For the examples in this vignette glue
will be used as
an example. glue
version 1.6.2.9000 is included in
the system files of PaRe
and is thus accessible even if
these examples are ran offline.
PaRe
does fetch some online resources through the
package pak
. And by default online stored csv-files in the
PaRe::whiteList
data.frame. If no connection can be made,
functions using these methods to reference these online resources will
return NULL
.
PaRe
includes a data frame which contains links to
csv-files to be used in the PaRe::checkDependencies
and
PaRe::getDefaultPermittedPackages
functions.
By default the data frame contains the following information.
PaRe::whiteList
#> # A tibble: 3 × 4
#> source link package version
#> <chr> <chr> <chr> <chr>
#> 1 tidyverse https://raw.githubusercontent.com/mvankessel-EMC/De… package version
#> 2 darwin https://raw.githubusercontent.com/mvankessel-EMC/De… package version
#> 3 hades https://raw.githubusercontent.com/mvankessel-EMC/De… package version
The data frame contains 4 columns:
If you wish to alter the sources in just your R-session, you can either add, remove, or replace individual rows in the whiteList data frame.
sessionWhiteList <- rbind(
whiteList,
list(
source = "dummySession",
link = "some/file.csv",
package = "package",
version = "version"
)
)
sessionWhiteList
#> # A tibble: 4 × 4
#> source link package version
#> <chr> <chr> <chr> <chr>
#> 1 tidyverse https://raw.githubusercontent.com/mvankessel-EMC… package version
#> 2 darwin https://raw.githubusercontent.com/mvankessel-EMC… package version
#> 3 hades https://raw.githubusercontent.com/mvankessel-EMC… package version
#> 4 dummySession some/file.csv package version
If you wish to make more permanent alterations to the
whiteList
data frame, you can edit the whiteList.csv file
in the PaRe system files.
fileWhiteList <- rbind(
read.csv(
system.file(
package = "PaRe",
"whiteList.csv"
)
),
list(
source = "dummyFile",
link = "some/file.csv",
package = "package",
version = "version"
)
)
fileWhiteList
#> source
#> 1 tidyverse
#> 2 darwin
#> 3 hades
#> 4 dummyFile
#> link
#> 1 https://raw.githubusercontent.com/mvankessel-EMC/DependencyReviewerWhitelists/main/tidyverse.csv
#> 2 https://raw.githubusercontent.com/mvankessel-EMC/DependencyReviewerWhitelists/main/darwin.csv
#> 3 https://raw.githubusercontent.com/mvankessel-EMC/DependencyReviewerWhitelists/main/hades.csv
#> 4 some/file.csv
#> package version
#> 1 package version
#> 2 package version
#> 3 package version
#> 4 package version
Before we start diving into the dependency usage of glue
we should first establish what our dependency white list even looks
like. We can retrieve our full list of whitelisted dependencies buy
calling the getDefaultPermittedPackages
function.
getDefaultPermittedPackages
takes one parameter:
TRUE
by default.
Packages that listed as base packages will be included in the
white list.# Temp dir to clone repo to
tempDir <- tempdir()
pathToRepo <- file.path(tempDir, "glue")
# Clone IncidencePrevalence to temp dir
git2r::clone(
url = "https://github.com/tidyverse/glue.git",
local_path = pathToRepo
)
repo <- PaRe::Repository$new(path = pathToRepo)
#> cloning into '/tmp/RtmpCKaHmg/glue'...
#> Receiving objects: 1% (63/6253), 39 kb
#> Receiving objects: 11% (688/6253), 545 kb
#> Receiving objects: 21% (1314/6253), 2274 kb
#> Receiving objects: 31% (1939/6253), 2722 kb
#> Receiving objects: 41% (2564/6253), 2794 kb
#> Receiving objects: 51% (3190/6253), 3570 kb
#> Receiving objects: 61% (3815/6253), 3762 kb
#> Receiving objects: 71% (4440/6253), 5235 kb
#> Receiving objects: 81% (5065/6253), 10414 kb
#> Receiving objects: 91% (5691/6253), 11734 kb
#> Receiving objects: 100% (6253/6253), 12720 kb, done.
Now that we know what is included in the white list, we can make our
first step into reviewing glue
, which is to ensure the
(suggested) dependencies glue
uses are in our white
list.
→ The following are not permitted: covr, microbenchmark, R.utils, rprintf, testthat
→ Please open an issue here: https://github.com/mvankessel-EMC/DependencyReviewerWhitelists/issues
package | version |
---|---|
covr | * |
microbenchmark | * |
R.utils | * |
rprintf | * |
testthat | 3.0.0 |
Not all suggested dependencies are approved. The function prints a message and returns a data frame, containing all packages that are not listed in our white list.
checkDependecies
takes two parameters:
glue depends on (suggested) dependencies. These dependencies in turn import other dependencies, and so on. We can investigate how these recursive dependencies depend on one another, by investigating it as a graph.
We can compute several statistics about our dependency graph
data.frame(
countVertices = length(igraph::V(graphData)),
countEdges = length(igraph::E(graphData)),
meanDegree = round(mean(igraph::degree(graphData)), 2),
meanDistance = round(mean(igraph::distances(graphData)), 2)
)
glue
depends on.glue
and all other recursive dependencies.We can then plot the graph.
PaRe
allows you to get insight in the function usage in
a package.
#> # A tibble: 367 × 4
#> file line pkg fun
#> <chr> <int> <chr> <chr>
#> 1 color.R 59 base function
#> 2 color.R 59 base parent.frame
#> 3 color.R 60 unknown glue
#> 4 color.R 65 base function
#> 5 color.R 65 base parent.frame
#> 6 color.R 66 unknown glue_data
#> 7 color.R 69 base function
#> 8 color.R 70 base function
#> 9 color.R 70 base parse
#> 10 color.R 70 base tryCatch
#> # ℹ 357 more rows
#> name lineStart lineEnd nArgs cycloComp fileName
#> 1 glue_col 59 61 3 1 color.R
#> 2 glue_data_col 65 67 4 1 color.R
#> 3 color_transformer 69 99 2 8 color.R
#> 4 intro 67 69 3 1 glue.R
#> 5 glue_data 92 200 6 21 glue.R
#> 6 f 150 176 1 3 glue.R
Besides the location of each function being displayed, the number of arguments for each function, and the cyclometic complexity is also included in the result.
#> Loading required package: DiagrammeRsvg
#> Loading required package: magick
#> Linking to ImageMagick 6.9.12.98
#> Enabled features: fontconfig, freetype, fftw, heic, lcms, pango, raw, webp, x11
#> Disabled features: cairo, ghostscript, rsvg
#> Using 4 threads
#> # A tibble: 1 × 6
#> R cpp o h java sql
#> <int> <int> <int> <int> <int> <int>
#> 1 984 0 0 0 0 0
glue
contains 1056 lines of R-code.
#> Warning: Returning more (or less) than 1 row per `summarise()` group was deprecated in
#> dplyr 1.1.0.
#> ℹ Please use `reframe()` instead.
#> ℹ When switching from `summarise()` to `reframe()`, remember that `reframe()`
#> always returns an ungrouped data frame and adjust accordingly.
#> ℹ The deprecated feature was likely used in the PaRe package.
#> Please report the issue at <https://github.com/darwin-eu-dev/PaRe/issues>.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.
#> # A tibble: 2 × 2
#> type pct
#> <chr> <dbl>
#> 1 style 11.9
#> 2 warning 3.46
#> filename line_number column_number type
#> 1 color.R 8 81 style
#> 2 color.R 14 81 style
#> 3 color.R 59 1 style
#> 4 color.R 59 81 style
#> 5 color.R 60 3 warning
#> 6 color.R 60 81 style
#> message
#> 1 Lines should not be more than 80 characters. This line is 93 characters.
#> 2 Lines should not be more than 80 characters. This line is 81 characters.
#> 3 Variable and function name style should match camelCase.
#> 4 Lines should not be more than 80 characters. This line is 82 characters.
#> 5 no visible global function definition for 'glue'
#> 6 Lines should not be more than 80 characters. This line is 94 characters.
#> line
#> 1 #' Using the following syntax will apply the function [crayon::blue()] to the text 'foo bar'.
#> 2 #' If you want an expression to be evaluated, simply place that in a normal brace
#> 3 glue_col <- function(..., .envir = parent.frame(), .na = "NA", .literal = FALSE) {
#> 4 glue_col <- function(..., .envir = parent.frame(), .na = "NA", .literal = FALSE) {
#> 5 glue(..., .envir = .envir, .na = .na, .literal = .literal, .transformer = color_transformer)
#> 6 glue(..., .envir = .envir, .na = .na, .literal = .literal, .transformer = color_transformer)
#> linter
#> 1 line_length_linter
#> 2 line_length_linter
#> 3 object_name_linter
#> 4 line_length_linter
#> 5 object_usage_linter
#> 6 line_length_linter