities of success
pp <- runif(10)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "RefinedNormal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -3.045e-02 -4.084e-03  1.727e-04  1.179e-05  4.324e-03  3.161e-02

# 100 random probabilities of success
pp <- runif(100)
va <- sample(0:100, 100, TRUE)
vb <- sample(0:100, 100, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "RefinedNormal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -8.831e-06  0.000e+00  1.000e-12  9.000e-12  3.642e-07  1.333e-05

# 1000 random probabilities of success
pp <- runif(1000)
va <- sample(0:1000, 1000, TRUE)
vb <- sample(0:1000, 1000, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "RefinedNormal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -1.980e-08  0.000e+00  4.960e-12  0.000e+00  1.561e-09  3.197e-08

Processing Speed Comparisons

To assess the performance of the approximation procedures, we use the microbenchmark package. Each algorithm has to calculate the PMF repeatedly based on random probability vectors. The run times are then summarized in a table that presents, among other statistics, their minima, maxima and means. The following results were recorded on an AMD Ryzen 9 5900X with 64 GiB of RAM and Windows 10 Education (22H2).

library(microbenchmark)
n <- 1500
set.seed(2)
va <- sample(1:50, n, TRUE)
vb <- sample(1:50, n, TRUE)

f1 <- function() dgpbinom(NULL, runif(n), va, vb, method = "Normal")
f2 <- function() dgpbinom(NULL, runif(n), va, vb, method = "RefinedNormal")
f3 <- function() dgpbinom(NULL, runif(n), va, vb, method = "DivideFFT")

microbenchmark(f1(), f2(), f3(), times = 51)
#> Unit: milliseconds
#>  expr        min         lq       mean     median         uq        max neval
#>  f1()   5.030929   5.061941   5.365583   5.131487   5.194379   7.063646    51
#>  f2()   6.047488   6.105090   6.252433   6.163283   6.222370   8.071970    51
#>  f3() 234.748486 235.069610 236.136893 235.513685 236.567683 245.275040    51

Clearly, the G-NA procedure is the fastest, followed by the G-RNA method. Both are hugely faster than G-DC-FFT.