The Poisson Approximation (DC) approach is requested with
method = "Poisson"
. It is based on a Poisson distribution,
whose parameter is the sum of the probabilities of success.
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
dpbinom(NULL, pp, wt, "Poisson")
#> [1] 2.263593e-16 8.154460e-15 1.468798e-13 1.763753e-12 1.588454e-11
#> [6] 1.144462e-10 6.871428e-10 3.536273e-09 1.592402e-08 6.373926e-08
#> [11] 2.296169e-07 7.519830e-07 2.257479e-06 6.255718e-06 1.609704e-05
#> [16] 3.865908e-05 8.704191e-05 1.844490e-04 3.691482e-04 6.999128e-04
#> [21] 1.260697e-03 2.162661e-03 3.541299e-03 5.546660e-03 8.325631e-03
#> [26] 1.199704e-02 1.662255e-02 2.217842e-02 2.853445e-02 3.544609e-02
#> [31] 4.256414e-02 4.946284e-02 5.568342e-02 6.078674e-02 6.440607e-02
#> [36] 6.629115e-02 6.633610e-02 6.458699e-02 6.122916e-02 5.655755e-02
#> [41] 5.093630e-02 4.475488e-02 3.838734e-02 3.216003e-02 2.633059e-02
#> [46] 2.107875e-02 1.650760e-02 1.265269e-02 9.495953e-03 6.981348e-03
#> [51] 5.029979e-03 3.552981e-03 2.461424e-03 1.673044e-03 1.116119e-03
#> [56] 7.310458e-04 4.702766e-04 2.972182e-04 1.846053e-04 1.127169e-04
#> [61] 6.767601e-05 9.288901e-05
ppbinom(NULL, pp, wt, "Poisson")
#> [1] 2.263593e-16 8.380820e-15 1.552606e-13 1.919013e-12 1.780355e-11
#> [6] 1.322498e-10 8.193925e-10 4.355666e-09 2.027968e-08 8.401894e-08
#> [11] 3.136359e-07 1.065619e-06 3.323097e-06 9.578815e-06 2.567585e-05
#> [16] 6.433494e-05 1.513768e-04 3.358259e-04 7.049740e-04 1.404887e-03
#> [21] 2.665584e-03 4.828245e-03 8.369543e-03 1.391620e-02 2.224184e-02
#> [26] 3.423887e-02 5.086142e-02 7.303984e-02 1.015743e-01 1.370204e-01
#> [31] 1.795845e-01 2.290474e-01 2.847308e-01 3.455175e-01 4.099236e-01
#> [36] 4.762147e-01 5.425508e-01 6.071378e-01 6.683670e-01 7.249245e-01
#> [41] 7.758608e-01 8.206157e-01 8.590031e-01 8.911631e-01 9.174937e-01
#> [46] 9.385724e-01 9.550800e-01 9.677327e-01 9.772287e-01 9.842100e-01
#> [51] 9.892400e-01 9.927930e-01 9.952544e-01 9.969275e-01 9.980436e-01
#> [56] 9.987746e-01 9.992449e-01 9.995421e-01 9.997267e-01 9.998394e-01
#> [61] 9.999071e-01 1.000000e+00
A comparison with exact computation shows that the approximation quality of the PA procedure increases with smaller probabilities of success. The reason is that the Poisson Binomial distribution approaches a Poisson distribution when the probabilities are very small.
set.seed(1)
# U(0, 1) random probabilities of success
pp <- runif(20)
dpbinom(NULL, pp, method = "Poisson")
#> [1] 0.0000150619 0.0001672374 0.0009284471 0.0034362888 0.0095385726
#> [6] 0.0211820073 0.0391985129 0.0621763578 0.0862956727 0.1064633767
#> [11] 0.1182099310 0.1193204840 0.1104046811 0.0942969970 0.0747865595
#> [16] 0.0553587178 0.0384166744 0.0250913815 0.0154776776 0.0090449448
#> [21] 0.0101904160
dpbinom(NULL, pp)
#> [1] 4.401037e-11 7.873212e-09 3.624610e-07 7.952504e-06 1.014602e-04
#> [6] 8.311558e-04 4.642470e-03 1.838525e-02 5.297347e-02 1.129135e-01
#> [11] 1.798080e-01 2.148719e-01 1.926468e-01 1.289706e-01 6.384266e-02
#> [16] 2.299142e-02 5.871700e-03 1.021142e-03 1.129421e-04 6.977021e-06
#> [21] 1.747603e-07
summary(dpbinom(NULL, pp, method = "Poisson") - dpbinom(NULL, pp))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -9.555e-02 1.506e-05 9.437e-03 0.000e+00 2.407e-02 4.379e-02
# U(0, 0.01) random probabilities of success
pp <- runif(20, 0, 0.01)
dpbinom(NULL, pp, method = "Poisson")
#> [1] 9.095763e-01 8.620639e-02 4.085167e-03 1.290592e-04 3.057942e-06
#> [6] 5.796418e-08 9.156063e-10 1.239684e-11 1.468661e-13 1.546605e-15
#> [11] 1.465817e-17 1.262953e-19 9.974852e-22 7.272161e-24 4.923067e-26
#> [16] 3.110605e-28 1.842575e-30 1.027251e-32 5.408845e-35 2.698058e-37
#> [21] 1.284357e-39
dpbinom(NULL, pp)
#> [1] 9.093051e-01 8.672423e-02 3.861917e-03 1.066765e-04 2.048094e-06
#> [6] 2.902198e-08 3.145829e-10 2.667571e-12 1.794592e-14 9.656258e-17
#> [11] 4.170114e-19 1.444465e-21 3.994453e-24 8.738444e-27 1.490372e-29
#> [16] 1.938487e-32 1.859939e-35 1.249654e-38 5.381374e-42 1.245845e-45
#> [21] 9.511846e-50
summary(dpbinom(NULL, pp, method = "Poisson") - dpbinom(NULL, pp))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -5.178e-04 0.000e+00 0.000e+00 0.000e+00 6.000e-10 2.712e-04
The Arithmetic Mean Binomial Approximation (AMBA) approach
is requested with method = "Mean"
. It is based on a
Binomial distribution, whose parameter is the arithmetic mean of the
probabilities of success.
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
mean(rep(pp, wt))
#> [1] 0.5905641
dpbinom(NULL, pp, wt, "Mean")
#> [1] 2.204668e-24 1.939788e-22 8.393759e-21 2.381049e-19 4.979863e-18
#> [6] 8.188480e-17 1.102354e-15 1.249300e-14 1.216331e-13 1.033156e-12
#> [11] 7.749086e-12 5.182139e-11 3.114432e-10 1.693217e-09 8.373498e-09
#> [16] 3.784379e-08 1.569327e-07 5.991812e-07 2.112610e-06 6.896287e-06
#> [21] 2.088890e-05 5.882491e-05 1.542694e-04 3.773093e-04 8.616897e-04
#> [26] 1.839474e-03 3.673702e-03 6.868933e-03 1.203071e-02 1.974641e-02
#> [31] 3.038072e-02 4.382068e-02 5.925587e-02 7.510979e-02 8.921887e-02
#> [36] 9.927353e-02 1.034154e-01 1.007871e-01 9.181496e-02 7.810121e-02
#> [41] 6.195859e-02 4.577391e-02 3.143980e-02 2.003761e-02 1.182352e-02
#> [46] 6.442647e-03 3.232269e-03 1.487928e-03 6.259647e-04 2.395401e-04
#> [51] 8.292214e-05 2.579729e-05 7.155695e-06 1.752667e-06 3.745215e-07
#> [56] 6.875325e-08 1.062521e-08 1.344354e-09 1.337294e-10 9.807924e-12
#> [61] 4.715599e-13 1.115034e-14
ppbinom(NULL, pp, wt, "Mean")
#> [1] 2.204668e-24 1.961834e-22 8.589942e-21 2.466948e-19 5.226557e-18
#> [6] 8.711136e-17 1.189465e-15 1.368247e-14 1.353155e-13 1.168472e-12
#> [11] 8.917558e-12 6.073895e-11 3.721822e-10 2.065399e-09 1.043890e-08
#> [16] 4.828268e-08 2.052154e-07 8.043966e-07 2.917007e-06 9.813294e-06
#> [21] 3.070220e-05 8.952711e-05 2.437965e-04 6.211058e-04 1.482796e-03
#> [26] 3.322270e-03 6.995972e-03 1.386490e-02 2.589561e-02 4.564203e-02
#> [31] 7.602274e-02 1.198434e-01 1.790993e-01 2.542091e-01 3.434279e-01
#> [36] 4.427015e-01 5.461169e-01 6.469040e-01 7.387189e-01 8.168201e-01
#> [41] 8.787787e-01 9.245526e-01 9.559924e-01 9.760300e-01 9.878536e-01
#> [46] 9.942962e-01 9.975285e-01 9.990164e-01 9.996424e-01 9.998819e-01
#> [51] 9.999648e-01 9.999906e-01 9.999978e-01 9.999995e-01 9.999999e-01
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00
A comparison with exact computation shows that the approximation quality of the AMBA procedure increases when the probabilities of success are closer to each other. The reason is that, although the expectation remains unchanged, the distribution’s variance becomes smaller the less the probabilities differ. Since this variance is minimized by equal probabilities (but still underestimated), the AMBA method is best suited for situations with very similar probabilities of success.
set.seed(1)
# U(0, 1) random probabilities of success
pp <- runif(20)
dpbinom(NULL, pp, method = "Mean")
#> [1] 9.203176e-08 2.297178e-06 2.723611e-05 2.039497e-04 1.081780e-03
#> [6] 4.320318e-03 1.347977e-02 3.364646e-02 6.823695e-02 1.135495e-01
#> [11] 1.558851e-01 1.768638e-01 1.655492e-01 1.271454e-01 7.934094e-02
#> [16] 3.960811e-02 1.544760e-02 4.536271e-03 9.435709e-04 1.239589e-04
#> [21] 7.735255e-06
dpbinom(NULL, pp)
#> [1] 4.401037e-11 7.873212e-09 3.624610e-07 7.952504e-06 1.014602e-04
#> [6] 8.311558e-04 4.642470e-03 1.838525e-02 5.297347e-02 1.129135e-01
#> [11] 1.798080e-01 2.148719e-01 1.926468e-01 1.289706e-01 6.384266e-02
#> [16] 2.299142e-02 5.871700e-03 1.021142e-03 1.129421e-04 6.977021e-06
#> [21] 1.747603e-07
summary(dpbinom(NULL, pp, method = "Mean") - dpbinom(NULL, pp))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -3.801e-02 2.290e-06 6.360e-04 0.000e+00 8.837e-03 1.662e-02
# U(0.3, 0.5) random probabilities of success
pp <- runif(20, 0.3, 0.5)
dpbinom(NULL, pp, method = "Mean")
#> [1] 4.348271e-05 5.672598e-04 3.515127e-03 1.375712e-02 3.813748e-02
#> [6] 7.960444e-02 1.298114e-01 1.693472e-01 1.795010e-01 1.561137e-01
#> [11] 1.120132e-01 6.642197e-02 3.249439e-02 1.304339e-02 4.253984e-03
#> [16] 1.109919e-03 2.262438e-04 3.472347e-05 3.774915e-06 2.591904e-07
#> [21] 8.453263e-09
dpbinom(NULL, pp)
#> [1] 4.015121e-05 5.344728e-04 3.370391e-03 1.338738e-02 3.756479e-02
#> [6] 7.915145e-02 1.299445e-01 1.702071e-01 1.806555e-01 1.569062e-01
#> [11] 1.121277e-01 6.604356e-02 3.200604e-02 1.269255e-02 4.078679e-03
#> [16] 1.045709e-03 2.088926e-04 3.133484e-05 3.320483e-06 2.216332e-07
#> [21] 7.008006e-09
summary(dpbinom(NULL, pp, method = "Mean") - dpbinom(NULL, pp))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -1.155e-03 1.400e-09 1.735e-05 0.000e+00 3.508e-04 5.727e-04
# U(0.39, 0.41) random probabilities of success
pp <- runif(20, 0.39, 0.41)
dpbinom(NULL, pp, method = "Mean")
#> [1] 3.638616e-05 4.854405e-04 3.076305e-03 1.231262e-02 3.490673e-02
#> [6] 7.451247e-02 1.242621e-01 1.657824e-01 1.797056e-01 1.598344e-01
#> [11] 1.172824e-01 7.112295e-02 3.558286e-02 1.460687e-02 4.871885e-03
#> [16] 1.299951e-03 2.709859e-04 4.253314e-05 4.728746e-06 3.320414e-07
#> [21] 1.107470e-08
dpbinom(NULL, pp)
#> [1] 3.636149e-05 4.851935e-04 3.075192e-03 1.230970e-02 3.490204e-02
#> [6] 7.450845e-02 1.242626e-01 1.657891e-01 1.797153e-01 1.598415e-01
#> [11] 1.172840e-01 7.112011e-02 3.557873e-02 1.460374e-02 4.870251e-03
#> [16] 1.299328e-03 2.708111e-04 4.249771e-05 4.723809e-06 3.316172e-07
#> [21] 1.105772e-08
summary(dpbinom(NULL, pp, method = "Mean") - dpbinom(NULL, pp))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -9.641e-06 1.700e-11 1.747e-07 0.000e+00 2.844e-06 4.689e-06
The Geometric Mean Binomial Approximation (Variant A)
(GMBA-A) approach is requested with method = "GeoMean"
. It
is based on a Binomial distribution, whose parameter is the geometric
mean of the probabilities of success: $$\hat{p} = \sqrt[n]{p_1 \cdot ... \cdot
p_n}$$
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
prod(rep(pp, wt))^(1/sum(wt))
#> [1] 0.4669916
dpbinom(NULL, pp, wt, "GeoMean")
#> [1] 2.141782e-17 1.144670e-15 3.008684e-14 5.184208e-13 6.586057e-12
#> [6] 6.578175e-11 5.379195e-10 3.703028e-09 2.189958e-08 1.129911e-07
#> [11] 5.147813e-07 2.091103e-06 7.633772e-06 2.520966e-05 7.572779e-05
#> [16] 2.078916e-04 5.236606e-04 1.214475e-03 2.601021e-03 5.157435e-03
#> [21] 9.489168e-03 1.623184e-02 2.585712e-02 3.841422e-02 5.328923e-02
#> [26] 6.909972e-02 8.382634e-02 9.520502e-02 1.012875e-01 1.009827e-01
#> [31] 9.437363e-02 8.268481e-02 6.791600e-02 5.229152e-02 3.772988e-02
#> [36] 2.550094e-02 1.613623e-02 9.552467e-03 5.285892e-03 2.731219e-03
#> [41] 1.316117e-03 5.906156e-04 2.464113e-04 9.539397e-05 3.419132e-05
#> [46] 1.131690e-05 3.448772e-06 9.643463e-07 2.464308e-07 5.728188e-08
#> [51] 1.204491e-08 2.276152e-09 3.835067e-10 5.705775e-11 7.406038e-12
#> [56] 8.258409e-13 7.752374e-14 5.958061e-15 3.600079e-16 1.603823e-17
#> [61] 4.683928e-19 6.727527e-21
ppbinom(NULL, pp, wt, "GeoMean")
#> [1] 2.141782e-17 1.166088e-15 3.125293e-14 5.496737e-13 7.135731e-12
#> [6] 7.291748e-11 6.108370e-10 4.313865e-09 2.621345e-08 1.392046e-07
#> [11] 6.539859e-07 2.745088e-06 1.037886e-05 3.558852e-05 1.113163e-04
#> [16] 3.192079e-04 8.428685e-04 2.057343e-03 4.658364e-03 9.815799e-03
#> [21] 1.930497e-02 3.553681e-02 6.139393e-02 9.980815e-02 1.530974e-01
#> [26] 2.221971e-01 3.060234e-01 4.012285e-01 5.025160e-01 6.034986e-01
#> [31] 6.978723e-01 7.805571e-01 8.484731e-01 9.007646e-01 9.384945e-01
#> [36] 9.639954e-01 9.801316e-01 9.896841e-01 9.949700e-01 9.977012e-01
#> [41] 9.990173e-01 9.996080e-01 9.998544e-01 9.999498e-01 9.999840e-01
#> [46] 9.999953e-01 9.999987e-01 9.999997e-01 9.999999e-01 1.000000e+00
#> [51] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00
It is known that the geometric mean of the probabilities of success is always smaller than their arithmetic mean. Thus, we get a stochastically smaller binomial distribution. A comparison with exact computation shows that the approximation quality of the GMBA-A procedure increases when the probabilities of success are closer to each other:
set.seed(1)
# U(0, 1) random probabilities of success
pp <- runif(20)
dpbinom(NULL, pp, method = "GeoMean")
#> [1] 4.557123e-06 7.742984e-05 6.249130e-04 3.185359e-03 1.150098e-02
#> [6] 3.126602e-02 6.640491e-02 1.128282e-01 1.557610e-01 1.764351e-01
#> [11] 1.648790e-01 1.273387e-01 8.113517e-02 4.241734e-02 1.801777e-02
#> [16] 6.122779e-03 1.625497e-03 3.249263e-04 4.600672e-05 4.114199e-06
#> [21] 1.747603e-07
dpbinom(NULL, pp)
#> [1] 4.401037e-11 7.873212e-09 3.624610e-07 7.952504e-06 1.014602e-04
#> [6] 8.311558e-04 4.642470e-03 1.838525e-02 5.297347e-02 1.129135e-01
#> [11] 1.798080e-01 2.148719e-01 1.926468e-01 1.289706e-01 6.384266e-02
#> [16] 2.299142e-02 5.871700e-03 1.021142e-03 1.129421e-04 6.977021e-06
#> [21] 1.747603e-07
summary(dpbinom(NULL, pp, method = "GeoMean") - dpbinom(NULL, pp))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.11151 -0.01493 0.00000 0.00000 0.01140 0.10279
# U(0.4, 0.6) random probabilities of success
pp <- runif(20, 0.4, 0.6)
dpbinom(NULL, pp, method = "GeoMean")
#> [1] 1.317886e-06 2.551200e-05 2.345875e-04 1.362363e-03 5.604265e-03
#> [6] 1.735823e-02 4.200318e-02 8.131092e-02 1.278907e-01 1.650496e-01
#> [11] 1.757292e-01 1.546280e-01 1.122499e-01 6.686047e-02 3.235759e-02
#> [16] 1.252775e-02 3.789307e-03 8.629936e-04 1.392173e-04 1.418425e-05
#> [21] 6.864565e-07
dpbinom(NULL, pp)
#> [1] 1.046635e-06 2.098187e-05 1.993006e-04 1.192678e-03 5.043114e-03
#> [6] 1.601621e-02 3.964022e-02 7.829406e-02 1.253351e-01 1.642218e-01
#> [11] 1.770816e-01 1.574210e-01 1.151700e-01 6.896627e-02 3.347297e-02
#> [16] 1.296524e-02 3.913788e-03 8.873960e-04 1.421738e-04 1.435144e-05
#> [21] 6.864565e-07
summary(dpbinom(NULL, pp, method = "GeoMean") - dpbinom(NULL, pp))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.0029201 -0.0004375 0.0000000 0.0000000 0.0005612 0.0030169
# U(0.49, 0.51) random probabilities of success
pp <- runif(20, 0.49, 0.51)
dpbinom(NULL, pp, method = "GeoMean")
#> [1] 9.491177e-07 1.899145e-05 1.805052e-04 1.083550e-03 4.607292e-03
#> [6] 1.475040e-02 3.689366e-02 7.382266e-02 1.200193e-01 1.601024e-01
#> [11] 1.761970e-01 1.602558e-01 1.202494e-01 7.403508e-02 3.703527e-02
#> [16] 1.482120e-02 4.633845e-03 1.090839e-03 1.818935e-04 1.915586e-05
#> [21] 9.582517e-07
dpbinom(NULL, pp)
#> [1] 9.472606e-07 1.895984e-05 1.802539e-04 1.082315e-03 4.603107e-03
#> [6] 1.474011e-02 3.687497e-02 7.379784e-02 1.199969e-01 1.600932e-01
#> [11] 1.762060e-01 1.602781e-01 1.202742e-01 7.405383e-02 3.704562e-02
#> [16] 1.482542e-02 4.635093e-03 1.091093e-03 1.819256e-04 1.915775e-05
#> [21] 9.582517e-07
summary(dpbinom(NULL, pp, method = "GeoMean") - dpbinom(NULL, pp))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -2.485e-05 -4.219e-06 0.000e+00 0.000e+00 4.185e-06 2.482e-05
The Geometric Mean Binomial Approximation (Variant B)
(GMBA-B) approach is requested with
method = "GeoMeanCounter"
. It is based on a Binomial
distribution, whose parameter is 1 minus the geometric mean of the
probabilities of failure: $$\hat{p} = 1 - \sqrt[n]{(1 - p_1) \cdot ... \cdot
(1 - p_n)}$$
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
1 - prod(1 - rep(pp, wt))^(1/sum(wt))
#> [1] 0.7275426
dpbinom(NULL, pp, wt, "GeoMeanCounter")
#> [1] 3.574462e-35 5.822379e-33 4.664248e-31 2.449471e-29 9.484189e-28
#> [6] 2.887121e-26 7.195512e-25 1.509685e-23 2.721134e-22 4.279009e-21
#> [11] 5.941642e-20 7.356037e-19 8.184508e-18 8.237686e-17 7.541858e-16
#> [16] 6.310225e-15 4.844429e-14 3.424255e-13 2.235148e-12 1.350769e-11
#> [21] 7.574609e-11 3.948978e-10 1.917264e-09 8.681177e-09 3.670379e-08
#> [26] 1.450549e-07 5.363170e-07 1.856461e-06 6.019586e-06 1.829121e-05
#> [31] 5.209921e-05 1.391205e-04 3.482749e-04 8.172712e-04 1.797236e-03
#> [36] 3.702208e-03 7.139892e-03 1.288219e-02 2.172588e-02 3.421374e-02
#> [41] 5.024851e-02 6.872559e-02 8.738947e-02 1.031108e-01 1.126377e-01
#> [46] 1.136267e-01 1.055364e-01 8.994057e-02 7.004907e-02 4.962603e-02
#> [51] 3.180393e-02 1.831737e-02 9.406320e-03 4.265268e-03 1.687339e-03
#> [56] 5.734528e-04 1.640669e-04 3.843049e-05 7.077304e-06 9.609416e-07
#> [61] 8.553338e-08 3.744258e-09
ppbinom(NULL, pp, wt, "GeoMeanCounter")
#> [1] 3.574462e-35 5.858123e-33 4.722829e-31 2.496699e-29 9.733859e-28
#> [6] 2.984460e-26 7.493958e-25 1.584624e-23 2.879597e-22 4.566969e-21
#> [11] 6.398339e-20 7.995871e-19 8.984095e-18 9.136095e-17 8.455467e-16
#> [16] 7.155772e-15 5.560007e-14 3.980256e-13 2.633173e-12 1.614086e-11
#> [21] 9.188695e-11 4.867847e-10 2.404049e-09 1.108523e-08 4.778901e-08
#> [26] 1.928440e-07 7.291610e-07 2.585622e-06 8.605207e-06 2.689642e-05
#> [31] 7.899562e-05 2.181161e-04 5.663910e-04 1.383662e-03 3.180899e-03
#> [36] 6.883107e-03 1.402300e-02 2.690519e-02 4.863107e-02 8.284481e-02
#> [41] 1.330933e-01 2.018189e-01 2.892084e-01 3.923192e-01 5.049569e-01
#> [46] 6.185836e-01 7.241200e-01 8.140606e-01 8.841097e-01 9.337357e-01
#> [51] 9.655396e-01 9.838570e-01 9.932633e-01 9.975286e-01 9.992159e-01
#> [56] 9.997894e-01 9.999534e-01 9.999919e-01 9.999989e-01 9.999999e-01
#> [61] 1.000000e+00 1.000000e+00
It is known that the geometric mean of the probabilities of failure is always smaller than their arithmetic mean. As a result, 1 minus the geometric mean is larger than 1 minus the arithmetic mean. Thus, we get a stochastically larger binomial distribution. A comparison with exact computation shows that the approximation quality of the GMBA-B procedure again increases when the probabilities of success are closer to each other:
set.seed(1)
# U(0, 1) random probabilities of success
pp <- runif(20)
dpbinom(NULL, pp, method = "GeoMeanCounter")
#> [1] 4.401037e-11 2.019854e-09 4.403304e-08 6.062685e-07 5.912743e-06
#> [6] 4.341843e-05 2.490859e-04 1.143179e-03 4.262876e-03 1.304297e-02
#> [11] 3.292337e-02 6.868258e-02 1.182069e-01 1.669263e-01 1.915269e-01
#> [16] 1.758024e-01 1.260695e-01 6.807004e-02 2.603394e-02 6.288561e-03
#> [21] 7.215333e-04
dpbinom(NULL, pp)
#> [1] 4.401037e-11 7.873212e-09 3.624610e-07 7.952504e-06 1.014602e-04
#> [6] 8.311558e-04 4.642470e-03 1.838525e-02 5.297347e-02 1.129135e-01
#> [11] 1.798080e-01 2.148719e-01 1.926468e-01 1.289706e-01 6.384266e-02
#> [16] 2.299142e-02 5.871700e-03 1.021142e-03 1.129421e-04 6.977021e-06
#> [21] 1.747603e-07
summary(dpbinom(NULL, pp, method = "GeoMeanCounter") - dpbinom(NULL, pp))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -1.469e-01 -1.724e-02 -3.200e-07 0.000e+00 2.592e-02 1.528e-01
# U(0.4, 0.6) random probabilities of success
pp <- runif(20, 0.4, 0.6)
dpbinom(NULL, pp, method = "GeoMeanCounter")
#> [1] 1.046635e-06 2.073844e-05 1.951870e-04 1.160254e-03 4.885321e-03
#> [6] 1.548796e-02 3.836059e-02 7.600922e-02 1.223688e-01 1.616443e-01
#> [11] 1.761588e-01 1.586582e-01 1.178895e-01 7.187414e-02 3.560358e-02
#> [16] 1.410928e-02 4.368234e-03 1.018282e-03 1.681387e-04 1.753458e-05
#> [21] 8.685930e-07
dpbinom(NULL, pp)
#> [1] 1.046635e-06 2.098187e-05 1.993006e-04 1.192678e-03 5.043114e-03
#> [6] 1.601621e-02 3.964022e-02 7.829406e-02 1.253351e-01 1.642218e-01
#> [11] 1.770816e-01 1.574210e-01 1.151700e-01 6.896627e-02 3.347297e-02
#> [16] 1.296524e-02 3.913788e-03 8.873960e-04 1.421738e-04 1.435144e-05
#> [21] 6.864565e-07
summary(dpbinom(NULL, pp, method = "GeoMeanCounter") - dpbinom(NULL, pp))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.0029663 -0.0005283 0.0000000 0.0000000 0.0004544 0.0029079
# U(0.49, 0.51) random probabilities of success
pp <- runif(20, 0.49, 0.51)
dpbinom(NULL, pp, method = "GeoMeanCounter")
#> [1] 9.472606e-07 1.895800e-05 1.802225e-04 1.082065e-03 4.601880e-03
#> [6] 1.473596e-02 3.686475e-02 7.377926e-02 1.199722e-01 1.600709e-01
#> [11] 1.761969e-01 1.602871e-01 1.202964e-01 7.407854e-02 3.706427e-02
#> [16] 1.483571e-02 4.639289e-03 1.092334e-03 1.821786e-04 1.918963e-05
#> [21] 9.601293e-07
dpbinom(NULL, pp)
#> [1] 9.472606e-07 1.895984e-05 1.802539e-04 1.082315e-03 4.603107e-03
#> [6] 1.474011e-02 3.687497e-02 7.379784e-02 1.199969e-01 1.600932e-01
#> [11] 1.762060e-01 1.602781e-01 1.202742e-01 7.405383e-02 3.704562e-02
#> [16] 1.482542e-02 4.635093e-03 1.091093e-03 1.819256e-04 1.915775e-05
#> [21] 9.582517e-07
summary(dpbinom(NULL, pp, method = "GeoMeanCounter") - dpbinom(NULL, pp))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -2.467e-05 -4.159e-06 0.000e+00 0.000e+00 4.196e-06 2.470e-05
The Normal Approximation (NA) approach is requested with
method = "Normal"
. It is based on a Normal distribution,
whose parameters are derived from the theoretical mean and variance of
the input probabilities of success.
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
dpbinom(NULL, pp, wt, "Normal")
#> [1] 2.552770e-32 1.207834e-30 5.219650e-29 2.022022e-27 7.021785e-26
#> [6] 2.185917e-24 6.100302e-23 1.526188e-21 3.423032e-20 6.882841e-19
#> [11] 1.240755e-17 2.005270e-16 2.905604e-15 3.774712e-14 4.396661e-13
#> [16] 4.591569e-12 4.299381e-11 3.609645e-10 2.717342e-09 1.834224e-08
#> [21] 1.110185e-07 6.025326e-07 2.932337e-06 1.279682e-05 5.007841e-05
#> [26] 1.757379e-04 5.530339e-04 1.560683e-03 3.949650e-03 8.963710e-03
#> [31] 1.824341e-02 3.329786e-02 5.450317e-02 8.000636e-02 1.053238e-01
#> [36] 1.243451e-01 1.316535e-01 1.250080e-01 1.064497e-01 8.129267e-02
#> [41] 5.567468e-02 3.419491e-02 1.883477e-02 9.303614e-03 4.121280e-03
#> [46] 1.637186e-03 5.832371e-04 1.863241e-04 5.337829e-05 1.371282e-05
#> [51] 3.159002e-06 6.525712e-07 1.208800e-07 2.007813e-08 2.990389e-09
#> [56] 3.993563e-10 4.782059e-11 5.134327e-12 4.942641e-13 4.266130e-14
#> [61] 3.301422e-15 2.441468e-16
ppbinom(NULL, pp, wt, "Normal")
#> [1] 2.552770e-32 1.233362e-30 5.342987e-29 2.075452e-27 7.229330e-26
#> [6] 2.258210e-24 6.326123e-23 1.589449e-21 3.581977e-20 7.241039e-19
#> [11] 1.313165e-17 2.136587e-16 3.119262e-15 4.086639e-14 4.805325e-13
#> [16] 5.072102e-12 4.806591e-11 4.090305e-10 3.126373e-09 2.146861e-08
#> [21] 1.324871e-07 7.350197e-07 3.667357e-06 1.646417e-05 6.654258e-05
#> [26] 2.422805e-04 7.953144e-04 2.355997e-03 6.305647e-03 1.526936e-02
#> [31] 3.351276e-02 6.681062e-02 1.213138e-01 2.013201e-01 3.066439e-01
#> [36] 4.309891e-01 5.626426e-01 6.876506e-01 7.941003e-01 8.753930e-01
#> [41] 9.310676e-01 9.652625e-01 9.840973e-01 9.934009e-01 9.975222e-01
#> [46] 9.991594e-01 9.997426e-01 9.999290e-01 9.999823e-01 9.999960e-01
#> [51] 9.999992e-01 9.999999e-01 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00
A comparison with exact computation shows that the approximation quality of the NA procedure increases with larger numbers of probabilities of success:
set.seed(1)
# 10 random probabilities of success
pp <- runif(10)
dpn <- dpbinom(NULL, pp, method = "Normal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.0053305 -0.0010422 0.0005271 0.0000000 0.0016579 0.0026553
# 1000 random probabilities of success
pp <- runif(1000)
dpn <- dpbinom(NULL, pp, method = "Normal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -8.412e-06 0.000e+00 0.000e+00 0.000e+00 0.000e+00 3.815e-06
# 100000 random probabilities of success
pp <- runif(100000)
dpn <- dpbinom(NULL, pp, method = "Normal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -4.484e-09 0.000e+00 8.990e-13 0.000e+00 4.919e-10 2.734e-09
The Refined Normal Approximation (RNA) approach is requested
with method = "RefinedNormal"
. It is based on a Normal
distribution, whose parameters are derived from the theoretical mean,
variance and skewness of the input probabilities of success.
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
dpbinom(NULL, pp, wt, "RefinedNormal")
#> [1] 2.579548e-31 1.128297e-29 4.507210e-28 1.611452e-26 5.156486e-25
#> [6] 1.476806e-23 3.785627e-22 8.685911e-21 1.783953e-19 3.280039e-18
#> [11] 5.399492e-17 7.959230e-16 1.050796e-14 1.242802e-13 1.317210e-12
#> [16] 1.251531e-11 1.066498e-10 8.155390e-10 5.599786e-09 3.455053e-08
#> [21] 1.917106e-07 9.574753e-07 4.308224e-06 1.748069e-05 6.401569e-05
#> [26] 2.117447e-04 6.329842e-04 1.710740e-03 4.180480e-03 9.234968e-03
#> [31] 1.843341e-02 3.322175e-02 5.401115e-02 7.912655e-02 1.043358e-01
#> [36] 1.236782e-01 1.316360e-01 1.256489e-01 1.074322e-01 8.218619e-02
#> [41] 5.618825e-02 3.428872e-02 1.865323e-02 9.032795e-03 3.886960e-03
#> [46] 1.483178e-03 5.004545e-04 1.487517e-04 3.873113e-05 8.757189e-06
#> [51] 1.693868e-06 2.722346e-07 3.388544e-08 2.218356e-09 0.000000e+00
#> [56] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [61] 0.000000e+00 0.000000e+00
ppbinom(NULL, pp, wt, "RefinedNormal")
#> [1] 2.579548e-31 1.154092e-29 4.622620e-28 1.657678e-26 5.322254e-25
#> [6] 1.530028e-23 3.938629e-22 9.079774e-21 1.874750e-19 3.467514e-18
#> [11] 5.746244e-17 8.533855e-16 1.136134e-14 1.356415e-13 1.452852e-12
#> [16] 1.396817e-11 1.206179e-10 9.361569e-10 6.535943e-09 4.108647e-08
#> [21] 2.327971e-07 1.190272e-06 5.498496e-06 2.297918e-05 8.699487e-05
#> [26] 2.987396e-04 9.317238e-04 2.642463e-03 6.822944e-03 1.605791e-02
#> [31] 3.449132e-02 6.771307e-02 1.217242e-01 2.008508e-01 3.051866e-01
#> [36] 4.288648e-01 5.605008e-01 6.861497e-01 7.935820e-01 8.757682e-01
#> [41] 9.319564e-01 9.662451e-01 9.848984e-01 9.939312e-01 9.978181e-01
#> [46] 9.993013e-01 9.998018e-01 9.999505e-01 9.999892e-01 9.999980e-01
#> [51] 9.999997e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00
A comparison with exact computation shows that the approximation quality of the RNA procedure increases with larger numbers of probabilities of success:
set.seed(1)
# 10 random probabilities of success
pp <- runif(10)
dpn <- dpbinom(NULL, pp, method = "RefinedNormal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.0039538 -0.0006920 0.0003543 0.0000000 0.0017167 0.0023597
# 1000 random probabilities of success
pp <- runif(1000)
dpn <- dpbinom(NULL, pp, method = "RefinedNormal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -2.974e-06 0.000e+00 0.000e+00 0.000e+00 0.000e+00 2.270e-06
# 100000 random probabilities of success
pp <- runif(100000)
dpn <- dpbinom(NULL, pp, method = "RefinedNormal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -3.126e-09 0.000e+00 6.337e-13 0.000e+00 4.632e-10 2.293e-09
To assess the performance of the approximation procedures, we use the
microbenchmark
package. Each algorithm has to calculate the
PMF repeatedly based on random probability vectors. The run times are
then summarized in a table that presents, among other statistics, their
minima, maxima and means. The following results were recorded on an AMD
Ryzen 9 5900X with 64 GiB of RAM and Windows 10 Education (22H2).
library(microbenchmark)
set.seed(1)
f1 <- function() dpbinom(NULL, runif(4000), method = "Normal")
f2 <- function() dpbinom(NULL, runif(4000), method = "Poisson")
f3 <- function() dpbinom(NULL, runif(4000), method = "RefinedNormal")
f4 <- function() dpbinom(NULL, runif(4000), method = "Mean")
f5 <- function() dpbinom(NULL, runif(4000), method = "GeoMean")
f6 <- function() dpbinom(NULL, runif(4000), method = "GeoMeanCounter")
f7 <- function() dpbinom(NULL, runif(4000), method = "DivideFFT")
microbenchmark(f1(), f2(), f3(), f4(), f5(), f6(), f7(), times = 51)
#> Unit: microseconds
#> expr min lq mean median uq max neval
#> f1() 648.008 656.0830 680.7339 660.562 672.5840 1468.017 51
#> f2() 868.800 874.0995 901.4160 878.788 887.5500 1819.562 51
#> f3() 863.991 872.0010 1007.3092 878.187 885.7660 2826.288 51
#> f4() 664.028 668.7570 692.2855 673.576 682.6725 1469.840 51
#> f5() 690.346 698.1065 724.5764 702.259 707.4035 1769.929 51
#> f6() 684.436 694.2490 718.6231 700.285 707.7945 1517.118 51
#> f7() 26933.997 26989.7205 27284.5223 27022.582 27144.3490 29997.968 51
Clearly, the NA procedure is the fastest, followed by the PA and RNA methods. The next fastest algorithms are AMBA, GMBA-A and GMBA-B. They exhibit almost equal mean execution speed, with the AMBA algorithm being slightly faster. All of the approximation procedures outperform the fastest exact approach, DC-FFT, by far.
The Generalized Normal Approximation (G-NA) approach is
requested with method = "Normal"
. It is based on a Normal
distribution, whose parameters are derived from the theoretical mean and
variance of the input probabilities of success (see Introduction.
set.seed(2)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)
dgpbinom(NULL, pp, va, vb, wt, "Normal")
#> [1] 5.607923e-34 8.868899e-34 2.266907e-33 5.759009e-33 1.454159e-32
#> [6] 3.649437e-32 9.103112e-32 2.256856e-31 5.561194e-31 1.362016e-30
#> [11] 3.315478e-30 8.021587e-30 1.928965e-29 4.610400e-29 1.095224e-28
#> [16] 2.585931e-28 6.068497e-28 1.415453e-27 3.281403e-27 7.560907e-27
#> [21] 1.731562e-26 3.941418e-26 8.916960e-26 2.005077e-25 4.481212e-25
#> [26] 9.954281e-25 2.197730e-24 4.822684e-24 1.051849e-23 2.280173e-23
#> [31] 4.912836e-23 1.052075e-22 2.239296e-22 4.737247e-22 9.960718e-22
#> [36] 2.081639e-21 4.323844e-21 8.926573e-21 1.831680e-20 3.735634e-20
#> [41] 7.572323e-20 1.525612e-19 3.054984e-19 6.080284e-19 1.202787e-18
#> [46] 2.364851e-18 4.621350e-18 8.976023e-18 1.732802e-17 3.324790e-17
#> [51] 6.340586e-17 1.201834e-16 2.264174e-16 4.239603e-16 7.890246e-16
#> [56] 1.459506e-15 2.683313e-15 4.903282e-15 8.905378e-15 1.607563e-14
#> [61] 2.884254e-14 5.143387e-14 9.116221e-14 1.605945e-13 2.811877e-13
#> [66] 4.893417e-13 8.464047e-13 1.455104e-12 2.486337e-12 4.222561e-12
#> [71] 7.127579e-12 1.195799e-11 1.993996e-11 3.304764e-11 5.443857e-11
#> [76] 8.912982e-11 1.450405e-10 2.345880e-10 3.771137e-10 6.025440e-10
#> [81] 9.568753e-10 1.510330e-09 2.369401e-09 3.694497e-09 5.725614e-09
#> [86] 8.819398e-09 1.350224e-08 2.054578e-08 3.107347e-08 4.670967e-08
#> [91] 6.978689e-08 1.036313e-07 1.529531e-07 2.243755e-07 3.271469e-07
#> [96] 4.740893e-07 6.828536e-07 9.775638e-07 1.390954e-06 1.967117e-06
#> [101] 2.765018e-06 3.862920e-06 5.363935e-06 7.402890e-06 1.015475e-05
#> [106] 1.384482e-05 1.876097e-05 2.526814e-05 3.382528e-05 4.500488e-05
#> [111] 5.951520e-05 7.822512e-05 1.021915e-04 1.326884e-04 1.712386e-04
#> [116] 2.196444e-04 2.800198e-04 3.548195e-04 4.468649e-04 5.593647e-04
#> [121] 6.959275e-04 8.605635e-04 1.057674e-03 1.292025e-03 1.568701e-03
#> [126] 1.893038e-03 2.270537e-03 2.706749e-03 3.207136e-03 3.776912e-03
#> [131] 4.420856e-03 5.143112e-03 5.946968e-03 6.834635e-03 7.807017e-03
#> [136] 8.863494e-03 1.000172e-02 1.121747e-02 1.250446e-02 1.385431e-02
#> [141] 1.525651e-02 1.669842e-02 1.816543e-02 1.964112e-02 2.110749e-02
#> [146] 2.254536e-02 2.393468e-02 2.525505e-02 2.648616e-02 2.760831e-02
#> [151] 2.860294e-02 2.945314e-02 3.014411e-02 3.066363e-02 3.100235e-02
#> [156] 3.115414e-02 3.111624e-02 3.088932e-02 3.047753e-02 2.988830e-02
#> [161] 2.913216e-02 2.822242e-02 2.717477e-02 2.600684e-02 2.473770e-02
#> [166] 2.338736e-02 2.197622e-02 2.052462e-02 1.905228e-02 1.757799e-02
#> [171] 1.611912e-02 1.469141e-02 1.330871e-02 1.198280e-02 1.072335e-02
#> [176] 9.537908e-03 8.431904e-03 7.408807e-03 6.470249e-03 5.616215e-03
#> [181] 4.845254e-03 4.154698e-03 3.540890e-03 2.999407e-03 2.525274e-03
#> [186] 2.113156e-03 1.757538e-03 1.452874e-03 1.193717e-03 9.748208e-04
#> [191] 7.912218e-04 6.382955e-04 5.117942e-04 4.078674e-04 3.230671e-04
#> [196] 2.543411e-04 1.990171e-04 1.547798e-04 1.196432e-04 9.192046e-05
#> [201] 7.019178e-05 5.327340e-05 4.018691e-05 3.013068e-05 2.245346e-05
#> [206] 1.663059e-05 1.224284e-05 8.957907e-06 6.514501e-06 1.614725e-05
pgpbinom(NULL, pp, va, vb, wt, "Normal")
#> [1] 5.607923e-34 1.447682e-33 3.714589e-33 9.473598e-33 2.401518e-32
#> [6] 6.050955e-32 1.515407e-31 3.772263e-31 9.333457e-31 2.295361e-30
#> [11] 5.610840e-30 1.363243e-29 3.292208e-29 7.902608e-29 1.885484e-28
#> [16] 4.471416e-28 1.053991e-27 2.469444e-27 5.750847e-27 1.331175e-26
#> [21] 3.062738e-26 7.004156e-26 1.592112e-25 3.597189e-25 8.078401e-25
#> [26] 1.803268e-24 4.000998e-24 8.823682e-24 1.934217e-23 4.214390e-23
#> [31] 9.127226e-23 1.964798e-22 4.204093e-22 8.941340e-22 1.890206e-21
#> [36] 3.971844e-21 8.295689e-21 1.722226e-20 3.553906e-20 7.289540e-20
#> [41] 1.486186e-19 3.011798e-19 6.066782e-19 1.214707e-18 2.417494e-18
#> [46] 4.782345e-18 9.403695e-18 1.837972e-17 3.570774e-17 6.895564e-17
#> [51] 1.323615e-16 2.525449e-16 4.789624e-16 9.029227e-16 1.691947e-15
#> [56] 3.151453e-15 5.834767e-15 1.073805e-14 1.964343e-14 3.571905e-14
#> [61] 6.456159e-14 1.159955e-13 2.071577e-13 3.677521e-13 6.489399e-13
#> [66] 1.138282e-12 1.984686e-12 3.439790e-12 5.926127e-12 1.014869e-11
#> [71] 1.727627e-11 2.923425e-11 4.917421e-11 8.222186e-11 1.366604e-10
#> [76] 2.257903e-10 3.708308e-10 6.054188e-10 9.825325e-10 1.585076e-09
#> [81] 2.541952e-09 4.052282e-09 6.421683e-09 1.011618e-08 1.584179e-08
#> [86] 2.466119e-08 3.816343e-08 5.870922e-08 8.978268e-08 1.364924e-07
#> [91] 2.062792e-07 3.099106e-07 4.628636e-07 6.872392e-07 1.014386e-06
#> [96] 1.488475e-06 2.171329e-06 3.148893e-06 4.539847e-06 6.506964e-06
#> [101] 9.271982e-06 1.313490e-05 1.849884e-05 2.590173e-05 3.605648e-05
#> [106] 4.990129e-05 6.866226e-05 9.393040e-05 1.277557e-04 1.727606e-04
#> [111] 2.322758e-04 3.105009e-04 4.126924e-04 5.453808e-04 7.166194e-04
#> [116] 9.362638e-04 1.216284e-03 1.571103e-03 2.017968e-03 2.577333e-03
#> [121] 3.273260e-03 4.133824e-03 5.191498e-03 6.483523e-03 8.052224e-03
#> [126] 9.945263e-03 1.221580e-02 1.492255e-02 1.812968e-02 2.190660e-02
#> [131] 2.632745e-02 3.147056e-02 3.741753e-02 4.425217e-02 5.205918e-02
#> [136] 6.092268e-02 7.092440e-02 8.214187e-02 9.464633e-02 1.085006e-01
#> [141] 1.237572e-01 1.404556e-01 1.586210e-01 1.782621e-01 1.993696e-01
#> [146] 2.219150e-01 2.458497e-01 2.711047e-01 2.975909e-01 3.251992e-01
#> [151] 3.538021e-01 3.832553e-01 4.133994e-01 4.440630e-01 4.750653e-01
#> [156] 5.062195e-01 5.373357e-01 5.682250e-01 5.987026e-01 6.285909e-01
#> [161] 6.577230e-01 6.859454e-01 7.131202e-01 7.391271e-01 7.638648e-01
#> [166] 7.872521e-01 8.092283e-01 8.297529e-01 8.488052e-01 8.663832e-01
#> [171] 8.825023e-01 8.971938e-01 9.105025e-01 9.224853e-01 9.332086e-01
#> [176] 9.427465e-01 9.511784e-01 9.585872e-01 9.650575e-01 9.706737e-01
#> [181] 9.755189e-01 9.796736e-01 9.832145e-01 9.862139e-01 9.887392e-01
#> [186] 9.908524e-01 9.926099e-01 9.940628e-01 9.952565e-01 9.962313e-01
#> [191] 9.970225e-01 9.976608e-01 9.981726e-01 9.985805e-01 9.989036e-01
#> [196] 9.991579e-01 9.993569e-01 9.995117e-01 9.996314e-01 9.997233e-01
#> [201] 9.997935e-01 9.998467e-01 9.998869e-01 9.999171e-01 9.999395e-01
#> [206] 9.999561e-01 9.999684e-01 9.999773e-01 9.999839e-01 1.000000e+00
A comparison with exact computation shows that the approximation quality of the NA procedure increases with larger numbers of probabilities of success:
set.seed(2)
# 10 random probabilities of success
pp <- runif(10)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "Normal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.0346309 -0.0042919 0.0001378 0.0000000 0.0038447 0.0317044
# 100 random probabilities of success
pp <- runif(100)
va <- sample(0:100, 100, TRUE)
vb <- sample(0:100, 100, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "Normal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -3.006e-05 -1.126e-09 0.000e+00 0.000e+00 1.854e-09 2.967e-05
# 1000 random probabilities of success
pp <- runif(1000)
va <- sample(0:1000, 1000, TRUE)
vb <- sample(0:1000, 1000, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "Normal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -3.152e-08 0.000e+00 3.060e-12 0.000e+00 8.992e-10 3.707e-08
The Generalized Refined Normal Approximation (G-RNA)
approach is requested with method = "RefinedNormal"
. It is
based on a Normal distribution, whose parameters are derived from the
theoretical mean, variance and skewness of the input probabilities of
success.
set.seed(2)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)
dgpbinom(NULL, pp, va, vb, wt, "RefinedNormal")
#> [1] 5.100768e-32 7.816039e-32 1.959106e-31 4.880045e-31 1.208047e-30
#> [6] 2.971921e-30 7.265798e-30 1.765311e-29 4.262362e-29 1.022751e-28
#> [11] 2.438814e-28 5.779315e-28 1.361012e-27 3.185186e-27 7.407878e-27
#> [16] 1.712136e-26 3.932484e-26 8.975930e-26 2.035985e-25 4.589352e-25
#> [21] 1.028037e-24 2.288476e-24 5.062470e-24 1.112900e-23 2.431235e-23
#> [26] 5.278047e-23 1.138660e-22 2.441116e-22 5.200621e-22 1.101015e-21
#> [31] 2.316333e-21 4.842591e-21 1.006056e-20 2.076983e-20 4.260973e-20
#> [36] 8.686571e-20 1.759748e-19 3.542530e-19 7.086575e-19 1.408697e-18
#> [41] 2.782630e-18 5.461965e-18 1.065359e-17 2.064884e-17 3.976912e-17
#> [46] 7.611065e-17 1.447413e-16 2.735176e-16 5.135966e-16 9.582999e-16
#> [51] 1.776730e-15 3.273256e-15 5.992053e-15 1.089949e-14 1.970017e-14
#> [56] 3.538058e-14 6.313772e-14 1.119541e-13 1.972495e-13 3.453144e-13
#> [61] 6.006676e-13 1.038179e-12 1.782897e-12 3.042246e-12 5.157913e-12
#> [66] 8.688860e-12 1.454315e-11 2.418568e-11 3.996319e-11 6.560867e-11
#> [71] 1.070186e-10 1.734408e-10 2.792769e-10 4.467944e-10 7.101774e-10
#> [76] 1.121527e-09 1.759679e-09 2.743061e-09 4.248282e-09 6.536785e-09
#> [81] 9.992759e-09 1.517660e-08 2.289965e-08 3.432780e-08 5.112383e-08
#> [86] 7.564129e-08 1.111860e-07 1.623661e-07 2.355550e-07 3.394997e-07
#> [91] 4.861107e-07 6.914779e-07 9.771650e-07 1.371840e-06 1.913307e-06
#> [96] 2.651012e-06 3.649099e-06 4.990081e-06 6.779222e-06 9.149662e-06
#> [101] 1.226837e-05 1.634294e-05 2.162919e-05 2.843967e-05 3.715276e-05
#> [106] 4.822249e-05 6.218875e-05 7.968764e-05 1.014618e-04 1.283702e-04
#> [111] 1.613972e-04 2.016606e-04 2.504176e-04 3.090698e-04 3.791651e-04
#> [116] 4.623982e-04 5.606082e-04 6.757744e-04 8.100102e-04 9.655553e-04
#> [121] 1.144767e-03 1.350110e-03 1.584150e-03 1.849543e-03 2.149024e-03
#> [126] 2.485405e-03 2.861561e-03 3.280420e-03 3.744950e-03 4.258135e-03
#> [131] 4.822941e-03 5.442277e-03 6.118927e-03 6.855467e-03 7.654163e-03
#> [136] 8.516833e-03 9.444692e-03 1.043817e-02 1.149671e-02 1.261856e-02
#> [141] 1.380053e-02 1.503782e-02 1.632377e-02 1.764978e-02 1.900514e-02
#> [146] 2.037702e-02 2.175055e-02 2.310888e-02 2.443348e-02 2.570445e-02
#> [151] 2.690096e-02 2.800177e-02 2.898579e-02 2.983278e-02 3.052397e-02
#> [156] 3.104271e-02 3.137515e-02 3.151071e-02 3.144261e-02 3.116818e-02
#> [161] 3.068902e-02 3.001109e-02 2.914456e-02 2.810352e-02 2.690563e-02
#> [166] 2.557147e-02 2.412399e-02 2.258773e-02 2.098813e-02 1.935073e-02
#> [171] 1.770044e-02 1.606093e-02 1.445398e-02 1.289904e-02 1.141287e-02
#> [176] 1.000927e-02 8.699011e-03 7.489773e-03 6.386301e-03 5.390581e-03
#> [181] 4.502114e-03 3.718233e-03 3.034469e-03 2.444914e-03 1.942594e-03
#> [186] 1.519822e-03 1.168521e-03 8.805066e-04 6.477360e-04 4.625001e-04
#> [191] 2.621189e-04 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [196] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [201] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [206] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
pgpbinom(NULL, pp, va, vb, wt, "RefinedNormal")
#> [1] 5.100768e-32 1.291681e-31 3.250786e-31 8.130831e-31 2.021130e-30
#> [6] 4.993051e-30 1.225885e-29 2.991196e-29 7.253558e-29 1.748106e-28
#> [11] 4.186920e-28 9.966236e-28 2.357636e-27 5.542822e-27 1.295070e-26
#> [16] 3.007206e-26 6.939690e-26 1.591562e-25 3.627547e-25 8.216899e-25
#> [21] 1.849727e-24 4.138203e-24 9.200673e-24 2.032968e-23 4.464203e-23
#> [26] 9.742250e-23 2.112885e-22 4.554002e-22 9.754623e-22 2.076477e-21
#> [31] 4.392810e-21 9.235402e-21 1.929596e-20 4.006579e-20 8.267552e-20
#> [36] 1.695412e-19 3.455160e-19 6.997690e-19 1.408427e-18 2.817123e-18
#> [41] 5.599754e-18 1.106172e-17 2.171531e-17 4.236415e-17 8.213328e-17
#> [46] 1.582439e-16 3.029852e-16 5.765028e-16 1.090099e-15 2.048399e-15
#> [51] 3.825129e-15 7.098385e-15 1.309044e-14 2.398993e-14 4.369010e-14
#> [56] 7.907068e-14 1.422084e-13 2.541625e-13 4.514120e-13 7.967264e-13
#> [61] 1.397394e-12 2.435573e-12 4.218470e-12 7.260717e-12 1.241863e-11
#> [66] 2.110749e-11 3.565064e-11 5.983632e-11 9.979950e-11 1.654082e-10
#> [71] 2.724267e-10 4.458675e-10 7.251445e-10 1.171939e-09 1.882116e-09
#> [76] 3.003643e-09 4.763322e-09 7.506383e-09 1.175466e-08 1.829145e-08
#> [81] 2.828421e-08 4.346081e-08 6.636046e-08 1.006883e-07 1.518121e-07
#> [86] 2.274534e-07 3.386394e-07 5.010055e-07 7.365605e-07 1.076060e-06
#> [91] 1.562171e-06 2.253649e-06 3.230814e-06 4.602653e-06 6.515960e-06
#> [96] 9.166972e-06 1.281607e-05 1.780615e-05 2.458537e-05 3.373504e-05
#> [101] 4.600341e-05 6.234634e-05 8.397554e-05 1.124152e-04 1.495680e-04
#> [106] 1.977905e-04 2.599792e-04 3.396668e-04 4.411286e-04 5.694988e-04
#> [111] 7.308960e-04 9.325566e-04 1.182974e-03 1.492044e-03 1.871209e-03
#> [116] 2.333607e-03 2.894215e-03 3.569990e-03 4.380000e-03 5.345555e-03
#> [121] 6.490322e-03 7.840432e-03 9.424583e-03 1.127413e-02 1.342315e-02
#> [126] 1.590855e-02 1.877011e-02 2.205053e-02 2.579549e-02 3.005362e-02
#> [131] 3.487656e-02 4.031884e-02 4.643777e-02 5.329323e-02 6.094740e-02
#> [136] 6.946423e-02 7.890892e-02 8.934709e-02 1.008438e-01 1.134624e-01
#> [141] 1.272629e-01 1.423007e-01 1.586245e-01 1.762743e-01 1.952794e-01
#> [146] 2.156564e-01 2.374070e-01 2.605159e-01 2.849493e-01 3.106538e-01
#> [151] 3.375548e-01 3.655565e-01 3.945423e-01 4.243751e-01 4.548991e-01
#> [156] 4.859418e-01 5.173169e-01 5.488276e-01 5.802702e-01 6.114384e-01
#> [161] 6.421274e-01 6.721385e-01 7.012831e-01 7.293866e-01 7.562922e-01
#> [166] 7.818637e-01 8.059877e-01 8.285754e-01 8.495636e-01 8.689143e-01
#> [171] 8.866147e-01 9.026757e-01 9.171296e-01 9.300287e-01 9.414415e-01
#> [176] 9.514508e-01 9.601498e-01 9.676396e-01 9.740259e-01 9.794165e-01
#> [181] 9.839186e-01 9.876368e-01 9.906713e-01 9.931162e-01 9.950588e-01
#> [186] 9.965786e-01 9.977471e-01 9.986276e-01 9.992754e-01 9.997379e-01
#> [191] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [196] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [201] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [206] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
A comparison with exact computation shows that the approximation quality of the RNA procedure increases with larger numbers of probabilities of success:
set.seed(2)
# 10 random probabilities of success
pp <- runif(10)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "RefinedNormal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -3.045e-02 -4.084e-03 1.727e-04 1.179e-05 4.324e-03 3.161e-02
# 100 random probabilities of success
pp <- runif(100)
va <- sample(0:100, 100, TRUE)
vb <- sample(0:100, 100, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "RefinedNormal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -8.831e-06 0.000e+00 1.000e-12 9.000e-12 3.642e-07 1.333e-05
# 1000 random probabilities of success
pp <- runif(1000)
va <- sample(0:1000, 1000, TRUE)
vb <- sample(0:1000, 1000, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "RefinedNormal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -1.980e-08 0.000e+00 4.960e-12 0.000e+00 1.561e-09 3.197e-08
To assess the performance of the approximation procedures, we use the
microbenchmark
package. Each algorithm has to calculate the
PMF repeatedly based on random probability vectors. The run times are
then summarized in a table that presents, among other statistics, their
minima, maxima and means. The following results were recorded on an AMD
Ryzen 9 5900X with 64 GiB of RAM and Windows 10 Education (22H2).
library(microbenchmark)
n <- 1500
set.seed(2)
va <- sample(1:50, n, TRUE)
vb <- sample(1:50, n, TRUE)
f1 <- function() dgpbinom(NULL, runif(n), va, vb, method = "Normal")
f2 <- function() dgpbinom(NULL, runif(n), va, vb, method = "RefinedNormal")
f3 <- function() dgpbinom(NULL, runif(n), va, vb, method = "DivideFFT")
microbenchmark(f1(), f2(), f3(), times = 51)
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> f1() 5.050485 5.098379 5.386215 5.148999 5.202964 7.188149 51
#> f2() 6.077770 6.118105 6.252348 6.156276 6.192683 8.089990 51
#> f3() 235.883986 236.251255 236.989345 236.457665 237.472130 242.536005 51
Clearly, the G-NA procedure is the fastest, followed by the G-RNA method. Both are hugely faster than G-DC-FFT.