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2 PoiClaClu-package

PoiClaClu-package Classification and clustering of RNA sequencing data using a Poisson
model

Description

A simple approach for performing classification and clustering of samples for which RNA sequenc-
ing data is available. Based upon a simple Poisson model proposed by a number of authors (e.g.
Marioni et al Genome Research 2008, Bullard et al BMC Bioinformatics 2010, and others).

Details

Package: PoiClaClu
Type: Package
Version: 1.0.2
Date: 2013-01-02
License: GPL-2
LazyLoad: yes

Author(s)

Daniela Witten

Maintainer: Daniela Witten <dwitten@u.washington.edu>

References

D. Witten (2011) Classification and clustering of sequencing data using a Poisson model. Annals
of Applied Statistics 5(4): 2493-2518.

Examples

# Poisson clustering #
set.seed(1)
dat <- CountDataSet(n=20,p=100,sdsignal=.5,K=4,param=10)
dd <- PoissonDistance(dat$x, type="mle")
print(dd)
ColorDendrogram(hclust(dd$dd), y=dat$y)

# Poisson classification #
set.seed(1)
dat <- CountDataSet(n=20,p=100,sdsignal=.1,K=4,param=10)
out <- Classify(x=dat$x,y=dat$y,xte=dat$xte,rhos=c(0,5,10))
print(out)
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Classify Classify observations using a Poisson model.

Description

Classify observations using a simple Poisson model. This function implements the "sparse Poisson
linear discriminant analysis classifier", which is similar to linear discriminant analysis but assumes a
Poisson model rather than a Gaussian model for the data. The classifier soft-thresholds the estimated
effect of each feature in order to achieve sparsity.

Usage

Classify(x, y, xte=NULL, rho = 0, beta = 1, rhos = NULL, type=c("mle","deseq","quantile"),
prior = NULL, transform=TRUE, alpha=NULL)

Arguments

x A n-by-p training data matrix; n observations and p features. Used to train the
classifier.

y A numeric vector of class labels of length n: 1, 2, ...., K if there are K classes.
Each element of y corresponds to a row of x; i.e. these are the class labels for
the observations in x.

xte A m-by-p data matrix: m test observations and p features. The classifier fit on
the training data set x will be tested on this data set. If NULL, then testing will
be performed on the training set.

rho Tuning parameter controlling the amount of soft thresholding performed, i.e. the
level of sparsity, i.e. number of nonzero features in classifier. Rho=0 means that
there is no soft-thresolding, i.e. all features used in classifier. Larger rho means
that fewer features will be used.

beta A smoothing term. A Gamma(beta,beta) prior is used to fit the Poisson model.
Recommendation is to just leave it at 1, the default value.

rhos A vector of tuning parameters that control the amount of soft thresholding per-
formed. If "rhos" is provided then a number of models will be fit (one for each
element of "rhos"), and a number of predicted class labels will be output (one
for each element of "rhos").

type How should the observations be normalized within the Poisson model, i.e. how
should the size factors be estimated? Options are "quantile" or "deseq" (more
robust) or "mle" (less robust).
In greater detail: "quantile" is quantile normalization approach of Bullard et al
2010 BMC Bioinformatics, "deseq" is median of the ratio of an observation to
a pseudoreference obtained by taking the geometric mean, described in Anders
and Huber 2010 Genome Biology and implemented in Bioconductor package
"DESeq", and "mle" is the sum of counts for each sample; this is the maximum
likelihood estimate under a simple Poisson model.
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prior Vector of length equal to the number of classes, representing prior probabilities
for each class. If NULL then uniform priors are used (i.e. each class is equally
likely).

transform Should data matrices x and xte first be power transformed so that it more closely
fits the Poisson model? TRUE or FALSE. Power transformation is especially
useful if the data are overdispersed relative to the Poisson model.

alpha If transform=TRUE, this determines the power to which the data matrices x
and xte are transformed. If alpha=NULL then the transformation that makes
the Poisson model best fit the data matrix x is computed. (Note that alpha is
computed based on x, not based on xte). Or a value of alpha, 0<alpha<=1, can
be entered by the user.

Value

ytehat The predicted class labels for each of the test observations (rows of xte).

discriminant A m-by-K matrix, where K is the number of classes. The (i,k) element is large
if the ith element of xte belongs to class k.

ds A K-by-p matrix indicating the extent to which each feature is under- or over-
expressed in each class. The (k,j) element is >1 if feature j is over-expressed in
class k, and is <1 if feature j is under-expressed in class k. When rho is large
then many of the elemtns of this matrix are shrunken towards 1 (no over- or
under-expression).

alpha Power transformation used (if transform=TRUE).

Author(s)

Daniela Witten

References

D Witten (2011) Classification and clustering of sequencing data using a Poisson model. To appear
in Annals of Applied Statistics.

See Also

Classify.cv

Examples

set.seed(1)
dat <- CountDataSet(n=40,p=500,sdsignal=.1,K=3,param=10)
cv.out <- Classify.cv(dat$x,dat$y)
print(cv.out)
out <- Classify(dat$x,dat$y,dat$xte,rho=cv.out$bestrho)
print(out)
cat("Confusion matrix for predicted and true test class labels:", fill=TRUE)
print(table(out$ytehat,dat$yte))
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Classify.cv Function to do cross-validation for Poisson classification.

Description

Perform cross-validation for the function that implements the "sparse Poisson linear discriminant
analysis classifier", which is similar to linear discriminant analysis but assumes a Poisson model
rather than a Gaussian model for the data. The classifier soft-thresholds the estimated effect of each
feature in order to achieve sparsity. This cross-validation function selects the proper value of the
tuning parameter that controls the level of soft-thresholding.

Usage

Classify.cv(x, y, rhos = NULL, beta = 1, nfolds = 5, type=c("mle","deseq","quantile"),
folds = NULL, transform=TRUE, alpha=NULL, prior=NULL)

Arguments

x A n-by-p training data matrix; n observations and p features.

y A numeric vector of class labels of length n: 1, 2, ...., K if there are K classes.
Each element of y corresponds to a row of x; i.e. these are the class labels for
the observations in x.

rhos A vector of tuning parameters to try out in cross-validation. Rho controls the
level of shrinkage performed, i.e. the number of features that are not involved
in the classifier. When rho=0 then all features are involved in the classifier, and
when rho is very large no features are involved. If rhos=NULL then a vector of
rho values will be chosen automatically.

beta A smoothing term. A Gamma(beta,beta) prior is used to fit the Poisson model.
Recommendation is to leave it at 1, the default value.

nfolds The number of folds in the cross-validation; default is 5-fold cross-validation.

type How should the observations be normalized within the Poisson model, i.e. how
should the size factors be estimated? Options are "quantile" or "deseq" (more
robust) or "mle" (less robust).
In greater detail: "quantile" is quantile normalization approach of Bullard et al
2010 BMC Bioinformatics, "deseq" is median of the ratio of an observation to
a pseudoreference obtained by taking the geometric mean, described in Anders
and Huber 2010 Genome Biology and implemented in Bioconductor package
"DESeq", and "mle" is the sum of counts for each sample; this is the maximum
likelihood estimate under a simple Poisson model.

prior Vector of length equal to the number of classes, representing prior probabilities
for each class. If NULL then uniform priors are used (i.e. each class is equally
likely).

transform Should data matrices x and xte first be power transformed so that it more closely
fits the Poisson model? TRUE or FALSE. Power transformation is especially
useful if the data are overdispersed relative to the Poisson model.
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alpha If transform=TRUE, this determines the power to which the data matrices x
and xte are transformed. If alpha=NULL then the transformation that makes
the Poisson model best fit the data matrix x is computed. (Note that alpha is
computed based on x, not based on xte). Or a value of alpha, 0<alpha<=1, can
be entered by the user.

folds Instead of specifying the number of folds in cross-validation, one can explicitly
specify the folds. To do this, input a list of length r (to perform r-fold cross-
validation). The rth element of the list should be a vector containing the indices
of the test observations in the rth fold.

Value

errs A matrix of dimension (number of folds)-by-(length of rhos). The (i,j) element
is the number of errors occurring in the ith cross-validation fold for the jth value
of the tuning parameter, i.e. rhos[j].

bestrho The tuning parameter value resulting in the lowest overall cross-validation error
rate.

rhos The vector of rho values used in cross-validation.

nnonzero A matrix of dimension (number of folds)-by-(length of rhos). The (i,j) element
is the number of features included in the classifier occurring in the ith cross-
validation fold for the jth value of the tuning paramer.

folds Cross-validation folds used.

alpha Power transformation used (if transform=TRUE).

Author(s)

Daniela Witten

References

D Witten (2011) Classification and clustering of sequencing data using a Poisson model. To appear
in Annals of Applied Statistics.

Examples

set.seed(1)
dat <- CountDataSet(n=40,p=500,sdsignal=.1,K=3,param=10)
cv.out <- Classify.cv(dat$x,dat$y)
print(cv.out)
out <- Classify(dat$x,dat$y,dat$xte,rho=cv.out$bestrho)
print(out)
cat("Confusion matrix comparing predicted class labels to true class
labels for training observations:", fill=TRUE)
print(table(out$ytehat,dat$yte))
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ColorDendrogram Color the leaves in a hierarchical clustering dendrogram

Description

Pass in the output of "hclust" and a class label for each observation. A colored dendrogram will
result, with the leaf colors indicating the classes.

Usage

ColorDendrogram(hc, y, main = "", branchlength = 0.7, labels = NULL,
xlab = NULL, sub = NULL, ylab = "", cex.main = NULL)

Arguments

hc The output of running "hclust" on a nxn dissimilarity matrix

y A vector of n class labels for the observations that were clustered using "hclust".
If labels are numeric from 1 to K, then colors will be determine automatically.
Otherwise the labels can take the form of colors (e.g. c("red", "red", "orange",
"orange")).

main The main title for the dendrogram.

branchlength How long to make the colored part of the branches. Adjustment will be needed
for each dissimilarity matrix

labels The labels for the n observations.

xlab X-axis label.

sub Sub-x-axis label.

ylab Y-axis label.

cex.main The amount by which to enlarge the main title for the figure.

Author(s)

Daniela Witten

Examples

set.seed(1)
dat <- CountDataSet(n=20,p=100,sdsignal=2,K=4,param=10)
dd <- PoissonDistance(dat$x,type="mle")
ColorDendrogram(hclust(dd$dd), y=dat$y, branchlength=10)
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CountDataSet Generate a simulated sequencing data set using a negative binomial
model.

Description

Generate two nxp data sets: a training set and a test set, as well as outcome vectors y and yte of
length n indicating the class labels of the training and test observations.

Usage

CountDataSet(n, p, K, param, sdsignal)

Arguments

n Number of observations desired.

p Number of features desired. Note that 30% of the features will differ between
classes, though some of those differences may be small.

K Number of classes desired. Note that the function requires that n be at least
equal to 4K – i.e. there must be at least 4 observations per class on average.

param The dispersion parameter for the negative binomial distribution. The negative
binomial distribution is parameterized using "mu" and "size" in the R function
"rnbinom". That is, Y ~ NB(mu, param) means that E(Y)=mu and Var(Y) =
mu+mu^2/param. So when param is very large this is essentially a Poisson
distribution, and when param is smaller then there is a lot of overdispersion
relative to the Poisson distribution.

sdsignal The extent to which the classes are different. If this equals zero then there are
no class differences and if this is large then the classes are very different.

Details

This is based in part on a function in the DESeq Bioconductor package (Anders and Huber 2010
Genome Biology) for generating a simulated RNA sequencing data set.

Value

x nxq data matrix. May have q<p because features with 0 total counts are removed.

y class labels for the n observations in x.

xte nxq data matrix of test observations; the q features are those with >0 total counts
in x. So q<=p.

yte class labels for the n observation in xte.

Author(s)

Daniela Witten, based on software written by Anders and Huber in the DESeq Bioconductor pack-
age.
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Examples

set.seed(1)
dat <- CountDataSet(n=20,p=100,sdsignal=2,K=4,param=10)
dd <- PoissonDistance(dat$x,type="mle", transform=TRUE)

FindBestTransform Find the power transformation that makes a data set approximately
Poisson.

Description

Find a constant alpha, 0<alpha<=1, such that x raised to the power alpha approximately follows the
simple Poisson log linear model that says that the (i,j) element of x is Poisson with mean si times
gj, where si is a sample-specific term and gj is a feature-specific term. Alpha is selected via a grid
search.

Usage

FindBestTransform(x)

Arguments

x A n-by-p matrix of sequencing data, with n observations and p features.

Value

Returns alpha, the power to which x should be raised.

Author(s)

Daniela Witten

References

D Witten (2011) Classification and clustering of sequencing data using a Poisson model. To appear
in Annals of Applied Statistics.

Examples

set.seed(1)
dat <- CountDataSet(n=20,p=100,sdsignal=2,K=4,param=10)
alpha <- FindBestTransform(dat$x)
# This is the best transformation!
dd <- PoissonDistance(dat$x^alpha,type="mle", transform=FALSE)
# OR we could get the samething automatically:
dd2 <- PoissonDistance(dat$x,type="mle",transform=TRUE)
# or like this:
dd3 <- PoissonDistance(dat$x,type="mle",transform=TRUE,alpha=alpha)
ColorDendrogram(hclust(dd$dd), y=dat$y, branchlength=10)
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PoissonDistance Given a n-by-p data matrix, compute the corresponding n-by-n Pois-
son dissimilarity matrix.

Description

This function computes a Poisson dissimilarity matrix as described in the paper referenced below,
and is intended to be applied to a data matrix of counts resulting from a sequencing experiment.
The (i,k) element of the Poisson dissimilarity matrix is the dissimilarity between observations i and
k of the data matrix x: that is, the log likelihood ratio statistic under a simple Poisson model.

Usage

PoissonDistance(x, beta = 1, type=c("mle","deseq","quantile"),
transform=TRUE, alpha=NULL, perfeature=FALSE)

Arguments

x A n-by-p data matrix with observations on the rows, and p features on the
columns. The (i,j) element of x is the number of reads in observation i that
mapped to feature (e.g. gene or exon) j.

beta A smoothing term; essentially the parameter beta in a Gamma(beta,beta) prior
used to estimate the log likelihood ratio statistic for computing the dissimilarity
between a pair of observations. Recommended to leave it at 1, the default value.

type How should the observations be normalized within the Poisson model, i.e. how
should the size factors be estimated? Options are "quantile" or "deseq" (more
robust) or "mle" (less robust).
In greater detail: "quantile" is quantile normalization approach of Bullard et al
2010 BMC Bioinformatics, "deseq" is median of the ratio of an observation to
a pseudoreference obtained by taking the geometric mean, described in Anders
and Huber 2010 Genome Biology and implemented in Bioconductor package
"DESeq", and "mle" is the sum of counts for each sample; this is the maximum
likelihood estimate under a simple Poisson model.

transform Should data matrix x first be power transformed so that it more closely fits the
Poisson model? TRUE or FALSE. Power transformation is especially useful if
the data are overdispersed relative to the Poisson model.

alpha If transform=TRUE, this determines the power to which the data matrix x is
transformed. If alpha=NULL then the transformation that makes the Poisson
model best fit the data is computed. Or a value of alpha, 0<alpha<=1, can be
entered by the user.

perfeature If perfeature=TRUE, then in addition to the nxn dissimilarity matrix, a nxnxp
array will be returned. Its elements will be the contributions of each of the p
features to the nxn dissimilarity matrix; summing over the 3rd index will simply
give back the nxn dissimilarity matrix.
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Details

More details can be found in the paper referenced below.

Value

dd A nxn Poisson dissimilarity matrix, containing pairwise dissimilarities between
observations based on the original nxp data matrix x input by the user.

alpha Power to which data was transformed before computing dissimilarity matrix, if
transform was TRUE. This was either input by the user, or computed automati-
cally if not specified.

x Data used to compute dissimilarity matrix, this will be x raised to the power
alpha.

ddd If perfeature=TRUE, then this is the nxnxp array containing the contribution of
each feature to the nxn dissimilarity matrix.

Author(s)

Daniela Witten

References

D Witten (2011) Classification and clustering of sequencing data using a Poisson model. To appear
in Annals of Applied Statistics.

See Also

FindBestTransform

Examples

set.seed(1)
dat <- CountDataSet(n=20,p=100,sdsignal=2,K=4,param=10)
dd <- PoissonDistance(dat$x,type="mle")
print(dd)
ColorDendrogram(hclust(dd$dd), y=dat$y, branchlength=10)
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